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Abstract: Various methods exist to measure physical activity. Subjective methods, such as diaries and
surveys, are relatively inexpensive ways of measuring one’s physical activity; however, they are prone
to measurement error and bias due to self-reporting. Wearable accelerometers offer a non-invasive
and objective measure of one’s physical activity and are now widely used in observational studies.
Accelerometers record high frequency data and each produce an unlabeled time series at the
sub-second level. An important activity to identify from the data collected is walking, since it
is often the only form of activity for certain populations. Currently, most methods use an activity
summary which ignores the nuances of walking data. We propose methodology to model specific
continuous responses with a functional linear model utilizing spectra obtained from the local fast
Fourier transform (FFT) of walking as a predictor. Utilizing prior knowledge of the mechanics of
walking, we incorporate this as additional information for the structure of our transformed walking
spectra. The methods were applied to the in-the-laboratory data obtained from the Developmental
Epidemiologic Cohort Study (DECOS).
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1. Introduction

Use of wearable accelerometers has become increasingly common in studies of physical activity,
aging, and obesity [1–8]. Self-reported measures, such as questionnaires, have been widely used to
assess physical activity (PA) previously [6,9]. One reason why we care about using accelerometry over
self-reporting is because there are some populations whose self-reported measures can be inaccurate
[10]. One such population is older adults. Questionnaires require individuals to recall their daily
activities, which can be extremely difficult, particularly for older individuals [11]. Schrack et al. [12]
showed there are changes in the daily patterns and amount of PA as people age. Accelerometry is also
an important tool that can be applied to the general population, because walking is the most popular
form of aerobic physical activity [13].

Accelerometers offer a non-invasive and objective alternative to self-reporting methods.
Advancements in data processing allow for the analysis of specific gait characteristics, such as cadence and
asymmetry [14]. Likewise, advancements in statistical methodology for analysis of high dimensional data
have opened up new paths for analyzing more complex and potentially more informative summaries of
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accelerometry data. Accelerometers are electro-mechanical devices that measure acceleration along
three orthogonal axes. They are often worn on a person’s waist or wrist, and they provide high frequency,
high-throughput data represented by three time series of acceleration measurements [15,16]. The data
are typically collected at the sub-second level (usually between 10 to 100 observations per second);
however, most studies aggregate the data over one minute epochs, or windows, and often, using a
user specified threshold, the data are characterized into activity counts per minute. While thresholding
methods are useful in describing the timing and duration for certain levels of PA, many nuances of
the data are lost. For example, it is not possible to evaluate how a person is walking from activity
count summaries. Especially in certain populations, such as older or obese populations, this raises the
question as to whether a more detailed quantification of the walking signal can provide additional
information. For example, if an older person’s legs are bothering them, we may detect signs of limping
that could help explain the low levels of PA. Our strategy is to extract detailed information from the raw
accelerometry signal during periods of walking. We transform this information into useful quantities,
and then we build regression models to associate characteristics of walking with continuous responses.

To illustrate the complex nature of the data collected, Figure 1 shows the raw data collected from
a triaxial accelerometer (Actigraph GT3X+) for a single individual during an in-laboratory 400 m walk.
The top left panel of Figure 1 presents the entire 400 m walk, where each axis is shown in a different
color. With just over 5 min worth of data, the characteristics of the signal are nearly impossible to
visualize. The top right panel of Figure 1 shows a 10 s window of the same data. At this scale, we can
discern a fairly periodic signal. In the bottom row of Figure 1, we present the vector magnitude of
the same data presented in the top row. We can see that the periodic nature of the data are preserved
while information about the three dimensional direction is lost. However, in free-living data collection,
it is difficult to control the orientation of the device when participants are able to remove the device.
For this reason, the magnitude of the signal is sufficient and relatively stable to capture the gait
characteristics described in this manuscript. The periodic characteristics of walking naturally lend
themselves to a frequency analysis approach for quantifying the features of walking. By utilizing the
methods described in Urbanek et al. [15], we can extract estimates of cadence (steps per second) and
average magnitude from windows of raw data. In addition to these more common features, we also
utilize the spectra obtained from the local fast Fourier Transform (FFT) as a functional predictor for
modeling the association of walking with continuous responses such as age and body mass index
(BMI). By incorporating the walking spectra as a predictor, we gain additional information about the
characteristics of a person’s gait which may be associated with the response of interest. For example,
an individual with a very smooth walking stride would result in most of the energy from walking
concentrated around the frequencies near the cadence. However, an individual with an interrupted
stride (e.g., a limp) would result in energy being more dispersed through higher frequencies.

