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Abstract
There has been little discussion about the consequences of using standardized, rather than 
unstandardized, segregation measures when comparing societies with different demo‑
graphic compositions. This paper explores standardization in a multigroup setting through 
an analytical framework that offers a clear distinction between the measurement of overall 
and local segregation, embeds existing indices within this framework, and addresses gaps 
in previous research. The local approach developed here allows us to focus on the principle 
of transfers used in the measurement of overall segregation from a new angle and brings 
analytical support to the interpretation of the components of standardized overall meas‑
ures as the segregation levels of the groups involved. This approach also helps clarify the 
debate around the measurement of school segregation since the distinction between local 
and overall measures, together with standardization, is key to understanding the different 
proposals that have been used in empirical studies. This research also gives formal support 
to empirical strategies that compare the distribution of a minority group with that of the 
remaining population since they can be viewed as standardized local segregation measures 
satisfying basic properties.

Keywords Multigroup segregation · Standardized segregation indices · Local segregation 
curves · Local segregation indices

JEL Classification D63 · J15 · J16 · J71

1 Introduction

As societies grow more diverse—whether in terms of race, ethnicity, immigration status, 
or other characteristics of individuals—there is an increasing need to measure segregation 
through a framework that involves more than two groups. Since the 1990s, several indica‑
tors have been developed to quantify overall multigroup segregation (Boisso et al., 1994; 
Frankel & Volij, 2011; Reardon & Firebaugh, 2002; Silber, 1992), mainly according to a 
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perspective of evenness that focuses on differences in the sorting of demographic groups 
across organizational units such as occupations, schools, and neighborhoods.

Overall multigroup measures are useful in providing a summary statistic of the simulta‑
neous distributional discrepancies that exist among all the demographic groups into which 
society is partitioned. However, in multigroup contexts, one may want to take a step further 
and identify the situation of each demographic group. To this end, one could use local 
segregation measures (as opposed to overall segregation measures), which allow to quan‑
tify the degree of unevenness of each group separately (Alonso‑Villar & Del Río, 2010).1 
This local approach is consistent with the measurement of overall segregation, given that 
the latter can be expressed as the weighted average of the local segregation of the groups 
involved, and is especially useful for pinpointing the situations of small groups, whose une‑
ven distributions across organizational units may have a limited impact on overall segrega‑
tion (Del Río & Alonso‑Villar, 2019; Palencia‑Esteban, 2021).

The abovementioned local segregation indices satisfy several basic properties, in par‑
ticular scale invariance, according to which if the size of a group (e.g., white women) is 
multiplied by a positive number, the segregation of that group remains unaffected provided 
there is no change to its distribution across units (e.g., occupations) or to the relative size of 
each unit.2 The property of scale invariance may result in the belief that the segregation of 
a group is independent of the size of the group. However, as we will discuss in more detail 
later, the demographic share of a group impacts the highest segregation that the group can 
attain. Thus, for example, if the economy has 200 workers and 5 occupations of equal size, 
a group consisting of 40 individuals is fully segregated if it is concentrated in occupations 
with no workers from other groups, i.e., (40, 0, 0, 0, 0), which implies that this group has 
no presence in occupations accounting for 80% of the total population. This scenario is 
impossible for a group of 80 individuals because, for such a group to be fully segregated, 
no group members may be found in occupations representing 60% of the total popula‑
tion, i.e., (40, 40, 0, 0, 0). In other words, this group is missing from a smaller part of the 
economy (60% vs. 80%). Accounting for this is particularly important when comparing the 
segregation levels of groups of very different relative sizes, exploring the segregation of a 
growing group over time, or in international comparisons when analyzing a group whose 
relative size varies significantly among countries.

This question is not only relevant in the case of local segregation. The relative size of the 
groups may also determine the maximum value attainable by overall indices. In fact, many 
overall indices are not equal to 1 when there is full segregation. This is the case for the Ip 
index (Silber, 1992), the (unstandardized) Gini index (Alonso‑Villar and Del Rio, 2010), 
and the mutual information index (Frankel & Volij, 2011; Theil & Finizza, 1971). Reardon 
and Firebaugh (2002) opted for standardized (or normalized) overall indices between 0 and 
1. Making use of disproportionality functions that compare the presence of each group in 
each unit with its share in the economy, these authors derived the generalized dissimilar‑
ity index, the generalized Gini index, and the Theil information theory index. These three 

1 This approach also allows for the measurement of the consequences of segregation for each group in 
monetary terms and in terms of objective well‑being (Alonso‑Villar and Del Río, 2017).
2 Dealing with the segregation of a group requires adapting the principles of segregation measurement, 
which have focused on overall segregation, to this context. As discussed later on, this property—adapted 
from the one used in the measurement of income inequality—differs from both the scale invariance pro‑
posed by Frankel and Volij (2011) and the composition invariance put forward by James and Taueber 
(1985) in the case of overall segregation.
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indices result from dividing each of the abovementioned unstandardized overall indicators 
by its maximum value, which is a function of the groups’ shares (Reardon & Firebaugh, 
2002).3 However, as far as we know, there has been little discussion of the consequences of 
using standardized versus unstandardized measures (Mora and Ruiz‑Castillo, 2011).

This paper explores standardization in a multigroup setting providing a local/overall 
framework within which existing segregation measures are embedded whereas new ones 
are proposed to fill some of the gaps. For this purpose, this paper: a) develops standardized 
local segregation indices, which allows completion of the picture; b) evaluates them against 
a set of properties; c) establishes the conditions under which the ranking provided by these 
indices is consistent with that of the local segregation curves proposed in the literature; d) 
links these local measures with overall measures and reflects on what the local approach 
shows us about the measurement of overall segregation; and e) applies these standardized 
local measures to quantify the occupational segregation of white women in the US and 
compares them to their unstandardized versions.

Therefore, our research not only allows a deeper exploration into the measurement of a 
group’s segregation (providing measures that allow quantifying this phenomenon whereas 
accounting for the group’s size) but also a better understanding of the principle of trans-
fers (analyzing whether this property should be a requirement of overall segregation or 
instead local segregation). Furthermore, the local approach developed here offers analyti‑
cal support to those empirical strategies used in the literature to deal with the situation of 
a group which compare the distribution of each minority group with that of the remain‑
ing population and also those which develop intuitive interpretations of the components of 
standardized overall multigroup indices without formally addressing this (Iceberg, 2004; 
Maloutas & Spyrellis, 2020; Marcińczak et al., 2016; Queneau, 2009; Watts, 1995). In fact, 
this paper shows that these ad‑hoc measures employed in empirical work to quantify the 
segregation of a group in a multigroup context are actually standardized local segregation 
measures satisfying several basic properties. This paper also throws new light on the debate 
about how to measure school segregation since the distinction between local and overall 
measures, together with standardization, is key to understanding the relationship between 
the different proposals that have been employed in empirical studies (Allen & Vignoles, 
2007; Gorard & Taylor, 2002).

This paper is structured as follows. Section 2 presents the local segregation approach, 
extends properties previously proposed in the literature, and discusses how the maximum 
segregation of a group can be determined. Section 3 defines standardized local segregation 
measures and establishes the properties that make these indices consistent with a domi‑
nance criterion based on local segregation curves. Additionally, it expands the knowledge 
of the measurement of overall segregation embedding previous measures in a local/over‑
all (un)standardization framework. Section  4 offers an illustration of the new measures 
through the case of the occupational segregation of white women in U.S. metropolitan 
areas. Section 5 concludes.

3 These authors developed another standardized overall segregation index, based on the squared coefficient 
of variation, whose maximum depends on the number of groups.
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2  The Local Segregation Approach

Although segregation involves the relationships among the distributions of all groups 
across units, an adequate measurement of each group’s degree of unevenness allows for a 
better understanding of the phenomenon. Local segregation measures satisfying desirable 
properties allow for not only identification of each group’s situation but also explanation 
of the measurement of overall segregation. This section presents this approach and extends 
some properties previously proposed in the literature so as to offer a clearer connection 
between the measurement of local and overall segregation.

