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Abstract. We study Hermite-Padé approximation of so called Nikishin systems of functions.
In particular, the set of multi-indices for which normality is known to take place is considerably

enlarged as well as the sequences of multi-indices for which convergence of the corresponding

simultaneous rational approximants takes place. These results are applied to the study of the
convergence properties of simultaneous quadrature rules of a given function with respect to

different weights.

1. Introduction

Let S = (s1, . . . , sm) be a system of finite Borel measures with constant sign and compact
support supp(sk) ⊂ R, k = 1, . . . ,m, contained in the real line consisting of infinitely many points.
In [1], it is claimed that some applications in computer graphics illuminating bodies require the
simultaneous evaluation of the integrals

∫
f(x)dsk(x), k = 1, . . . ,m. For this purpose, the author

proposes a numerical scheme of m quadrature rules all of which have the same set of nodes.
Let N distinct points x1, . . . , xN be given which lie in Co(∪mk=1(supp(sk))), the smallest interval

containing the union of the supports of the measures in the system S. We say that we have an
interpolatory type simultaneous scheme of quadrature rules for S of order N if∫

p(x)dsk(x) =
N∑
j=1

λk,jp(xj) , k = 1, . . . ,m , (1)

for all p ∈ PN−1, the vector space of all polynomials of degree at most N −1, with coefficients λk,j
appropriately chosen.

Set Q(x) =
∏N
j=1(x− xj). For p ∈ PN−1, from Lagrange’s interpolation formula we have

p(x) =
N∑
j=1

Q(x)p(xj)
Q′(xj)(x− xj)

.

Integrating with respect to sk one has∫
p(x)dsk(x) =

N∑
j=1

p(xj)
∫

Q(x)dsk(x)
Q′(xj)(x− xj)

=
N∑
j=1

λk,jp(xj) , k = 1, . . . ,m ,

with

λk,j =
∫

Q(x)dsk(x)
Q′(xj)(x− xj)

.

Therefore, given any system of distinct points x1, . . . , xN , such a simultaneous scheme of quadra-
ture rules is always attainable.

The problem consists in the study of the convergence properties of such a scheme of simultaneous
quadrature rules for a large class of functions f ; for example, continuous on Co(∪mk=1(supp(sk)))
or analytic on a neighborhood of this set. That is, we would like to have

lim
N→∞

N∑
j=1

λN,k,jf(xN,j) =
∫
f(x)dsk(x) , k = 1, . . . ,m ,
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where {xN,j}, j = 1, . . . , N,N ∈ N is a triangular scheme of nodes contained in Co(∪mk=1(supp(sk)))
and f is in a sufficiently general class of functions.

Another question of equal importance is connected with the stability of the numerical proce-
dure. For this, it is desirable to have that supN∈N

∑N
j=1 |λN,k,j | < ∞, k = 1, . . . ,m, or still more

convenient that for each k and N the coefficients λN,k,j , j = 1, . . . , N, preserve the same sign. In
this case, from the quadrature rule, taking p ≡ 1, we have

|sk| = |
∫
dsk(x)| = |

∑
N,k,j

λN,k,j | =
∑
N,k,j

|λN,k,j | .

As in Gauss-Jacobi quadrature rules one may ask if the nodes x1, . . . , xN , may be taken so
that the quadrature formulas are exact in a class of polynomials as large as possible hoping to get
automatically coefficients of equal sign. Unlike the case when m = 1, we shall see that in general
this problem is not well posed in the sense that it may not have a solution or it may have infinitely
many. The existence of solution may require nodes of multiplicity greater than 1 or that the nodes
lie outside Co(∪mk=1(supp(sk))).

In this paper we give several results of general nature concerning Gauss–Jacobi type simultaneous
quadrature rules, their connection with Hermite-Padé approximation, their convergence properties,
and rate of convergence. This is done in section 2. In section 3, we emphasize on the case when
the measures in S are interlinked in a special way. More exactly, when they form what is called a
Nikishin system of measures (see Definition 3 below).

2. Some general results.

As above, let S = (s1, . . . , sm) be a system of finite Borel measures with constant sign and
compact support supp(sk) ⊂ R, k = 1, . . . ,m, consisting of infinitely many points. Let Ŝ =
(ŝ1, . . . , ŝm) be the corresponding system of Markov functions; that is,

ŝk(z) =
∫
dsk(x)
z − x

, k = 1, . . . ,m .

We define the simultaneous Hermite-Padé approximant of Ŝ with respect to the multi-index n =
(n1, . . . , nm) ∈ Zm+ as a vector rational function Rn = (Pn,1Qn

, . . . ,
Pn,m
Qn

) with common denominator
Qn that satisfies

i) degQn ≤ |n| = n1 + · · ·+ nm, Qn 6≡ 0 ,

ii) (Qnŝk − Pn,k)(z) = O
(

1
znk+1

)
, z →∞ , k = 1, . . . ,m .

Integrating along a closed path with winding number 1 for all its interior points which surrounds
supp(sk) and using Fubini’s theorem, it is easy to verify that Qn fulfills the following system of
orthogonality relations

0 =
∫
xνQn(x)dsk(x) , ν = 0, . . . , nk − 1 , k = 1, . . . ,m . (2)

It is said that Qn is a multi-orthogonal polynomial of S relative to the multi-index n. In the sequel,
we assume that Qn is monic. In general, the polynomial Qn is not uniquely determined.

Let E be a subset of the real line R. By Co(E) we denote the smallest interval which contains
E. The interior of an interval of the real line refers to its interior in the euclidean topology of R.

Definition 1. We say that a multi-index n is weakly normal for the system S if Qn is determined
uniquely. A multi-index n is said to be normal if any non trivial solution Qn of (2) satisfies
degQn = |n|. If Qn has exactly |n| simple zeros and they all lie in the interior of Co(∪mj=1 supp(sj))
the index is called strongly normal. When all the indices are weakly normal, normal, or strongly
normal the system S is said to be weakly perfect, perfect, or strongly perfect respectively.

Normality of indices plays a crucial role in applications to number theory and Hermite-Padé
approximation. Obviously, strong normality implies normality, and it is not hard to prove that
normality implies weak normality (see Lemma 1 in [8] where you can also find further discussions
on the subject).
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From ii) it is obvious that Pn,k is the polynomial part of Qnŝk. Therefore, given Qn, the
polynomial Pn,k is uniquely determined. For a moment, set

Pn,k(z) =
∫
Qn(z)−Qn(x)

z − x
dsk(x), k = 1, . . . ,m .

Using (2) it is straightforward that ii) takes place; thus, this polynomial is in fact the one defined
above. Therefore, if n is weakly normal the polynomials Pn,k (and consequently Rn) are also
uniquely determined. If the index n is strongly normal then

Pn,k(z)
Qn(z)

=
|n|∑
j=1

λn,k,j
z − xn,j

, k = 1, . . . ,m , (3)

where Qn(z) =
∏|n|
j=1(z − xn,j) and

λn,k,j = lim
z→xn,j

z − xn,j
Qn(z)

∫
Qn(z)−Qn(x)

z − x
dsk(x) =

∫
Qn(x)dsk(x)

Q′n(xn,j)(x− xn,j)
. (4)

Definition 2. The numbers defined by (4) will be called Nikishin– Christoffel coefficients.

Lemma 1. Let n be strongly normal for the system S = (s1, . . . , sm). Then, for each k = 1, . . . ,m∫
p(x)dsk(x) =

|n|∑
j=1

λn,k,jp(xn,j) , p ∈ P|n|+nk−1 ,

where PN denotes the vector space of all polynomials of degree at most N .

Proof. Fix k ∈ {1, . . . ,m} and assume that p ∈ P|n|+nk−1. Let

`(x) =
|n|∑
j=1

Qn(x)p(xn,j)
Q′n(xn,j)(x− xn,j)

be the Lagrange polynomial of degree |n| − 1 that interpolates p at the zeros of Qn. By the
definition of ` it follows that

p(x)− `(x) = Qn(x)q(x)

where q ∈ Pnk−1. Therefore, from (2) and (4), we have

0 =
∫

(p− `)(x)dsk(x) =
∫
p(x)dsk(x)−

|n|∑
j=1

p(xn,j)
∫

Qn(x)dsk(x)
Q′n(xn,j)(x− xn,j)

=

∫
p(x)dsk(x)−

|n|∑
j=1

λn,k,jp(xn,j) ,

which is what we needed to prove. 2

Remark . In the case of normal indices, for which the zeros are not necessarily distinct, one can
obtain a similar quadrature formula exact for all p ∈ P|n|+nk−1 but on the right hand appear all
the derivatives of the polynomial up to the multiplicity of the corresponding zero of Qn minus one.