Several methods exist for fitting a scalar-on-regression function, such as y =
∫
I W(s)β(s)ds + ε,

where W(·) is a functional predictor and y is a scalar response variable. Several methods for estimating
β(·) are based on the eigenfunctions associated with some covariance operator defined by the
predictors [17]. Due to the periodic nature of walking, we have strong reason to believe the vast
majority of information contained in the walking spectra will be located around the harmonics centered
at multiples of the dominant frequency. The PEER method developed by Randolph et al. [17] allows
for the incorporation of presumed structure directly into the estimation process and is preferable to a
purely empirical estimator. This particular method has been widely used in other areas of research,
for example, in heritability and evolution studies [18,19] and in microbiome analysis [20]. However,
to the best of our knowledge, this is a novel use of the PEER method in the analysis of the raw
accelerometry data.

In this manuscript, we propose a novel application of recently developed statistical methods
for the analysis of accelerometry data by associating continuous responses, such as age and BMI,
with the Fourier spectrum of walking. The purpose of this manuscript is to serve as a proof of
concept for researchers seeking to utilize more information from the accelerometry data in modeling
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associations between characteristics of walking and health related outcomes. We show how this
additional information can be combined with scalar predictors in a linear regression model framework.
The remainder of this manuscript is structured as follows. In Section 2, we describe the data collection
and pre-processing procedures. In Section 3, we describe the functional linear model used to fit the data
and how the estimation is performed. In Section 4, we apply the proposed model to data collected in
the laboratory from a study of an aging adult population. In Section 5, we conclude with a discussion.

Figure 1. Triaxial accelerometer data from the 400 m walk for a single individual (top left) and a zoomed
10 s window (top right). Vector magnitude from the 400 m walk for same individual (bottom left) and
zoomed 10 s window (bottom right).

2. Data Collection and Pre-Processing

Eighty-nine community-dwelling older adults were recruited from the Pittsburgh, Pennsylvania area
for the National Institute on Aging, Aging Research Evaluating Accelerometry (AREA) project,
part of the Developmental Epidemiologic Cohort Study (DECOS) [3]. AREA was a cross-sectional
methodological initiative designed to examine the impact of accelerometry wear location on assessment
of physical activity and sedentary behavior among 89 older adults enrolled between March and May
of 2010 [21]. The report included data from 51 healthy participants (25 men and 26 women) who had
complete the “in-the-lab” (N = 46) or “in-the-wild” (N = 48) accelerometry data. Individuals were
excluded from the DECOS study for the following reasons: hip fracture, stroke in the past 12 months,
cerebral hemorrhage in the past 6 months, heart attack, angioplasty, heart surgery in the past 3 months,
chest pain during walking the past 30 days, current treatment for shortness of breath or a lung
condition, usual aching, stiffness, or pain in their lower limbs and joints, and bilateral difficulty in
bending or straightening the knees fully [22]. This paper focuses on the N = 46 participants that
completed the “in-the-lab” fast-paced 400 m walk. Data were collected with an Actigraph GT3X+
worn at the right hip. The devices collected raw accelerometry data along three orthogonal axes at
a sampling frequency of 80 Hz. A summary of the demographic data for all N = 46 participants is
provided in Table 1.