2.1  Measuring a Group’s Segregation

Let g be one of the N mutually exclusive groups of society (g = 1,…, N). cg
j
 denotes the 

number of individuals of group g in unit j (j = 1,…, J), tj is the number of total individuals 
in that unit ( cg

j
≤ tj ), Cg =

∑

j

c
g

j
 is the group’s size, and T =

∑

j

tj is total population.

If group g represents, for example, 20% of the total population ( C
g

T
= 0.2 ) and is evenly 

distributed across units, one would expect it to account for 20% of the population in each 
unit j ( 

c
g

j

tj
= 0.2 ). Or equivalently, if unit j accounts for, say, 5% of the population ( tj

T
= 0.05 ), 

it would be “fair” to find 5% of the group in that unit ( 
c
g

j

Cg
= 0.05 ). As long as the group is 

overrepresented in some units and underrepresented in others, the group is unevenly dis‑
tributed. This is precisely the idea behind the local segregation curve (Alonso‑Villar & Del 
Río, 2010), which shows how far the distribution of the group across units is from even 
distribution (according to which the weight of the group in each unit, 

c
g

j

tj
 , should equal its 

weight in society, C
g

T
 ; or equivalently, 

c
g

j

Cg
 equals tj

T
).4 This curve is similar to the Lorenz 

curve used in the inequality literature.
To build the local segregation curve of group g, first, we must rank the units in ascend‑

ing order of the ratio 
c
g

j

tj
 . Then, the cumulative proportion of total individuals is plotted on 

the horizontal axis, while the cumulative proportion of group’s g individuals is plotted on 
the vertical axis. Namely, if we denote by �j ≡

∑

i≤j

ti

T
 the proportion of individuals who are in 

the first j units, the segregation curve at point �j is

which represents the proportion of group’s g individuals in these units. If the group were 
evenly distributed across units, this curve would be equal to the 45º line. As long as the 
group is underrepresented in some units and overrepresented in others, the curve departs 
from that line, approaching the horizontal axis. Note that this curve differs from the well‑
known segregation curve discussed in Duncan and Duncan (1955), where the distribution 
of a group across units is compared with that of another group.

Sg(�j) =

∑

i≤j c
g

i

Cg

4 There has been some debate in the literature about whether the distribution of a group across units should 
be compared to the distribution of total population. However, note that since 
c
g

j

/

tj = Cg∕T ⇔ c
g

j

/

Cg = tj
/

T  , comparing cg
j

/

Cg to tj
/

T  is the same as comparing cg
j

/

tj to Cg∕T .
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The local segregation curve allows to visualize the segregation level of a group and can 
be used to compare different scenarios. Thus, if one curve dominates another (i.e., no point 
of the former curve lies below the latter curve and does at some point lie above, as is the 
case of Sg relative to Sg* in Fig. 1), we can say that the group is less segregated in the first 
case than in the second.

Local segregation curves are very useful to illustrate the effect of a group’s size on its 
maximum segregation level. As mentioned above, the maximum segregation of a group 
is attained when it is fully concentrated in units with no members of other groups.5 Let us 
assume, without loss of generality, that a group is fully segregated in one unit.6 Figure 1 
illustrates this situation as the case of a group that accounts for 20% of the population.

The curve of maximum segregation, denoted by Sg*, is equal to 0 up to the unit in which 
the group is fully concentrated (i.e., at point 1 − Cg

T
 ) and jumps to 1 when that unit is aggre‑

gated with the previous ones (i.e., when the cumulative proportion of population is 1), 
thereby rendering a straight line between these two points.

Alonso‑Villar and Del Río (2010) proposed several local segregation indices—adapted 
from well‑known inequality measures—to quantify the extent to which a local segregation 
curve diverges from an even distribution of the group across units (the 45º line). These 
indices are Dg, Gg, Φg

1
 , and Φg

� (with � ≠ 0, 1)—which includes the local index Φg

2
 based on 

the squared coefficient of variation—and their maximum values are labelled, respectively, 
Dg*, Gg*,Φg∗

1
 and Φg∗

� (see Table 1). The local dissimilarity index, Dg, measures the highest 
vertical distance of the curve to the 45º line. Along with its graphical interpretation, this 
index has a very intuitive meaning: when multiplied by 100, it represents the percentage of 
group g individuals who would have to switch units for the group to have zero segregation 
while keeping the size of units unchanged. This index was initially proposed by Moir and 
Selby Smith (1979) in a binary context to explore labor segregation by gender, although its 
properties in a multigroup context, together with its relation to the local segregation curve, 
were not explored until Alonso‑Villar and Del Río (2010). It has been extensively used 
to explore school segregation, where is usually called Gorard’s index (Croxford & Raffe, 
2013; Gorard & Taylor, 2002).

The local Gini index, Gg, also has a graphical interpretation: it is equal to twice the 
area between the local segregation curve and the 45º line. On the other hand, the local 
generalized entropy family, Φg

� , offers a different index depending on a parameter, � , which 
accounts for both the group’s underrepresentation in units (i.e., the lower part of the curve) 
and its overrepresentation (i.e., the upper part). The lower (larger) the value of � , the more 
sensitive the index is to the group’s underrepresentation (overrepresentation). Gg and Φg

� 
are consistent with the dominance criterion given that if the local segregation curve of a 
group is above to that of another, the first group is less segregated than the second one 
according to any of these indices.

These local indices are related to overall indices. Thus, the weighted average of local 
indices Dg, Gg, Φg

1
 and Φg

2
 (with weights equal to the groups’ shares) are, respectively, 

equal to the Ip index (Silber, 1992), the unstandardized overall Gini index, which we denote 

5 Note that, in the real world, full segregation may not be possible because the size of the units may not fit 
with the group’s size.
6 The property of insensibility to proportional subdivisions, which we discuss in more detail later, ensures 
that, if an index satisfies it, we can focus on cases in which the group is concentrated in one unit of size 
equal to that of the group because distributions of maximum segregation across several units would be 
equivalent to this.
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here by Gu (Alonso‑Villar and Del Rio, 2010), the mutual information index, M (Frankel 
& Volij, 2011; Theil & Finizza, 1971), and the unstandardized overall index based on the 
squared coefficient of variation, which we denote here by Cu.7

It is important to note that, although overall indices can be decomposed by groups in 
several ways, the components of such decompositions may not necessarily be good meas‑
ures of the groups’ segregation. For example, the mutual information index can be writ‑
ten as the weighted average (with weights equal to the groups’ shares) of the difference 
between the entropy of the distribution of the population across units and the entropy of 
each group (Frankel & Volij, 2011). However, the difference between entropies is not a 
sensible local segregation indicator because its minimum value is not attained when the 
group is distributed across units in the same manner as the total population is—the differ‑
ence can take negative values—nor does it satisfy the property of insensibility to propor-
tional subdivisions—the entropy is sensitive to the number of units. On the contrary, the 
indices Dg, Gg, and Φg

� are truly local segregation measures because they satisfy a wide 
range of desirable properties, as we discuss below.

2.2  Properties for Measuring Local Segregation

To determine whether these local indices are suitable for measuring a group’s segregation, 
we list some basic properties proposed in the literature, put forth new properties (which are 

Fig. 1  Two examples of local segregation curves

7 Cu is the unstandardized version of Reardon and Firebaugh’s (2002) C index divided by 2.



On Measuring Segregation in a Multigroup Context: Standardized…

1 3

useful when we relate these indices to their overall versions), and determine whether our 
local measures satisfy them.

