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Introduction 

Cyanobacterial (CYB) blooms are one of the most important issues concerning environmental 

agencies, water authorities and public health organizations.  Cyanobacteria in surface water 

systems pose a health concern for humans, livestock, and native wildlife across the globe. 

Ecological effects of CYB blooms include changes in phytoplankton community structure, fish 

community structures and lake anoxia. Nuisance and harmful CYB blooms in water bodies can 

result in a series of social-economic issues such as aesthetic degradation of lakes and reservoirs 

due to the presence of surface scums and earthy smells, recreational degradation due to 

hypolimnetic anoxia and kills of desirable sport fish, and human health impairment due to the 

production of toxins such as anatoxins, microcystins and cylindrospermopsins. The occurrence of 

toxic CYB blooms is of great concern due to embedded implications for alternated biodiversity, 

public health, and for overall ecosystem health of inland waters.  It is critical for water resource 

managers and policy makers to monitor toxic CYB blooms effectively. 

Monitoring CYB blooms via in situ water sampling is time and labor intensive, and is otherwise 

limited to infrequent water sample collection.  To overcome this limitation, remote sensing has 

been used in estimating and mapping CYB blooms, and three remote sensing algorithms, namely 
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empirical, analytical, semi-analytical, have been proposed to quantify phycocyanin (PC), an 

accessory pigment unique to CYB blooms in inland waters, as well as chlorophyll-a (Chl-a), a 

primary CYB pigment.  The empirical approach aims at establishing a statistical relationship 

between spectral variables (e.g. reflectance, reflectance ratio or derivative) and the CYB pigments 

[1-12]. However, the performance of varying empirical approaches is dataset dependent because 

of the variation of imaging and water conditions [e.g.,13-14]. The semi-analytical approach to 

quantifying CYB blooms utilizes the correlation between remote sending reflectance and water 

inherent optical properties (IOPs), which are referred to as the total absorption (a) and 

backscattering (bb) of optically active constituents (OACs): phytoplankton, color dissolved organic 

matter (CDOM), and non-algal particle (NAP). Quantification of CYB concentration via the semi-

analytical approach is primarily achieved by first isolating the CYB absorption signal from the 

total OACs’ absorption derived from remote sending reflectance, then removing the interference 

of overlapping Chl-a absorption from CYB absorption, and finally deriving PC concentrations 

from the remaining CYB absorption spectra. The semi-empirical approach focuses on analyzing 

the relationship between the CYB pigments and one or some spectral indices with the latter being 

parameterized by the IOPs of the relevant OACs. Insightful reviews of these PC estimation 

algorithms were given by Matthews et al. [15], Li and Song [16] and Yan et al. [17]. 

 

Over the past several years, a quite few literatures have been published to compare or assess 

various PC remote sensing algorithms when applied to different inland waters around the world, 

but the performance of a specific PC algorithm is inconsistent.  Therefore, it is necessary to revisit 

several typical PC algorithms to examine their assumptions and suitability for different inland 

waters. Beside this main goal, these PC algorithms are assessed for their performance accuracy, 
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ability for removal of the non-PC constituent interference, as well as their adaptability for different 

sensors.  At last, scientifically important investigations to develop PC remote sensing algorithms 

in future are recommended.   

 

Spectral Characteristics of Inland Waters 

Algae contain colored pigments and show characteristic spectral features.  Error! Reference 

source not found. shows in situ reflectance spectra of Eagle Creek reservoir measured in August 

of 2004. The spectral signature signifying the presence of algal pigments in the water includes (a) 

and (b) low reflectance at 440 and 500 nm resulting from algal chlorophyll and carotenoid, 

respectively [18, 19]; (c) maximum reflectance between 560 and 570 nm due to the lack of 

absorption by algal chlorophyll, thus giving algae a green color to our eyes [20]; (d) a strong PC 

absorption at  620 nm unique to cyanobacteria due to PC absorbing primarily green and red light 

[20-21]; (e) a weak reflection at 640 nm ascribed to backscattering from dissolved organic matter 

or fluorescence of accessory pigment [21]; (f) strong Chl-a absorption at about 675 nm [18-19]; 

(g) strong reflectance peak around 690-700 nm caused by an interaction of algal-cell scattering 

and a combined effect of pigment and water absorption [18-21]; (h) a weak reflectance peak at 

about 810 nm likely due to backscattering from algal cells combined with the general absorption 

of near infrared in clear water [18-19]. These spectral characteristics of pigments and other water 

constituents provide a physical basis for quantifying the concentrations of cyanobacteria using 

remote sensing.  

 

Insert Figure 1 here 
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Basic Radiative Transfer Equation 

Remote sensing reflectance above water surface(𝑅 (𝜆)) is a function of two IOP variables a(λ) 

and 𝑏 (𝜆) and the function can be written as Equation 1 [22]: 

𝑅 (𝜆) =
( )

( )
×

( )

( ) ( )
                                                       (1) 

where f(λ) describes the sensitivity of the reflectance to variations in the solar zenith angle, and 

Q(λ) is the bidirectional properties of the reflectance. For inland turbid waters, a(λ) = aw(λ) + 

a*chl(λ) [CHL] + a*pc(λ) [PC] + a*NAP(λ) [NAP]+ a*CDOM(λ) [CDOM] denotes total absorption 

coefficient of four water substances in the water column at a given wavelength, each term on the 

right side of this equation is the bulk absorption of the corresponding constituent which is defined 

as the product of the specific absorption coefficient (e.g., a*chl(λ)) of a constituent and 

concentration of that constituent (e.g., [CHL]). bb(λ) represents the total backscattering coefficient 

(m-1) of OACs and water, and can be described as a linear combination of OACs’ bulk 

backscattering coefficient, each of which is the product of the specific scattering coefficient (e.g., 

b*b,phy(λ)) and concentration of that constituent (e.g.,[Chl-a]). Furthermore, f(λ)  and Q(λ) are 

often assumed to be weakly dependent on wavelength [23-24].  This assumption is significant 

because a reflectance band ratio (BR) can then be written as: 
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A BR as shown by Equation 2 is important for developing most PC algorithms which are listed in 

Table 1 and described below. Table 2 lists the symbols and acronyms which are used to describe 

the models. 
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Empirical Algorithms for PC Estimation 

Empirical algorithms for estimation of PC are commonly established based on its absorption 

feature around 620 nm. Table 3 shows a summary of typical empirical algorithms. The simplest 

empirical algorithm in this group is the reflectance ratio of a near infrared wavelength to 620 nm.  

