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To the students who are always looking for a single optimum point in their life, but they

don’t know life is a multi-objective problem and there all hundreds of optimum solutions.
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ABSTRACT

The lane-keeping system in autonomous vehicles (AV) or even as a part of the advanced

driving assistant system (ADAS) is known as one of the primary options of AVs and ADAS.

The developed lane-keeping systems work on either computer vision or deep learning algo-

rithms for their lane detection section. However, even the strongest image processing units

or the robust deep learning algorithms for lane detection have inaccuracies during lane de-

tection under certain conditions. The source of these inaccuracies could be rainy or foggy

weather, high contrast shades of buildings and objects on-street, or faded lines. Since the

lane detection unit of these systems is responsible for controlling the steering, even a mo-

mentary loss of lane detection accuracy could result in an accident or failure. As mentioned,

different lane detection algorithms have been presented based on computer vision and deep

learning during the last few years, and each one has pros and cons. Each model may have a

better performance in some situations and fail in others. For example, deep learning-based

methods are vulnerable to new samples. In this research, multiple models of lane detection

are evaluated and used together to implement a robust lane detection algorithm. The pur-

pose of this research is to develop an estimator-based Multiple Model Adaptive Estimation

(MMAE) algorithm on the lane-keeping system to improve the robustness of the lane detec-

tion system. To verify the performance of the implemented algorithm, the AirSim simulation

environment was used. The test simulation vehicle was equipped with one front camera and

one back camera used to implement the proposed algorithm. The front camera images are

used for detecting the lane and the offset of the vehicle and center point of the lane. The

rear camera, which offered better performance in lane detection, was used as an estimator

for calculating the uncertainty of each model. The simulation results showed that combining

two implemented models with MMAE performed robustly even in those case studies where

one of the models failed. The proposed algorithm was able to detect the failures of either of

the models and then switch to another good working model to improve the robustness of the

lane detection system. However, the proposed algorithm had some limitations; it can be im-

proved by replacing PID controller with an MPC controller in future studies. In addition, in

the presented algorithm, two computer vision-based algorithms were used; however, adding a
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deep learning-based model could improve the performance of the proposed MMAE. To have

a robust deep learning-based model, it is suggested to train the network based on AirSim

output images. Otherwise, the network will not work accurately due to the differences in

the camera’s location, camera configuration, colors, and contrast.
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1. INTRODUCTION

1.1 Overview

Lane-keeping systems are one of the necessary options in advanced driving assistant

systems (ADAS) and autonomous vehicles (AV). There are two types of lane-keeping systems,

active and passive. In the passive lane-keeping systems known as lane departure systems

(LDS), the system does not have any control on the steering and only alerts the driver about

crossing the lines of the current lane when there is no active turning signal. The active

lane-keeping assist systems (LKAS) have relative control over the steering. However, all

the current LKAS require continuous driver engagement since the system relies on the line

markers, which could be faded or covered in some roads. The LKAS has two central units,

a lane detection unit and a steering controller unit. Since steer by wire technology has been

developed for many years and used in many modern vehicles, this unit is not the source

of failure in LKASs. The origins of failure in LKAS are primarily in the lane detection

unit. Years ago, a failure to distinguish the white side of a tractor-trailer from the sky

resulted in the first death by AVs. Accordingly, lots of companies are now developing robust

algorithms for LKAS to attain the highest possible performance. Most of the researches and

developments are around the sources of failures and the solutions. The primary sources of

failures in lane detection units are faint or covered lines with dirt or snow, rain and wet

ground, other objects, and vehicles blocking the vision of the cameras. The first step to

finding out the solutions to avoid these failures is how the lane detection unit works. The

lane detection unit uses one or multiple cameras in front of the vehicle and captures the

road ahead by implementing computer vision-based or machine learning-based algorithms

on these images to locate the lines’ position and curvature. There are lots of different lane

detection algorithms, and each one has pros and cons in terms of complexity and accuracy.

The purpose of this research is to combine multiple models using extended Kalman filter

(EKF) and multiple model adaptive estimation (MMAE) to attain a robust algorithm that

has the advantages of all models.
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1.2 Contribution of This Thesis Work

In this thesis, firstly, two computer vision-based algorithms for lane detection are modified

to be compatible with the AirSim simulation environment and developed to calculate the

offset between the vehicle center and lane center. Due to the importance of reducing the

uncertainty in the lane detection unit, a redundancy of lane detection models is used. MMAE

is one of the robust methods for sensor fusion and combination of multiple models, and it

has never been used for lane detection purposes. In this study, the MMAE is developed

on the output of these two models, which have used front camera images as the input and

generated the offset of the vehicle and the lane as the output. A rear camera is used to

calculate the offset behind the car, and it is used as the observer of the proposed models.

For controlling the steering, different methods are suggested. However, in this study, the

focus is not on the controller; hence, a PID controller is developed to control the vehicle’s

steering and keep the car in the lane. The developed algorithms are tested on different roads

in the simulation environment with varying conditions of weather. The results showed that

combining the two models using MMAE works significantly better than a single model.

1.3 Organization of the Thesis

As the first step, in Chapter 2, a literature review is provided to illustrate the previous

studies on the ADASs, LKAS, and challenges of these systems and show the research gap. In

Chapter 3, a problem statement is presented to illustrate the challenges in lane detection by

providing different examples in the simulation environment. In this chapter, the two models

are tested on various roads, and the different sources of failures are detected and presented.

In chapter 4, the methodology of the developed computer vision algorithms, as well as the

controller algorithm, are presented. In chapter 5, the simulation results for the proposed

MMAE are presented and discussed to illustrate the performance of this method. Finally,

in chapter 6, the conclusion and the future works are discussed.

15



2. LITERATURE REVIEW

An autonomous vehicle is a self-driven vehicle that drives itself with necessary sensors, such

as GPS, IMU, cameras, sensors, as can be seen in [  1 ]. They have been in development

for over 65 years—in fact, the first cruise control systems were introduced in 1948. With

the current rate at which civilization and technological advancement are growing rapidly,

especially in the automotive sector, especially in self-driven vehicles. Active vehicular safety

has been one of the most researched topics. Among all the vehicles’ active-safety options,

the lane departure system (LDS) or lane departure warning have had the highest attention;

since blind lane departures are known as the first reason for accidents [  2 ]. LDS is also

known as one of the base options in advanced driving assistant systems (ADAS), which

is now offered by almost all the tire one car manufacture companies [ 3 ]. In the following

sections, firstly, a review of the uncertainty of current systems for LDS or lane-keeping

assistant systems (LKAS) is presented. Then a review of the developed lane detection

technics and algorithms is conducted, divided into computer vision-based methods and deep

learning-based methods. Finally, a review on multiple model adaptive estimation (MMAE)

is presented with a concentration on autonomous vehicles or ADAS usage.