Let Θg(cg, t) be a local segregation measure, where cg is the vector representing the 
number of individuals of group g in each unit j ( cg

j
 ) and t is the vector indicating the num‑

ber of individuals in each unit j ( tj ). Alonso‑Villar and Del Río (2010) established several 
properties that any unstandardized local segregation measure should verify. We accom‑
pany the formal definitions with examples in which the benchmark is t = (40, 40, 20) and 
cg = (2, 3, 5).

(a) Size Invariance, which signifies that if we multiply both the number of individuals 
of the group and the number of total workers in each unit by a positive number, the 
segregation of the group does not change. Namely, if cg

j
� = �c

g

j
 and tj� = �tj for any 

𝜆 > 0 and j = 1, ..., J , then Θg(cg�, t�) = Θg(cg, t) . For example, if t� = (80, 80, 40) and 
cg� = (4, 6, 10) , g’s segregation level equals that in the benchmark. In other words, 
a group’s segregation level does not depend on whether the figures are expressed in 
hundreds of individuals or thousands.

(b) Scale Invariance refers to the fact that the group’s segregation does not change if, in 
each unit, the number of individuals of the group is multiplied by a positive number 
and the total number of individuals is multiplied by another (whenever these changes 
are compatible). Namely, if cg

j
� = �c

g

j
 and tj� = �tj for j = 1, ..., J (where 𝜆 > 0,𝛽 > 0 , 

and �cg
j
≤ �tj ), then Θg(cg�, t�) = Θg(cg, t).8 For example, if t� = (120, 120, 60) and 

Table 1  Unstandardized and standardized local segregation indices

The expression for Φg
� is valid for � ≠ 0, 1.

Local segregation indices Maximum value of the local index Standardized local 
segregation indices

Dg =
1

2

∑

j

�

�

�

�

c
g

j

Cg
−

tj

T

�

�

�

�

Dg∗ = 1 −
Cg

T

D̃g =

1

2

∑

j

�

�

�

�

�

c
g

j

Cg
−

tj

T

�

�

�

�

�

1−
Cg

T

Gg =

∑

i, j

ti

T

tj

T

�

�

�

�

�

c
g

i

ti
−

c
g

j

tj

�

�

�

�

�

2
Cg

T

Gg∗ = 1 −
Cg

T

G̃g =

∑

i, j

ti

T

tj

T

�

�

�

�

�

c
g

i

ti
−

c
g

j

tj

�

�

�

�

�

2
Cg

T

�

1−
Cg

T

�

Φ
g

1
=
∑

j

c
g

j

Cg
ln

�

c
g

j

�

Cg

tj∕T

�

Φ
g∗

1
= ln

(

T

Cg

)

Φ̃
g

1
=

∑

j

c
g

j

Cg
ln

⎛

⎜

⎜

⎝

c
g

j

�

Cg

tj∕T

⎞

⎟

⎟

⎠

ln

�

T

Cg

�

Φ
g
� =

1

�(�−1)

∑

j

tj

T

��

c
g

j

�

Cg

tj∕T

��

− 1

�

Φ
g∗
� =

1

�(�−1)

[

(

Cg

T

)1−�

− 1

]

Φ̃
g
𝛼 =

∑

j

tj

T

⎡

⎢

⎢

⎣

⎛

⎜

⎜

⎝

c
g

j

�

Cg

tj∕T

⎞

⎟

⎟

⎠

𝛼

−1

⎤

⎥

⎥

⎦

�

Cg

T

�1−𝛼

− 1

8 Note that this property differs from the scale invariance proposed by Frankel and Volij (2011) to meas‑
ure overall rather than local segregation since these authors require that the index remain unaltered when 
all groups increase by the same proportion in all units. It also differs from the composition invariance put 
forward by James and Taueber (1985), which requires that overall segregation does not change when the 
number of individuals of a group is multiplied by a constant factor in each unit, a criterion not free of con‑
troversy (Reardon and Firebaugh, 2002; White, 1986). The scale invariance criterion used in this paper 
keeps the essence of the one used in the measurement of income inequality, a property widely accepted in 
that field, although other approaches, as in the case of absolute and intermediate inequality, also exist.
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cg� = (4, 6, 10) , g’s segregation level equals that in the benchmark. In other words, a 
group’s segregation level does not depend on the total number of individuals in the 
economy or the group’s size.

(c) Symmetry, which means that if the units are permuted, the segregation of the group 
remains unaltered. Namely, if cg

j
� = c

g

Π(j)
 and tj� = tΠ(j) , where (Π(1), ...,Π(J)) is a per‑

mutation of units (1, ..., J) , then Θg(cg�, t�) = Θg(cg, t) . For example, if t� = (40, 20, 40) 
and cg� = (2, 5, 3) , g’s segregation level equals that in the benchmark. In other words, 
a group’s segregation level does not depend on the order in which the occupations are 
listed.

(d) Insensitivity to Proportional Subdivisions of units, i.e., the segregation level of the 
group does not change if a unit is split into several units of equal size with identical 
number of individuals of the group. Namely, assuming for the sake of simplicity that 
we split the last unit in K > 0 units, if cg

j
� = c

g

j
 and tj� = tj for any j = 1, ..., J − 1 , and 

c
g

J+i
� =

c
g

J

K
 and tj+i� =

tj

K
 for i = 0, ...,K − 1 , then Θg(cg�, t�) = Θg(cg, t) . For example, if 

t� = (20, 20, 40, 20) and cg� = (1, 1, 3, 5) , g’s segregation equals that in the benchmark. 
In other words, the number of occupations does not matter as long as they do not bring 
heterogeneity.

(e) Sensitivity to Disequalizing Movements (type I): Disequalizing movements of the group 
between equally‑sized units, the size of which does not change after that movement (i.e., 
if a unit with a lower number of individuals of the target group than another loses some 
of those individuals in favor of the latter, other things being equal) increase the group’s 
segregation.9 Namely, if cg

i
� = c

g

i
− d and cg

h
� = c

g

h
+ d , where i and h are two units 

such that cg
i
< c

g

h
 and ti = th , whereas cg

j
� = c

g

j
 for j ≠ i, h , then Θg(cg�, t) > Θg(cg, t) . 

For example, if cg� = (1, 4, 5) , g’s segregation is higher than in the benchmark. In other 
words, when group g moves from an occupation to another of the same size in which 
its presence is larger and this movement is accompanied by an opposite movement of 
individuals from other groups, g’s segregation increases.

As these authors proved, properties (b) to (e) are very important because render an index 
Θg consistent with the dominance criterion given by the local segregation curves (this is 
analogous to what happens when using the Lorenz curves to measure income inequality). 
In other words, a local segregation curve dominates another if, and only if, for any local 
segregation index Θg that satisfies scale invariance, symmetry, insensitivity to proportional 
divisions, and sensitivity to disequalizing movements type I, Θg is lower in the former case 
than in the latter.

Note that alternative definitions of sensitivity to disequalizing movements may be articu‑
lated depending on how strictly we conceive of the circumstances under which we expect 
segregation to increase. This is especially relevant to assess the implications of property 
(e), given that requiring that a disequalizing movement leads to an increase in a group’s 
segregation only when that movement involves equal‑size units (whose size remains unal‑
tered) might seem of limited scope and unconnected to the property usually assumed when 
dealing with overall segregation. To delve deeper into this issue, we put forth two new 
properties here:

9 In Alonso‑Villar and Del Río (2010) this property appears as “movement between groups.”.
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(f) Sensitivity to Disequalizing Movements (type II): Disequalizing movements of the 
group between one unit and another unit with a higher representation of the group (i.e., 
if the group’s representation diminishes in the former unit and rises in the latter), while 
the size of these units do not change, produce an increase in the group’s segregation. 
Namely, if cg

i
� = c

g

i
− d and cg

h
� = c

g

h
+ d , where i and h are two units such that c

g

i

ti
<

c
g

h

th
 , 

whereas cg
j
� = c

g

j
 for j ≠ i, h , then Θg(cg�, t) > Θg(cg, t) . For example, if cg� = (2, 2, 6) , 

g’s segregation is higher than in the benchmark. In other words, when members of the 
group move from an occupation to another in which its relative presence is larger and 
this movement is accompanied by an opposite movement of individuals from other 
groups, the group’s segregation increases (regardless of whether these occupations 
have the same size).