Schalles and Yacobi [8] proposed to use the ratio of radiance reflectance at 650 nm to that at 620 

nm (BR650/620), and obtained an R2 of 0.612 when applied to in situ reflectance data measured by a 

portable Ocean Optics ST1000 spectraradiometer from Sept. 1994 to Jul. 1998 for Carter Lake, 

Nebraska, USA. The strong performance of this band ratio can be attributed to the dominance of 

cyanobacteria indicated by the range of PC concentrations (10 – 530 g/L ) and strong correlation 

of PC to Chl-a [8]. Hunter et al. [25] proposed a log10-transformed ratio of radiance at 710 nm to 

that at 620 nm (BR710/620) and obtained an R2 of 0.95 when applied to time-series images acquired 

by the Compact Airborne Spectrographic Imager (CASI-2) over the shallow eutrophic waters of 

Barton Broad, UK to monitor diurnal changes in the spatial distribution of the potentially toxic 

cyanobacterium Microcystis aeruginosa with a PC range of 36 – 139 g/L (N = 13). Li et al. [26] 

examined the performance of BR650/620 and BR710/620 in the estimation of PC concentrations with 

the Airborne Imaging Spectrometer for Application (AISA) image spectra of Geist Reservoir, 

Indiana, USA (PC: 25 to 185 g/L), and showed weak relationships of the two ratios to PC 

concentration ranging from 25 to 185 g/L as a result of the effects of Chl-a and suspended 

sediment. Mishra et al. [27] observed the performance of BR700/600 (R2 = 0.97) was superior to 

reflectance ratios BR650/620 (R2 = 0.71) and BR710/620 (R2 = 0.88) in the estimation of PC 

concentrations (506 – 273883 cells/L) with lab measured USB 4000 radiometer (Ocean Optics, 

Inc., Dunedin, FL, USA) spectra of cultured cyanobacterial species Synechocystis and Anabaena, 

and concluded that the strongest performance of BR700/600  was due to its insusceptibility to varying 
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Chl-a concentrations while the poor performance of BR650/620 and BR710/620  resulted from the effect 

of Chl-a on the reflectance at 620 nm. Ogashawara et al. [28] evaluated the accuracy and sensitivity 

of BR650/620, BR710/620, BR700/600, BR709/600, BR724/600 for retrieval of PC concentrations from the 

reflectance spectra measured by the RAMSES hyperspectral radiometers (TriOS GmbH, 

Oldenburg, Germany) in Funil Reservoir, Brazil and the spectra measured with Ocean Optics 

spectroradiometers (Ocean Optics Inc., Dunedin, FL, USA) in catfish ponds, USA. In terms of R2 

from high to low, these ratios were ranked as BR709/600, BR700/600, BR710/620, BR650/620, BR724/600 for 

the Funil dataset (PC: 9 -35 g/L), BR700/600, BR724/600, BR650/620, BR709/600, BR710/620 for the catfish 

ponds (PC: 68-857 g/L), and  BR700/600, BR724/600, BR650/620, BR710/620, BR709/600,. These band ratio 

results indicate the dependence of their performance on datasets for estimating PC concentration 

[29].  

 

A midpoint reflectance baseline index (MRBI) using bands 600, 624, and 648 nm was proposed to 

describe the difference between reflectance Rrs at 624 nm and the reflectance midpoint for bands 

600 and 648 nm [3]. This index gave rise to a strong relationship (R2 = 0.99) to PC measurements 

for the dataset collected from 9 shallow eutrophic lakes in the central western part of the 

Netherlands, but the application of MRBI to other datasets has a mixed success. For example, Li 

et at al. [26] reported a stronger performance of the MRBI than BR650/620 and BR710/620 with the 

AISA image spectra, but an inferior PC estimation relative to BR650/620 was observed with the 

radiance reflectance spectra collected from Carter Lake [8], and relative to all the ratios examined 

by Ogashawara et al. [28] with the Funil dataset. Explanation for these inconsistent results is not 

straightforward, but the relationship 𝑎 (620) = 𝑀𝑅𝐵𝐼/(
( )

( ) ( )
)  can be derived from 
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equations 5.13a-c in [3], which illustrates the effects of both the reflectance and the total light 

extinction (𝑎(𝜆) + 𝑏 (𝜆)) at 620 nm on the correlation between MRBI and PC concentration.    

 

Wynne et al. [30] developed a spectral shape algorithm (SSA) and applied to the MEdium 

Resolution Imaging Spectrometer (MERIS) data to identify cyanobacteria blooms in Bear Lake, 

Michigan, USA. It is interesting to note that the MRBI is a special case of SSA for a set of three 

evenly spaced wavelengths. Unlike other empirical methods, this SSA does not rely on PC 

absorption around 620 nm, instead uses the Chl-a fluorescence at 681 nm to construct second 

derivatives with reflectance at wavelengths at 665 and 709 nm based on the difference of the 

fluorescence peak between CYB (weak fluorescence) and non-CYB species (strong fluorescence). 

The SSA was later adjusted for MODIS bands 678, 667, and 748 nm to monitor cyanobacterial 

blooms in Lake Erie [31-32], but Wynne et al. [31] pointed out that a weak Chl-a fluorescence 

signal could be due to other processes instead of the CYB presence.  

 

Qi et al. [33] proposed a PC index (PCI) using the spectral shape for the derivatives at 550, 620, 

and 665 nm to estimate PC concentrations in Lake Taihu in China. Despite its mathematical 

equivalent to SSA and MRBI, PCI is expected to be more reliable than SSA for estimating PC 

concentration, and more suitable than MRBI for satellite multispectral sensors. However, like 

MRBI and other empirical models, PCI’s performance can be affected by sediment, other 

phytoplankton assemblage, and a strong absorption of water between 550 nm and 620 nm [34]. 

These drawbacks are more or less addressed by the semi-empirical algorithms to be discussed 

below.    
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Semi-Empirical Algorithms for PC Estimation 

Table 4 shows PC algorithms in this group including the models established using three bands [25, 

35-36], double three bands and the absorption baseline [37], four bands [38], and four bands and 

reflectance baseline [39].  For the convenience of the description below, these algorithms are called 

the three band model (TBM), double three band baseline (DTBB), four band model (FBM), and 

four band baseline model (FBBM), respectively. 