Notice that in Lemma 1 we have exactness with respect to each measure at least of order
|n|. Therefore, all such simultaneous quadrature rules are of interpolatory type. In terms of the
Nikishin–Christoffel coefficients, we distinguish several cases.

Let Λ ⊂ Zm+ be a sequence of distinct strongly normal multi–indices and k ∈ {1, . . . ,m} fixed.
A) For each n ∈ Λ all λn,k,j , j = 1, . . . , |n|, have the same sign.
B)

sup
n∈Λ

|n|∑
j=1

|λn,k,j | ≤ C <∞ .
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C)
|n|∑
j=1

|λn,k,j | ≤ C|n|α <∞ , α ∈ (0,+∞) , n ∈ Λ .

D)
|n|∑
j=1

|λn,k,j | ≤ C|n|α(n) <∞ , lim
n∈Λ

α(n) log |n|/|n| = 0 .

It is obvious that A)⇒ B)⇒ C)⇒ D). Depending on whether one has A), B), C), or D) one
can prove that

lim
n∈Λ

|n|∑
j=1

λn,k,jf(xn,j) =
∫
f(x)dsk(x) , (5)

for different classes of functions f .
We denote Lipβ([a, b]), 0 ≤ β ≤ 1, the class of all complex valued functions f defined on the

interval [a, b] ⊂ R such that

|f(x)− f(y)| ≤ C|x− y|β , x, y ∈ [a, b] .

We say that f ∈ Lipβ([a, b]), 1 < β <∞, if the [β]th derivative of f exists and is in Lipβ−[β]([a, b]),
where [β] denotes the integer part of β. The next lemma summarizes some known results which
allow to deduce convergence of the quadrature rule. For completeness we include some proofs.
More on sufficient conditions for the convergence of interpolatory quadrature rules see may be
found in [5] and the references therein.

Lemma 2. Let S be a system of measures and Λ ⊂ Zm+ a sequence of distinct strongly normal
multi–indices. Set ∆ = Co(∪mk′=1 supp(sk′)). Then:
• A) implies (5) for all Riemann integrable functions f on ∆.
• B) implies (5) for all continuous functions f on ∆.
• C) implies (5) for all f ∈ Lipβ(∆), β > α. Moreover,∣∣∣∣∣∣

∫
f(x)dsk(x)−

|n|∑
j=1

λn,k,jf(xn,j)

∣∣∣∣∣∣ = O
(

1
|n|β−α

)
. (6)

• D) implies that

lim sup
n∈Λ

∥∥∥∥ŝk − Pn,k
Qn

∥∥∥∥1/|n|

K

≤ ‖ϕ‖K , K ⊂ C \∆ , (7)

where ‖·‖K denotes the sup norm on the compact set K and ϕ denotes the conformal representation
of C\∆ onto {w : |w| < 1} such that ϕ(∞) = 0 and ϕ′(∞) > 0. If f is analytic on a neighborhood
V of ∆ (f ∈ H(V )), then (7) implies

lim
n∈Λ
|
∫
f(x)dsk(x)−

|n|∑
j=1

λn,k,jf(xn,j)|1/|n| ≤ ρV , (8)

where ρV = inf{ρ : γρ ⊂ V } and γρ = {z : |ϕ(z)| = ρ}, 0 < ρ < 1.

Proof. The first two statements are classical and contained, for example, in Theorems 15.2.2
and 15.2.1, respectively, of [18]. The third is also fairly well known. Notice that for each p ∈ P|n|−1,
using the quadrature formula, we obtain

|
∫
f(x)dsk′(x)−

|n|∑
j=1

λn,k,jf(xn,j)| ≤
∫
|f(x)− p(x)||dsk(x)|+

|n|∑
j=1

|λn,k,j ||f(xn,j)− p(xn,j)| .

Therefore,

|
∫
f(x)dsk′(x)−

|n|∑
j=1

λn,k,jf(xn,j)| ≤ (|sk|+ C|n|α)E|n|−1(f) .
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From Jackson’s Theorem (see page 147 in [4]), we have that if f ∈ Lipβ(∆) then E|n|−1(f) ≤
C1/|n|β where C1 does not depend on n ∈ Λ. From this follows (5) for this class of functions when
β > α with the given estimate for the error.

The last statement is familiar to specialists in Padé approximation. Let us prove (7). Since n
is strongly normal, from ii) we have that

ŝk −
Pn,k
Qn

= O
(

1
z|n|+1

)
, z →∞ ,

and
ŝk − Pn,k

Qn

ϕ|n|+1
∈ H(C \∆) .

Set γρ = {z : |ϕ(z)| = ρ}, 0 < ρ < 1. Using D), it follows that∥∥∥∥ŝk − Pn,k
Qn

∥∥∥∥
γρ

≤ Cρ|n|α(n) ,

where Cρ is a constant which depends on the curve γρ but not on n. Therefore,∣∣∣∣∣ (ŝk −
Pn,k
Qn

)(z)

ϕ|n|+1(z)

∣∣∣∣∣ ≤ Cρ|n|α(n)

d(γρ)ρ|n|+1
, z ∈ γρ ,

with d(γρ) = inf{|z − x| : z ∈ γρ, x ∈ ∆}. By the maximum principle∣∣∣∣(ŝk − Pn,k
Qn

)(z)
∣∣∣∣ ≤ Cρ|n|α(n)

d(γρ)

(
|ϕ(z)|
ρ

)|n|+1

, z ∈ Ext(γρ) ,

where Ext(γρ) denotes the unbounded connected component of the complement of γρ. Fix a
compact set K ⊂ C \∆ and take ρ sufficiently close to 1 so that K ⊂ Ext(γρ). It follows that∥∥∥∥ŝk − Pn,k

Qn

∥∥∥∥
K

≤ Cρ|n|α(n)

d(γρ)

(
‖ϕ‖K
ρ

)|n|+1

.

Thus, using the assumption on the sequence of numbers {α(n)}, it follows that

lim sup
n∈Λ

∥∥∥∥ŝk − Pn,k
Qn

∥∥∥∥1/|n|

K

≤
(
‖ϕ‖K
ρ

)
,

and letting ρ→ 1, we find that

lim sup
n∈Λ

∥∥∥∥ŝk − Pn,k
Qn

∥∥∥∥1/|n|

K

≤ ‖ϕ‖K .

To conclude let us show that (7) implies (8). Using (3), Cauchy’s integral formula, and Fubini’s
Theorem, it follows that∫

f(x)dsk(x)−
|n|∑
j=1

λn,k,jf(xn,j) =
1

2πi

∫ ∫
γρ

f(z)
z − x

dzdsk(x)−
|n|∑
j=1

λn,k,j
1

2πi

∫
γρ

f(z)
z − xn,j

dz =

1
2πi

∫
γρ

f(z)(ŝk −
Pn,k
Qn

)(z)dz .

Therefore,

|
∫
f(x)dsk(x)−

|n|∑
j=1

λn,k,jf(xn,j)| ≤ C‖f‖γρ‖ŝk −
Pn,k
Qn
‖γρ ,

where C denotes the length of γρ divided by 2π. This inequality and (7) immediately give (8). 2
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Remark . In the first three statements of Lemma 2 the assumption on f may have been given on
Co(supp(sk)) instead of all ∆. This is so because any function Riemann integrable, continuous,
or Lipβ on Co(supp(sk)) may be extended within the same class respectively to ∆. In this case,
the quadrature formula applied to a function defined on Co(supp(sk)) must be understood as
its application to any of its extensions to ∆ pertaining to the same class. Since the integral
depends only on the values of the function on Co(supp(sk)) this means that the nodes lying in
∆ \ Co(supp(sk)) give no contribution to the approximate evaluation of the integral. From the
practical point of view it is better to think that the function is extended with value zero outside
of Co(supp(sk)) though this extension does not necessarily preserve the class in the second and
third cases. Concerning the statements following assumption D) one cannot say the same because
analytic functions cannot be extended at will. Nevertheless, we point out that in the proof we only
use that V is a neighborhood of an interval [a, b] containing the zeros of the polynomials Qn and
the support of the measure sk. Therefore in relations (7) and (8) one can substitute ∆ by [a, b].
These remarks will be used in the statement and proof of Theorem 1 below without special notice.

In general, it is difficult to guarantee strong normality of a multi–index and even then it is more
complicated to verify one of the conditions A)-D). For the moment, we will restrict our attention to
a sufficiently general system of measures and a special selection of multi–indices for which strong
normality and some of the conditions A)-D) are fulfilled.

