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Abstract: Scan planning of buildings under construction is a key issue for an efficient assessment
of work progress. This work presents an automatic method aimed to determinate the optimal
scan positions and the optimal route based on the use of Building Information Models (BIM) and
considering data completeness as stopping criteria. The method is considered for a Terrestrial Laser
Scanner mounted on a mobile robot following a stop & go procedure. The method starts by extracting
floor plans from the BIM model according to the planned construction status, and including geometry
and semantics of the building elements considered for construction control. The navigable space is
defined from a binary map considering a security distance to building elements. After a grid-based
and a triangulation-based distribution are implemented for generating scan position candidates, a
visibility analysis is carried out to determine the optimal number and position of scans. The optimal
route to visit all scan positions is addressed by using a probabilistic ant colony optimization algorithm.
The method has been tested in simulated and real buildings under very dissimilar conditions and
structural construction elements. The two approaches for generating scan position candidates are
evaluated and results show the triangulation-based distribution as the more efficient approach in
terms of processing and acquisition time, especially for large-scale buildings.

Keywords: BIM; control of execution; scan-vs-BIM; path planning; visibility; spatial analysis;
computational geometry

1. Introduction

The evolution of sensor technology in recent decades has made possible the acquisition of 3D
data in an accurate and quick way. This has stimulated interest in its use in different fields, especially
in Architecture, Engineering and Construction (AEC). Within these disciplines, Image-Based and
Time-of-Flight-Based technologies have been the two major technologies used to acquire spatial data [1].

Light Detection and Ranging (LiDAR) sensors such as both Terrestrial and Mobile Laser Scanners
(TLS and MLS) provide highly accurate geometric data in point cloud format. While data acquisition
process by TLS is statically realized from specific locations, MLS dynamically captures spatial data
along a trajectory [2]. Increasing 3D spatial acquisitions with LiDAR devices has raised an interest
in automated processing of point clouds in researchers of remote sensing, computer vision and
robotic communities.

The availability of geometric information of the construction elements “as is” with high accuracy
has motivated the use of TLS in the construction industry. This information, known as as-built data,
is of great value for construction site monitoring [3]. Traditionally, the assessment of construction
elements was done manually—both the data collection process and the data review process—that
meant to inaccurate and error-prone evaluations. Since the 2000s, several researchers have pointed to
the need to automate the processes of monitoring and control of the progress of the construction in
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order to overcome the inaccuracies of manual methods [4,5]. In line with this, some methods have
been proposed [6,7].

While TLS provides accurate 3D data, in many instances planned drawings consist of 2D plans
that makes the quality control of constructed building elements difficult. Fortunately, the growing use
of Building Information Models (BIM) makes 3D drawings available [8], and what is more important,
the organization of information according to the planned construction status. Several studies have
indicated that the use of BIM technology in construction projects improves the construction quality
control process because the availability of BIM models is essential to accurately compare as-designed
and as-built building components [9,10].

The increased use of BIM models, together with the use of scanning lasers in civil engineering,
has awakened interest in the integration of both in recent decades. Many efforts have focused on
the automatic generation of BIM models from 3D point clouds acquired as-built for the purpose of
obtaining models of real structural elements with an accuracy of a few millimeters [11]. This technique,
coined as scan-to-BIM, continues to be studied in order to optimize the entire process through the
development of applications that allow BIM models to be generated automatically and efficiently [12].
However, this technique is not suitable for tracking the progress of construction elements, as the
unambiguous identification of objects is not guaranteed. Scan-vs-BIM approach is conceived as the
comparison of scan data and BIM model by aligning 3D point clouds in the same coordinate system as
the BIM model [13].