(g) Sensitivity to Disequalizing Movements (type III): Disequalizing movements of the 
group between one unit and another unit with a higher representation of the group (i.e., 
if the group’s representation diminishes in the former unit and rises in the latter), 
whereas the sizes of these units change accordingly, result in an increase in the group’s 
segregation. Namely, if cg

i
� = c

g

i
− d , cg

h
� = c

g

h
+ d , t�

i
= ti − d , and th� = th + d , i and h 

being two units such that c
g

i

ti
<

c
g

h

th
 , whereas cg

j
� = c

g

j
 and tj� = tj for j ≠ i, h , then 

Θg(cg�, t�) > Θg(cg, t) . For example, if t� = (40, 39, 21) and cg� = (2, 2, 6) , g’s segrega‑
tion is higher than in the benchmark. In other words, when group g moves from an 
occupation to another in which its relative presence is higher, g’s segregation increases 
(regardless of whether the incumbent occupations have the same size and without any 
replacement requirement).

Both properties allow us to compare more scenarios than does property (e) and are 
related to properties proposed in the measurement of overall segregation. Thus, sensitiv-
ity to disequalizing movements type III is the local version of the principle of transfers 
proposed by Reardon and Firebaugh (2002) to measure overall multigroup segregation.10 
Likewise, sensitivity to disequalizing movements type II may be seen as the local version of 
the principle of exchanges.11

The question we now pose is how these new properties are related to property (e) and 
whether are commonly fulfilled by local segregation indices. Propositions 1 and 2 reveal 
that properties (f) and (g) are not difficult to satisfy if property (e) holds. In fact, as Corol‑
lary 1 shows, many local indices meet them.

Proposition 1. If a local segregation index Θg(cg, t) satisfies insensitivity to proportional 
subdivisions and sensitivity to disequalizing movements type I, then it also fulfills sensitiv-
ity to disequalizing movements type II.

Proof. See Appendix.

10 Overall segregation must increase whenever an individual of a group moves from one unit to another in 
which the group has a higher representation (which implies changes to those units’ sizes).
11 This property requires that overall segregation rise when two individuals of different target groups 
exchange their positions moving from an unit where the incumbent group has a lower representation to a 
unit with a higher representation (which implies that the size of those units do not change).
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Proposition 2 Any local segregation index Θg(cg, t) consistent with the dominance criterion 
given by the local segregation curves satisfies sensitivity to disequalizing movements type 
III.

Proof. See Appendix.

Corollary 1. The indices Gg and Φg
� satisfy size and scale invariance, symmetry, insensitiv-

ity to proportional subdivisions, and sensitivity to disequalizing movements type I, type 
II, and type III. Index Dg fulfills size and scale invariance, symmetry, and insensitivity to 
proportional subdivisions.

Proof. See Appendix.

As we will see in Sect. 3, this result is interesting because it allows for a better under‑
standing of some of the properties usually assumed to measure overall segregation. Thus, 
the fact than the indices Gg and Φg

� verify sensitivity to disequalizing movements type III 
allows us to question whether the principle of transfers is a necessary requirement for over‑
all multigroup segregation measures.

3  A New Proposal: Standardized Local Segregation Measures

As mentioned earlier, the maximum segregation level of a group is not independent of 
the group’s size. The reason is that when a group is small, it can be absent from units 
that account for a large share of total population, whereas this situation is impossible for 
large groups. How, therefore, is it possible to compare the segregation of two groups that 
differ in terms of relative size but are distributed across units in the same way? Here we 
explore a procedure that measures the segregation of a group accounting not merely for 
how the group is distributed across units, but also the maximum segregation attainable by 
the group.

3.1  Standardized Local Segregation Measures

We develop several standardized local indicators, globally denoted by Θ̃g(cg, t) , defined as 
the quotient between a local segregation index, Θg(cg, t) , and the value of that index when 
the group is fully segregated, Θg∗ . Namely, Θ̃g(cg, t) =

Θg(cg,t)

Θg∗
 . This approach squares with 

the measurement of overall segregation put forward by Reardon and Firebaugh (2002) in 
that we divide the index by the maximum segregation level, although in our case segrega‑
tion refers to a group (say, white women) rather than to overall segregation (say, by gender 
and race).12

12 When standardizing an index dividing it by its maximum, scholars use a theoretical maximum that does 
not account for the units but instead approximates the “actual” maximum existing in each empirical case, 
which depends on the number of units and their sizes. Consequently, as opposed to the theoretical maxi‑
mum, the “actual” distribution of maximum segregation is not unique since may vary depending on the 
index used. This theoretical maximum takes the groups’ weights as given (unlike the absolute maximum 
reached if the shares of the groups and units were not fixed).
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To measure the standardized segregation of a group we propose using the indi‑
ces D̃g, G̃g, Φ̃

g

1
, and Φ̃

g
𝛼 , shown in Table  1, which are obtained dividing the indices 

Dg,Gg,Φ
g

1
, and Φ

g
� , respectively, by their values when the group is fully segregated 

( Dg∗,Gg∗,Φ
g∗

1
, and Φ

g∗
�  ). Imposing this standardization yields a maximum value of indices 

D̃g, G̃g, Φ̃
g

1
, and Φ̃

g
𝛼 that is always 1, which facilitates comparisons among different groups 

or a group across time and space.
Thus, for example, making use of the interpretation of Dg mentioned above, D̃g may be 

thought of as the proportion of group g individuals who must transfer among units to attain 
zero segregation divided by the proportion who must move if the group were fully segre‑
gated. This allows us to assess whether the segregation level given by the index Dg is high 
or low when taking into account the maximum segregation of the group, which depends 
on its demographic share. If, for example, t = (40, 30, 20, 10) and cg = (3, 3, 5, 9) , then 
Dg = 0.4 . This means that 8 workers would have to change occupations for the group to be 
evenly distributed (i.e., to achieve distribution (8, 6, 4, 2) ). D̃g = 0.5 brings additional infor‑
mation: 0.4 is in this case a relatively high segregation level because the above 8 workers 
represent half of the workers (16) that would have to move if there were maximum segre‑
gation (i.e., cg∗ = (0, 0, 20, 0) and Dg∗ = 0.8).

Corollary 2 shows the properties fulfilled by these standardized indices.

Corollary 2. The indices G̃g and Φ̃g
𝛼 satisfy size invariance, symmetry, insensitivity to pro-

portional subdivisions, and sensitivity to disequalizing movements type I, type II, and 
type III. The index D̃g fulfills size invariance, symmetry, and insensitivity to proportional 
subdivisions.

Proof. See Appendix.

The next theorem demonstrates the relationship that exists between the dominance crite‑
rion associated with the local segregation curves and the standardized indices.

Theorem. If the local segregation curve of a group dominates that of another group 
whereas the opposite holds for the curves of maximum segregation, then segregation will 
be lower in the first case than in the second for any standardized local segregation index 
Θ̃g(cg, t) =

Θg(cg,t)

Θg∗
, where Θg(cg, t) satisfies scale invariance, symmetry, insensitivity to pro-

portional subdivisions, and sensitivity to disequalizing movements type I.13

Proof. See Appendix.

Note that the properties that we require Θg meet are the properties that render these 
indices consistent with the dominance criterion established by Alonso‑Villar and Del 
Río (2010). Accordingly, it follows that if the local segregation curve of a group is above 
another (i.e., the former dominates the latter) and the ranking is the reverse for these 
groups’ curves of maximum segregation, we need not calculate any Θ̃g index (included in 
the set of indices established in the theorem) because all of them would lead to the same 
conclusion: segregation is lower for the first group.