Let σ be a finite positive Borel measure supported on a compact subset of R and S = (s1, . . . , sm)
be such that dsk(x) = wk(x)dσ(x), wk ∈ L1(σ), k ∈ {1, . . . ,m}, where each wk preserves sign on
supp(σ). Whenever it is convenient we use the differential notation of a measure. Let Λk ⊂ Zm+ be
the sequence of multi–indices of the form Ñ = (0, . . . , 0, N, 0, . . . , 0), N ∈ Z+ , and the number N
is placed in the kth component of the multi–index. We have

Theorem 1. Let S and Λk be as indicated above. All multi–indices in Λk are strongly normal.
For the component k, A) takes place. Consequently, (5) holds for all bounded Riemann integrable
function f on Co(supp(sk)) and if f ∈ Lipβ(Co(supp(sk))), β > 0, then∣∣∣∣∣∣

∫
f(x)dsk(x)−

N∑
j=1

λÑ,k,jf(xÑ,j)

∣∣∣∣∣∣ = O
(

1
Nβ

)
. (9)

If for some k′ ∈ {1, . . . ,m}, we have that

Ck,k′ :=
(∫

|wk′(x)|2

|wk(x)|
dσ(x)

)1/2

<∞ , (10)

then
N∑
j=1

|λÑ,k′,j | ≤ Ck,k′
√
|sk| , Ñ ∈ Λk , (11)

and for all f ∈ Lipβ(Co(supp(sk′))), β > 0,∣∣∣∣∣∣
∫
f(x)dsk′(x)−

N∑
j=1

λÑ,k′,jf(xÑ,j)

∣∣∣∣∣∣ = O
(

1
Nβ

)
. (12)

We also have

lim sup
N→∞

∥∥∥∥ŝk − PÑ,k
QÑ

∥∥∥∥1/2N

K

≤ ‖ϕ‖K , K ⊂ C \ Co(supp(sk)) , (13)

and

lim sup
N→∞

∥∥∥∥ŝk′ − PÑ,k′

QÑ

∥∥∥∥1/N

K

≤ ‖ϕ‖K , K ⊂ C \ Co(supp(sk)) , (14)
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where ϕ denotes the conformal representation of C \ Co(supp(sk)) onto {w : |w| < 1} such that
ϕ(∞) = 0 and ϕ′(∞) > 0. If f is analytic on a neighborhood V of Co(supp(σ)) (f ∈ H(V )), then

lim
N→∞

|
∫
f(x)dsk(x)−

N∑
j=1

λÑ,k,jf(xÑ,j)|
1/2N ≤ ρV , (15)

and

lim
N→∞

|
∫
f(x)dsk′(x)−

N∑
j=1

λÑ,k′,jf(xÑ,j)|
1/N ≤ ρV , (16)

where ρV = inf{ρ : γρ ⊂ V } and γρ = {z : |ϕ(z)| = ρ}, 0 < ρ < 1.

Proof. We only need to prove that for the index k, property A) takes place and that for an
index k′ for which (10) holds (11) takes place and then make use of Lemma 2.

Fix Ñ ∈ Λk. From i) and (2) we have that QÑ is the Nth orthogonal polynomial with respect
to the measure sk. Therefore, QÑ has exactly |Ñ | = N simple zeros in the interior of Co(supp(sk))
as needed to affirm that n is strongly normal.

Let j ∈ {1, . . . , N} be fixed. Taking p(x) = (QÑ (x)/Q′
Ñ

(xÑ,j)(x−xÑ,j))
2 in Lemma 1 one sees

that

λÑ,k,j =
∫ (

QÑ (x)
Q′
Ñ

(xÑ,j)(x− xÑ,j)

)2

dsk(x) .

Therefore, all λÑ,k,j , j = 1, . . . , N, have the same sign as the measure sk. The convergence of the
corresponding quadrature for all Riemann integrable functions follows from the first assertion of
Lemma 2 and (9) is a consequence of the third statement in Lemma 2.

That (10) implies (11) is a slight generalization of a result due to Sloan and Smith in [17],
Theorem 1, (they only consider weights). For completeness we include a proof.

Take k′ ∈ {1, . . . ,m} such that (10) takes place. Using (4), it follows that

λÑ,k′,j =
∫

QÑ (x)
Q′
Ñ

(xÑ,j)(x− xÑ,j)
wk′(x)
wk(x)

wk(x)dσ(x) .

Write wk′/wk = SN−1 +RN−1 where SN−1 denotes the Nth partial sum of the Fourier expansion
of wk′/wk in the orthogonal system given by {QÑ}, N ∈ Z+. From (10) we have that the function
wk′/wk is square integrable with respect to the measure wkdσ; therefore, its Fourier series converges
to the function in L2(wkdσ). Using this and the previous formula it follows that

λÑ,k′,j =
∫

QÑ (x)
Q′
Ñ

(xÑ,j)(x− xÑ,j)
SN−1(x)wk(x)dσ(x) .

Since SN−1 is a polynomial of degree at most N − 1, from the orthogonality properties of QÑ , we
obtain

λÑ,k′,j = SN−1(xÑ,j)
∫

QÑ (x)
Q′
Ñ

(xÑ,j)(x− xÑ,j)
wk(x)dσ(x) = λÑ,k,jSN−1(xÑ,j) .

Using the Gauss-Jacobi formula satisfied by the kth component, and the Cauchy-Schwartz and
Bessel inequalities, we obtain

N∑
j=1

|λÑ,k′,j | =
N∑
j=1

λÑ,k,j |SN−1(xÑ,j)| ≤

 N∑
j=1

λÑ,k,j

1/2 N∑
j=1

λÑ,k,jS
2
N−1(xÑ,j)

1/2

=

√
|sk|

(∫
S2
N−1(x)wk(x)dσ(x)

)1/2

≤ Ck,k′
√
|sk|

as we needed to prove.
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Now, (12), (14), and (16) are direct consequences of (6), (7), and (8) respectively taking into
consideration that all the zeros of QÑ lie on Co(supp(sk)) and that from (10) supp(sk′) ⊂ supp(sk).
To prove (13) and (15) one follows the same scheme noticing that for the index k one has

ŝk −
PÑ,k
QÑ

= O
(

1
z2N+1

)
, z →∞ .

With this we conclude the proof of this theorem. 2

Given the way in which the nodes are chosen it is possible to prove that (10) implies convergence
of the quadrature rule corresponding to the component k′ for all Riemann-integrable functions f
on ∆. For details see [17]. We wish to point out that condition (10), used here to derive (11), was
also employed in [12] and [13] in the study of the convergence of interpolatory quadrature rules for
complex weights and quadrature rules exact for rational functions with prescribed poles.

3. Nikishin systems.

In order to study more general classes of indices for which strong normality and convergence of
the simultaneous quadrature rules take place, we further restrict the class of systems of measures
under consideration.

Nikishin systems of measures were introduced in [16]. For them a large class of indices are known
to be strongly normal. Such systems are defined as follows. We adopt the notation introduced in
[11] which is clarifying.

Let σ1 and σ2 be two measures supported on R and let ∆1,∆2 denote the smallest intervals
containing supp(σ1) and supp(σ2) respectively. We write ∆i = Co(supp(σi)). Assume that ∆1 ∩
∆2 = ∅ and define

〈σ1, σ2〉(x) =
∫
dσ2(t)
x− t

dσ1(x) = σ̂2(x)dσ1(x) .

Therefore, 〈σ1, σ2〉 is a measure with constant sign and support equal to that of σ1.

Definition 3. For a system of closed intervals ∆1, . . . ,∆m contained in R satisfying ∆j−1∩∆j =
∅, j = 2, . . . ,m, and finite Borel measures σ1, . . . , σm with constant sign and Co(supp(σj)) = ∆j ,
we define by induction

〈σ1, σ2, . . . , σj〉 = 〈σ1, 〈σ2, . . . , σj〉〉, j = 2, . . . ,m .

We say that S = (s1, . . . , sm) = N (σ1, . . . , σm), where

s1 = 〈σ1〉 = σ1, s2 = 〈σ1, σ2〉, . . . , sm = 〈σ1, . . . , σm〉 ,
is the Nikishin system of measures generated by (σ1, . . . , σm).

Remark . All the results that follow hold true if in the definition of a Nikishin system we only
require that the interior (in R) of ∆j−1 ∩∆j , j = 2, . . . ,m , be empty as long as the corresponding
measures sj , j = 1, . . . ,m, are all finite. This allows consecutive intervals ∆j to have a common
end point. We restrict generality in order to simplify the arguments in the proofs.