2.1 Lane Detection Methods

There are two methods for lane detection; feature-based approach and model-based ap-

proach. The feature-based approach uses low-level features such as edges, whereas the model-

based approach uses geometric parameters for detecting lanes. In the feature-based approach,

the features used are starting position, orientation, and intensity value. In the initial step,

a Sobel operator is applied to get the edge information. The lane boundary is represented

as a vector comprising of the three features. The current lane vector is calculated based

on the input image and the previous lane model vector. Two windows, one for each, are

used for left and right boundaries. Assuming N pixel in each horizontal line, N lane vector

candidates are generated. Using a weighted distance metric, the best candidate is selected

based on the minimum distance from the previous lane vector. For equalization, each feature

is assigned a different weight. Then a lane inference system is used to predict the new lane
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vector. If the road width changes abruptly, the current vector calculated is discarded, and

the previous one is taken as the current vector [  4 ]. Practically, most of the model-based

approaches use the artificial neural network (ANN) as the model for detection. On the other

hand, feature-based approaches use image processing and computer vision to detect features

of lanes, and model-based use some annotated samples to train a model for lane detection.

In the next section, a review on computer vision and deep learning is conducted to elaborate

on these two methods.

2.2 Computer Vision Based Methods

In the computer vision-based methods, the overall idea is getting the input image, im-

plementing some pre-processing for making a binary image, cropping the region of interest,

implementing edge detection algorithms on the wrapped area, fitting polynomials to the lines

and finally calculating the curvature and the center point of the lane. However, the idea of

most computer vision-based methods is the same, but there are many different approaches

for implementing each step [  5 ]. As is mentioned, the first step of the lane detection process

is image pre-processing. A color correction is necessary to reduce the effect of noises, shades,

or any unwanted object on the street (before producing the binary image). A Hue Saturation

Lightness (HSL) can be implemented on the input image to transform the color space [ 6 ].

Another idea to reduce the effect of shade is to filter the edges that are not in the vertical

direction (or expected direction) [  7 ]. However, this method cannot overcome and remove all

the shades. The next step is removing irrelevant parts of the image which do not contain the

lines of the lane. By defining a region of interest (ROI) in the area where we guess the lines

are located, we can find a proper ROI [  8 ]. An ROI is mostly a trapezoidal area that will

be remapped to a rectangular area in a bird’s eye view. The bird’s eye view transforms the

camera plane image to a 3D world perspective from a point on the top of the vehicle. The

bird’s eye view is useful since the lines are expected to be vertical in this view [  9 ]. Figure  2.1 

(a) shows a color corrected image, (b) shows a proper ROI in the front camera image, and

(c) shows the binary bird’s eye view image containing the lines of the lane relatively vertical.
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(a) Color corrected image (b) ROI of front camera (c) Binary bird’s eye view

Figure 2.1. The effect of different computer vision functions on front camera images

The next step is feature extraction. The purpose of this step is to extract the features

in the image for the next step, the fitting step. Since the lane markings have an obvious

appearance relative to the constant road texture, they can be extracted using gradient-based

feature detection methods such as Canny, Sobel, or Hough transform [ 10 ]. Another method

for detecting the markers is using a known color or brightness for the markers. In this

method, the image will be classified according to the color or intensity probability in the

image with the expected colors and intensity [ 6 ]. The final step of lane detection is fitting.

In most algorithms, this process will be done on a bird’s eye view image to obtain a better

result since the geometry of the lines would be simpler. These methods are based on lane

topology. One of the most common methods is sliding window lane detection. In this method,

multiple rectangular windows are defined and will be moved all over the ROI to find out the

window with the highest intensity of the detected edge. After locating all the windows, a

polynomial will be fitted to the center of all these windows representing the detected lane.

Borkar et al. [  11 ] have used a linear piece-wise model for fitting and Hough transform for

feature extraction. The developed algorithm showed a good performance for short-range

detections on the highways. Huang et al. [ 12 ] used a parabolic model for fitting and a

Random sample consensus (RANSAC) with least square optimization for feature extraction.

Their developed algorithm showed a better performance for detecting curved lanes compared

to the other common linear models.
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2.3 Learning Based Methods

Despite computer vision methods for lane detection, learning methods do not need any

assumptions about the geometry of the lines. These models extract the features of the

image based on the numbers of extracted or annotated image samples. The performance of

different machine learning methods for lane detection is evaluated by Kim et al. [  13 ]. They

have investigated methods: Intensity Bump Detection, ANN, Naïve Bayesian Classifier,

and support vector machine (SVM). With the development of modern machine learning

methods, deep learning became the most popular learning-based lane detection algorithm. A

Convolutional neural network (CNN) with five hidden layers is used by Pazhayampallil et al.

[ 14 ] to detect the lanes in a highway. In their study, the dataset was collected on the highway

with ground truth labels which were made by combing camera, Lidar, Radar, and human

annotators. The result of their study was a trained model which could detect up to 50 meters

of the lane ahead in real-time. In another research, Li et al. [  15 ] proposed two different deep

learning models for lane detection. The first one was a CNN that detected the lane’s markings

and a Recurrent Neural Network (RNN), which had a memory to predict the boundaries of

the lane from previously collected data. They could attain a better performance by combining

these two models compared to the common available CNNs. Regional Convolutional Neural

Network is one machine learning method for segmentation. Liu et al. developed an RCNN

for lane detection based on 100,000 annotated images. The trained model showed a 97.9%

accuracy. Figure  2.2 shows a schematic of RCNN in their study.