13 If there is dominance in one case and the curves are equal in the other case, the theorem still holds.
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Finally, it follows from the next proposition that to determine whether the curve of max‑
imum segregation for a group dominates that of another group we need only know these 
groups’ demographic shares.

Proposition 3. The local segregation curve of a group associated with that group’s maxi-
mum segregation dominates that of another group if, and only if, in the former case the 
group accounts for a larger share of the population than it does in the latter.

Proof. See Appendix.

3.2  Relation Between Standardized Local and Overall Segregation Measures

In their 2002 paper, Reardon and Firebaugh derived several standardized overall measures 
using the notion of disproportionality (i.e., the overrepresentation and underrepresenta‑
tion of groups in units), and assessed them against James and Taeuber’s (1985) criteria. As 
Table 2 shows, these overall (multigroup) indices, D,14 G,15 H,16 and C,17 can be decom‑
posed, respectively, in terms of standardized local indices,D̃g, G̃g, Φ̃

g

1
, and Φ̃

g

2
 , in such a 

way that overall segregation is the weighted average of the local segregation of the groups 
involved, although so far the literature has not noticed that D̃g, G̃g, Φ̃

g

1
, and Φ̃

g

2
 are indeed 

segregation measures.
Table 3 summarizes the local/overall (un)standardization framework developed in this 

paper, embedding existing and new indices within it. This allows us to visualize the rela‑
tionships among the indices, where arrows are used to link local and overall segregation 
indices, solid lines are used to link overall binary and multigroup segregation indices, and 
dashed lines connect standardized and unstandardized overall indices.

Standardized (local and overall) measures are useful because they allow us to compare 
each scenario with the worst possible scenario (that of maximum segregation).18 In any 
case, one should bear in mind that, although some of the most popular overall segregation 

14 D is equivalent to that proposed by Morgan (1975) and Sakoda (1981). To build D, Sakoda (1981) drew 
inspiration from an expression like D̃g , although the segregation of a group was not explored. Note that D is 

also the Ip index (Silber, 1992) divided by its maximum 
�

D =
Ip

I∗
p

;I∗
p
=
∑

g

Cg

T
Dg∗

�

)
15 G is the unstandardized overall Gini index (Alonso‑Villar and Del Río, 2010), Gu, divided by its maxi‑

mum 
�

G =
Gu

G∗
u

;G∗
u
=
∑

g

Cg

T
Gg∗

�

16 H is the mutual information index (Theil and Finizza, 1971), M, divided by its maximum 
�

H =
M

M∗
;M∗ =

∑

g

Cg

T
Φ

g∗

1

�

17 C is the quotient between an unstandardized overall index based on the squared coefficient of variation 

(Alonso‑Villar and Del Río, 2010), Cu, and its maximum 
�

C =
Cu

C∗
u

;C∗
u
= 2

∑

g

Cg

T
Φ

g∗

2

�

18 Carrington and Troske (1997) proposed two standardized indices, not included in Table 3, which result 
from modifying the dissimilarity index and the Gini coefficient to deal with the issue of small samples. 
These indices measure the extent to which a sample deviates from randomness, expressed as a fraction 
of the maximum amount of excess dissimilarity, or excess evenness, that could occur. By doing so, these 
authors offer an alternative approach to measure standardized segregation, which could be extended to other 
indices, either local or overall.
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measures are standardized (Duncan & Duncan, 1955; Jahn et al., 1947; Reardon & Fire‑
baugh, 2002; Theil & Finizza, 1971), the debate on standardization has not been settled. In 
fact, due to its decomposability properties, the unstandardized mutual information index, 
M, is preferred by some scholars to the standardized one, H (Mora and Ruiz‑Castillo, 
2011; Elbers, 2021). We claim that standardization can be especially useful in empiri‑
cal studies that involve groups of highly different relative sizes since it allows for greater 
comparability.19

3.3  What Does the Local Segregation Approach Show Us About Overall 
Segregation?

The relationships that exist among local and overall segregation indices allows us to 
expand our knowledge of the measurement of overall segregation in several directions, 
as we now demonstrate.

First, the properties of the local segregation indices help us understand whether the 
principle of transfers, proposed by James and Taeuber (1985) in the binary case, can be 
relaxed when measuring overall multigroup segregation. Reardon and Firebaugh (2002) 
proved that the information theory index, H, is the only one of the four standardized 
overall indices mentioned above that verifies this principle in a multigroup context (i.e., 
the only one that always decreases when an individual in a group moves to a unit where 
the group has a lower representation). This is why these authors recommend the use of 
H to measure overall multigroup segregation.

However, they also question “whether the violation of the principle of transfers seri‑
ously undermines the non‑H indices, or instead is of little practical consequence in most 

Table 2  Decomposition of standardized overall segregation measures in terms of standardized local segre‑
gation measures

wg =
Cg

T

Standardized overall segregation measures Relationship between 
standardized overall 
and local measures

Weights
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19 Decomposition methods of changes in segregation across time or space have been applied to standard‑
ized and unstandardized indices (Deutsch et al., 2009; Elbers, 2021; Karmel and MacLachlan, 1988). These 
methods allow disentangling changes arising from changes in the margins (i.e., groups’ shares and/or units’ 
shares) from “pure” segregation.
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research applications” (p. 58). In light of the local segregation approach shown here, we 
can conclude that that H is alone, among these standardized overall indices, in verify‑
ing the principle of transfers does not seem too problematic. As we have shown, both G 
and C can be generated via standardized local segregation indices satisfying sensitivity 
to disequalizing movements type III (which is the principle of transfers applied to the 
segregation of each group). This suggests that, unlike D, in the case of G and C, the 
violation of the principle of transfers does not undermine its essence. The idea is that, 
when using G and C, we cannot ensure that the reduction in overall segregation arising 
from an equalizing movement of individuals in a group (from one unit to another) does 
more than offset the possible rise in segregation derived from the impact of the changes 
in the size of those units on other groups (especially if those groups are highly overrep‑
resented in the unit of origin and underrepresented in the unit of destination).20

In our opinion, to require that equalizing movements in a group always reduce overall 
segregation (as happens with H and M) seems a requirement that we can waive whenever 
the corresponding local indices do satisfy sensitivity to disequalizing movements type III. 
This increases the importance of the principle of exchanges in the measurement of over‑
all segregation since this is the property related to (dis)equalizing movements that overall 
multigroup segregation indices should verify.

Second, the well‑known dissimilarity index, popularized by Duncan and Duncan 
(1955), can be interpreted as the proportion of minority members that would have to be 

Table 3  Segregation indices in a local/overall (un)standardization framework

Arrows are used to link local and overall segregation indices. Solid lines are used to link overall binary and 
multigroup segregation indices. Dashed lines connect standardized and unstandardized overall indices.
(1)This index is also called Gorard index (Gorard & Taylor, 2002).
(2)This index is equal to the revised index of isolation, I1, (Bell, 1954).
(3)When N = 2: D = D̃

1 = D̃
2;G = G̃

1 = G̃
2;C = Φ̃1

2
= Φ̃2

2
.

20 This rationale can be extended to the corresponding unstandardized measures (Gu and Cu against M).
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reallocated across units to be evenly distributed divided by the proportion that would have 
to move in the case of complete unevenness (Jakubs, 1979; Massey & Denton, 1988). Our 
approach shows that, when N = 2 , if we standardize Dg, the standardized segregation of 
the minority group equals that of the majority group ( D̃1 = D̃2 ) and, therefore, the index of 
dissimilarity can be expressed as D = w̃1D̃1 + w̃2D̃2 = D̃1 = D̃2.21 Consequently, the dis‑
similarity index can be interpreted as a standardized local segregation measure ( D̃g ). Our 
analysis also highlights the symmetry that the standardization of Dg brings to the (local) 
segregation measurement when N = 2.