Notice that all the measures in a Nikishin system have the same support, namely supp(σ1). For
Nikishin systems of measures all multi-indices n satisfying 1 ≤ i < j ≤ m ⇒ nj ≤ ni + 1 are
known to be strongly normal. This result was originally proved in [6]. More recently, an extension
for so called generalized Nikishin systems was given in [11]. When m = 2, from the results in [3]
it follows that the system is strongly perfect (a detailed proof may be found in [6]). In [2], the
authors were able to include in the set of strongly normal indices all those for which there do not
exist 1 ≤ i < j < k ≤ m such that ni < nj < nk. This special class of multi–indices will be denoted
Zm+ (∗) in the sequel. For m = 3, in [8] the authors prove that the system is strongly perfect.

In [16] the numbers λn,k,j were introduced for the study of the convergence properties of the
Hermite–Padé approximants of a Nikishin system of two functions. Let us denote

Fn,k(z) = (Qnŝk − Pn,k)(z) , k = 1, . . . ,m .

In [3] (see Lemmas 4-6), it was proved that the functions Fn,k satisfy certain orthogonality relations
on the second interval ∆2 = Co(supp(σ2)). The following lemma summarizes these results and we
refer to the original source for the proof. We wish to stress that the range of degrees for which
(20) and (21) below are indicated here to hold is a bit larger than in the statement of the original
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Lemma 6 in [3]. Nevertheless, the proof is exactly the same. In that paper the authors were not
concerned with the signs of the Nikishin–Christoffel coefficients; therefore, they slightly simplified
the statement in favor of brevity. Before going on with the lemma we need some additional notation.

Let 1 ≤ i ≤ j ≤ m. Set
si,j = 〈σi, . . . , σj〉 , (sj,j = σj).

It is well known (see Appendix in [15]) that there exists a first degree polynomial Li,j and a finite
positive Borel measure τi,j ,Co(supp(τi,j)) ⊂ Co(supp(si,j)) such that

1
ŝi,j(z)

= Li,j(z) + τ̂i,j(z) .

We associate to each function Fn,k, k = 1, . . . ,m, a Nikishin system of m − 1 measures Sk =
(sk2 , . . . , s

k
m) = N (σk2 , . . . , σ

k
m) whose generating measures satisfy supp(σkj ) ⊂ Co(supp(σj)) and do

not depend on n. We preserve the notation introduced above meaning that skj = 〈σk2 , . . . , σkj 〉, j =
2, . . . ,m. In particular, all the measures of these m Nikishin systems have their support contained
in ∆2. The expression of the generating measures will be given in the lemma.

Lemma 3. Let n = (n1, . . . , nm) be a multi-index. With the function Fn,1 we associate the Nikishin
system

S1 = (s1
2, . . . , s

1
m) = (dσ2, w

1
3dσ2, . . . , w

1
mdσ2) = N (σ2, . . . , σm)

with respect to which the following orthogonality relations hold∫
(hjFn,1)(x)ds1

j (x) = 0 , deg hj ≤ min(n1, nj − 1) , j = 2, . . . ,m . (17)

With Fn,2 we associate

S2 = (s2
2, . . . , s

2
m) = (dτ2,2, w2

3dτ2,2, . . . , w
2
mdτ2,2) = N (τ2,2, σ̂2dσ3, σ4, . . . , σm)

with respect to which we have∫
(h2Fn,2)(x)ds2

2(x) = 0 , deg h2 ≤ min(n1 − 1, n2 − 2) , (18)

and ∫
(hjFn,2)(x)ds2

j (x) = 0 , deg hj ≤ min(n2 − 1, nj − 1) , j = 3, . . . ,m . (19)

Finally, for each k, 3 ≤ k ≤ m, the function Fn,k is associated with the Nikishin system

Sk = (sk2 , . . . , s
k
m) = (τ2,k, wk3dτ2,k, . . . , w

k
mdτ2,k) =

N (τ2,k, ŝ2,kdτ3,k, . . . , ŝk−1,kdτk,k, ŝk,kdσk+1, σk+2, . . . , σm)
which satisfies∫

(hjFn,k)(x)dskj (x) = 0 , deg hj ≤ min(n1 − 1, . . . , nj−1 − 1, nk − 2) , j = 2, . . . , k ,
(20)

and ∫
(hjFn,k)(x)dskj (x) = 0 , deg hj ≤ min(nk − 1, nj − 1) , j = k + 1, . . . ,m . (21)

The next lemma is Theorem 3.1.3 in [7], where the proof may be followed. There, it is used to
obtain a result similar to Lemma 3 stated above.

Lemma 4. Let S1 = (s1
2, . . . , s

1
m) = N (σ2, . . . , σm) and k ∈ {2, . . . ,m} be fixed. Then, the

following formulas take place.
1

ŝ1
k(z)

= Lk(z) + ŝk2(z) , (22)

ŝ1
j (z)
ŝ1
k(z)

= aj + ŝkj+1(z) + cj ŝ
k
j (z) , j = 2, . . . , k − 1 , (23)
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and
ŝ1
j (z)
ŝ1
k(z)

= aj + ŝkj (z) , j = k + 1, . . . ,m , (24)

where aj and cj denote certain constants, Lk is a first degree polynomial, and the measures skj are
as defined in Lemma 3.

Definition 4. Let wj , j = 1, . . . ,m, be continuous functions with constant sign on an interval [a, b]
of the real line. It is said that (w1, . . . , wm) forms an AT system for the index n = (n1, . . . , nm)
on [a, b] if no matter what polynomials h1, . . . , hm one chooses with deg hj ≤ nj − 1, j = 1, . . . ,m,
not all identically equal to zero, the function

Hn(x) = Hn(h1, . . . , hm;x) = h1(x)w1(x) + · · ·+ hm(x)wm(x) .

has at most |n| − 1 zeros on [a, b] (deg hj ≤ −1 forces hj ≡ 0). The system (w1, . . . , wm) forms an
AT system on [a, b] if it is an AT system on that interval for all n ∈ Zm+ .

Theorem 2. Let S1 = (s1
2, . . . , s

1
m) = N (σ2, . . . , σm) be an arbitrary Nikishin system of m − 1

measures and let n = (n1, . . . , nm) ∈ Zm+ (∗) (the class of all multi–indices such that there do not
exist 1 ≤ i < j < k ≤ m such that ni < nj < nk). Then, the system of functions (1, ŝ1

2, . . . , ŝ
1
m)

forms an AT system for the index n on any interval [a, b] disjoint from Co(supp(σ2)).

Proof. We will proceed by induction on m ∈ N which represents the number of functions in
(1, ŝ1

2, . . . , ŝ
1
m). For m = 1 the system of functions reduces to 1 and n ∈ Z+(∗) = Z+ may be any

non-negative integer. This case is trivial because any polynomial of degree ≤ n − 1 can have at
most n − 1 zeros in the whole complex plane unless it is identically equal to zero. Let us assume
that the statement is true for m− 1,m ≥ 2, and let us show that it also holds for m.

Suppose that (1, ŝ1
2, . . . , ŝ

1
m) is not an AT system for an index n ∈ Zm+ (∗) on an interval [a, b]

disjoint from Co(supp(σ2)). Then there exist polynomials hni ,deg hni ≤ ni − 1, i = 1, . . . ,m, not
all identically equal to zero, such that Hn = hn1 + hn2 ŝ

1
2 + . . . + hnm ŝ

1
m has at least |n| zeros on

[a, b] counting multiplicities. Let Wn,degWn ≥ |n|, be a monic polynomial whose zeros are zeros
of Hn lying on [a, b]. Therefore,

Hn(z)
Wn(z)

= O
(

1
z|n|−M

)
∈ H(C \ Co(supp(σ2))) , z →∞ , (25)

where M = max{n1 − 1, n2 − 2, . . . , nm − 2}.
Assume that M = n1 − 1. From (25) we have that

zνHn(z)
Wn(z)

= O
(

1
z2

)
, z →∞ , ν = 0, . . . , |n| − n1 − 1 .

Let Γ be a closed integration path with winding number 1 for all its interior points such that
Co(supp(σ2)) ⊂ Int(Γ) and [a, b] ⊂ Ext(Γ). Here, and in the following, Int(Γ) and Ext(Γ) denote,
the bounded and unbounded connected components, respectively, in which Γ divides the complex
plane. From Cauchy’s Theorem, it follows that

0 =
1

2πi

∫
Γ

zνHn(z)
Wn(z)

dz =
1

2πi

∫
Γ

zν(hn2 ŝ
1
2 + . . .+ hnm ŝ

1
m)(z)

Wn(z)
dz , ν = 0, . . . , |n| − n1 − 1 .