 

TBM 

These three algorithms are proposed to estimate PC using three spectral bands denoted as 𝜆 , 𝜆 , 

𝜆 , respectively. Selection of these three wavelengths or spectral bands is based on the following 

assumptions: 1) 𝜆  is sensitive to PC absorption; 2) 𝜆  is less sensitive to PC absorption, but the 

absorption coefficients of NAP and CDOM at 𝜆  should be similar to those at 𝜆 ; 3) the 

backscattering coefficients of OACs are spectrally neutral across 𝜆 , 𝜆 , and 𝜆 . The first TBM 

was constructed using 𝜆  = 630, 𝜆 = 660, and 𝜆  = 725 nm to estimate PC, and obtained an R2 of 

0.95, and a RMSE of 6.35 g/L when applied to cultured CYB spectra measured with an ASD 

FieldSpec® HandHeld Spectroradiometer (Analytical Spectral Devices Inc., Boulder, CO, USA) 

[25]. Later the TBM for airborne hyperspectral sensors was established with 𝜆  = 615, 𝜆 = 600, 

and 𝜆  = 725 nm for hyperspectral sensors Compact Airborne Spectrographic Imager-2 (CASI-2) 

(ITRES Research Ltd., Calgary, AB, Canada) and Airborne Imaging Spectrometer for 

Applications Eagle (AISA Eagle) (SPECIM, Oulu, NO, Finland), and performed well with R2 = 

0.92,  and RMSE = 2.65 g/L [35].  Duan et al. [36] established a TMB with three MERIS bands 

at 𝜆 = 620, 𝜆  = 709, and 𝜆  = 754 nm for estimating PC concentrations in three inland lakes in 

China (Lake Taihu, Lake Dongjiu and Lake Gehu).  Nonetheless, the three band model is found to 



9 
 

perform poorly for highly turbid waters or when CYB blooms do not dominate [26, 40-41], and 

other semi-analytical models are proposed using the assumptions for the three band model and 

additional spectral characteristics. 

 

DTBB 

The DTBB algorithm is composed of double three band models and a midpoint baseline index. The 

first three band model (equation 3) uses bands are  𝜆 = 624, 𝜆  = 600, and 𝜆  = 725 nm, while the 

second three band model (equation 4) uses 𝜆 = 624, 𝜆  = 648, and 𝜆  = 725 nm.  
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The selection of these spectral bands for the construction of the two three band indices was inspired 

by the TBM in [35] with 𝜆 = 624 nm being sensitive to PC, but 𝜆 = 600 nm or 648 nm being less 

sensitive to PC and able to compensate for the NAP and CDOM absorption (i.e. acdm, hereafter 

cdm represents both NAP and CDOM) at 𝜆 . A neutral backscattering is assumed for wavelengths 

𝜆 and 𝜆 .  Additionally, the assumption of dominant water absorption 𝜆  = 725 nm implies 

acdm(725)=apigs(725)≈0 [11, 42], and rearrangement of equation 3 and 4 results in equations 5 and 

6 [37]:  

)600()624()600()624(31)]725()725([)600()624( cdmcdmwwbwpigspigs aaaaRbaaa   (5) 
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)648()624()648()624(32)]725()725([)648()624( cdmcdmwwbwpigspigs aaaaRbaaa   (6) 

 

Based on the MRBI by Dekker [3], a midpoint absorption baseline was proposed to form the DTBB 

model by use of the phytoplankton absorption at 600, 624, and 648 nm [37]: 

apc(624) = apig(624) – 0.5(apig(600) + apig(648))                                        (7) 

The advantage of DTBB is capable of removing the cdm interference with PC absorption at 624 

nm using 0)624()]648()600([5.0  cdmcdmcdm aaa , and the interference of Chl-a by subtraction 

of 0.5×[apigs(600)+apigs(648)] from apigs(624). Application of equations 5 and 6 to equation 7 

results in an expression for apc(624).   

 

Compared with the TBM, the advantage of DTBB is able to compensate for the interference of Chl-

a with PC absorption at 624 nm. However, the backscattering at 𝜆  is accounted for by use of an 

equation by Simis et al. [11] and Gons et al. [43]. Application of DTBB for estimating PC 

concentrations in Eagle Creek and Geist Reservoirs (USA) resulted in an R2 of 0.85 and a relative 

RMSE (rRMSE) of 31.4%.  As expected, DTBB is less sensitive to the absorption interference of 

NAP, CDOM, Chl-a, and performed better than classical three band algorithms at low PC 

concentrations (PC ≤ 50 ug/L). However, one caveat is that the apc(624) expressed by equation 

7 is relative to the baseline between 600 and 648 nm where PC has non-zero absorption values, 

implying that the derived apc(624) should be have a relatively smaller value than the actual apc(624).  

This may explain why the )620(*
pca values used in Dekker et al. [3] and Li et al. [37] are lower than 

the values used  in Simis et al. [11, 42] as described later. 

          

FBM 
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The first four band model for PC estimation was proposed by Le et al. [38]. Selection of the first 

two bands is based on the same assumption as those for the three band algorithm, but bands 3 and 

4 are selected in the near infrared region so that non-water absorption is eliminated. Assuming the 

neutral backscattering across four bands, the four band model (FBM) is expressed as: 

𝐹𝐵𝑀 = [𝑅 (𝜆 ) − 𝑅 (𝜆 ) ]/[𝑅 (𝜆 ) − 𝑅 (𝜆 ) ]  = 𝑎 /[𝑎 (𝜆 ) − 𝑎 (𝜆 )]      (8) 

 

A set of four bands 𝜆 = 630, 𝜆  = 645, 𝜆  = 695, and 𝜆  = 730 nm was used by the FBM resulting 

in a RMSE of 4.83 mg m−3 and 6.8 mg m−3 when applied to spectral datasets collected for Lake 

Taihu in 2007 and 2008, respectively. 

 

FBBM 

The FBBM is the second four band algorithm proposed for estimating PC [39]. This four band 

baseline algorithm has the assumptions similar to those for the DTBB, but there are two differences.  

One is that the FBBM uses the interpolation of non-PC component absorption at bands 𝜆  (<𝜆 ) 

and 𝜆  (>𝜆 ) with a weight value 𝜂 (𝜆 )  ranging from -0.1 to 1.1 to approximate non-PC 

component absorption at wavelength  𝜆 , and this linear interpolation absorption baseline differs 

from the DTBB which uses a weight value of 0.5; the other difference is that the FBBM assumes a 

neutral backscattering across bands 𝜆 , 𝜆 , 𝜆 , and 𝜆 , whereas the DTBB uses 𝑏 (𝜆 ) ≈ 𝑏 (𝜆 ), 

and an explicit expression for 𝑏 (𝜆 ). The FBBM is expressed as: 

𝐹𝐵𝐵𝑀 = 𝑅 (𝜆 ) − 𝜂 (𝜆 )𝑅 (𝜆 ) − 1 − 𝜂 (𝜆 ) 𝑅 (𝜆 ) 𝑅 (𝜆 ) 

∝ 𝑎 (𝜆 ) + 𝑎 (𝜆 ) − 𝑎 (𝜆 ) − 𝑎 (𝜆 ) /𝑎 (𝜆 )                          （9） 
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This expression indicates an inherent correlation of this four band index to PC concentration, and 

has been evaluated with the spectral bands of MERIS. As shown in Figure 2, the FBBM resulted 

in an R2 of 0.73 and a RMSE of 27.69 g/L when tested with datasets collected from aquatic 

systems located in the USA, the Netherlands, and in China [39]. 