Figure 2.2. The schematic of a Mask-RCNN for lane detection [15]
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2.4 Uncertainty of Current Methods

Computer vision and machine learning are two bases of self-driving technology. However,

these tools are vulnerable to unseen or noisy situations, and such a misprediction in self-

driving is catastrophic since it results in casualties. For example, machine vision failed to

distinguish the white side of a turning tractor-trailer from the brightly lit sky, resulting in

the first self-driving fatality in the world. Because of these limitations, most of the currently

mounted self-driving technologies on vehicles require a human driver to be ready to take back

control when the system requests. That is why an efficient perception unit is required in an

AV, and uncertainty and fault detection should be considered in the development. Kim et

al. [  16 ] have developed the vision-based uncertainty-aware lane-keeping strategy where the

high-level reinforcement learning policy hierarchically modulates the low-level lateral control

and the reference longitudinal speed. The successfully trained deep reinforcement learning

agent slows down the vehicle speed and minimizes the lateral error during high uncertainty

situations, similar to what human drivers would do in such situations. The uncertainties in

trained deep learning models can be defined in two categories. First, epistemic uncertainty

accounts for the failures sourced from the model itself, and second, the aleatory uncertainty

accounts for the failures sourced from noises in the observations and input data [  17 ]. Since

learning-based lane detection are vulnerable to new data, in this research [  16 ], the authors

calculated the uncertainty of learning-based lane detection using computer vision methods.

They have proposed a convolutional mixture density network (CMDN) to calculate the

vehicle’s offset and the center point of the lane. Figure  2.3 shows the control schematic of

their study. They have used the AirSim simulation environment for their study. According

to this system, they have developed an uncertainty-aware lane detection unit that makes

decisions according to the uncertainty of the model at each step. When the uncertainty

exceeds a specific value, the speed of the vehicle reduces until the system gets to a step with

a reasonable uncertainty.

The reviewed studies show that reducing the uncertainty of the proposed models for lane

detection is one of the most important goals in researching and developing these systems.
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Figure 2.3. The control schematic for an uncertainty aware lane detection system

In the next section, multiple model adaptive estimation will be introduced and reviewed, as

a method to reduce the uncertainty of the lane detection models by combining them.

2.5 Multiple Model Adaptive Estimation

Hamilton et al. [  18 ] have merged two important lines of research, the Kalman filter

and Takens method. A model-free filter is introduced based on the filtering equations of

Kalman and the data-driven modeling of Takens. This procedure replaces the model with

dynamics reconstructed from delay coordinates while using the Kalman update formulation

to reconcile new observations. They find that this combination of approaches results in a

comparable efficiency to parametric methods in identifying underlying dynamics and may be

superior in cases of model error. Quinlan et al. [  19 ] have discussed multiple-model Kalman

filters that also are explicitly multi-modal. Motivated by the RoboCup SPL, they show

how they can be used despite the highly multi-modal nature of sensed data and give a brief

comparison with a particle filter-based approach to localization. The implemented MM-EKF

was able to handle the ambiguous information directly, and therefore resultant multi-modal

distributions common in the SPL. It showed substantially better performance than standard

EKF implementations, and at least in a preliminary test, outperforms a particle filter applied
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to the same problem. Barrios et al. [  20 ] The Multiple Model Adaptive Estimation System

(MMAE) algorithm is applied to the integration of GPS measurements to improve efficiency

and performance. This paper evaluates the multiple-model system in different scenarios and

compares it to other systems before discussing possible improvements by combining it with

other systems for predicting vehicle location.

2.6 Control System

After the detection process, an offset between the vehicle center point and the lane

center point is provided by the lane detection unit. In some more advanced methods, the

curvature of the lane and the direction and velocity of the vehicle at the current time step

are also considered. The final step is using these inputs to control the steering of the vehicle

and drive it to the center point of the lane. There are multiple methods and controllers for

implementing this part of the system. Pure pursuit controller is one of the simplest methods.

Kuo et al. [  21 ] developed a lane-keeping system using a pure pursuit controller and a lane

detection algorithm using inverse perspective mapping. Their study used the developed

algorithms on a robot and an onboard computer (ARM). Accordingly, the performance of

the developed algorithms was their priority. The developed algorithm had a runtime of 11ms

for lane detection, with up to 10% enhancement compared to similar studies. In addition,

not only the developed algorithm was efficient it also performed effectively. The average

lane detection error in their algorithm was within 5%. Kamat [  22 ] developed and analyzed

passenger cars’ Lane Keep Assist Syscar in a simulated environment using Implicit and

Explicit MPC. The authors examined their suggested approach’s closed-loop performance

in order to aid in the Model in Loop validation of control software development. This

might simplify and accelerate its implementation of the integrated hardware necessary for

the Advanced Driver Assistance System’s LKA function. The study employs basic equations

to construct a simpler model for a vehicle’s lateral dynamics in the time domain using a

Linear Parameter Variant state-space model for a regularly used speed range. The IMPC

and EMPC controller actions were determined by building and solving optimization problems

using a Quadratic Programming technique and a multi-parametric PWA solver approach.
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Bujarbaruah et al. [  23 ] suggested an Adaptive Robust Model Predictive Control technique for

lateral control in lane maintaining challenges, in which the steering system’s constant steering

angle offset is learned. This research aimed to reduce the outputs, which are the distance

from the lane center line and the steady-state heading angle error, while still adhering to the

corresponding safety requirements. Using data, a rigorous Set Membership Method-based

technique is used to determine the real-time maximum achievable limit for the steering angle

offset. Their approach is well-suited for situations with abrupt curves at high speeds, where

establishing a correct model bias for restricted control is challenging, but data-driven learning

may be beneficial. The findings indicated that adopting a switching technique during lane

curvature changes was persistently feasible. Samuel et al. [  1 ] developed two MPC and PID

controllers for a lane-keeping system using MATLAB and Simulink. They have compared

the performance of both controllers and their results showed that even though the MPC had

a better performance in terms of changing in the vehicle condition but the PID was able to

achieve the objective in all the conditions.

2.7 Summary

LKAS is one of the main options of ADAS, which can increase the safety of vehicles

substantially. As explained, there are multiple methods for implementing lane detection in

LKAS, which can be computer vision-based or machine learning-based. However, all the

methods have certain limitations. The primary purpose of this study is to reduce the uncer-

tainties under road markings as well as weather conditions. In this research, a combination

of two computer vision-based models using MMAE for lane detection and a PID controller

is used to keep the vehicle in the lane.
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3. PROBLEM STATEMENT

In this chapter, the sources of failure in lane detection are investigated. As it was mentioned,

two different models are going to be used in this research. These two models are tested in

different case studies that resulted in failure for either of models and presented in this chapter.