All this clarifies the discussions about the measurement of school segregation in the 
U.K. (Allen & Vignoles, 2007; Gorard & Taylor, 2002) since: a) it allows placement of 
Gorard’s index and the dissimilarity index in this local/overall (un)standardization frame‑
work (see Table 3), the former being the unstandardized local index Dg and the second the 
standardized local index D̃g , which implies that the discussion about whether to use one 
index or the other becomes actually whether standardized or unstandardized indices should 
be used; and b) elucidates that when working with the standardized version of Dg, the role 
played by each group in a binary context is the same (i.e., there is symmetry in the segrega‑
tions measurement), something that does not happen with index Dg and has been a matter 
of controversy (as reflected in the mentioned papers).

Third, independently of the number of groups, the values of D̃g , G̃g , and Φ̃g

2
 are the 

same for group g and its complement. Therefore, these local indices equal, respectively, 
the dissimilarity index (D), the Gini index (G), and the C index in the two‑group case.22 In 
other words, in multigroup contexts, the dissimilarity index, the Gini index, and the cor‑
relation ratio index can be used to compare a group with its complement since they can be 
interpreted as standardized local segregation indices, D̃g , G̃g , and Φ̃g

2
 , which satisfy basic 

properties.23

Fourth, the revised index of isolation, I1, proposed by Bell (1954) can be interpreted as a 
standardized local segregation index since I1(g) = Φ̃

g

2
, ∀g = 1,...,N . This elucidates the dis‑

cussion offered in Massey and Denton (1988) about the nature of this index since although 
it was originally proposed to deal with exposure, it can also be used to deal with a group’s 
segregation from an evenness perspective.

4  An Illustration: Occupational Segregation of White Women in U.S. 
Metropolitan Areas

To illustrate the similarities and differences between standardized and unstandardized local 
segregation measures, we examine the occupational segregation of white women in the 
largest metropolitan areas in the U.S. We choose this group because it has a large presence 
in all large metropolitan areas while its demographic weight differs notably across them. 
We use the 2012–16 American Community Survey (ACS) provided by the IPUMS‑USA 
(Ruggles et al., 2017). We select the 51 metropolitan areas (MAs) with more than 1 mil‑
lion inhabitants (based on the 2010 census). White women are identified on the basis of the 

21 Note that the dissimilarity index is equal to the generalized dissimilarity index when N = 2 (Reardon 
and Firebaugh, 2002).
22 Note that, when N = 2 , G = w̃1G̃1 + w̃2G̃2 = G̃1 = G̃2 and C = ŵ1Φ̃1

2
+ ŵ2Φ̃2

2
= Φ̃1

2
= Φ̃2

2
 . However, this 

does not apply to other indices (H and Φ̃g

1
 do not coincide because, in general, Φ̃1

1
≠ Φ̃2

1
).

23 This is in line with the method developed by Reardon and Firebaugh (2002) to derive overall multigroup 
segregation measures from dichotomous measures.
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information reported by the interviewees about their gender and race/ethnicity, considering 
only those women who are white and non‑Hispanic.

Our occupational classification distinguishes among 458 categories, which allows us to 
measure segregation in a highly precise way. For each MA we calculate 12 local segre‑
gation indices (6 unstandardized and 6 standardized): Dg ( D̃g ), Gg ( ̃Gg ), and Φg

�(Φ̃
g
𝛼 ) for 

� = 0.1, 0.5, 1, and 2. For simplicity, the presentation focuses on indices Dg and D̃g , refer‑
ring to the others only when necessary.

Figure 2 plots the index Dg against the share of white women in each MA (this share 
ranges between 14.6% in Miami and 42.3% in Pittsburgh). Boston, Minneapolis, and 
Washington, D.C., are among the MAs in which white women have the lowest segregation, 
whereas in Houston, San Jose, Memphis, and New Orleans they have the highest segre‑
gation. Although the group’s size does not determine its segregation level (compare, for 
example, Memphis and Washington), the chart shows a negative relationship between une‑
venness and size (the pattern is similar for the other indices).

How do we assess the occupational sorting of white women when taking into account 
the maximum unevenness they can face? To do this, we compare Dg and D̃g (Fig. 3).24

The dotted lines represent the mean values of the indices. Washington is among the 
MAs in which white women have the lowest overrepresentation and underrepresentation in 
occupations, whether we use standardized and unstandardized measures. According to Dg, 
the percentage of white women in Washington who must switch occupations in order for 
the group to be evenly distributed is slightly above 25%. On the other hand, D̃g = 0.33, i.e., 
the number of white women in this MA who must change occupation represents 33% of all 
white women who must move in case of maximum segregation.25 This suggests that the 
segregation of white women in Washington is far from reaching its maximum level.

The remaining indices used in this study lead to the same conclusion: Washington has a 
low level of segregation (Fig. 6 in the Appendix). Moreover, Washington has a lower level 
of segregation than other MAs for the wider range of indices consistent with the domi‑
nance criterion provided by the theorem presented in Sect.  3. Thus, for example, Fig.  4 
shows that Washington’s local segregation curve dominates that of New Orleans, while the 
opposite obtains for the curves of maximum segregation, thereby ensuring a lower level of 
segregation for white women in Washington for all the indices consistent with the domi‑
nance criterion (standardized or not).26 

Boston and Minneapolis share with Washington a low unstandardized segregation 
( Dg = 0.25 ). However, this figure represents around 40% of the maximum value of the 
index, which means these cities have an intermediate rather than a low position in the rank‑
ing based on D̃g . How do we interpret this? On the one hand, Dg shows that the three MAs 
have something in common: 1 out of 4 white women working there must change occupa‑
tion for this group to have in each occupation the same weight it has in the corresponding 
MA. On the other hand, D̃g allows us to take a step further by accounting also for the size 

24 Table 4 A1 in Appendix 2 provides the corresponding values, together with the share of white women. 
Figure A2 in Appendix 3 shows the other indices.
25 In Washington, Dg* = 0.77, i.e., if white women were completely segregated, 3 out of 4 would have to 
change occupations to achieve an even distribution.
26 Other large MAs having a similar position in the ranking with indices Dg and D̃g include Chicago, Seat‑
tle, Denver, Phoenix, and Detroit (Fig. 3). According to most of the (standardized and unstandardized) indi‑
ces, all these cities have intermediate levels of segregation.
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Fig. 2  Population share of white women and index Dg

Fig. 3  Values of the indices Dg and D̃g
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of the group; this reveals that segregation is a more acute phenomenon in Boston and Min‑
neapolis than it is in Washington. This is so because the 25% of white women requiring 
occupation changes to achieve no segregation represents a higher proportion of total work‑
ers (or jobs) in the labor markets of the former cities (10 vs. 6%).

New Orleans and Memphis represent cases that stand in opposition to Washington 
because they have high levels of segregation regardless of the approach followed (Fig. 3). 
Moreover, this is so although the three cities have a similar share of white women workers.

Pittsburgh stands out as a paradigmatic case. The relatively low value of Dg (= 0.27) in 
this area represents almost half of the maximum segregation attainable by the group. Pitts‑
burgh is therefore the MA with the highest standardized segregation of the country accord‑
ing to index D̃g(= 0.47). Indices G̃g, Φ̃

g

1
, and Φ̃

g

2
 go in the same direction (Fig. 6).27

In light of this, are white women in Pittsburgh highly concentrated in some occupations 
(as most standardized indices suggest), or is the segregation of this group below average 
and, especially, smaller than in New Orleans (as the unstandardized indices display)? If we 
look at the extent to which the occupational sorting of white women departs from even‑
ness, we see that Pittsburgh exhibits an intermediate‑low level, whereas New Orleans is 
among the MAs with the highest values. However, when taking into account the maximum 
segregation of the group in each MA, we assess the situation in Pittsburgh as harsher than 
in the remaining areas.