 

Insert Figure 2 here 

 

Semi-Analytical Algorithms for PC Estimation 

Table 5 shows three semi-analytical PC algorithms to date.  Simis et al. [11] proposed the earliest 

semi-analytical PC algorithm using nested band ratios (NBR) and three empirical relationships.  

The second algorithm was developed by Mishra et al. [44-45] using the classical quasi-analytical 

algorithm (QAA) and an empirical procedure for removal of overlapping Chl-a absorption at 620 

nm. The third algorithm, an extension of IOP Inverse Model for Inland Waters (IIMIW) was 

developed by Li et al. [46] to partition non-water absorption coefficient (at-w(λ)) into the 

contribution of NAP, CDOM, non-PC pigments, and PC. These three algorithms, hereafter called 

NBR, QAApc and EIIMIW, respectively, are used to derive the PC absorption at 620 nm, and then 

divide with the specific absorption coefficient of PC to calculate its concentration. The use of some 

empirical relations makes it appropriate to consider these algorithms being semi-analytical.    

 

NBR  

NBR uses the first two assumptions on PC absorption at wavelengths 𝜆  and 𝜆  that are used to 

develop other semi-empirical algorithms, and assumes a neutral backscattering between these 

wavelengths.  The total absorption coefficients at 665 nm and 620 nm are derived by applying the 
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relationship between the IOP and remote sensing reflectance to band ratios Rrs(709)/Rrs(665) (𝜆 =

665 𝑛𝑚  and 𝜆 = 709 𝑛𝑚 ), and Rrs(709)/Rrs(620) ( 𝜆 = 620 𝑛𝑚  and 𝜆 = 709 𝑛𝑚 ), 

respectively, in which water absorption and backscattering across these wavelengths are 

considered. Two empirical constant 𝛾 and δ are applied to the total absorption coefficients derived 

for 665 nm and 620 nm, respectively to correct for the effect of CDOM and NAP, resulting in the 

absorption coefficient of Chl-a at 665 nm, and phytoplankton at 620 nm. Finally, the absorption 

of Chl-a at 665 nm derived from Rrs(709)/Rrs(665) is converted to its absorption at 620 nm with a 

correlation coefficient between at the two wavelengths of in vivo Chl-a absorption (𝜀), and then 

nested into the absorption of phytoplankton at 620 nm derived from Rrs(709)/Rrs(620), resulting in 

the absorption coefficient of PC at 620 nm as shown in Table 5. where 𝛾 is a factor for correcting 

for CDOM and NAP absorption 𝜆 = 665 nm and pigment absorption at 𝜆 = 709 nm. 

 

The most obvious advantage of NBR is to compensate for the interference of Chl-a with PC 

absorption at 620 nm, but the correction for the absorption of CDOM and NAP is empirical and 

required for different water bodies [47-48]. Le et al. [38] showed that the nested band ratio 

algorithm did not perform as well as the four band algorithm, but Duan et al. [36] recommended 

to use the nested band ratio algorithm instead of the three band algorithm.         

 

QAApc  

QAApc first utilizes the QAA to derive the aphy(λ) at 665 and 620 nm, respectively, each of which 

is considered to the summation attributed to the absorption of PC and Chl-a as shown by the two 

relationships in Table 5. Solving these two relations for the PC absorption at 620 nm (apc (620)) 

becomes straightforward when ψ1 and ψ2 are defined to be achl-a (665)/ achl-a (620) and apc (665)/ 
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apc (620),, respectively. QAApc’ performance depends on optimizing ψ1 and ψ2 factors. When 

applied to MERIS spectra of hypereutrophic catfish ponds, QAApc gave rise to a strong PC 

estimation with an R2 of 0.99 and a relative error of 30.7%.  

 

EIIMIW 

The EIIMIW aims at partitioning non-water absorption coefficient (at-w(λ)) into the contribution of 

NAP, CDOM, non-PC pigments, and PC [46, 49]. The first assumption is the dominance of water 

absorption at 709 nm over cdm and phytoplankton, i.e. a(709) ≈ aw(709),  which is used to derive 

the total non-water constituent absorption at a wavelength  from the ratio of Rrs(709) to Rrs(λ) and 

using bb(709) which is derived from particle backscattering at 560 nm (bbp(560)) and bb(778). The 

second assumption is acdm(λ) = apc(λ) = 0 for λ = 665 nm or larger, implying aph-pc(665) ≈ at-w(665) 

and aph-pc(675) ≈ at-w(675). Li et al. [37] observed a strong correlation between at-w(665) and at-

w(675), implying a relationship )(2C)675()(1C)(    pcphpcph aa where C1(λ) and C2(λ) are 

spectral constants derived from aphy-pc(λ) measured in pigment extraction using acetone in 

laboratory and shown in the Appendix B of Li al. [46]. Therefore, the absorption of NAP, CDOM, 

and PC at a wavelength λ (acdm+pc(λ)) can be calculated as the difference between at-w(λ) and aph-

pc(λ). The third assumption is apc(λ) = 0 for λ = 510 nm or 412, i.e. acdm(412) = at-w(412) - aphy-

pc(412) and acdm(510) = at-w(510) - aphy-pc(510), then the cdm absorption at a wavelength λ (acdm(λ)) 

can be derived from acdm(412) and acdm(510).  At last, apc(620) is calculated to be apc(620) = at-

w(620) - aphy-pc(620) – acdm(620). 

 

The EIIMIW was applied to water samples collected from reservoirs of Northeast China, Lake Tai 

of southern China, rivers and lakes of South Australia in addition to the three Central Indiana 
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reservoirs for deriving the IOPs of phytoplankton, PC and CDM. When calibrated with data 

collected in 2010 from three Indiana reservoirs, the EIIMIW estimated the absorption spectra of 

both CDM (acdm(λ)) and phytoplankton (aph(λ)) with R2 ≥ 0.80 and a relative root mean square 

error (rRMSE) ≤ 31.79% for acdm(412), aph(443), aph(620), and aph(665). The EIIMIW achieved 

more accurate PC estimation with R2 = 0.81, rRMSE= 33.60%, and mean relative error (RE) = 

49.11% than the widely used semi-empirical algorithm with R2 = 0.73, rRMSE = 45.09%, and 

mean RE = 182.29% for the same dataset. Figure 3 shows the EIIMIW validation on data collected 

from 2005 to 2008 from three Indiana reservoirs, USA, and a strong performance of EIIMIW is 

evident compared to the NBR model, particularly for low PC range samples ([PC] ≤ 50 µg/L).  