Substituting ŝ1
2, . . . , ŝ

1
m by their integral expressions, using Fubini’s Theorem, and Cauchy’s inte-

gral formula, we obtain (w1
j = ŝ3,j , j = 3, . . . ,m, if m ≥ 3)

0 =
∫
xν(hn2 + hn3w

1
3 + . . .+ hnmw

1
m)(x)

Wn(x)
dσ2(x) , ν = 0, . . . , |n| − n1 − 1 .

Since dσ2(x)/Wn(x) is a measure with constant sign on suppσ2, it follows that hn2 + hn3w
1
3 +

. . . + hnmw
1
m must have at least |n| − n1 changes of sign on Co(supp(σ2)). According to our

induction hypothesis the system (1, w1
3, . . . , w

1
m) forms an AT system on Co(supp(σ2)) for the

index (n2, . . . , nm) ∈ Zm−1
+ (∗) since (w1

3, . . . , w
1
m) is a Nikishin system supported on Co(supp(σ3))

which is disjoint from Co(supp(σ2)) (if m = 2 the system of functions reduces again to 1 and
the conclusion is trivial). Therefore, hn2 + hn3w

1
3 + . . . + hnmw

1
m cannot change signs more than

|n| − n1 − 1 times on Co(supp(σ2)) and we arrive to a contradiction.
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Let us consider the case when M = nk − 2 , k ∈ {2, . . . ,m}. In case that this is true for several
k, we choose the smallest one. Notice that with this selection and using that n ∈ Zm+ (∗), it follows
that

n1 ≥ n2 ≥ · · · ≥ nk−1 (26)

(this is the only place in the proof where we use that n ∈ Zm+ (∗)). From (25) we have

zνHn(z)
(ŝ1
kWn)(z)

= O
(

1
z2

)
, z →∞ , ν = 0, . . . , |n| − nk − 1 .

Let Γ be as before. From Cauchy’s Theorem

0 =
1

2πi

∫
Γ

zν(hn1 + hn2 ŝ
1
2 + . . .+ hnm ŝ

1
m)(z)

(ŝ1
kWn)(z)

dz , ν = 0, . . . , |n| − nk − 1 .

Using Lemma 4 in the previous relation and Cauchy’s Theorem, it follows that

0 =
1

2πi

∫
Γ

zν(hn1(Lk + ŝk2))(z)
Wn(z)

dz +
k−1∑
j=2

1
2πi

∫
Γ

zν(hnj (aj + ŝkj+1 + cj ŝ
k
j ))(z)

Wn(z)
dz+

m∑
j=k+1

1
2πi

∫
Γ

zν(hnj (aj + ŝkj ))(z)
Wn(z)

dz =

k−1∑
j=2

1
2πi

∫
Γ

zν((hnj−1 + cjhnj )ŝ
k
j )(z)

Wn(z)
dz +

1
2πi

∫
Γ

zν(hnk−1 ŝ
k
k)(z)

Wn(z)
dz+

m∑
j=k+1

1
2πi

∫
Γ

zν(hnj ŝ
k
j )(z)

Wn(z)
dz , ν = 0, . . . , |n| − nk − 1 .

Substituting ŝk2 , . . . , ŝ
k
m by their integral expressions, using Fubini’s Theorem, and Cauchy’s

integral formula, we obtain (for the definition of the functions wkj , j = 3, . . . ,m , look back to
Lemma 3 and set wk2 ≡ 1)

0 =
∫
xν(
∑k−1
j=2 (hnj−1 + cjhnj )w

k
j + hnk−1w

k
k +

∑m
j=k+1 hnjw

k
j )(x)

Wn(x)
dτ2,k(x) ,

for each ν = 0, . . . , |n| −nk − 1. Since dτ2,k(x)/Wn(x) is a measure with constant sign on suppσ2,
it follows that

H̃n =
k−1∑
j=2

(hnj−1 + cjhnj )w
k
j + hnk−1w

k
k +

m∑
j=k+1

hnjw
k
j (27)

must have at least |n| − nk changes of sign on Co(supp(σ2)).
For k = 2,

∑k−1
j=2 is an empty sum and H̃n reduces to hn1 +

∑m
j=3 hnjw

2
j . Since (1, w2

3, . . . , w
2
m)

forms an AT system on Co(supp(σ2)) for the index (n1, n3, . . . , nm) ∈ Zm−1
+ (∗) we readily arrive

to a contradiction (if m = 2 the system of functions reduces to 1 and the conclusion is trivial).
For n ∈ Zm+ (∗) and k ≥ 3, on account of (26), deg hnj−1 + cjhnj ≤ nj−1 − 1, j = 2, . . . , k −

1. According to our induction hypothesis the system (1, wk3 , . . . , w
k
m) forms an AT system on

Co(supp(σ2)) for the index (n1, . . . , nj−1, nj+1, . . . , nm) ∈ Zm−1
+ (∗) since (wk3 , . . . , w

k
m) is a Nik-

ishin system supported on Co(supp(σ3)) which is disjoint from Co(supp(σ2)). Therefore, H̃n can
change signs on Co(supp(σ2)) at most |n| −nk − 1 times. With this contradiction we conclude the
proof. 2

Previously, it was known that (1, ŝ1
2, . . . , ŝ

1
m) forms an AT system for all multi-indices n ∈ Z+

such that i < j implies that nj ≤ ni + 1. It is easy to check that this class of multi-indices is
strictly contained in Zm+ (∗). In fact, the existence of i < j < k such that ni < nj < nk implies that
nk > ni + 1. On the other hand, it is easy to find multi–indices in Zm+ (∗) for which nj > ni + 1
with i < j. In [8] it was proved that (1, ŝ1

2, ŝ
1
3) is an AT system on any interval disjoint from

Co(supp(σ2)) (for all multi-indices n ∈ Z3
+). It is not known whether or not this property extends

for m > 3.
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We are ready for the proof of the following result.

Theorem 3. Let S = (s1, . . . , sm) = N (σ1, . . . , σm) be an arbitrary Nikishin system of m mea-
sures and let n = (n1, . . . , nm) ∈ Zm+ (∗). We set k = 1 if n1 − 1 = M = max{n1 − 1, n2 −
2, . . . , nm − 2} or k is the first index in {2, . . . ,m} such that nk − 2 = M . There exists a monic
polynomial Wn,k of degree |n| − nk whose zeros are simple and lie in the interior of Co(supp(σ2))
such that

0 =
∫
xνQn(x)

dsk(x)
Wn,k(x)

, ν = 0, 1, . . . , |n| − 1 . (28)

Therefore, Qn has exactly |n| simple zeros in the interior of Co(supp(σ1)). All indices in Zm+ (∗)
are strongly normal. We have the remainder formula

(ŝk −
Pn,k
Qn

)(z) =
Wn,k(z)

(QQn)(z)

∫
(QQn)(x)
Wn,k(x)

dsk(x)
z − x

, (29)

where Q denotes an arbitrary polynomial of degree ≤ |n|. Taking Q = Qn in (29), it follows that
Fn,k/Wn,k has no zeros in C \ Co(supp(σ1)). In particular, this function has constant sign on
Co(supp(σ2)). Finally,∫

p(x)
Wn,k(x)

dsk(x) =
|n|∑
j=1

λn,k,j
p(xn,j)

Wn,k(xn,j)
, p ∈ P2|n|−1 , (30)

and

λn,k,j = Wn,k(xn,j)
∫ (

Qn(x)
Q′n(xn,j)(x− xn,j)

)2
dsk(x)
Wn,k(x)

, j = 1, . . . , |n| . (31)

Therefore, all the Nikishin–Christoffel coefficients associated with Pn,k/Qn have the same sign as
the measure sk and

|n|∑
j=1

|λn,k,j | = |sk| . (32)

Proof. If k = 1, from (17) and the assumption on the multi–index n, it follows that

0 =
∫

(hjFn,1)(x)ds1
j (x) , deg hj ≤ nj − 1 , j = 2, . . . ,m .

For k = 2, using (18)-(19), and the assumption on the multi–index n, it follows that

0 =
∫

(h2Fn,2)(x)ds2
2(x) , deg h2 ≤ n1 − 1 ,

and
0 =

∫
(hjFn,2)(x)ds2

j (x) , deg hj ≤ nj − 1 , j = 3, . . . ,m .

Finally, if k ∈ {3, . . . ,m} from (20)-(21) and the assumption on the multi–index n, it follows that

0 =
∫

(hjFn,k)(x)dskj (x) , deg hj ≤ nj−1 − 1 , j = 2, . . . , k

and
0 =

∫
(hjFn,k)(x)dskj (x) , deg hj ≤ nj − 1 , j = k + 1, . . . ,m .