The first step in pre-processing the data is to split the observed triaxial signal from the 400 m
walk into 10 s non-overlapping windows. For each window, we transform the raw triaxial signal
into vector magnitude (VM), where VM is defined as the root sum of squares of the three axes, i.e.,
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vm(t) =
√

x1(t)2 + x2(t)2 + x3(t)2. The vector magnitude count (VMC) is then calculated as the mean
absolute deviation of the VM:

vτ(t) =
1
τ

t+τ/2

∑
u=t−τ/2

|vm(u)− vm|, (1)

where τ is the window size expressed as number of sampling points [15]. We then transform the VM
from the time domain into the frequency domain using the local FFT, or short time Fourier transform
(STFT). Similarly to Urbanek et al. [15], we define the STFT at time t of the vm(t) as

X(t, f ; τ) =
[t+τ/2]

∑
u=[t−τ/2]

vm(u)h(u)e−i2π f u/τ , (2)

where f is the frequency index and τ is a tuning parameter specifying the number of observations
in the interval centered at t. The Hanning weights, defined as, h(u; τ) = 0.5[1− cos{2πu/(τ − 1)}]
are used to avoid a blurring of the obtained spectra which can happen as a result of the windowing
process. The spectrum is then defined as the absolute value of the STFT, |X(t, f ; τ)|.

Table 1. DECOS participant characteristics (N = 46).

Characteristic Summary Statistics

Male (n (%)) 22 (47.8%)
Age (Mean (SD)) 78.24 (5.74)
BMI (Mean (SD)) 26.73 (3.94)
Cadence (Mean (SD)) 2.06 (0.17)
VMC (Mean (SD)) 0.25 (0.09)

For each spectrum obtained, we then identify the fundamental frequency (cadence) as the location of
the largest peak in the spectrum. Since the reported frequency of walking is between 1.4 and 2.5 Hz [23],
which corresponds to 1.4 to 2.5 steps per second, we look for the cadence in a conservative range of
1.2–4.0 Hz to be consistent with Urbanek et al. [15]. The frequency axis used is from 0 to 39.9 Hz
sampled every 0.1 Hz which ensures every individual’s spectra will contain at least 10 multiples of
their dominant frequency, or cadence. In the top left panel of Figure 2, we display all spectra for a
single participant. Although these spectra appear similar, it is evident that there is variability between
spectra obtained in different windows. Therefore, once the spectra are all obtained, and we have
identified their fundamental frequencies, it is imperative that we align each spectrum for aggregation.

In order to align all spectra at their fundamental frequency, we further transform each spectrum
from the frequency domain into the order domain by scaling the frequency axis by the fundamental
frequency for each spectrum. Linear interpolation is then used to place each spectrum back on the
same sampling grid. This ensures that all spectra are aligned and sampled at equally spaced points.
The top right panel of Figure 2 illustrates how the realigned spectra for a single participant. As can be
seen, all spectra are perfectly aligned at the dominant frequency.

However, each spectrum is sampled discretely, therefore, further harmonics may be slightly
misaligned in the order domain. To compensate, we average the spectra across all windows for each
participant in order to obtain a global estimate of walking features for each individual. Each spectrum
is restricted to 546 points between 0.3 and 5.75 in the order domain to avoid modeling signal noise at
the beginning and end of the spectra. The bottom left panel of Figure 2 shows the averaged spectra for
all N = 46 participants. The peaks of the average spectra for each individual are now nearly perfectly
aligned in the order domain at multiples of the fundamental frequency.

Finally, we scale each individual’s average spectrum by the magnitude of the spectrum at the
cadence. By scaling the spectra in this way, the magnitude at each harmonic can be interpreted as a
ratio to the magnitude at the cadence. This process is illustrated in bottom right panel of Figure 2,
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and this entire process is fully detailed in Algorithm 1 . These steps for pre-processing the raw
accelerometry data are essential in order to properly fit the statistical model described in Section 3.

Algorithm 1: Steps for pre-processing the raw accelerometry data.
Input : x(t)—accelerometry signal, fs—sampling frequency, smin = 1.2 Hz, smax = 4.0 Hz
Output : FFT—scaled average FFT spectrum, VMC—average VMC, Cadence—average

cadence
1 Divide accelerometry signal into 10 s non-overlapping windows.
2 Transform accelerometry signal into vector magnitude vm(t).
3 Compute vector magnitude count, v10(t), for each window.
4 Compute Fourier spectrum for each window.
5 Estimate cadence as frequency centered under the largest peak in spectrum.
6 Transform spectra from frequency domain to order domain by scaling frequency axis by the

frequency of the cadence.
7 Average vector magnitude count, cadence, and order domain spectra across all windows.
8 Restrict spectra to points between 0.3 and 5.75 multiples of the cadence frequency.
9 Scale spectra by magnitude of the average spectra at the cadence.