Finally, these failures are divided to two groups. First, the unsolvable failures which are the

ones that do not have any solution e.g. the covered lines by the snow. Second, the solvable

failures that can be prevented by some adjustments in the models e.g. a missing part in a

line or a sharp turn. This research has a focus on the second group of failures.

3.1 Unsolvable Failures

In this section the unsolvable failures such as snow or missing lines are investigated and

illustrated.

• Snow

When the snow covers the lines there is no way to detect the lines. Figure  3.1 shows

the simulation environment in a snow situation and the detection result by the both

models.

Figure 3.1. The failure of lane detection models in snow

• Missing Lines

There are some streets that does not have the line markers! This is also another
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unsolvable situation. Figure  3.2 shows the vehicle in a two way street that does not

have the center line!

Figure 3.2. The failure of lane detection models in a missing marker situation

3.2 Solvable Failures

In this section the solvable failures are presented and illustrated. These failures can be

caused by a wet ground or a weak vision by rain, a missing part of lines, fog, or sharp turns.

• Wet Ground and Rain

Figure  3.3 shows the failure in lane detection in a wet ground situation. In fact, the

reflex of lights in a wet ground will result in a confusion for the detection algorithms

which results in a failure.

Figure 3.3. The failure of lane detection models in a wet ground and rainy situation
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• High Contrast Shade

Figure  3.4 shows an image that contains a high contrast shade on the street. In this

situation the histogram of detected edges will have an extra noise because of the shade

and that will result in a failure.

Figure 3.4. The failure of lane detection models in a street with a high contrast shade

• Missing Parts of Lines

In Figure  3.5 the left line of the lane has a missed marker and there is a long distance

between the camera and the next available marker which resulted in a failure.

• Sharp Turns

In Figure  3.6 the vehicle is located in a street with a sharp turn. The second model

which has a smaller ROI couldn’t detect the curvature of the lane correctly however

model 1 could detect the entire lane.

3.3 Summary

According to the stated problem, two different models of lane detection are implemented

and each one has some faults under some of the solvable conditions. However, in most of

the conditions one of the models could attain a reasonable value for offset. In the next

chapter, these two models are going to be evaluated in details and their pros and cons will

be presented. In addition, MMAE will be presented as the solution to cover the faults of

the failed model in each time step. The proposed model is going to be validated in AirSim
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Figure 3.5. The failure of lane detection models in a street with a missed
part of line marker

Figure 3.6. The failure of lane detection models in a street with a sharp turn

environment. To keep the vehicle in the lane a PID controller is used to control the steering

based on the vehicle offset with the lane.
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4. MMAE BASED LANE DETECTION

In this chapter, firstly, the location of the front and rear cameras and the configuration of

cameras are illustrated. The front camera is used as the model’s input image, and the rear

camera is used for the estimator. Two different models for the lane detection of front camera

images are presented. Both models are based on computer vision. The first model is more

straightforward than the second model, but its ROI is larger and has a better performance

in long-distance detection. The second model is more advanced; however, it has a smaller

ROI and is robust for short-distance detection. In the next step, each model is evaluated,

and the final result of their lane detection is presented. After that, the estimator and the

Multiple Model Adaptive Estimation (MMAE) algorithms for combining these two models

are presented. The formulation and the utilized equations for MMAE are also illustrated in

this section. The PID controller for controlling the steering is explained in the next step, and

tuned gains for the PID are presented. Finally, the proposed lane detection and lane-keeping

system are validated against various case studies.

4.1 Simulation Environment

To evaluate models and implement lane detection in a software in loop;  AirSim simulation

environment is used. The City release of AirSim contains a limited number of streets and

buildings of a simulated urban area. Two different cameras are installed on the vehicle for

models and observer. The first camera is the front-camera and is located on the front tip of

the roof of the vehicle. The second one is the back camera which is located in the back tip

of the roof of the vehicle. The selected vehicle in the simulation is PhysXCar which is an

SUV similar to BMW X4. Figure  4.1 shows the location of front and back cameras on the

vehicle.

The setting.json file contains the configuration of AirSim environment. This file as well

as the other codes are presented in a  GitHub repo . The configuration of cameras can be

found as below. The field of view for the front and back cameras are selected as 120 and

150 degrees, respectively. The pitch of the cameras are also fixed as 10 and -20 degrees,

respectively. In AirSim the origin of coordinates is fixed on the center of the vehicle based
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Figure 4.1. The locations of front and back cameras on the vehicle.

on NED coordinates where X is always pointing to the vehicle front. All these values found

by try and error to get the best possible results in terms of lane detection.

Figure  4.2 (a) and (b) show the perspective view of front and back cameras, respectively.

As it is clear from these images the pitch of front camera is positive and the pitch for the

back camera is negative. The reason behind these values is the fact that the back camera

is one step behind of the front camera and the immediate offset behind the car should be

used for a robust observer in the controller system. Note that these images are output of

pre-process (color correction) function.

(a) Front Camera View (b) Back Camera View

Figure 4.2. The perspectives of front and back cameras
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Table 4.1. Camera configuration for front and rear cameras (Positions in
meter and orientations in degree).

Front Camera Rear Camera

X 1 -2

Y 0 0

Z -1.5 -1.5

P itch 10 -20

Roll 0 0

Y aw 0 180

FOV 120 150

W idth 1280 1280

Height 720 720

4.2 Lane Detection Models

In this research, two different lane detection algorithms have been used based on computer

vision. However, it should be mentioned that another model based on CNN was considered

to be a part of the MMAE. But due to the differences between the training dataset and the

AirSim images (in terms of camera perspective, image colors and contrast) the CNN could not

work robust on AirSim images. The schematic of these two models are presented in Figure

 4.3 . Accordingly, in model 1 the input image will be cropped using the ROI extraction, then

the image will be transformed o binary and then the bird eye view of the image is extracted.

By implementing Hough transform on the image the lines can be extracted. Finally after

finding the lane the center point of the closest part of the lane to the vehicle (first row of the

image) will be used as the offset. In model 2, firstly, a camera calibration is done the the

image will be cropped and ROI will be extracted. For making the binary, the thresholding

will be done using Sobel, Saturation and Hue thresholding. Then the binary image will be
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passed to the sliding windows algorithm and using that algorithm the lines are detected.