Generally, scanning is a time-consuming task, so minimizing the number of scanning operations
is essential for efficient scanning planning. In addition, data acquisition must be successful in terms of
integrity. Determining the next position in which the scanner should be placed is known as the Next
Best View (NBV) problem, and is widely addressed in the areas of 3D recognition and reconstruction of
both objects and environments. Usually, scan positions known as viewpoints are calculated beforehand,
and then an estimate is made of the parts of the scene that would be acquired from each viewpoint.
Many methods have been proposed to solve this problem, most of them without prior knowledge of
the scene [14,15]. If data acquisition is done in indoors, 3D scene data can be simplified to 2D map,
which implies a significant reduction in computational requirements [16].

In this work, a method to determinate the optimal scan positions and the optimal route followed
by a stop & go system based on the use of BIM models, and considering data completeness as stopping
criteria, is presented. BIM models are used to extract floor plans according to the planned construction
status considered for construction control. The well-known DXF standard containing geometric
information of the building elements is used to calculate candidates to scan positions, which are
subsequently submitted to a visibility analysis using a ray-tracing algorithm. Next, scan positions are
optimized based on visibility and data completeness as stopping criteria, and a probabilistic ant colony
optimization algorithm is implemented to obtain a suboptimal route in a reasonable time. The output
data of the algorithm is used by a robotic unit, where a TLS is mounted, to conduct an autonomous
building acquisition. This work specifically addresses the following specific objectives:

• To compare two methods of scan position distribution (grid-based and triangular-based) and
select the one that shows the most robust behavior.

• To design a method adapted to the building complexity.
• To consider acquiring vertical elements, such as beams, from a two-dimensional perspective.
• To implement a route calculation and optimization method that joins scan positions

avoiding obstacles.

The remainder of the document is structured as follows. Section 2 collects the work related to the
problems present in our method which is described in Section 3. The experiments and results shown in
Section 4 demonstrate the applicability of the method. Finally, Section 5 is dedicated to concluding
the work.
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2. Related Work

This section deals with the review of the recent literature on scan planning in indoor environments
mostly for control of execution, followed by a review of methodologies addressing the distribution of
the navigable space.

2.1. Scan-Planning in Indoor Environments

The planning of 3D data acquisition task is a typical issue in computer vision. Generally, a sensor
is used to collect geometric data of close objects in the environment. The quality of the acquired data
is highly dependent on the position where the sensor is located with regard to the target. Hence,
determining the best positions to carry out data acquisition is a key issue in scan-planning.

Scan-planning can be classified as model-based or non-model-based whether previous knowledge
of the scene is available or not available, respectively [17]. If the scene is previously known, optimal
scan positions are selected from the analysis of the scene, so that scan positions are determined before
of the scanning process. If the scene is not known, the problem is generally formulated as an NBV (Next
Best View) problem by which the next best scan position is determined after each scan, considering
just the partially acquired scene.

Several methodologies address scan-planning of buildings assuming previous knowledge of the
scene. Although this issue is well-known in computational geometry as the art-gallery-problem, a
realistic solution should consider certain properties of both the sensor and the objects to be acquired.
A variant of the art-gallery problem, taking into account laser constraints such as range and incidence
angle, is proposed by González-Baños [18]. A 2D map composed by polygons representing the
navigable space and holes assumed as obstacles influencing visibility. The navigable space is randomly
sampled to generate an arbitrary number of candidate positions. Then, a ray-sweep algorithm is
proposed to obtain a visibility polygon of every candidate position and the selection of scan positions is
approached as a set cover problem. This methodology is extended by including more laser constraints
such as the minimum and maximum range and angle [19]. A similar solution is proposed by
Soudarissanane et al. [16], but in this case, the navigable space is gridded to generate the candidate
positions and the visibility analysis of all positions can be time-consuming when dealing with large
facilities. Jia et al. [20] propose a more efficient approach to candidate generation. A coarse grid is used
for obtain a first set of positions, their suitability for acquisition is evaluated for a proposed Weighted
Greedy Algorithm (WGA). A hierarchical strategy is carried out to densify the network distribution in
order to achieve a comprehensive scan of the scene by evaluating the smallest number of candidates.
The method is geared to outdoors environments and only walls are considered. Biswas el al. [21]
also employ a grid to generate candidate positions. Nevertheless, visibility analysis is carried out
in the 3D space and semantic information of building elements is obtained from the input model to
direct the capture just to structural elements. The input model is a BIM and the approach is validated
in a simple scene with circular columns uniformly distributed. Another recent approach is the one
presented by Elzaiady [22] in which polygons are extracted from an occupancy grid map (input).
Boundaries of polygons represent surfaces whose geometrical features should be collected by sensor.
Occlusions along the line of sight of sensor are taken into account for the visibility analysis but the
presence of holes on floors and the occlusions caused by the existence of horizontal structural elements
such as beams are not addressed. An approach aimed at scanning planning in large construction
environments is proposed by Zhang et al. [23]. Scanning positions are calculated from a set of manually
determined input points of interest called point goals. The optimization of process is conducted by a
“divide-and-conquer” strategy that groups point goals according to required level of detail (LOD) and
visibility. The method is tested and compared with scan plans created by experts in a real case from
outside the building.