Figure 2. Pre-processing data. Observed FFT spectra for one participant as described in step 4 of
Algorithm 1 (top left). Observed spectra realigned into order domain for the same participant as
described in step 6 of Algorithm 1 (top right). Average realigned spectra for all participants as
described in step 7 of Algorithm 1 (bottom left). Scaled average spectra for all participants as described
in step 9 of Algorithm 1 (bottom right).
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3. Statistical Methods

Frequently, the methods applied to analyze the data arising from the raw accelerometry signal rely
on the discrete features extracted from such data, leading to possible loss of information. In contrast,
we take the full time series signal into account and work with its continuous properties, namely, the
spectrum obtained from the walking portion of the accelerometry signal. We summarize the approach
taken below.

Let Wi(·) denote a functional predictor (e.g., a scaled average FFT spectrum) from the ith study
participant where (i = 1, . . . , N). We will assume that each observed predictor is obtained as a
discretized version of an idealized function at p equally-spaced points, s1, . . . , sp, as can be seen in the
walking spectra in Figure 2. We let wi := [wi(s1), . . . , wi(sp)]T be the p× 1 vector of values sampled
from Wi(·). Then our observed data take the form {yi; xi; wi} where yi is a scalar response, xi is a
K × 1 vector of measurements from K scalar predictors (e.g., sex or average cadence), and wi is the
functional predictor from the ith participant. We denote the true coefficient function by β(·), and then,
the functional regression model of interest is given by

yi = xT
i γ +

∫
I

Wi(s)β(s)ds + εi (3)

where εi ∼ N(0, σ2
ε ). Here xT

i γ is the linear effect from K scalar predictors and
∫
I Wi(s)β(s)ds is the

functional effect.

3.1. Estimation of Parameters

Several approaches can be used to estimate the association between the scalar xi and functional wi(·)
predictors with the outcome yi. In our work, we utilize the approach proposed in Randolph et al. [17],
which incorporates functional structure into the estimation of β(·). Specifically, the properties of
the estimated spectra, i.e., their continuity, smoothness, and common behavior, are taken into the
estimation procedure explicitly. To represent our model in a compact form, we combine the data from
all N participants and express Equation (3) as

y = Xγ + Wβ + ε (4)

where y = [y1, . . . , yN ]
T is an N × 1 vector of responses; X = [xT

1 , . . . , xT
N ]

T is an N × K design matrix
corresponding to the scalar predictors with coefficient vector γ; W = [wT

1 , . . . , wT
N ]

T is an N × p design
matrix corresponding to the functional predictors with functional coefficient vector β.

Given the periodic nature of the walking behavior, if the walking spectral properties are associated
with the outcomes, the relevant information contained in the walking spectra is localized around the
harmonics at multiples of the dominant frequency. We thus want to estimate β while imposing this
prior information on its functional structure. We achieve this by using the penalty operator, L [17],
which is created from the basis functions in the right panel of Figure 3. The penalized estimates of γ

and β are obtained as the solution to the following criterion

[γ̃, β̃λ,L]
T = arg min

γ,β
{||y− Xγ−Wβ||2 + λ||Lβ||2L2}, (5)

where we only penalize the functional coefficient vector β.
Given some prior knowledge about the structure of our functional predictor, the penalty is

defined utilizing a subspace containing this information [17]. We define this informative space, Q,
to be a span of basis functions (right panel of Figure 3) emphasizing the relevant features of β(·) and
consider the orthogonal projection PQ = QQ+. As described in Randolph et al. [17], we define the
decomposition-based penalty as

L ≡ LQ = a(I − PQ) + PQ (6)
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for some a > 0. When a > 1 the estimate is penalized more in the non-informative space orthogonal to
Q. When a = 1, the estimate is simply an ordinary ridge regression estimate. Therefore, a generalized
ridge estimate of γ and β can be obtained as

[γ̃, β̃]T = (XT
o Xo + λLT

o Lo)
−1XT

o y, (7)

where Xo = [X W] and Lo = blockdiag{0, LT
QLQ}. The tuning parameter, λ, is estimated in a

principled way via a linear mixed model equivalence, as described in Ruppert et al. [24]. Specifically,
the optimization criterion (5) is written in an equivalent linear mixed model form with the coefficients
γ being fixed and the coefficients β being random with a distribution β ∼ N(0, σ2

β). The estimate of

the tuning parameter, λ, is then simply the ratio of the variances σ2
ε and σ2

β.