Similarly the offset of the vehicle and the lane will be calculated as the controller input.

Figure 4.3. The schematic of two different models for lane detection and
offset calculations.

4.3 Model 1 Evaluation

To evaluate the first model, the vehicle is located in the middle of a street and the

received image from front camera is imported to the model 1 function. Figure  4.4 shows the

region of interest (ROI) which is extracted for model 1 using the front camera data. The
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trapezoidal area will be converted to a rectangle in the bird eye view image. The edges of

the trapezoidal area are defined as below in a 1280*720 pixels image. Note that the origin of

XY coordinates in Python matplotlib is top left the image. These values should be adjusted

according to FOV and location of the camera in order to contain the lane inside it.

s e l f . r o i_po in t s = np . f l o a t 3 2 ( [

( 500 , 450 ) , # Top−l e f t co rne r

(200 , 720) , # Bottom−l e f t co rne r

(1080 , 720 ) , # Bottom−r i g h t co rne r

(780 ,450 ) # Top−r i g h t co rne r

] )

FOV for the front camera is chosen to be 120 degrees. This value found using try and

error to have the best view on the street on the current lane. To find bird’s eye view image the

intrinsic and extrinsic camera parameters are required. AirSim client returns an estimation

of extrinsic camera parameters. However, it returns the transformation matrix and rotation

matrix separately and the should be combined manually to get the extrinsic camera matrix.

The focal length of camera for intrinsic matrix can be estimated using FOV as:

FoV = 2arctan(W/2f) (4.1)

Where FoV is the field of view in radiant and W is the image width and f is the focal length.

As it was explained in the pipeline of model 1, in the next step the imported image

will be converted a binary image and the to bird’s eye view image. Figure  4.5 shows the

black and white bird’s eye view image of the front camera. Accordingly, the lines of the lane

are located inside the ROI. In the next step of lane detection in model 1 the histogram of

the binary image will be obtained. Figure  4.6 shows the histogram of the presented binary

image. Accordingly the areas inside the ROI which have the highest peaks in the histogram

will be nominated for line fitting. Figure  4.7 shows the result of detected lines and the lane

area which is illustrated with a green overlay.
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Figure 4.4. The region of interest of model 1 in a sample front camera date.

Figure 4.5. The binary image of front camera converted to bird’s eye view in model 1.

4.4 Model 2 Evaluation

The pipeline of this model is a bit more complicated and advanced. Firstly the camera is

calibrated in this method to find the intrinsic and extrinsic camera parameters more accurate.

To calibrate the cameras in AirSim the common chess board experiment is designed by

 Marcelino Almeida  for AirSim environment. With modifying the drone camera settings in

this project we can find out our camera matrix. Figure  4.8 shows the chess board camera

calibration environment in AirSim. In this environment 10 points on the chess board are

selected and their position will be extracted from three different positions and this positions

are going to be used to find the camera matrix. The undistorted image as a result of camera

calibration will be imported to binary thresholding algorithm. The goal is to identify pixels
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Figure 4.6. The histogram and corresponding binary image of front camera in model 1

that are likely to be part of the lane lines. In the following steps are conducted on the

image. 1) Apply the following filters with thresholding, to create separate ”binary images”

corresponding to each individual filter. 2) Absolute horizontal Sobel operator on the image

Sobel operator in both horizontal and vertical directions and calculate its magnitude. 3)

Sobel operator to calculate the direction of the gradient. 4) Convert the image from RGB

space to HLS space, and threshold the S channel. 5) Combine the above binary images to

create the final binary image. Figure  4.9 shows the implemented thresholding algorithms on

the input and the final combined result.

After finishing the thresholding the final binary image will be obtained and the ROI in

this image will be extracted to transfered to bird’s eye view. Figure - shows the ROI for

second model which is smaller that ROI of the first model to reduce the time complexity

and the final binary image as a result of combination of described methods.

In the next step the sliding windows approach will be implemented to find the windows

containing the peaks in the image. Starting with these base positions on the bottom of

the image, the sliding window method is applied going upwards searching for line pixels.

Lane pixels are considered when the x and y coordinates are within the area defined by

the window. When enough pixels are detected to be confident they are part of a line, their

average position is computed and kept as starting point for the next upward window. The
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Figure 4.7. The original image and the result of lane detection algorithm by model 1.

number of sliding windows in model 2 is 9 windows which is found by try and error. The final

output of sliding windows method is presented in Figure  4.11 . The loop for implementation

of this algorithm is attached in the appendix. Finally, a second order polynomial will be

fitted to the center points of finalized windows and a green mask is implemented between

these two polynomials to illustrate the lane area. Figure  4.12 shows the final result of lane

detection using model 2. The center offset and curve radius are also calculated similar to

model 1. Accordingly, the average of first point in the polynomial is the center point of

the lane and the center of the image (here 1280/2) is the center point of the vehicle. The

difference between these two values is the center offset.
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Figure 4.8. The camera calibration environment on AirSim for model 2.

4.5 Multiple Model Adaptive Estimation

So now two different models for calculating offset is derived. As it was mentioned in

the previous sections, MMAE is going to be used for combining these two models. The

calculated offset from model 1 and model 2 are the output that should be combined. The

detected offset using the rear camera image will be used as the observer for calculating the

probabilities. In fact, the residuals of each model will be the subtraction model offset and

the observer model. However, it should be noted that the observer is one step behind. So

the residual can be defined as the difference between the offset of the model at step n − 1

with the offset of observer at step n. The reason behind this is the fact that the observer is

implemented on the rear camera and it is always showing the past offset of the lane. Let’s

call the offset of the vehicle and the lane as z. Similar to state estimation, here the purpose

is estimating the offset using multiple models. The offset can be calculated as:

z = f(inputImage) (4.2)
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Figure 4.9. Finding the optimum binary image by combining different thresh-
olding algorithms

Where f is the lane detection function which can be any of the proposed models or the

observer model and z is the measured offset. The residual for calculation of likelihood can

be defined as:

rk = zest
n − zmodel,k

n−1 (4.3)