Almost all model-based approaches provide blanket coverage; in other words, they do not take
advantage of semantic information from planned layouts, and more specifically, building horizontal
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elements such as beams or slabs are not taken into account. This information is relevant to direct the
scan acquisition to specific elements, such as, in the case of construction control and execution.

The recent developments in robotics and laser scanner technology have increased the attractiveness
for indoor acquisition, especially when scenes are big and traditional acquisition would be very time
consuming, and also in the case of unsafe environments such as industrial environments and electrical
substations. When data collection is conducted autonomously, the scan planning is commonly
formulated as the aforementioned NVB problem.

Although most of the recent methods are based on discretizing the space using 3D grids, some
methods have proposed the simplification of the problem into the 2D space. Surmann et al. [24]
simplify the geometry of a room to a 2D map, where horizontal lines represent walls and are labelled
as seen or unseen lines. A polygon is generated connecting seen lines and the navigable space is
determined by the boundaries of the polygon. Candidate positions are randomly generated and
evaluated by laser beam simulation varying incidence angle. Strand et al. [25] propose an approach
also based on projecting 3D data to a 2D map. In this case, each cell of the map has information about
occupancy. Empty cells are considered as candidate positions and a simulation of the laser beam is
performed from each of them.

The concept of a 3D occupancy map has been highly explored to solve the NBV problem.
Potthast et al. [26] propose a method based on observation probability. Using a ray-tracing algorithm,
the observation probability of each cell is assigned according to Markovian observability. The method
is tested in real case studies and large virtual cluttered environments.

In contrast to the previous work in which a binary map is generated, Adán et al. [27] label
the space into occupied, empty and occluded units. For this purpose, the scene is voxelized and
ceiling and floor are extracted to determine the boundary of scene. Next, a ray-tracing algorithm is
implemented to label the voxels into occupied, empty and occluded. Next, the voxel space is projected
to a 2D image with labelled pixels, and the next scanning position corresponds to the empty pixel from
which the largest number of occluded pixels are observable. Quintana et al. [28] extend the previous
work in a way that the NBV problem is devoted to completing the acquisition of building structural
elements, and consequently, floors, walls, columns and ceilings are recognized in successive scans.
Prieto el al. [29] also consider the automatic 3D scanning of walls, ceilings and floors in furnished
buildings. The accumulated spatial data is registered using an ICP (Iterative Closest Point) algorithm,
and an obstacle map is constructed. Voxels are classified and evaluated by probabilistic decision
function from a set of candidate positions within the obstacle map. The next scan position is chosen
according to the probabilities calculated in the previous step. González-de Santos et al. [30] extend
previous approaches to also consider windows and doors, which are identified through a visibility
analysis. In this way, once acquisition is completed for one room, the existence of doors determines
subsequent next best scans.