In any case, we have that

0 =
∫
Fn,k(x)(h2 + h3w

k
3 + · · ·+ hmw

k
m(x)dτ2,k(x) , (33)

where deg hj ≤ nj−1 − 1 , 2 ≤ j ≤ k, and deg hj ≤ nj − 1, k < j ≤ m.
Denote by n(k) the multi-index in Zm−1

+ (∗) obtained from n deleting its kth component. By
Lemma 4, the assumption on n , and the selection of k we know that the system (1, wk3 , . . . , w

k
m)

forms an AT system on Co(supp(σ2)) for the multi–index n(k) = (n1, . . . , nk−1, nk, . . . , nm). Using
(33), it follows that Fn,k has at least |n|−nk sign changes on Co(supp(σ2)) (later, when we obtain
(29), we see that in fact it has exactly that many sign changes). This means that Pn,k/Qn is the
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|n|th Padé approximant that interpolates ŝk, |n| + nk + 1 times at z = ∞ and (at least) |n| − nk
times at the points where Fn,k equals zero on Co(supp(σ2)). All the assertions of the theorem are
direct consequences of this fact (see [10]). For convenience of the reader we proceed with the proof.

Select |n| − nk simple zeros of Fn,k in the interior of Co(supp(σ2)) and take these points as the
zeros of the polynomial Wn,k. Since degWn,k ≥ |n| − nk, from ii)

zνFn,k
Wn,k

= O
(

1
z2

)
∈ H(C \ Co(supp(σ1))) , z →∞ , ν = 0, . . . , |n| − 1.

Let Γ be a closed integration path with winding number 1 for all its interior points such that
Co(supp(σ1)) ⊂ Int(Γ) and Co(supp(σ2)) ⊂ Ext(Γ). By Cauchy’s Theorem, Fubini’s Theorem
and, Cauchy’s Integral Formula, we obtain

0 =
1

2πi

∫
Γ

zνFn,k(z)
Wn,k(z)

dz =
1

2πi

∫
Γ

zν(Qnŝk)(z)
Wn,k(z)

dz =
∫
xνQn(x)

dσk(x)
Wn,k(x)

, ν = 0, . . . , |n| − 1 ,

as claimed in (28). Hence, Qn has exactly |n| simple zeros in the interior of Co(supp(σ1)). Since
each n ∈ Zm+ (∗) has a component k as indicated in the statement of the theorem, all such indices
are strongly normal.

Take Q ∈ P|n|. From ii)

QFn,k
Wn,k

= O
(

1
z

)
∈ H(C \ Co(supp(σ1))) .

By Cauchy’s Integral Formula, Cauchy’s Theorem, and Fubini’s Theorem, we obtain that
QFn,k(z)
Wn,k(z)

=
1

2πi

∫
Γ

(QFn,k)(ζ)
Wn,k(ζ)

dζ

z − ζ
=

1
2πi

∫
Γ

(QQnŝk)(ζ)
Wn,k(ζ)

dζ

z − ζ
=
∫

(QQn)(x)
Wn,k(x)

dsk(x)
z − x

,

which is equivalent to (29).
Notice that for any p ∈ P2|n|−1, using ii)

p

Wn,k

(
ŝk −

Pn,k
Qn

)
= O

(
1
z2

)
∈ H(C \ Co(supp(σ1))) , z →∞ .

Using the integral expression of ŝk, the partial fraction decomposition (3) of Pn,k/Qn, Cauchy’s
Theorem, Fubini’s Theorem, and Cauchy’s Integral Formula, we have

0 =
1

2πi

∫
Γ

p(z)
Wn,k(z)

∫ dsk(x)
z − x

−
|n|∑
j=1

λn,k,j
z − xn,j

 dz =
∫

p(x)
Wn,k(x)

dsk(x)−
|n|∑
j=1

λn,k,j
p(xn,j)

Wn,k(xn,j)
,

which is (30). Taking p = (Qn(x)/Q′n(xn,j)(x− xn,j))2 in (30), we obtain (31) and this obviously
implies that the coefficients λn,k,j have the same sign as sk. Using this and Lemma 1 with p ≡ 1
we obtain (32). The proof is complete. 2

From Theorems 2 and 3 we can deduce some interlacing properties of zeros. For this we need one
more property relative to orthogonal polynomials with respect to a Markov system of functions. A
system of N real continuous functions {u1, . . . , un} is said to form a Markov system on an interval
(a, b) if there do not exist constants c1, . . . , cN , not all identically equal to zero, such that

N∑
j=1

cjuj

has more than N−1 zeros on (a, b) (for more details on Markov systems see [15]). The next lemma
is a reformulation of the Theorem appearing in [14]. There, it is stated for polynomials orthogonal
to a Markov system with respect to the Lebesgue measure. Here, we state it for an arbitrary Borel
measure supported on an interval of the real line. For this more general case, the proof is basically
the same except for some minor details.

Lemma 5. Let σ be a finite Borel measure with constant sign supported on an interval of the real
line. Let {u1, . . . , uN} be a Markov system of functions on Co(supp(σ)). Let pN be a polynomial
of degree ≤ N not identically equal to zero such that

0 =
∫
uj(x)pN (x)dσ(x) , j = 1, . . . , N .
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Then deg pN = N and the zeros of pN are simple and lie in the interior of Co(supp(σ)). Assume
that pN+1 is a polynomial of degree N + 1 with real distinct zeros which satisfies

0 =
∫
uj(x)pN+1(x)dσ(x) , j = 1, . . . , N .

Then between any two consecutive zeros of pN+1 lies a zero of pN .

Proof. Set

Mn(t1, . . . , tN ) =

∣∣∣∣∣∣∣∣∣
u1(t1) u2(t1) · · · uN (t1)
u1(t2) u2(t2) · · · uN (t2)

...
...

. . .
...

u1(tN ) u2(tN ) · · · uN (tN )

∣∣∣∣∣∣∣∣∣ ,
and

VN+1(t, t1, . . . , tN ) =

∣∣∣∣∣∣∣∣∣
tN tN−1 · · · 1
tN1 tN−1

1 · · · 1
...

...
. . .

...
tNN tN−1

N · · · 1

∣∣∣∣∣∣∣∣∣ .
Let [a, b] = Co(supp(σ)), C = [a, b]N , and T = {(t1, t2, . . . , tN ) : a ≤ t1 < t2 < · · · < tN ≤ b}.

That pN has exactly N simple zeros in the interior of Co(supp(σ)) is a direct consequence of
{u1, . . . , uN} being a Markov system on that set. From this property it is also easy to see that pN
is uniquely determined by the orthogonality relations. Take pN with leading coefficient equal to 1.
Then, there exists λ 6= 0 such that

pN (t) = λ

∣∣∣∣∣∣∣∣∣
tN tN−1 · · · 1∫

tN1 u1(t1)dσ(t1)
∫
tN−1
1 u1(t1)dσ(t1) · · ·

∫
u1(t1)dσ(t1)

...
...

. . .
...∫

tNNuN (tN )dσ(tN )
∫
tN−1
1 uN (tN )dσ(tN ) · · ·

∫
uN (tN )dσ(tN )

∣∣∣∣∣∣∣∣∣ ,
since the polynomial defined by the determinant satisfies the same system of orthogonality relations
and is not identically equal to zero. Hence,

pN (t) = λ

∫
C

u1(t1)u2(t2) · · ·uN (tN )VN+1(t, t1, . . . , tN )dσ(t1) · · · dσ(tN ) .

Taking into consideration that VN+1(t, t1, . . . , tN ) = 0 whenever ti = tj , 1 ≤ i, j ≤ N, from the
integral above we obtain that

pN (t) = λ

∫
T

∑
u1(ti1)u2(ti2) · · ·uN (tiN )VN+1(t, ti1 , . . . , tiN )dσ(t1) · · · dσ(tN ) ,

where the sum extends over all N ! permutations of (1, 2, . . . , N). Rearranging the rows in the
determinant defining VN+1(t, ti1 , . . . , tiN ) so as to get the common factor VN+1(t, t1, . . . , tN ) in
the sum above and using the definition of a determinant, it follows that

pN (t) = λ

∫
T

MN (t1, . . . , tN )VN+1(t, t1, . . . , tN )dσ(t1) · · · dσ(tN ) =

λ

∫
T

MN (t1, . . . , tN )VN (t1, . . . , tN )PN (t)dσ(t1) · · · dσ(tN ) ,

where PN (t) =
∏N
j=1(t − tj), since VN+1(t, t1, . . . , tN ) = VN (t1, . . . , tN )PN (t). This integral

representation is the main ingredient in the proof.
Let us write pN+1(x) =

∏N+1
j=1 (x− xj). The rest of the proof reduces to showing that

p′N+1(xj)
∫
T

MN (t1, . . . , tN )VN (t1, . . . , tN )PN (xj)dσ(t1) · · · dσ(tN ) =∫
T

MN (t1, . . . , tN )VN (t1, . . . , tN )P 2
N (xj)dσ(t1) · · · dσ(tN ) , j = 1, . . . , N + 1 .