Where rk is the residual for the kth model and zobs
n is the estimator offset at nth step and

zmodel,k
n−1 is the offset for the kth model at step n − 1. The probabilty of the two models can

be defined as p1 and p2 and we know:

p1 + p2 = 1 (4.4)
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Figure 4.10. The ROI for model 2 and the final binary image of this model

Figure 4.11. The result of sliding window algorithm on the binary bird’s eye
view image of model 2 on extracted ROI

Where the probabilities can be calculated using following equation for the nth model at time

sample k:

pn,k = fz(k)‖a,z(k−1)(zk‖an, zk−1)pn(k − 1)∑n
j=1 fz(k)‖a,z(k−1)(zk‖aj, zk−1)pj(k − 1) (4.5)

Where the nominator f is the conditional probability of nth model at time step k − 1, z

is the output of models (the offset), and the denominator is the sum of all the conditional

probabilities. Accordingly,

fz(k)‖a,z(k−1)(zk‖an, zk−1) = βnexp(o) (4.6)
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Figure 4.12. The final result of lane detection using model 2

Where,

βn = 1
(2π)l/2‖ψn(k)‖1/2

(4.7)

Where l is the measurement dimension which is 1 here and,

(o) = 1
2r

T
n,kψ

−1
n,krn,k (4.8)

Where rn,k is the residual of offset for the nth model at time step of k, and ψn,k is the

covariance of the residuals.

ψn,k = Cn,kPn,kC
T
n,k +R (4.9)

Where C is output vector
(

1 0
)

and P is State covariance matrices of measurement

noise is considered to be identitymatrix at initial step and the value of covariance of the

measurement noise R is considered to be 10−6 by try and error. The final value of P for

both models found as:
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P1 =

 6.25e − 13 −4.16e − 10

−4.19e − 10 1.98e − 11


P2 =

 8.14e − 13 −2.53e − 10

−1.94e − 10 1.67e − 11



4.6 PID Controller

Considering e as the offset value in each time step and s as the steering value which is

the output of the controller and the input of simulation environment the PID formulation

for step n can be presented as:

sn = KP en +KI

n∑
i=1

ei +KD(en − en−1) (4.10)

Where n is the current time step. Note that the time step in unit in the controller model.

The implementation of PID controller is straight forward and is presented below. mainoffset

represents the final offset calculation from the MMAE section which will be the error itself;

since the reference value is zero. The dt is the time of each time step and the errordot will

be the discrete derivative of error. errorint is also the discrete integral of error. Having these

three parameters and the tuned PID gains the steering angle can be calculated. Note that

the conditions are defined to avoid index problems in the first two time steps.

The PID gains are found by try and error. The tests showed that it would be better to

use two different sets of gains for straight roads and curvy roads. Table  4.2 shows the tuned

PID gains for this controller.

Table 4.2. Tuned PID gains for proposed controller system.

Gains Straight Road Curvy Road

Kp 0.001 0.002

Ki 0 0.0001

Kd 0.001 0.001
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4.7 Overview of the Lane Detection System

Figure  4.13 shows the developed control system for the LKAS. According to this figure,

the simulation environment at each step provides front and rear camera images. The front

camera image will be used in model 1 and 2 for lane detection and offset calculation. Rear

camera image will be used in the observer model for observing the offset. The output offset

of both models as well as the observer output will be used in Likelihood Function to calculate

the probability or weights of each output. With multiplying the weights to the outputs the

final offset output will be derived. The subtract of this offset with the reference offset (which

is zero) will be used as the input of the PID controller to obtain a proper steering value for

the next step. The simulation environment will use the steering to drive the car for one time

step. The throttle of the vehicle is always fixed on the max value until the vehicle gets to

the defined max speed which is 5m/s here.

Figure 4.13. The schematic of proposed control system for LKAS

41



5. SIMULATION RESULTS

In this section first the results of lane detection for single model are presented and the

performance of the control system with a single model is evaluated. In this step, model 1

and model 2 evaluated and a sample of their failures is presented as a case study. Then

the results of the proposed algorithm is presented and the performance of the system with

combination of the models is evaluated for the similar case studies. Finally, effect of some

enhancements on the proposed algorithm and the estimator is presented and the final model

is validated in 3 more case studies.

5.1 Single Model Performance

Figure  5.1 shows the test for a part of street that has a missing marker and also high con-

trast shades on the street (Case Study 1). Since the second model has a better performance

individually, here the second model is used for single model evaluation.

Figure 5.1. The shade test view in the simulation environment for Case study 1

In the single model shade and missing marker test the vehicle moved out of the current

lane in 15 time steps. However, it tried to stay in the left lane after passing the shades and

failure sources. Figure  5.2 shows the result of calculated offset by the model and the position

of the vehicle comparing to the desired trajectory.
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Figure 5.2. The failed results for Case study 1 using model 2. left) The failed
offset calculation by model 2. right)blue: vehicle, red: desired trajectory

Figure  5.3 shows the test for a part of simulation environment with a sharp turn (Case

Study 2). In the single model turn test, the vehicle moved out of the bounds in the first 10

time steps. Figure  5.4 shows the calculated offset by the second model and the position of

the vehicle comparing to the desired trajectory.

Figure 5.3. The turn test view in the simulation environment (Case Study 2)
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Figure 5.4. The failed turn test results using model 2. left) The failed offset
calculation by model 2. right) blue: vehicle, red: desired trajectory

5.2 Multiple Model Adaptive Estimation Performance

In this section, both lane detection models are integrated using MMAE and EKF. The

calculated offset by the back camera is used as the observer for evaluating the uncertainty

and probability of each model. Figure  5.5 shows the result of MMAE for case study 1.

Accordingly, both models has an acceptable performance until time-step 26. However, due

to the low uncertainty of model 2 the probability of this model stayed up to 0.9. After time-

step 26 some unstable calculations for both models are detected. At step 36 model 2 showed

a high uncertainty comparing to the observer result and its probability fell down. In the

further steps the probability of models switched multiple times. Note that each time-step is

around 0.5 second in the simulation environment.

Figure  5.6 illustrates the MMAE result for another case study. In this case the vehicle

is located in a sharp turn and the observer itself is not reliable. Despite the previous case

study in this case model 1 had a better performance in most of the steps.