With regard to previous approaches, this work focuses on the selection of optimal scan positions
and the calculation of the optimal route that connects them. Since the method uses a BIM as input, the
environment and the types of elements that compose it are known. The authors have opted for a 2D
approach for two reasons: the TLS is positioned at a fixed height in the robotic unit, and processing time
is improved by eliminating one spatial dimension. Route planning is typically ignored in scan-planning
approaches. In this work, a probabilistic ant colony optimization algorithm is implemented considering
the building geometry. The subsequent registration process between scans is not part of the present
work, although it has been considered an option to place scanning positions on the doors to facilitate
the overlap between scans. The method is tested in real and complex scenarios with satisfactory results.

2.2. Discretization of the Navigable Space

Scan planning requires an initial evaluation of accessibility to scan positions for the acquisition
system. To accomplish this, the knowledge of space through which the system can move free of
collisions is essential. The distribution, structuration or discretization of this space, commonly defined
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as navigable space, is a key process in scan planning. The challenge of this process comes from the
continuous nature of the navigable space and the influence of the result on the computational cost of
subsequent steps, especially in complex scenes. The discretization of the navigable space should be
carried out in a way that it is represented by the minimum number of units satisfying the accuracy
required by the application. Detailed reviews of how indoor space can be represented have already
been published in recent years [31,32].

The simplest representation of an indoor navigable space is the adopted by standards such as
IndoorGML to depict the connectivity relations between rooms. One node represents one room and
topology between rooms is represented by using the dual graph [33]. However, this representation is
often too simple to be representative of a real path, especially for large scenes [34].

Methods based on Medial-Axis-Transformation (MAT) are used frequently to represent indoor
environments (rooms, corridors, etc.) in order to stablish topological relations between spaces [35,36].
Lee [35] proposes a MAT-based method for generating skeleton structures of simple polygons from
geometric information only; the algorithm was named Straight-MAT. Another approach based on
centerline algorithm and considering previous semantic knowledge is used by Meijers et al. [36] to
represent corridors.

In contrast to previous methods, grid-based representations provide a dense and uniform
structuration of the navigable space [37]. However, the trade-off between resolution and computational
effort is an inherent issue in regular grid techniques. A fine-grained grid entails a high consumption of
computational resources especially in the processing of large environments models [31].

Due to their simplicity, grid-based representations are widely used in robotics for the creation of
occupancy maps. These representations can be addressed from a 2D [38–40] or 3D [41] point of view.
For example, Li et al. [40] structure the navigable space as 2D squared cells represented by one node
and identified by an attribute according to the building element they represent. Bemmelen et al. [38]
extend the latter structure adding nodes at sides of squares with the goal to enable more directions
between adjacent cells during space navigation. Joo et al. [42] generate a topological grid-map by
means door detection from grid occupancy map. Equivalent three-dimensional grid discretization is
known in literature as “voxelization” and the unit basic of this structure is a voxel.

To enhance efficiency of operations with high density grid representations,
hierarchical-organization structures such as quadtrees [42] and octrees [43,44] are commonly
employed in 2D and 3D spaces respectively. Detailed representation is obtained by means of the
recursive subdivision of cells or voxels.

Voronoi diagrams are also one of the most fundamental data structures in computational
geometry [45]. The plane is partitioned in polygonal regions called Voronoi regions from a set of
points. The generalization of Voronoi Diagrams (VD) allows the space partition not only from a
set of points but also from line segments [45]. Based on VD, Wallgrün [46] proposes a hierarchical
network graph for mobile robot navigation. Vertex of Voronoi Diagram are labelled with information
of distance and angles related to seed points that correspond to obstacles boundaries. Length of edges
and relative position of nodes are also taken into account. Next, this information is used to determinate
the relevance of each vertex in the navigational network.

Boguslawski et al. [47] use VD to create the proposed Variable Density Network (VDN). First, each
subspace (such as rooms and corridors) is represented by a cell and abstracted as a node. Adjacency of
subspaces is represented by linking their respective nodes with an edge. Then, VD is generated from
door nodes and concave corners of the previous structure. An iterative process of re-densification is
carried out considering two arbitrary parameters. New points are added to the original VD for those
cases in which segments are longer than a certain threshold. The number of iterations is limited.