To this end you can follow the same arguments used in [14] pages 88-90. Once this is proved,
on account of the integral representation for pN and the fact that MN (t1, . . . , tN )VN (t1, . . . , tN )
has constant sign on T we deduce that p′N+1(xj) and pN (xj) either have the same sign for j =



HERMITE-PADE APPROXIMATION AND SIMULTANEOUS QUADRATURE FORMULAS 15

1, . . . , N + 1 or have opposite signs at all these points. From Bolzano’s Theorem we conclude that
the interlacing property indeed holds. 2

Now, we can state the following.

Corollary 1. Let S = (s1, . . . , sm) = N (σ1, . . . , σm) be an arbitrary Nikishin system of m
measures. Let n ∈ Zm+ (∗), and k be as indicated in Theorem 3 then between any two consecutive
zeros of Qn lies a zero of Pn,k. Let us denote by n+ the vector which is obtained adding 1 to one
component of n and let Qn+ be the multiple orthogonal polynomials corresponding to n+. Assume
that n+ ∈ Zm+ (∗), then between any two consecutive zeros of Qn+ lies a zero of Qn.

Proof. From Theorem 3, we know that the coefficients λn,k,j , j = 1, . . . , |n|, all have the same
sign. Let xn,j < xn,j+1 be two consecutive zeros of Qn. Using (3), taking limit from the right at
xn,j and from the left at xn,j+1 one obtains infinities with different sign. Therefore, Pn,k must
have an intermediate zero.

From the definition of Qn and Qn+ , we have that both of these polynomials are orthogonal to
the system of functions

1, . . . , xn1−1, ŝ1
2, . . . , x

n2−1ŝ1
2, . . . , ŝ

1
m, . . . , x

nm−1ŝ1
m .

relative to the measure σ1. According to Theorem 2, S1 forms an AT system for the index
n ∈ Zm+ (∗) on any interval [a, b] disjoint from Co(supp(σ2)). In particular, this implies that the
functions with respect to which Qn and Qn+ are orthogonal form a Markov system on the interval
Co(supp(σ1)). On the other hand, Theorem 3 asserts that Qn and Qn+ have exactly |n| and |n+|
simple zeros, respectively, contained in the interior of Co(supp(σ1)). From Lemma 5 it follows that
between any two consecutive zeros of Qn+ lies a zero of Qn. 2

From Theorem 3 we obtain the following consequence which generalizes Corollary 2 in [3].

Corollary 2. Let S = (s1, . . . , sm) = N (σ1, . . . , σm) be an arbitrary Nikishin system of m
measures. Let Λ ⊂ Zm+ (∗) be an infinite sequence of distinct multi–indices such that for all n ∈ Λ
the kth component is as it was chosen in Theorem 3. Then, for each n ∈ Λ the coefficients
λn,k,j , j = 1, . . . , |n|, preserve the same sign. For each compact set K ⊂ C \ Co(supp(σ1)), there
exists κ(K) < 1 such that

lim sup
n∈Λ

∥∥∥∥ŝk − Pn,k
Qn

∥∥∥∥1/2|n|

K

≤ κ(K) , (34)

where ‖ · ‖K denotes the sup-norm on K,

κ(K) = sup{‖ϕt‖K : t ∈ Co(supp(σ2)) ∪ {∞}} ,

and ϕt denotes the conformal representation of C \Co(supp(σ1)) onto the open unit disk such that
ϕt(t) = 0 and ϕ′t(t) > 0. For each bounded Riemann integrable function f on Co(supp(σ1))

lim
n∈Λ

|n|∑
j=1

λn,k,jf(xn,j) =
∫
f(x)dsk(x) , (35)

and if f ∈ Lipβ(∆), β > 0, then∣∣∣∣∣∣
∫
f(x)dsk(x)−

|n|∑
j=1

λn,k,jf(xn,j)

∣∣∣∣∣∣ = O
(

1
|n|β

)
. (36)

Finally, if f ∈ H(V ), where V is a neighborhood of Co(supp(σ1)), then

lim
n∈Λ
|
∫
f(x)dsk(x)−

|n|∑
j=1

λn,k,jf(xn,j)|1/2|n| ≤ κV , (37)

where κV = inf{κ(γρ) : γρ ⊂ V } and γρ = {z : |ϕ∞(z)| = ρ}, 0 < ρ < 1. If k ∈ {2, . . . ,m} and
n1 + 1 = nk for all n ∈ Λ then (34)− (37) also hold for the first component.
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Proof. That for each n ∈ Λ and k as stated above the Nikishin-Christoffel coefficients preserve
the same sign is a consequence of the last statement in Theorem 3. Using (3) and (32), we have
that for each compact set K ⊂ C \ Co(supp(σ1))∥∥∥∥Pn,k(z)

Qn(z)

∥∥∥∥
K

≤ |sk|
d(K)

,

where |sk| = |
∫
dsk(x)| and d(K) = inf{|z − x| : z ∈ K,x ∈ Co(supp(σ1))} > 0. Therefore

the family of functions {ŝk − Pn,k
Qn
}, n ∈ Λ, is uniformly bounded on each compact subset K of

C \ Co(supp(σ1)) by 2|sk|/d(K).
Take γρ, 0 < ρ < 1, so that Co(supp(σ2)) ⊂ Ext(γρ). Set Wn,k(z) =

∏|n|−nk
j=1 (z − yn,j), where

Wn,k is the polynomial given in Theorem 3. Then∥∥∥∥∥ ŝk − Pn,k
Qn

ϕ
|n|+nk+1
∞

∏|n|−nk
j=1 ϕyn,j

∥∥∥∥∥
γρ

≤ 2|sk|
d(γρ)δ(γρ)2|n|+1

,

where
δ(γρ) = inf{|ϕt(z)| : z ∈ γρ, t ∈ Co(supp(σ2)) ∪ {∞}} .

Considered as a function of the two variables z and t, it is easy to verify that |ϕt(z)| is continuous
in C2

. Hence δ(γρ) > 0 since γρ ∩ Co(supp(σ2)) = ∅. Fix a compact set K ∈ C \ Co(supp(σ1))
and take ρ sufficiently close to 1 so that K ⊂ Ext(γρ). Since the function under the norm sign is
analytic in C \ Co(supp(σ1)), from the Maximum Principle it follows that the same bound holds
for all z ∈ K. Consequently,∥∥∥∥ŝk − Pn,k

Qn

∥∥∥∥
K

≤ 2|sk|
d(γρ)δ(γρ)2|n|+1

‖ϕ|n|+nk+1
∞

|n|−nk∏
j=1

ϕyn,j‖K ≤
2|sk|
d(γρ)

(
κ(K)
δ(γρ)

)2|n|+1

.

Therefore,

lim sup
n∈Λ

∥∥∥∥ŝk − Pn,k
Qn

∥∥∥∥1/2|n|

K

≤ κ(K)
δ(γρ)

Because of the continuity of |ϕt(z)| in C2
, limρ→1 δ(γρ) = 1 and (34) follows. That κ(K) < 1 is

also a consequence of the continuity of |ϕt(z)| in C2
.

Formulas (35) and (36) are consequences of the first and third statements of Lemma 2. Formula
(37) is derived following the same scheme as for proving (8) taking into consideration that here we
have the more precise estimate given by (34).

Concerning the last statement, we only comment that in that case both indices 1 and k satisfy
the conditions of Theorem 3 for all indices in Λ. The existence of such sequences of multi–indices
is guaranteed by the sequence {(N, . . . , N,N +1, . . . , N +1)}, N ∈ Z+, where the jump in value is
produced in the kth component. Other less trivial examples of such sequences are easy to construct
from elements in Zm+ (∗). 2

Unfortunately, it is not possible to have more than two components k ∈ {1, . . . ,m} satisfying
the conditions of Theorem 3, and if there are two, one of them must be the first one. But there
are other means of obtaining (34) for more than two components.

Let n ∈ Zm+ and k ∈ {1, 2, . . . ,m}. We denote by nk = (nk1 , . . . , n
k
m) ∈ Zm+ the vector whose

components are defined as follows. For k = 1

n1
j =

{
n1 , j = 1 ,

min{n1 + 1, nj} , 2 ≤ j ≤ m.

If k ∈ {2, . . . ,m}

nkj =
{

min{n1, . . . , nj , nk − 1} , 1 ≤ j < k ,
min{nk, nj} , k ≤ j ≤ m.