5.3 Improving the Performance of MMAE

The results of both case studies had some issues. The first issue is the fast and multiple

transient between models. This issue can be fixed with changing the R value in the EKF.
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Figure 5.5. The final result of MMAE and the probability of each model at
each time-step (Case study 1)

The enhanced result would have a more rectangular waveform shape. The second issue is the

failure in the observer performance. Even though there is only few steps which the observer

failed but the failure in observer calculation results in unreliable response from MMAE. To

solve this issue [ 1 ] presented a simple method. Accordingly, the last few values of observer

is collected and when the value of offset for observer changes significantly instead of using

the measured offset an extrapolation estimated from previous measurements will be used for

observing. For this we need to define a jumping threshold. Figure  5.7 shows the result of

MMAE for a corrected observer with a jumping threshold of 40 cm for the straight street test.

Accordingly, the failures by the observer is normalized by adding the effect of estimation.

Figure  5.8 shows the result of MMAE for a corrected observer with a jumping thresh-

old of 20 cm for the straight street test. Accordingly, this threshold have shown a better

performance comparing to the previous one and is going to be chosen as the optimum value.

Now that the MMAE is improved and finalized it is going to be validated in the next

section.
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Figure 5.6. The final result of MMAE and the probability of each model at
each time-step for Case study 2

5.4 Validation of the Proposed Algorithm

Now that the final MMAE algorithms is completed, it is going to be validated in three

more case studies. The first one (Case study 3) is in a mild turn with high contrast shades

and also speed bumpers. The controller could keep the vehicle inside the lane. Figure  5.9 

shows a view from this test and Figure  5.10 shows the result of MMAE for this case study.

Case study 4 is in a straight street with high contrast shades. The controller could keep

the vehicle inside the lane in this test and performed robust. Figure  5.11 shows a view from

this test and Figure  5.12 shows the result of MMAE for this case study which had a stable

result.

Case study 5 is in a turn with a wet ground and rainy weather. The controller performed

robust and the vehicle kept in the lane. Figure  5.13 shows a view from this test and Figure

 5.14 shows the result of MMAE for this case study which had a stable result. Accordingly,

for this case the observer had failure in time step 5 but it is resolved fast and the vehicle

remained in the lane. The video of this test case is available  here .
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Figure 5.7. The final result of MMAE, the probabilities, and corrected ob-
server with 40 cm threshold for Case study 2

Figure 5.8. The final result of MMAE and the probability and corrected
observer with 20 cm threshold for Case study 2
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Figure 5.9. The view of Case Study 3 for validation of the proposed algorithm

Figure 5.10. The MMAE result for Case Study 3
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Figure 5.11. The view of Case Study 4 for validation of the proposed algorithm

Figure 5.12. The MMAE result for Case Study 4
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Figure 5.13. The view of Case Study 5 for validation of the proposed algorithm

Figure 5.14. The MMAE result for Case Study 5
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6. CONCLUSION AND FUTURE WORK

In this section firstly, the an overall description of the study and the conclusion is presented

and then some suggestions for future works are presented.

6.1 Conclusion

This research develops a lane-keeping assistant system containing two central units: the

lane detection unit and the control unit. This research aimed to enhance the lane detection

unit, and for the control unit, a simple PID controller has been used to control the steering.

In the lane detection unit, multiple available lane detection algorithms based on computer

vision and deep learning are first investigated. The deep learning-based lane detection al-

gorithms did not have a robust performance in the simulation environment since they were

trained using front camera data on real-world images with a different view and could not

predict the lane markers in the simulation environment. Hence, two computer vision-based

algorithms with different pros and cons are considered as lane detection units. These models

are investigated in various case studies, and the different sources of failures are detected.

In the next step, a third model is used based on the rear camera as the first two models’

estimator. The final purpose of all the models was to calculate the offset between the lane

and the vehicle’s center point. Using the estimator result, the proposed algorithm utilized

MMAE to estimate the probability or weight of each model in each step and the final offset

value. The final offset value is used as the input error of the PID controller, and the output

of the PID is the steering angle used in the simulation environment. The results showed that

the proposed algorithm performed robustly and addressed the issues of each of the models

by combining the two models, which was able to improve lane detection in sharp turns, lanes

with missing markers, wet ground, and streets with high contrast shadows.

6.2 Future Work

In this project, due to the time limitation making a dataset based on AirSim images was

not possible. In the other hand, the available trained datasets could not work robust since
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they had different perspective, lighting and contrast. Hence, adding another model which

is based on a deep learning can enhance the MMAE significantly. In this study the focus

was on the MMAE algorithm and a PID is used for controlling the steering. Utilizing an

MPC controller would be interesting in a similar project. However, it should be noted that

for implementing an MPC controller the output offset of the models is not sufficient. MPC

controller requires the input polynomial of the center line at each step. It would be a good

idea to use a RNN to have a prediction-based model for detecting the center line in case of

failure in the models.
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A. PYTHON CODE

In this section the implemented code is attached. However, the source code of this project

is also avaialbe in this  GitHub repo  . The main code is inside RandomMoving.py which has

the implementation of software in loop and controller system. Then in lane.py and lane2.py

the offset for the models are implemented. In the edge_detection.py the utlitiy for edge

detection is presented. All the codes are annotated with comments and they are based on

 Advanced Lane Detection and  Automatic Addison Lane Detection projects.

A.1 RandomMoving.py

import os

import airsim

import time

import numpy as np

from numpy.core.fromnumeric import size

from scipy.interpolate import InterpolatedUnivariateSpline

import re

import cv2

from tqdm import tqdm_notebook

import matplotlib.pyplot as plt

import lane

import lane2

import math

import adv_lane

def std(data, ddof=0):

n = len(data)

mean = sum(data) / n

return math.sqrt(sum((x - mean) ** 2 for x in data) / (n - ddof))
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# connect to the AirSim simulator

client = airsim.CarClient()

client.confirmConnection()

client.enableApiControl(True)

car_controls = airsim.CarControls()

i = 0

Kp = 0.001 #0.002 for curvy roads -- 0.001 for straight lane

Ki = 0

Kd = 0.001

offset = []

offset2 = []

main_offs = []

t = []

timestep = []

error = []

error_dot = []

error_int = []

controlledSteering = []

var = []

var2 = []

var_obs = []

prob = []

prob2 = []

observer = []

cor_obs = []

end_bool = True

while end_bool:
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client.simPause(False)

# get state of the car

car_state = client.getCarState()

#print("Speed %d, Gear %d" % (car_state.speed, car_state.gear))

# set the controls for car

#client.simPause(False)

car_controls.throttle = 0.5

if(i==0):

car_controls.steering = 0

else:

car_controls.steering = controlledSteering[i-1]

client.setCarControls(car_controls)

# let car drive a bit

time.sleep(0.5)

#client.simContinueForTime(1)

client.simPause(True)

responses = client.simGetImages([airsim.ImageRequest("CAM0", airsim.