Many navigational approaches are based on a dual representation of VD known as Delaunay
Triangulation (DT). This technique consists in the union of initial sites of adjacent Voronoi regions
generating a partition composed of triangles. In navigational network construction it is common
to impose restrictions to the segments that form the triangles, this variant of the method is called
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Constrained Delaunay Triangulation (CDT). Lamarche et al. [48] structure virtual complex environments
into convex cells applying a two-step division process. First, narrowness in navigable space are
detected by using a modified CDT. Then, resulting space division is simplified grouping triangles into
convex cells.

Space navigable division is also carried out in two phases by Krūminaitė et al. [49]. In the first
stage, the space is classified as navigable and non-navigable according to previously defined patterns of
human behavior. The second step consists of the division of navigable space by means a CTD. Centroids
of triangles obtained in the previous step are calculated and joined to design a navigation network.

A recent method considers a classified point cloud as a model itself for navigational purposes [50].
Segments of point clouds corresponding to floor elements, previously classified as ramps, steps, etc., are
downsampled, considering a minimum distance between points, and resulting points are considered
the nodes of the navigational graph [49].

With regard to previous approaches, it has been observed that the grid-based algorithm presents
an unwanted behavior in large and complex floor plans. For this reason, together with the grid-base
method, a triangulation-based method has been implemented to give the end user the option to choose
the most appropriate distribution for their case study. Both methods have been compared in terms of
density and distribution of scan positions, which is a critical issue in large and complex scenes. When
delimiting the navigable and accessible space by the robotic unit, its parameters have been considered
in order to delimit these spaces correctly.

3. Methodology

The general workflow of the method is represented in Figure 1. The input of the method is a BIM
model in which building information is managed according to an execution plan, and outputs are the
optimal scan positions and the optimal route for visiting all scan positions once.
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Figure 1. General workflow of the method.

3.1. From 3D to 2D

As this method is planned for large-scale buildings, 3D BIM elements are converted to a 2D
plane in order to lighten computational effort [16]. Scan process is planned for an acquisition system
considering the plane XY. For this purpose, BIM elements are exported to DXF according to the planned
construction status that is considered for control of execution. Semantic information regarding the
nature of the building elements is preserved as layer names, what enables the direct acquisition process
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to relevant elements. Then, geometric elements referred as entities in CAD (i.e., lines, polygons, arcs
and circles) are discretized as equidistant points E to be used for further steps (Figure 2).Remote Sens. 2019, 11, x FOR PEER REVIEW 7 of 26 
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equidistant points.

In the case of linear elements represented by vertices, such as lines and polygons, the number of
points E of each straight line is determined as the minimum number of segments of length ddis needed
to represent the entire line. In elements represented geometrically by a central point and radius, such
as circles and arcs, the discretization points E are generated according to the angular resolution defined
by the following equation:

resang =
ddis

radius
(1)

3.2. Discretization of the Navigable Space

The space through which the acquisition system can move free of collisions is considered as the
navigable space. Consequently, it can be easily defined by the boundary of floors, considering the
space occupied by vertical building elements and a security distance dsec determined by the robotic
unit dimensions. The distance dsec is defined by the user as the minimal distance between central point
of the platform and the nearest obstacle. In case of rooms connected by doors, the door width must
ensure accessibility.

The continuous nature of the navigable space requires a discretization in a way that is it distributed
into candidate scan positions, known as those theoretical places, in which the scan can be placed.
The number of scan positions highly influences the computational cost of the process. Therefore,
discretization should be performed in a way that navigable space is correctly represented by the
minimum number of points.