 

Insert Figure 3 here 

 

Performance Comparison among Semi-Empirical and Semi-Analytical Models 

Recently, several studies have been devoted to comparison of various semi-empirical and semi-

analytical models for the estimation of PC concentration [40, 50-51]. The discussion below will 

be focused on describing the research by Li and Song [16], Liu et al. [39], Pyo et al. [52], and 

Riddick et al. [53], in which the comparison of PC algorithms was carried out either based on a 

large dataset [39] or for a relatively complete list of currently available semi-empirical and semi-

analytical algorithms [52-53]. Table 4 shows the comparison results from these studies. 

 

Datasets for three reservoirs of central Indiana, USA 

Li and Song [16] systematically compared the performance of various empirical, semi-empirical, 

and semi-analytical PC algorithms with in situ measured reflectance spectra for three central 
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Indiana reservoirs: Eagle Creek, Geist and Morse.  For these three reservoirs, an ASD FieldSpec 

ultraviolet/visible and near-infrared (UV/VNIR) spectroradiometer (Analytical Spectral Devices, 

Inc., Boulder, CO, USA) was used to measure the remote sensing reflectance above the water 

surface Rrs(λ) in 2005 and 2006, and an Ocean Optics USB4000 unit (Ocean Optics, Inc., Dunedin, 

FL, USA) with dual radiometers to measure remote sensing reflectance below the water surface 

rrs(λ) in 2007, 2008, and 2010, and resulted in a total of 649 water samples for which both in situ 

spectra and PC concentrations were available. BR650/620, MRBI, NBR, and EIIMIW were compared 

for their performance, and R2 = 0.54, 0.21, 0.73, and 0.74, were obtained respectively. 

 

Datasets for reservoirs in the USA, the Netherlands, and China  

Liu et al. [39] compared the performance of various empirical, semi-empirical, and semi-analytical 

PC algorithms with in situ reflectance spectra measured with an Ocean Optics USA400 unit 

(Ocean Optics, Inc., Dunedin, FL, USA) radiometer in 2010 for Eagle Creek, Geist and Morse 

reservoirs located in central Indiana, USA, with a PR-650 (Photo Research) in the summers of 

2004 and 2005 for Lake IJsselmeer (LIJ) in the Netherlands, and with a FieldSpec 

spectroradiometer (Analytical Spectral Devices, Inc., Boulder, CO, USA) in 2016 for Lake Taihu 

(LTH), Lake Chaohu (LCH) and Lake Hengshui (LHS) in China.  Algorithms that were compared 

in this study were BR650/620, PCI, TBM, and FBBM, and R2 = 0.63, 0.178, 0.701, and 0.73 were 

obtained, respectively.  

 

Datasets for Baekje reservoir in South Korea 

Pyo et al. [52] compared the performance of semi-analytical PC algorithms with in situ reflectance 

spectra measured from June to Oct., 2016 with a FieldSpec HandHeld 2 spectroradiometer (ASD 
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Inc., Boulder, CO, USA) having a wavelength range of 325–1075 nm for Baekje reservoir located 

in the main stream of Geum River, South Korea.  Algorithms that were optimized and then assessed 

against a total of 160 samples with PC concentration ranging from 0 to 1014 g/L included NBR 

and EIIMIW, for which R2  = 0.53 and 0.83 were obtained, respectively. Therefore, the EIIMIW 

was favorable over NBR for estimating PC concentrations in this reservoir.   Nonetheless, it is 

important to note that the original EIIMIW forced a zero acdm at 709 nm before removing the cdm 

absorption from the total non-water absorption [46]. Table S2 that was provided by Pyo et al. [52] 

does not indicate whether this step was taken into consideration, but this could explain why the 

EIIMIW resulted in so dramatically different R2 values with (R2 =0.83) and without being 

recalibrated (R2 = 0).  

 

Datasets for Lake Balaton, Hungary 

Riddick et al. [53] performed a comprehensive comparison among various PC algorithms with a 

MERIS and in situ reflectance dataset of Lake Balaton, Hungary. The PC concentrations were 

measured by Balaton Limnological Institute (BLI) at 5 stations of this reservoir from 2010 to 2011 

at a bi-weekly or monthly basis as well as at 30 stations from Aug.18 to 26, 2010, giving a PC 

range of 2.34 – 113.0 g/L. These PC datasets called the BLI and the Aug. 2010 datasets, 

respectively, were used to validate PC algorithms with the image spectra of a MERIS overpass 

within a time window of ±1 day. 

 

Algorithms that were compared on 22 data pairs of PC concentration and MERIS spectrum at ±1 

day windows were BR650/620, MRBI, PCI, TBM, NBR, QAApc, EIIMIW, and FBBM, which resulted 

in an R2 of 0.595, 0.0992, 0.091, 0.662, 0.71, 0.00836, 0.716, and 0.634, respectively, and a RMSE 
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of 14.4, 21.6, 715, 17.8, 11.8, 22.9, 46.3, and 16.5 g/L, respectively. These 22 samples were also 

separated based on the PC threshold 50 g/L. Schalles00, MRBI, PCI, TBM, NBR, QAApc, EIIMIW, 

and FBBM were only validated on 19 samples having PC concentration less than 50 g/L, and 

resulted in an R2 of 0.554, 0.0719, 0.0588, 0.77, 0.793, 0.44, 0.697, and 0.814, respectively, and a 

RMSE of 13.57, 17.84, 766, 10.4, 10.7, 9.76, 20.2, and 15.3 g/L, respectively.  Based on the R2 

and RMSE values for the PC algorithms subject to the comparison performed by this study, NBR 

was determined to be the optimal PC algorithm instead of EIIMIW and FBBM because NBR 

resulted in lower RMSE values than EIIMIW and FBBM. However, additional investigations are 

still needed to compare NBR, EIIMIW and FBBM with each other because of the limitation to the 

work performed by Riddick et al. [53].  First, a small set of water samples from one lake was used 

in the comparison by Riddick et al. [53], whereas the FBBM was optimized using a large number 

of water samples from inland waters in the Netherlands, central Indiana, and typical lakes in China 

and should be more transferable geographically. Second, the EIIMIW implemented by Riddick et 

al. [53] used a constant SCDOM = 0.02 nm-1 to characterize cdm absorption, whereas the original 

EIIMIW used the natural log transformed ratio of NAP absorption at 412 nm to that at 510 nm for 

describing cdm absorption. Giving the high concentration of inorganic particle in Lake Balaton, it 

is not unexpected that the EIIMIW implemented by Riddick et al. (2019) resulted in a relatively 

large RMSE for Lake Balaton.      

 

Algorithms recommended for further examination 

Based on the results described above for the performance of various PC algorithms, it is evident 

that the semi-analytical algorithms NBR and EIIMIW, and the semi-empirical FBBM performed 

stronger than empirical algorithms MRBI and PCI showing the weakest performance along with 
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another semi-analytical algorithm QAApc. Empirical algorithms BR650/620 and TBM showed 

stronger performance than MRBI, PCI, and QAApc, which can be explained by a high dataset 

dependent correlation between the former ratios and PC concentrations. Therefore, future 

investigation should focus on assessing, comparing and further improving the performance of 

NBR, EIIMIW, and FBBM and developing completely new algorithms in order to determine 

optimal algorithms for monitoring CYB blooms in regional and global scales. 