Figure 3. Pre-processed walking spectra (top) and basis functions used for modeling (bottom). The
x-axis represents multiples of the frequency of the cadence.
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4. DECOS Example

We applied the methods discussed in Section 3 to the data described in Section 2 to study the
associations of walking spectra obtained from the fast-paced 400 m walk with age and BMI [3].
The fast-paced 400 m walk is often used in epidemiological studies of older adults to assess aerobic
fitness [25]. The most common protocol implemented for the fast-paced 400 m walk is the long distance
corridor walk (LDCW) [26]. The pre-processed walking spectra described in Section 2 were each sampled
at k = 546 distinct sampling points within 0.3 and 5.75 of the order domain. This range was chosen because
there is little energy contained in the spectra beyond 13.5 Hz. Assuming an average cadence of 2.0 Hz,
this range sufficiently covers the relevant features of walking. There were N = 46 participants that
completed the LDCW. In addition to each participant’s scaled average walking spectra, an estimate of
their average cadence was used as a predictor in the proposed models to control for participant-specific
walking speeds. In addition, VMC was used to control for the energy magnitude each participant
produced. For example, an individual with a very controlled and smooth walking style would have
shown lower magnitude than an individual with a heavy stomp in their walk. We also adjusted each
model for gender differences.

In order to use our prior knowledge about the structure of the walking spectra, we define a penalty
LQ as given in Equation (6) (with a = 2). We define our basis functions as normal density functions
centered at multiples of the cadence from 0.5× cadence to 5.5× cadence using steps of 0.5× cadence.
We chose a standard deviation such that the distributions were nearly orthogonal. Scaled average
walking spectra and basis functions are displayed in Figure 3.

Following the general formulation of the functional regression model (3), we fit the following
model to these data:

yi = γ0 + Malei ∗ γ1 + Cadencei ∗ γ2 + VMCi ∗ γ3 +
∫
I

Spectrumi(s)β(s)ds + εi (8)

where yi is either age or BMI, Malei is a binary variable, and Cadencei and VMCi are the cadence and
vector magnitude count for participant i, respectively. Spectrumi(·) is the scaled average walking
spectrum for participant i as described in Section 2. We assume that εi ∼ N(0, σ2

ε ). Regression
coefficients γ and the regression function β(s) are estimated via the procedure described in Section 3.1
using the peer() function from the refund package in R [27,28]. Thus, the scalar outcome yi is predicted
via a weighted sum of the products of the collected data (indicator variable of male sex, cadence, VMC,
and a spectrum) and their respective estimated regression coefficients γ̃’s and β̃(·).

Figure 4 displays the estimates of β(·) along with the pointwise 95% confidence bands for the
two models described in Equation (8). These figures show that the estimated regression function
is different from zero at different multiples of the cadence. The regression function for age (top)
shows that the coefficient function, β̃, is negative at the multiples 1.5 and 3.5 and positive at the
multiples 4, 4.5, and 5, whereas for the other multiples the estimated coefficients are not significantly
different from zero. These results indicate that younger individuals have larger magnitude in the lower
harmonics relative to the magnitude at their cadence which indicates a heavier stomp component
and controlled walking motion. Older individuals have larger magnitudes in the higher harmonics
relative to the magnitudes of their cadence, which indicates a less controlled compensatory walking
motion (e.g., a limp). These results seem to be consistent with findings of prior research [29–35].
However additional research is needed to validate our conclusions.
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Figure 4. Estimates of the coefficient function, β̃, (with 95% point-wise confidence band) for the
association of walking with age and BMI, as described in Section 4. The x-axis represents multiples of
the frequency of the cadence.