Contour of the navigable space is represented as the boundaries of a polygon P (Figure 3a).
Polygons are defined by a set of vertices organized in counterclockwise direction V = {v1, . . . , vn}.
In case of the existence of holes in the navigable space, vertices are defined clockwise. This representation
is typical from early stages of the construction process in which rooms are not still constructed, and holes
are caused by the planning of stairs, elevators, pipes, etc. If rooms are represented, P is decomposed in
smaller navigable polygons Pn (Figure 3b). This subdivision only indicates when constructed walls
separate different spaces. In which case, polygons define navigable space P = {P0, . . . , Pr}, where Pi

with i = 0, . . . , r corresponds to the polygon that represents the room i. As well as P, each Pi can be
defined by its vertices Vi = {Vi1, . . . , Vim}, where m is the number of vertices each room/corridor.
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Figure 3. Geometric representation of navigable space (a) in case of the existence of holes and columns
(blue lines), (b) in case of the existence of rooms.

3.2.1. Grid-Based Distribution

The implemented grid-based method consists in a regular tessellation that provides a partition
of the space in regular squared cells Pn = {Cn1 ∪Cn2 ∪ . . .∪Cnm} Pn (Figure 4a). If rooms Pn are
represented in the DXF, the space partition is carried out separately by each room. A local coordinate
system is adopted to distribute the candidate scan positions and grid resolution is adjusted to room
size (Figure 4b).
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Final candidate positions are in green, while discarded candidate positions are in red. Local coordinate
systems are represented.

The vertices of cells Vc, that compose the grid Cn = {Vcn1, Vcn2, Vcn3, Vcn4} constitute the candidate
positions Scand = Vc. Grid-based methods yield uniform and dense space divisions. However, the size of
candidate positions obtained from this distribution may involve higher computational costs, especially
in larger scenes. The existence of holes H and a security distance dsec defined by the robotic unit are used
for filtering final candidate scan positions {Scand : Scand ∩H} ← ∅ and {Scand : |Scand, E| < dsec} ← ∅ ,
those in which the system can be placed to perform acquisition (Figure 4).

3.2.2. Triangulation-Based Distribution

Complex floorplans usually require high-density grids, but the analysis is very time consuming.
In order to overcome the limitations of grid-based distribution, a triangulation distribution based on
the well-known Delaunay Triangulation is implemented (Figure 5).
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Figure 5. Workflow of the triangulation process.

Before applied Delaunay Triangulation, seed points Se are necessary to generate a Voronoi
diagram. Vertices V of lines defining building elements (i.e., walls) and centers of circles C (i.e., circular
cross-section columns) are used as seed points for Voronoi process Se ← {V, C} . In case the distance
between input points is higher than dmax, new seed points Se are generated. The Euclidean distance d of
each segment is calculated and compared with a distance dmax. Segments d > dmax are split generating
new evenly spaced points. Figure 6 shows a schema of the seed generation approach. In the case of an
early stage of the construction, in which the floor plan is not divided into rooms, floor contour vertices
and column centers are considered as seed points. In the case of an indoor scene divided into rooms
Pi, each room is individually processed, analogue to Section 3.2.1. In the Voronoi process, new seed
Si points in the interior of the room are generated. Se and Si are used as input for the discretization
process based on a Delaunay Triangulation. This step is essential for a good distribution of candidate
scan positions, especially in big rooms with simple geometry.
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Figure 6. Generation of seed points Se (in blue) for triangulation process for: (a) column, (b) polygon
with side < dmin and (c) polygon with side < dmin.

Once seed points {Se, Si} are obtained and Delaunay Triangulation is implemented, candidates
to scan positions Scand are filtered in order to discard those candidates out of the navigable space or
representing low-interest areas (Figure 7). In the first case, triangles whose centroid are outside of the
navigable space are removed from the selection. This happens mainly in concave spaces. In the second
case, triangles with very small angles and sides are discarded considering by angle αmin Equation (2),
being lmin the minor side of the triangle. Also, the candidate positions must fulfil with the constrains of
dimension and mobility of the robotic unit.

sin(αmin) =
lmin
6lmin

(2)
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Figure 7. Navigable space is partitioned by applying Delaunay triangulation process. (a) Since the
polygon that contains navigable space may be concave, some positions obtained after the division
can fall out of navigable space (orange). Small triangles are discarded according the parameters lmin

and αmin (yellow). (b) A filtering process is conducted to retrieve positions are inside navigable space
(points generated by Voronoi process are included). Subsequently, points near obstacles are discarded
(red) according to the defined security distance.