 

Practical Considerations and Current challenges 

Satellite- and airborne - based cyanobacteria monitoring  

Detection or monitoring of inland water CYB blooms relies on the PC absorption feature around 

620 nm, but very few satellite sensors own this spectral channel. Satellite sensors such as those on 

Hyperion, HICO and MERIS used to have bands around 620 nm, these sensors ended their data 

acquisition service in 2017, 2014 and 2012. Launched in April 28, 2018, the Ocean and Land Color 

Instrument (OLCI) on board Sentinel-3 has similar spectral configuration to the MERIS and is able 

to maintain data continuity of ENVISAT [54]. Italian PRecursore IperSpettrale della Missione 

Applicativa (PRISMA) was developed by the Italian Space Agency (ASI in Italian) and launched 

in Mar. 22, 2019. This sensor is able to acquire hyperspectral images at 30 m spatial resolution 

and 250 bands from 400 to 2500 nm [55]. Both the OLCI and PRISMA capable of acquiring 

images at 620 nm provide opportunities to assess the algorithms NBR, EIIMIW, and FBBM, and 

determine the best for monitoring CYB blooms of inland waters around the world. In addition, 

another two satellite hyperspectral sensors such as German Environmental Mapping and Analysis 

Program (EnMAP) and NASA’s Hyperspectral Infra-Red Imager (HyspIRI) have been scheduled 

to launch in 2020 and 2022, respectively [56-57]. Hyperspectral sensors PRISMA EnMAP and 
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HysPIRI will provide opportunities to determine the best PC algorithm among NBR, EIIMIW, and 

FBBM. Furthermore, PRISMA EnMAP and HysPIRI data would allow for assessing the DTBB, 

which cannot be done with the OLCI data in spite of its better performance than NBR and EIIMIW.   

 

Variability of PC specific absorption coefficient 

The convention of practicing semi-analytical algorithms for estimating PC is to divide the bulk PC 

absorption coefficient at 620 nm by the corresponding specific absorption coefficient, and different 

)624(*
pca values result in different PC concentrations. For example, Dekker [3] reported that 

)624(*
pca =0.0032±0.0012 m2 (mg PC)-1 for the Netherlands inland waters, Li et al. [37] 

determined an average )624(*
pca  to be 0.0024 m2 (mg PC)-1 for three central Indiana reservoirs, 

and these low values for )620(*
pca have been attributed to the use of the baseline between 600 and 

648 nm for determining )620(*
pca .  However,  high )620(*

pca values of 0.0095 m2 (mg PC)-1 and 

0.007 m2 (mg PC)-1 were used by Simis et al. [11, 42], respectively, which have been attributed to 

the absorption of intracellular water-soluble compounds akin to sheath pigments found in 

cyanobacteria [37]. When assessing and comparing different PC algorithms, it is important to 

ensure that the performance assessment and comparison for different PC algorithms is performed 

with the same PC specific absorption coefficient. 

 

Variability of specific absorption coefficients of Non-PC constituents 

Semi-empirical and semi-analytical models are commonly built upon the assumption that the water 

constituent IOPs are spatially and seasonally stable or that the spectral shapes of individual 

constituent absorption and backscattering are known. These assumptions are often violated in real 
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world applications.  For example, the specific phytoplankton absorption coefficient (a*
ph) is 

defined to be the ratio of the phytoplankton absorption coefficient (aph) to Chl-a concentration, and 

is known to vary across individual species grown in culture and among natural phytoplankton 

assemblages because of varying pigment composition and the package effect [58-60]. Some 

studies suggested 0.02 m2/mg for the average value of a*
ph (using 675 nm as reference) [60-61], 

but this value could have a range of 0.01-0.033 m2/mg for New Zealand lakes [62], 0.005-0.05 

m2/mg for Nebraska and Iowa lakes [63], and 0.01-0.025 m2/mg for three water reservoirs in north-

eastern Australia [64]. Investigators often use different power laws to describe a*
ph as a function 

of Chl-a concentration. Although this varying power law relationship may not have a significant 

influence on the performance of the NBR and EIIMIW algorithms because the removal of Chl-a 

interference on PC estimation is performed using the correlation between Chl-a absorption 

coefficients at bands 665 and 620 nm, this varying power law relationship should affect the 

performance of FBBM in which the linear interpolation weight needs to be optimized. It is worth 

pointing out that QAApc did not perform as strong as NBR, EIIMIW, and FBBM, but the two 

summations of Chl-a and PC absorption coefficients at 665 nm and 620 nm in QAApc can be useful 

for improving the FBBM.  

 

NAP and CDOM are another two substances interfering remote estimation for PC concentrations. 

The exponential function is often used to describe the spectral dependence of dissolved natter and 

detritus absorption [65-66], but the exponent varies as a result of seasonal and/or spatial changes 

in the origin and type of dissolved materials (humic vs. fulvic) [67] and non-alga particles (mineral 

sediments, non-algal organic detritus such as fecal matter, degrading phytoplankton cells, and 

living non-algal particulates) [68-69]. The exponent of CDOM SCDOM can range from 0.01 to 0.02 
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nm-1 [70-71] or even a wider range [72]. However, a true synthesis of the variability in SCDOM for 

inland waters is difficult to obtain from existing in-situ data because the investigations were 

conducted over limited seasons and regional regions. The exponential slope for NAPs SNAP has 

been reported to be 0.011 nm-1 for productive and CDOM- rich marine waters [73], 0.0123 nm-1 

(a range of 0.0089-0.0178 nm-1) for European coastal waters [70], 0.011 nm-1 (a range of 0.0077-

0.017 nm-1) for Lake Erie [69]. This variability in SNAP may result from a wide range of particle 

types and a relative extreme proportion of mineral or organic matter observed by these studies [69].  

The variability described for SCDOM and SNAP should affect the performance of NBR in which two 

empirical constants are used to correct for the effect of CDOM and NAP on estimating the PC and 

Chl-a absorption at 620 nm and 665 nm, respectively, implying the necessity for recalibrating NBR.       

 

Variability of Suspended matter backscattering coefficients 

The main scattering contributors in inland waters are organic suspended matter (OSM) and 

inorganic suspended matter (ISM). Morel [74] showed that the variation of non-absorbing particle 

scattering coefficient follows a power law decay, which is often a valid relationship for coastal 

and inland waters [75-79]. This power law relationship has two implications for assessing the semi-

analytical PC algorithms NBR and FBBM and the semi-empirical algorithm DTBB because they 

all assume a neutral backscattering. First, a neutral backscattering could be invalid when the power 

relationship shows a rapid decay and the interband space for these three algorithms is very wide 

such as 620 nm vs. 709 nm in NBR, 530 nm vs. 750 nm in FBBM, and 600 nm vs. 725 nm in DTBB. 