The regression results for BMI (bottom) show that the coefficient function, β̃, is positive at the
multiple 2.5 and negative at the multiples 4 and 5, whereas for the other multiples the estimated
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coefficients are not significantly different from zero. These results could indicate that overweight
or obese individuals tend to walk with a heavier stomp component, resulting in higher magnitudes
of the lower harmonics than the normal weight individuals. Leaner individuals walk with a lighter
stomp component, resulting in walking characteristics with lower magnitudes in the lower harmonics
and higher magnitudes in the higher harmonics. Further discussion and possible limitations of this
interpretation are provided in Section 5.

Both results described above show that the information provided by the penalty reduces the
number of spurious findings and at the same time emphasizes the signal content of the scaled
Fourier spectra.

5. Discussion

In this paper we proposed a novel application of existing functional linear model methods
to the study of physical activity data collected by accelerometers. We proposed an algorithm for
pre-processing the raw data collected from accelerometers to quantify the characteristics of walking in
a more detailed manner than is typically used with activity count summaries. By utilizing the periodic
characteristics of walking, we were able to reduce the dimensionality of the raw data into a form that
retained some details of the original signal while allowing us to use existing statistical methods for
analyses. We applied these methods to the in-the-laboratory data collected from a study of an older
adult population.

While FFT has been widely used for pre-processing accelerometry data, the features extracted
from such methods have been applied to the problem of classification of activity types as opposed to
associating characteristics of walking to continuous response variables [15,36–38]. To our knowledge,
this is the first proposed application of functional linear regression techniques to model the association
of walking spectra with continuous responses. Due to the periodic characteristics of walking,
the proposed method naturally lends itself to this application, wherein we can inform the penalty
operator of where the relevant information is contained in the spectra. This method is not limited
to the cross-sectional setting, as demonstrated in this paper, and it is easily extended to responses
collected longitudinally [39]. In addition to walking speed, this more detailed quantification of walking
may provide additional information as to how certain degenerative diseases (e.g., Parkinson’s disease
and multiple sclerosis) affect a person’s ability to walk over the progression of disease. Reuter et al.
[40] showed that certain walking programs can actually improve gait characteristics of individuals
with Parkinson’s disease over the course of a 6-month study. Gait characteristics were measured on
a specialized treadmill outfitted with specialized sensors to accurately measure foot-ground contact.
The application of these proposed methods could alleviate any financial restrictions of such studies to
allow for much larger randomized prospective studies to determine whether these exercise therapies
actually slow down the progression of such diseases. Utility of these methods can only be assessed
with the inclusion of accelerometers in such studies, and they are being increasingly used.

We acknowledge that there are limitations in our analyses. For example, we did not collect
data from the 3D motion capture or ground force reaction (GFR) measurements to validate the
findings of our analyses. This manuscript is meant to demonstrate how researchers can utilize existing
statistical methodology to analyze finer features of the raw accelerometry data retaining additional
information about characteristics and changes in gait that are usually lost due to over-aggregation of
the raw data collected. It was beyond the scope of this study to obtain information from specialized
laboratory equipment, but we do feel that further research is warranted to validate our findings
and draw associations between the additional characteristics of gait observed in our analyses with
gait measurements obtained in a laboratory. Ko et al. [33] found that older adults with obesity
modify their gait patterns compared to normal weight counterparts while walking at normal and fast
speeds. For example, they found that obese participants had lower mechanical work expenditure
(MWE) in the ankle and significantly higher MWE in the knee and hip compared to normal weight
participants. Paired with the raw accelerometry data, these findings could identify the specific
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mechanisms validating the additional associations we found in our analyses. Menz et al. [31] observed
that older participants exhibited a more conservative gait pattern characterized by reduced velocity,
shorter step length, and increased step timing variability which could be contributing to the portion of
the signals observed at the higher frequencies of the walking spectra in our study.

In conclusion, we acknowledge that age and BMI are easy to measure, but the strength of this study
is that it serves as a proof of concept for how researchers can utilize the extracted walking characteristics
in the presence of more relevant health related outcomes, e.g., fatigability or neurocognitive function.
In addition, we studied only relatively healthy elderly individuals. Thus, generalizability of the
findings to either healthy younger individuals or unhealthy older individuals needs to be studied.
Given the small sample size of our study and utilization of the data from the laboratory experiment
only, additional research is needed to establish similar associations between the health outcomes and
the free-living walking data characteristics.
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