Fig. 4  Local segregation curves (actual and maximum), Washington and New Orleans

27 For a discussion about how standardization affects the various indices of the generalized entropy family, 
see Appendix 3.
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5  Final Comments

To be evenly distributed, a group that represents x percent of the total population should 
account for x percent of the individuals in each unit. For this to be the case, the distribution 
of the group across units should be equal to the distribution of the total population across 
these same units. As long as these two distributions depart from each other, the group is said 
to be segregated and this phenomenon can be computed using any unstandardized local seg‑
regation measure already proposed in the literature (Alonso‑Villar & Del Río, 2010).

However, the fact that a given percentage of individuals in the group has to change 
units to be evenly distributed may be judged as more or less problematic depending on 
the maximum segregation the group can attain, an issue already pointed out by Jahn et al. 
(1947). This paper has taken a step further by exploring standardization in an analytical 
framework that offers a clear distinction between the measurement of overall and local 
segregation, embedding existing indices within this framework, and addressing gaps in 
previous research. The standardized local segregation indices developed here have several 
desirable properties, are related to the local segregation curves, and are consistent with 
existing standardized overall segregation indices, given that the latter can be written as the 
weighted average of the standardized local segregation of the groups involved.

This local approach allows a deeper exploration into the properties that overall segregation 
measures should satisfy, as is the case of the principle of transfers used in a multigroup con‑
text (Reardon & Firebaugh, 2002), showing that what is important is that equalizing move‑
ments in a group (from one unit to another) reduce local segregation, not overall segregation. 
In addition, this paper brings analytical support to the interpretation of the components of 
overall measures in terms of the segregation levels of the incumbent groups (Watts, 1995). 
Our framework also gives formal support to some of the empirical strategies used in the liter‑
ature to deal with the situation of target groups. Thus, the dissimilarity index, the Gini index, 
and the correlation ratio index when used to compare a group with its complement (i.e., 
with the remaining groups) seem suitable to measure that group’s situation since, as we have 
proved, they are actually standardized local segregation indices satisfying basic properties.

This paper has also widened the debate on standardization. Our analysis shows that stand‑
ardized indices quantify segregation from an angle significantly different from unstandard‑
ized indices, and this is the case whether we use local or overall measures. Unstandardized 
measures associated with disproportional functions account for the distance between the dis‑
tribution of the groups across units and the egalitarian distribution—according to which the 
presence of each group in each unit must equal the expected value assigned by its weight in 
the economy. On the contrary, standardized measures quantify the “proximity” of the former 
distribution to the distribution of maximum segregation. This research helps clarify some of 
the debate around the measurement of school segregation (Allen & Vignoles, 2007; Gorard 
& Taylor, 2002), showing that the two measures under discussion could be actually seen as 
a local segregation index and its standardized version and, therefore, both seem sensible to 
quantify segregation since they satisfy basic properties.

We claim that standardized local (respectively, overall) indices can be especially useful in 
empirical studies that involve groups (respectively, societies) of highly different relative sizes 
(respectively, composition)—as is the case of our illustration—since they allow for greater 
comparability by providing a frame of reference within which the group’s unevenness can 
be assessed. The standardized local segregation indices developed here are not proposed as 
an alternative to existing local segregation indices, but as a complementary tool to explore 
segregation from a different angle. Our research contributes to the literature by offering an 
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analytical framework within which all of this local/overall (un)standardization debate can be 
embedded, which allows showing the differences and complementarities among the indices.

Appendix 1

Maximum values of the indices. To obtain Dg∗ and Gg∗ , use the graphical interpretation 
(Fig.  1). As for Φ

g∗
�  ( � ≠ 0, 1 ), note that if the group is fully segregated 
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. Likewise, 
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 since lim
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g
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(
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g
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/

Cg

tj∕T

)
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Proof of Proposition 1. Assume that i and h are two units such that c
g

i

ti
<

c
g

h

th
 . Taking into 

account that Θg(cg, t) satisfies insensitivity to proportional divisions, the segregation of 
group g remains the same if i and h are split into ti and th subunits (of size 1 each), where 
the former subunits each account for c

g

i

ti
 “individuals” of group g and the latter for c

g

h

th
.

If d

tith
 “people” of g leave one of the subunits of i to move to one of the subunits of h, the 

segregation of g will increase, given that the two subunits have the same size and the index 
satisfies the property of disequalizing movements type I. Reiterating this for all other subu‑
nits of h, we will have a sequence of th disequalizing movements type I between units of the 
same size, which leads to a higher segregation for g (a total of d

ti
 individuals of g are mov‑

ing from a subunit of unit i to h). If we repeat this process for any other subunit of unit i, 
eventually, ti

d

ti
= d individuals will have switched from i to h.

Therefore, a transfer of d individuals of group g from i to h, which does not alter the size 
of these units,28 can be expressed as a sequence of disequalizing movements type I between 
units of the same size, which signifies a rise in the level of segregation of g. Once more 
employing the insensitivity to proportional divisions, the segregation of g is the same in the 
case of either having these small subunits or aggregating them to give rise to i and h.

Proof of Proposition 2. Assume that i and h are such that c
g

i

ti
<

c
g

h

th
 and that d people (d < c

g

i
) 

are transferred from i to h without replacement, i.e., cg
i
� = c

g

i
− d , cg

h
� = c

g

h
+ d , t�

i
= ti − d , 

and th� = th + d (no changes in the other units, i.e., cg
j
� = c

g

j
 and tj� = tj for j ≠ i, h ). Let us 

assume, without loss of generality, that i is the unit in which g has the lowest representation 
and h is the next unit in the ranking (Fig. 5).

First, we prove that, at point ti−d
T

 , the post‑transfer curve is below the other, making use 
of simple trigonometric analysis.29 We need only prove that tan(𝛼) > tan(𝛽) . Note that 

tan(�) =

c
g

i

Cg

ti

T

 , tan(�) =
c
g

i
−d

Cg

ti−d

T

 , and that tan(𝛼) > tan(𝛽) ⇔ ti > c
g

i
 . Given that in i the group’s 

representation is below that in h, then c
g

i

ti
< 1.

See Fig. 5.
Second, we must show that, at point ti

T
 , the curve after the transfer is below (or equal to) 

the other. If we denote by x the difference between the curve after the transfer at point ti
T
 and 

28 This implies that an equal number of individuals from other groups has moved in the opposite direction.
29 If d = c

g

i
 , it is trivial to prove that the curve after the transfer is below the other.
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c
g

i
−d

Cg
 , then tan(�) = x

d

T

=

c
g

h
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th+d

T

 . Therefore, x = d

d+th

c
g

h
+d

Cg
 . It is easy to see c

g

i
−d

Cg
+ x ≤

c
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Cg
 because 

c
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≤ th.

Proof of Corollary 1 It follows from Theorem 1 in Alonso‑Villar and Del Río (2010) and 
Propositions 1 and 2.

Proof of Corollary 2. This follows from the fact that the unstandardized versions of these indi-
ces satisfy the corresponding properties and the standardized indices are obtained through the 
former by dividing them by a constant.

Proof of Theorem If the local segregation curve in case A dominates that in B, any index 
Θg(cg, t) satisfying scale invariance, symmetry, insensitivity to proportional divisions, 
and sensitivity to disequalizing movements type I will have a lower value in case A than 
in B (Alonso‑Villar & Del Río, 2010; Theorem  1). For the same reason, Θg∗ is higher 
in B than in A given that the curve of the former dominates that of the latter. Therefore, 
Θ̃g(cg, t) =

Θg(cg,t)

Θg∗
 is higher in A than in B.