Second, spectral scattering coefficients have been shown a significant departure from a power law 

decay at strong spectral absorption bands [80-82], and the power law model has been modified to 

account for the effect of particulate absorption [78]. These observations imply that a further 



23 
 

correction for the effect of bb(λ) on the performance of NBR, FBBM, and DTBB is necessary for 

achieving a reliable PC retrieval for very turbid water bodies. 

 

Conclusions 

Toxic cyanobacterial blooms are of great concern due to embedded implications for alternated 

biodiversity, public health, and for overall ecosystem health of inland waters. The development of 

remote sensing approaches to efficiently monitoring cyanobacterial blooms has important 

implications for effectively managing cyanobacterial blooms, and this critically relies on highly 

performing PC estimation algorithms.  

 

Remote sensing algorithms for PC estimation are grouped into empirical, semi-empirical and semi-

analytical methods. In this chapter, thirteen of these methods have been described with twelve of 

them being reviewed and compared with each other based on their performances on in situ 

measured field reflectance spectra, and airborne or satellite sensor collected image spectra. Five 

empirical PC algorithms show data dependent performances with the MRBI and PCI being 

consistently weaker than the three band ratio models, which can be attributed to a strong 

interference of non-PC constituents with a relatively weaker PC absorption at 620 nm.  

Nonetheless, when these band ratios are improved with the baseline idea embedded in the MRBI 

and PCI, semi-empirical models especially DTBB and FBBM can be established and show stronger 

performance than the TBM with DTBB even performing stronger than the NBR, a semi-analytical 

model. Assessing three semi-analytical models indicates that the NBR and EIIMIW consistently 

performed well compared to the QAApc.  However, given a large variability of non-PC constituents 

in their inherent optical properties, one caveat for applying the EIIMIW is to carefully follow the 
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original model step for calculating the parameter acdm, while for applying the NBR it is necessary 

to recalibrate two empirical parameters for removing the interference of NAP and CDOM.  

 

Despite being shown to perform stronger than the NBR for estimating PC, so far neither DTBB nor 

FBM has been examined extensively with satellite MERIS and OLCI images because neither 

sensor has a spectral channel at 645 nm required for implementing semi-empirical DTBB and FBM. 

With the availability of hyperspectral satellite images from PRISMA, EnMAP, and HyspIRI, both 

DTBB and FBM should be evaluated together with EIIMIW and NBR for a possibly improved 

cyanobacterial detection and management at large or regional scales. 
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Figure Caption 

Figure 1. Reflectance spectrum measured with ASD spectrometer in Geist Reservior, USA. 

Vertical dased lines represent wavelength locations at which optically active compoenents are 

spectrally diagnostic, and their spectral features are described in text. 

 

Figure 2. Correlations between the measured and estimated PC concentrations by (a) FBBM, (b) 

BR645/620, (c) TBM, (d) PCI for the in situ data collected in 2010 for Eagle Creek (n = 60), Geist 

(n = 37) and Morse (n = 54) reservoirs, central Indiana, USA with n being the number of water 
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samples. These models were calibrated against 187 samples collected from Lake IJsselmeer (LIJ), 

and shown here are the validation results.  The solid lines are the 1:1 lines. (adapted from Liu et 

al. 2017). 

 

Figure 3. Correlations between the measured and estimated PC concentrations by (a) EIIMIW, (b) 

NBR for the in situ data collected in 2005, 2006, 2007, and 2008 for Eagle Creek, Geist and Morse 

reservoirs. The validation results were obtained by the models calibrated against data collated in 

2010 for the same water bodies, and are shown in logarithmic scale for clarity. The solid line and 

dash line are regression and 1:1 correlation, respectively. (adapted from Li et al. 2015). 

 

 

 

 

 

 

Table 1: Site conditions for developing representative PC models and their performance 

description 

Model Sampling Site PC (g/L) Range  R2 RMSE (g/L) 
or rRMSE (%) 

Reference 

BR709/620 Lab culture - 0.95  6.35 [25] 

BR700/600 Lab culture 506 – 273883* 0.94† 19957† [26] 

BR650/625 Carter Lake, USA 0 – 530 0.612 - [8] 

MRBI  Lakes 7 – 130  0.99  2.34 [3] 

SSA Bear Lake - - - [30] 

PCI Lake Taihu 1 - 300  0.64  85.4% [33] 

TBM 
Lake Loch Leven and 
Esthwaite Water, UK 

0 - 93.7  0.92 
2.65 

[35] 

DTBB 
Eagle Creek and Geist 

reservoirs, USA 
6.6 - 140  0.857 

31.4% 
[37] 

FBM Lake Taihu, China 2.67 – 107.67 0.86 4.83 [38] 
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FBBM 
Lakes and reservoirs in 

China, The Netherlands and 
USA 

0 – 710.28  0.73 
27.69 

[39] 

NBR 
LakesLoosdrecht and 

IJsselmeer in The 
Netherlands 

0.8 – 79.8  0.94 
6.5 

[11] 

QAApc  Aquaculture ponds, USA 68.13 – 3032.47 0.99 30.7% [44] 

EIIMIW 
Eagle Creek, Geist and 
Morse reservoirs, USA 

0.73-370.95 0.81† 
33.6%† 

[46] 

*: cyanobacteria cell number per mL; †: results for validation -: unavailable data 

 

 

 

 

 

Table 2: List of symbols and acronyms. 

Symbol/ 
acronym 

Description Units 

bb(λ) Total backscattering coefficients at wavelength λ m-1 
bbp(λ) Backscattering coefficients of particles at wavelength λ m-1 

)(* pca  PC specific absorption coefficients at wavelength λ m2 (mg PC)-1 

ai(λ) 

Absorption coefficients of compound i at wavelength λ. Subscripts 
used: t-w=non-water; phy=phytoplankton; cdm=colored detritus 
matter; pc=phycocyanin; ph-pc= phytoplankton pigments 
excluding phycocyanin; cdm+pc=colored detritus matter plus 
phycocyanin. 

m-1 

Scdm Exponential slope of acdm(λ); acdm(λ)= acdm(λ0)exp[-Scdm×(λ- λ0)] nm-1 
Rrs(λ) Remote sensing reflectance above water surface at wavelength λ sr-1 
rrs(λ) Remote sensing reflectance below water surface at wavelength λ sr-1 