Obviously, n−nk ∈ Zm+ and n ∈ Zm+ (∗) implies that nk ∈ Zm+ (∗). As before |n−nk| =
∑m
j=1(nj −

nkj ) = |n| − |nk|. Notice that if n ∈ Zm+ (∗) and k is as defined in Theorem 3, then n = nk and
|n− nk| = 0.
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Theorem 4. Let S = (s1, . . . , sm) = N (σ1, . . . , σm) be an arbitrary Nikishin system of m mea-
sures and let n = (n1, . . . , nm) ∈ Zm+ . Assume that nk(k) ∈ Zm−1

+ (∗), k ∈ {1, . . . ,m} , where nk(k)
is the vector obtained deleting from nk its kth component. Then, there exists a monic polynomial
Wn,k of degree |nk| − nk = |nk(k)| whose zeros are simple and lie in the interior of Co(supp(σ2))
such that

0 =
∫
xνQn(x)

dsk(x)
Wn,k(x)

, ν = 0, 1, . . . , |nk| − 1 . (38)

Therefore, Qn has at least |nk| simple zeros in the interior of Co(supp(σ1)). We have the remainder
formula

(ŝk −
Pn,k
Qn

)(z) =
Wn,k(z)

(QQn)(z)

∫
(QQn)(x)
Wn,k(x)

dsk(x)
z − x

, (39)

where Q denotes an arbitrary polynomial of degree ≤ |nk|. Additionally, let us assume that the
multi-index n is strongly normal (for example, n ∈ Zm+ (∗)). Then∫

p(x)
Wn,k(x)

dsk(x) =
|n|∑
j=1

λn,k,j
p(xn,j)

Wn,k(xn,j)
, p ∈ P|n|+|nk|−1 , (40)

and at least (|n|+ |nk|)/2 Nikishin–Christoffel coefficients associated with Pn,k/Qn have the same
sign as the measure sk.

Proof. The proof is similar to that of Theorem 3 so we only outline the main ingredients. From
the definition of nk and using Lemma 3, instead of (33) we get

0 =
∫
Fn,k(x)(h2 + h3w

k
3 + · · ·+ hmw

k
m(x)dτ2,k(x) , (41)

where deg hj ≤ nkj−1 − 1, 2 ≤ j ≤ k, and deg hj ≤ nkj − 1, k < j ≤ m.
By Theorem 2 and the assumption on nk(k), we know that the system (1, wk3 , . . . , w

k
m) forms

an AT system on Co(supp(σ2)) for the multi–index nk(k). Using (41), it follows that Fn,k has at
least |nk|−nk sign changes on Co(supp(σ2)). On the other hand, the number of such sign changes
must be finite since Fn,k 6≡ 0. Select |nk| − nk distinct zeros of Fn,k on Co(supp(σ2)) and take
Wn,k as the monic polynomial with a zero at each one of those points. Since degWn,k = |n| − nk,
from ii)

zνFn,k
Wn,k

= O
(

1
z2

)
∈ H(C \ Co(supp(σ1))) , z →∞ , ν = 0, . . . , |nk| − 1.

Now, (38) is obtained as in the proof of (28).
Take Q ∈ P|nk|. From ii)

QFn,k
Wn,k

= O
(

1
z

)
∈ H(C \ Co(supp(σ1))) , z →∞ ,

and (39) is obtained using the same arguments as for (29).
If the multi-index n is strongly normal, from (39) one sees that for any p ∈ P|n|+|nk|−1

p

Wn,k

(
ŝk −

Pn,k
Qn

)
= O

(
1
z2

)
∈ H(C \ Co(supp(σ1))) , z →∞ .

Using the integral expression of ŝk and the partial fraction decomposition (3) of Pn,k/Qn, (40) is
obtained as in proving (30).

Let κn be the total number of indices j such that the sign of λn,k,j coincides with the sign of
the measure sk. Take p =

∏′(x− xn,j)2 where
∏′ denotes the product over all indices j such that

the sign of λn,k,j coincides with the sign of the measure sk. Let us suppose that deg p = 2κn ≤
|n|+ |nk| − 1. We can substitute this p in (40). On the other hand, it is easy to see that

sg
(∫

p(x)
Wn,k(x)

dsk(x)
)
6= sg

 |n|∑
j=1

λn,k,j
p(xn,j)

Wn,k(xn,j)

 ,
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where sg(·) denotes the sign of (·), because in the sum all terms cancel out except those which have
different sign with respect to the sign of the integral. This contradiction means that 2κn ≥ |n|+|nk|
which is equivalent to the last assertion of the theorem. 2

Now we can state the following

Corollary 3. Let S = (s1, . . . , sm) = N (σ1, . . . , σm) be an arbitrary Nikishin system of m
measures. Let Λ ⊂ Zm+ (∗) be an infinite sequence of distinct multi–indices such that for all n ∈ Λ
and k′ fixed, 2 ≤ k′ < m, we have that n1 = n2 = · · · = nk′−1 and nk′ = nk′+1 = n1 + 1. Then,
for k = 1, k′, k′ + 1 and each n ∈ Λ the coefficients λn,k,j , j = 1, . . . , |n|, preserve the same sign.
Consequently, for k = 1, k′, k′ + 1, (34)− (37) hold true.

Proof. It is easy to verify that the components k = 1, k′ satisfy the assumptions of Theorem 3
and for them Corollary 2 is applicable. For k = k′ + 1 notice that |nk| = |n| − 1. Using the last
statement of Theorem 4, we obtain that for each n ∈ Λ at least (|n|+|nk|)/2 = |n|−1/2 coefficients
λn,k,j , j = 1, . . . , |n| must have the same sign; that is, all of them have the same sign since this
number is an integer. From this point on we can follow the scheme of the proof of Corollary 2. 2

Remark . The type of indices used in Corollary 3 are the only ones for which we can prove the
sign preserving property for three components. For example, when m = 4 according to Theorem
4 the indices of the form (n1, n1 + 1, n1 + 1, n1 + 1) may have one negative Christoffel–Nikishin
coefficient for k = 4 and those of the form (n1, n1, n1 + 1, n1 + 1) may have a negative coefficient
for k = 2 and it is not hard to see that these are the best possible choices. Of course, Theorem
4 only gives a sufficient condition for the sign preserving property. It would be interesting to see
if it is possible or not to have this property for more than three components with appropriately
chosen multi–indices.

Despite of what was said above, we can prove convergence of the simultaneous quadrature rule
for all the components in the class of analytic functions on a neighborhood of Co(supp(σ1)) when
the indices are such that the orthogonality conditions are nearly equally distributed between all
the measures.

Theorem 5. Let S = (s1, . . . , sm) be a Nikishin system of measures. Let Λ be an infinite sequence
of distinct multi-indices such that there exists a constant c > 0 for which for all n ∈ Λ and all k =
1, . . . ,m, we have nk ≥ |n|m − c and all indices in Λ are strongly normal (for example, Λ ⊂ Zm+ (∗)).
Then, for each f analytic on a neighborhood V of Co(supp(s1)) and each k ∈ {1, . . . ,m}, (34) and
(37) take place.

Proof. Under the assumption that nk ≥ |n|m − c, k = 1, . . . ,m, n ∈ Λ, it follows from Theorem
1 in [3] that for each k = 1, . . . ,m

lim
n∈Λ

Pn,k
Qn

= ŝk , K ⊂ C \ Co(supp(s1)) ,

in (logarithmic) capacity on each compact subset K contained in the indicated region. Since all
the indices in Λ are strongly normal, the zeros of Qn lie in Co(supp(s1)) and using Lemma 1
in [9] it follows that in fact convergence takes place uniformly on each such compact subset. In
particular, we have that the sequence

{
Pn,k
Qn

}
n∈Λ

is uniformly bounded on each compact subset

of C \ Co(supp(σ1)). From this point on we can use the arguments employed in proving (34) and
(37) in Corollary 2. 2

Remark . For multi–indices satisfying the conditions of Theorem 5 it is not difficult to show
using Theorem 4 that for all k = 1, . . . ,m the sign preserving property of the Nikishin–Christoffel
coefficients is nearly satisfied. By this we mean that for all such multi–indices and all k = 1, . . . ,m,
either |n| − C of the Nikishin–Christoffel coefficients are positive or |n| − C of them are negative,
where C is a constant independent of n. For details see [3]. It would be interesting to prove that
for such multi–indices condition B) is satisfied for all k = 1, . . . ,m.
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(Illán) Departamento de Matemáticas, Universidad Carlos III de Madrid, c/ Universidad 30, 28911

Leganés, Spain.
E-mail address, Illán: jillan@math.uc3m.es
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