ImageType.Scene, False, False),airsim.ImageRequest("CAM1", airsim.

ImageType.Scene, False, False)])

#back_resps = client.simGetImages([airsim.ImageRequest("CAM1",

airsim.ImageType.Scene, False, False)])

#back_data = back_resps[0]

# processing the image to find lanes and offset

offset.append(0)
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offset2.append(0)

main_offs.append(0)

t.append(0)

timestep.append(0)

error.append(0)

error_dot.append(0)

error_int.append(0)

controlledSteering.append(0)

var.append(0)

var2.append(0)

var_obs.append(0)

prob.append(0)

prob2.append(0)

observer.append(0)

#responses = client.simGetImages([airsim.ImageRequest("0"

, airsim.ImageType.DepthPlanner, True)])

for response in responses:

img1d = np.fromstring(response.image_data_uint8, dtype=np.uint8)

#back1d = np.fromstring(back_data.image_data_uint8, dtype=np.

uint8)

# reshape array to 4 channel image array H X W X 4

img_rgb = img1d.reshape(response.height, response.width, 3)

#back_rgb = back1d.reshape(back_data.height, back_data.width, 3)

# saving the image in the storage

fileName = time.strftime()

dir_path = os.path.dirname(os.path.realpath(__file__))
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airsim.write_png(dir_path + '\\Images\\' + fileName + '.png',

img_rgb)

plt.imshow(img_rgb)

plt.show()

try:

if(response.camera_name=='CAM0'): #Front Camera

offset2[i] = lane.main(img_rgb) #offset (cm-not scaled)

offset[i] = lane2.main(img_rgb)

#offset[i] = adv_lane.lane_finding_pipeline(img_rgb)

elif(response.camera_name=='CAM1'): #Back Camera

observer[i] = -lane2.main(img_rgb)

except:

print("error in image processing")

# Probability Calc

if (i>=1):

r1[i] = abs(var1[i-1]-abs(offset[i])**2)+epsilon #residuals

r2[i] = abs(var2[i-1]-abs(offset2[i])**2)+epsilon

s1=P1+R

beta1=(((2*math.pi)**1)*(s1))**-0.5

s2=P2+R

beta2=(((2*math.pi)**1)*(s2))**-0.5

#prob[i] = c2/(c1+c2)

#prob2[i] = c1/(c1+c2)

prob1[i]=((beta1*(math.exp(-0.5*(r1[i]))*s1**-1*(r1[i])))*

prob1[i-1])/((beta1*(math.exp(-0.5*(r1[i]))*s1**-1*(r1[i]))
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)*prob1[i-1]+(beta2*(math.exp(-0.5*(r2[i]))*s2**-1*(r2[i]))

)*prob2[i-1])

prob2[i]=((beta2*(math.exp(-0.5*(r2[i]))*s2**-1*(r2[i])))*

prob2[i-1])/((beta2*(math.exp(-0.5*(r2[i]))*s2**-1*(r2[i]))

)*prob2[i-1]+(beta1*(math.exp(-0.5*(r1[i]))*s1**-1*(r1[i]))

)*prob1[i-1])

else:

prob[i] = 0.5

prob2[i] = 0.5

main_offs[i] = prob[i]*offset[i] + prob2[i]*offset2[i]

#derivative and integral calculations:

t[i] = round(time.time()*1000) #time in millisecond

dt = 1

if(i>1):

error[i] = main_offs[i]

error_dot[i] = (main_offs[i]-main_offs[i-1])/dt

error_int[i] = error_int[i-1]+(error[i]+error[i-1])/2*dt

timestep[i] = timestep[i-1] + dt

var[i] = std(offset)

var2[i] = std(offset2)

var_obs = std(observer)

elif(i==1):
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error[i] = main_offs[i]

error_dot[i] = (main_offs[i]-main_offs[i-1])/dt

error_int[i] = error_int[i-1]+(error[i]+error[i-1])/2*dt

elif(i==0):

error[i] = main_offs[i]

error_dot[i] = 0

error_int[i] = 0

controlledSteering[i] = -(Kp*error[i]+Kd*error_dot[i]+Ki*error_int[i

])

print(error[i],error_dot[i],error_int[i])

print(controlledSteering[i])

print()

if (i==80):

end_bool = False

i += 1

# Plotting the results

client.simPause(True)

# here we are creating sub plots

figure, axes = plt.subplots(3)

line1 = axes[0].plot(timestep, offset, label = "Model 1")

line2 = axes[0].plot(timestep, offset2, label = "Model 2")

line3 = axes[0].plot(timestep, main_offs, label = "Final Model")

line04 = axes[0].plot(timestep, observer, label = "Observer")

line05 = axes[0].plot(timestep, observer, label = "Corrected Observer")

axes[0].legend(bbox_to_anchor=(0.5, 1.05), loc="upper center")

axes[0].set(ylabel='Offset (cm)')
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axes[0].set_xlim([0, 80])

axes[0].set_ylim([-100, 80])

axes[0].set(size=[10,2])

line4 = axes[1].plot(timestep, var, label = "Model 1")

line5 = axes[1].plot(timestep, var2, label = "Model 2")

#plt.title("Offset from center line", fontsize=20)

plt.xlabel("Time Step")

plt.ylabel("Standard Deviation")

axes[1].set(ylabel='Standard Deviation', xlabel="Time Step")

axes[1].set_xlim([0, 80])

axes[1].set_ylim([0, 80])

line6 = axes[2].plot(timestep, prob, label = "Model 1")

line7 = axes[2].plot(timestep, prob2, label = "Model 2")

axes[2].set(ylabel='Probability', xlabel="Time Step")

axes[2].set_xlim([0, 80])

axes[2].set_ylim([0, 1])

plt.show()
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