𝜂 Linear interpolation weight - 

nLw 
Normalized leaving water radiance mW/cm2/µm/

sr 
[PC] Phycocyanin (concentration) mg m-3 

[Chl-a] Chlorophyll-a concentration mg m-3 
[TSM] Total suspended matter concentration g m-3 
[NAP] Non-algal particles g m-3 
CDOM Colored dissolved organic matter - 
CDM Colored detritus matter; CDOM and NAP combined - 

rRMSE Relative root mean square error - 
AOP Apparent optical properties  - 
IOP Inherent optical properties - 

OAC Optically active constituents - 
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BR Band ratio - 
MRBI Midpoint reflectance baseline index - 
SSA Spectral shape algorithm - 
PCI Phycocyanin index - 

TBM Three band model - 
DTBB Double three band baseline - 
FBM Four band model - 

FBBM Four band baseline model - 
NBR Nested band ratio - 

QAApc Quasi-analytical algorithms for PC - 
EIIMIW Extension of IOP inversion model for inland waters - 
MERIS  - 
OLCI Ocean and land color imager - 
AISA Airborne imaging spectrometer for applications - 

EnMap Environmental mapping and analysis program - 
HyspIRI Hyperspectral infra-red imager - 
PRISMA PRecursore IperSpettrale della Missione Applicativa - 
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Table 3: A summary of empirical algorithms for PC estimation 
 Spectral Predictor Reference 
BR709/620 𝑅 (709)/𝑅 (620) [25] 
BR700/600 𝑅 (700)/𝑅 (600) [26] 
BR650/625 𝑅 (650)/𝑅 (625) [8] 
MRBI 0.5(𝑅 (665) + 𝑅 (560)) − 𝑅 (624) [3] 

SSA(681) 
𝑛𝐿𝑤(681) − 𝑛𝐿𝑤(709) − 𝑛𝐿𝑤(665)

681 − 665

709 − 665
 

− 𝑛𝐿𝑤(665) 

[30] 

PCI(620) 
𝑅 (560) + 𝑅 (665) − 𝑅 (560)

620 − 560

665 − 560
 

− 𝑅 (620) 

[33] 

 
 
 
Table 4: A summary of semi-empirical algorithms for PC estimation 
 
Model  Spectral Predictor Reference 
TBM  (𝑅 (𝜆 ) − 𝑅 (𝜆 )) × 𝑅 (𝜆 ) [35] 
DTBB )}648()600()624(2)3231)](725()725({[5.0 wwwbw aaaRRba   [37] 

FBM  (𝑅 (𝜆 ) − 𝑅 (𝜆 ) )/(𝑅 (𝜆 ) − 𝑅 (𝜆 ) ) [38] 
   
FBBM (𝑅 (𝜆 ) − 𝜂 (𝜆 )𝑅 (𝜆 ) − 1 − 𝜂 (𝜆 ) 𝑅 (𝜆 ) )𝑅 (𝜆 )   [39] 
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Table 5: A summary of semi-analytical algorithms for PC estimation 
 
Model  Spectral Predictor Reference 
NBR  𝑎 (665) =  {[𝑅 (709)/𝑅 (665) × (𝑎 (709) + 𝑏 )

− 𝑏 − 𝑎 (665)] × 𝛾 } 
[11] 

 𝑎 (620) =  {𝑅 (709)/𝑅 (620) × [𝑎 (709) + 𝑏 ]}

− 𝑏 − 𝑎 (620) ×δ  

 

 𝑎 (620) = {𝑅 (709)/𝑅 (620) × [𝑎 (709) + 𝑏 ]} − 𝑏

− 𝑎 (620) ×δ − 𝜀 × 𝑎 (665) 

 

QAApc 
 

𝑄𝐴𝐴 𝑡𝑜 𝑑𝑒𝑟𝑖𝑣𝑒 𝑎 (𝜆) [44] 

 𝑎 (665) = 𝑎 (665) + 𝑎 (665)  
 𝑎 (620) = 𝑎 (620) + 𝑎 (620)  
   
 𝑎 (620)= 𝑎 (620)𝜓 − 𝑎 (665) /(𝜓 − 𝜓 )  

EIIMIW 𝑟 (𝜆) = 𝑅 (𝜆)/ 0.52 + 1.7𝑅 (𝜆)  

𝑏 (778)= 𝑟 (778)𝑎 (778)/ 0.082 − 𝑟 (778)  

Y = 2.0 1 − 1.2𝑒𝑥𝑝 −0.9𝑟 (443)/𝑟 (560)  

𝑏 (560) = 𝑏 (778) − 𝑏 (778) /0.1798  

𝑏 (𝜆) =  𝑏 (560)(560/𝜆) + 𝑏 (778) 

𝑎 (𝜆) =  𝑟 (709)𝑏 (𝜆) 𝑎 (709) + 𝑏 (709)

/ 𝑟 (𝜆)𝑏 (709) − 𝑏 (𝜆) − 𝑎 (𝜆) 

[46] 
  
  
Deviation of 
non-water 
OACs’absorption 

 

  
  

   
Derivation of 
non-algal particle 
and CDOM 
absorption with 
and without PC 

𝑎 (𝜆) =  1.1872𝐶1(𝜆)𝑎 (665) + 𝐶2(𝜆) 

𝑎 (𝜆) =  𝑎 (𝜆) − 𝑎 (𝜆) 

𝑎 (𝜆) =  𝑎 (412)𝑒𝑥𝑝 −𝑙𝑛
𝑎 (412)

𝑎 (510)
(𝜆

− 412)/98  

where 𝑎 (412) =  𝑎 (412), 𝑎 (510) =
 𝑎 (510), and acdm(709) should be forced to be zero 

 

  
  
  
  
   
 𝑎 (620) =  𝑎 (620) − 𝑎 (620)  
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Figure 1. Reflectance spectrum measured with ASD spectrometer in Geist Reservior, USA. 

Vertical dased lines represent wavelength locations at which optically active compoenents are 

spectrally diagnostic, and their spectral features are described in text. 
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Figure 2. Correlations between the measured and estimated PC concentrations by (a) FBBM, (b) 

BR645/620, (c) TBM, (d) PCI for the in situ data collected in 2010 for Eagle Creek (n = 60), Geist 

(n = 37) and Morse (n = 54) reservoirs, central Indiana, USA with n being the number of water 

samples. These models were calibrated against 187 samples collected from Lake IJsselmeer (LIJ), 

and shown here are the validation results.  The solid lines are the 1:1 lines. (adapted from Liu et 

al. 2017). 
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Figure 3. Correlations between the measured and estimated PC concentrations by (a) EIIMIW, (b) 

NBR for the in situ data collected in 2005, 2006, 2007, and 2008 for Eagle Creek, Geist and Morse 

reservoirs. The validation results were obtained by the models calibrated against data collated in 

2010 for the same water bodies, and are shown in logarithmic scale for clarity. The solid line and 

dash line are regression and 1:1 correlation, respectively. (adapted from Li et al. 2015). 

 