Proof of Proposition 3. If one group has a larger share of the population than another group, 
the curve of maximum segregation will be equal to 0 up to a point that is lower than that of 
the other group and after that point the curve will be above the other (Fig. 1). This means that 
the curve of the larger group dominates that of the smaller. The other implication can be easily 
proved by proof by contradiction.

Appendix 2

See Table 4. 

Fig. 5  The segregation curve 
before (solid line) and after 
transfers (dash line)

0                    1

1
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Table 4  Population share of white women and indices Dg and D̃g in each MA

Metropolitan areas ranked by Dg Segregation indices  Popula‑
tion share 
of white 
women

D
g

D̃
g

D
g*

Columbus, OH 0.2475 0.3926 0.6304 37.0
Minneapolis‑St. Paul‑Bloomington, MN‑WI 0.2488 0.4109 0.6055 39.4
Boston‑Cambridge‑Newton, MA‑NH 0.2508 0.3968 0.6321 36.8
Washington‑Arlington‑Alexandria, DC‑VA‑MD‑WV 0.2559 0.3308 0.7736 22.6
Baltimore‑Columbia‑Towson, MD 0.2565 0.3626 0.7074 29.3
Tampa‑St. Petersburg‑Clearwater, FL 0.2610 0.3832 0.6811 31.9
Philadelphia‑Camden‑Wilmington, PA‑NJ‑DE‑MD 0.2622 0.3907 0.6711 32.9
Sacramento–Roseville–Arden‑Arcade, CA 0.2625 0.3625 0.7242 27.6
Buffalo‑Cheektowaga‑Niagara Falls, NY 0.2626 0.4423 0.5936 40.6
Hartford‑West Hartford‑East Hartford, CT 0.2631 0.4076 0.6455 35.4
Rochester, NY 0.2638 0.4408 0.5984 40.2
St. Louis, MO‑IL 0.2650 0.4211 0.6292 37.1
Louisville/Jefferson County, KY‑IN 0.2663 0.4316 0.6171 38.3
Indianapolis‑Carmel‑Anderson, IN 0.2664 0.4228 0.6301 37.0
Cleveland‑Elyria, OH 0.2668 0.4194 0.6360 36.4
Cincinnati, OH‑KY‑IN 0.2672 0.4400 0.6073 39.3
Seattle‑Tacoma‑Bellevue, WA 0.2682 0.3917 0.6847 31.5
Denver‑Aurora‑Lakewood, CO 0.2699 0.4012 0.6728 32.7
Nashville‑Davidson–Murfreesboro–Franklin, TN 0.2716 0.4224 0.6428 35.7
Pittsburgh, PA 0.2718 0.4713 0.5767 42.3
Orlando‑Kissimmee‑Sanford, FL 0.2722 0.3595 0.7572 24.3
Portland‑Vancouver‑Hillsboro, OR‑WA 0.2739 0.4305 0.6364 36.4
Providence‑Warwick, RI‑MA 0.2742 0.4568 0.6003 40.0
Milwaukee‑Waukesha‑West Allis, WI 0.2749 0.4287 0.6412 35.9
Richmond, VA 0.2752 0.3895 0.7065 29.4
Austin‑Round Rock, TX 0.2759 0.3754 0.7349 26.5
Atlanta‑Sandy Springs‑Roswell, GA 0.2774 0.3626 0.7651 23.5
Kansas City, MO‑KS 0.2775 0.4381 0.6335 36.6
Jacksonville, FL 0.2782 0.4000 0.6956 30.4
Chicago‑Naperville‑Elgin, IL‑IN‑WI 0.2790 0.3857 0.7233 27.7
Detroit‑Warren‑Dearborn, MI 0.2795 0.4191 0.6671 33.3
San Francisco‑Oakland‑Hayward, CA 0.2809 0.3516 0.7989 20.1
Raleigh, NC 0.2816 0.4025 0.6996 30.0
New York‑Newark‑Jersey City, NY‑NJ‑PA 0.2824 0.3695 0.7643 23.6
Phoenix‑Mesa‑Scottsdale, AZ 0.2851 0.3979 0.7165 28.3
Salt Lake City, UT 0.2867 0.4362 0.6573 34.3
Charlotte‑Concord‑Gastonia, NC‑SC 0.2952 0.4204 0.7021 29.8
Las Vegas‑Henderson‑Paradise, NV 0.2962 0.3768 0.7861 21.4
San Diego‑Carlsbad, CA 0.2970 0.3782 0.7853 21.5
Virginia Beach‑Norfolk‑Newport News, VA‑NC 0.2974 0.3990 0.7453 25.5
Miami‑Fort Lauderdale‑West Palm Beach, FL 0.2987 0.3497 0.8540 14.6
Oklahoma City, OK 0.3011 0.4434 0.6791 32.1
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Appendix 3

Interpreting the standardized indices of the generalized entropy 
family

According to Φ̃g

0.1
 , New Orleans is the MA with the highest standardized segregation, sur‑

passing Pittsburgh, which occupies the first position with indices Φ̃g

1
 and Φ̃g

2
 (Fig. 6). This 

is because Φ̃g

0.1
 focuses much more on the intensity of underrepresentation, embodied in 

Φ
g

0.1
 , than on the group’s size, embodied in Φg∗

0.1
 . This underrepresentation is much higher 

in New Orleans than in Pittsburgh: white women are virtually absent from occupations that 
account for 6% of total employment in the former whereas this group accounts for less than 
2% in the latter.

Our illustration shows that standardization affects the various indices of the generalized 
entropy family differently. If α is close to zero, the rankings given by Φg

� and Φ̃g
𝛼 are very 

similar (Fig. 6). For � = 0.1 , the Spearman’s rank‑order correlation is 0.86. However, when 
α is high, the value of Φ̃g

𝛼 is strongly affected by the group’s size given that Φg∗

�  decreases 
dramatically when the size increases (Fig. 7) and this effect dominates over the differences 
in Φg

� . This explains the negative correlation (–0.55) that exists between Φ̃g

2
 and Φg

2
 (Fig. 6).

In light of these findings, standardizing the indices with 𝛼 > 2 does not seem recom‑
mendable since the ranking they provide is strongly affected by the relative size of the 
group. However, indices with a low value of �(𝛼 < 0.5 ) could be useful if one is especially 
interested in the underrepresentation of the group in occupations.

The remaining indices, Dg, Gg, and Φ
g

1
 , share a common pattern. They have very small 

(negative) correlations with their standardized versions (–0.03, –0.2, and –0.18, respec‑
tively), which suggests that standardization in these cases brings a certain balance between 
unevenness and distance to maximum segregation.

  

Table 4  (continued)

Metropolitan areas ranked by Dg Segregation indices  Popula‑
tion share 
of white 
women

D
g

D̃
g

D
g*

San Antonio‑New Braunfels, TX 0.3013 0.3600 0.8370 16.3
Dallas‑Fort Worth‑Arlington, TX 0.3044 0.3984 0.7640 23.6
Birmingham‑Hoover, AL 0.3050 0.4401 0.6930 30.7
Los Angeles‑Long Beach‑Anaheim, CA 0.3059 0.3594 0.8513 14.9
New Orleans‑Metairie, LA 0.3212 0.4360 0.7367 26.3
Memphis, TN‑MS‑AR 0.3257 0.4220 0.7718 22.8
Riverside‑San Bernardino‑Ontario, CA 0.3281 0.3911 0.8389 16.1
San Jose‑Sunnyvale‑Santa Clara, CA 0.3350 0.3954 0.8472 15.3
Houston‑The Woodlands‑Sugar Land, TX 0.3366 0.4090 0.8231 17.7
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Fig. 6  Standardized versus unstandardized local segregation indices in each MA
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Fig. 7  Maximum local segregation ( Dg∗, Gg∗, Φ
g∗

0.1
, Φ

g∗

0.5
, Φ

g∗

1
, and Φ

g∗

2
)
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