One weaknesses of candidate position generation by using a triangulation method is that the
density of candidate positions may be insufficient to provide a good coverage. Density is defined as the
ratio between the number candidate positions Scand and the polygon area containing them. In order to
ensure an acceptable density, triangulation is iterated for those rooms with density inferior to densmin,
generating new candidates.

3.3. Visibility Analysis

In order to evaluate the suitability of each candidate scan position and to determinate the coverage
of the scene, a visibility analysis is performed for all candidates Scand. This process is based on a ray
tracing algorithm that simulates the laser beam and establishes the surface theoretically acquired by a
laser scanner taking into account scanner range r and field of view v.

For this purpose, the implemented method (Figure 8a) is similar to Diaz-Vilariño et al. [51].
Candidate positions are located in a binary occupancy map I = (Ix,Iy). Then, the cells crossed by rays
simulated between laser position and target cells (all cells in the field of view and range of the laser)
are calculated by Bresenham´s line algorithm [52]. After this step, visible cells for each candidate to
scan position are obtained Iv.
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Figure 8. Bresenham algorithm is used to determinate the map cells that are crossed by simulated beam
(gray) in visibility analysis. (a) target cell (red) is wrongly classified as visible since it is not occluded by
other cells representing building elements, (b) target point (green) is correctly classified as occluded in
the ray-casting process.
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Visibility analysis by Bresenham´s line algorithm can lead to errors in visibility estimation when
vertical elements are not perpendicularly aligned with X and Y axes in a Cartesian Coordinate System
(Figure 8b). For this reason, the DXF plane must be rotated to align principal elements with XY axes.

3.4. Scan Optimization

Once visibility analysis is completed, theoretical visible surfaces from each candidate position are
known. If the distribution of candidates is robust in terms of coverage, building elements are visible
from different candidate positions.

Since the goal of this method is to obtain the minimum number of scanning positions Sscan for
avoiding the acquisition of repetitive data, an optimization is performed by using a backtracking
algorithm [53]. Final scan positions are determined considering the theoretical surface acquirable a
from each position (Figure 9). The best scan position is the one from which a larger number of cells
are visible. The rest of the scan positions are being selected based on the number of visible cells that
can provide to the already selected positions Sscan ←

{
Scand : max(a)

}
. The process is repeated until a

minimum of coverage cmin is accomplished (stopping criteria). Since semantic information is preserved
from the BIM model, scan optimization can be directed to the control of specific elements in the scene.
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Figure 9. Scan optimization process is carried out from candidate positions (green points) to obtain
scanning positions (red points). In each iteration the candidate position is selected which maximizes the
theoretically acquirable surface (red lines). The black lines represent the surface theoretically acquired
from the previously selected positions.

3.5. Optimal Routing

Unlike most scan-planning approaches, the calculation of an optimal route for scanning position
is tackled. This problem can be raised as the well-known travelling salesman problem (TSP) that
is formulated as: given n cities identified by its positions, to determine a path so that all cities are
visited just once, travelling as little distance as possible. This problem is framed within the NP-hard
complexity problems, wherefore the optimal solution cannot be obtained in a reasonable time. Typically,
the problem is solved by means heuristic approaches that conduct sub-optimal solutions within a
reasonable time. This work implements a probabilistic algorithm based on the ant colony algorithm
family [54]. This algorithm is based on modelling the behavior observed in real ants to find short
paths between food sources and their nest. The result is an emergent behavior caused from each ant’s
preference to follow trail pheromones deposited by other ants.

In order to obtain the optimal route, distances between pairs of scan positions Sscan have to be
obtained, and for this purpose, a navigable graph G = {N,E} is created. As grid-based graphs are more
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suitable for route calculation than triangulation-based graphs [31], the construction of the navigable
graph is based on a regular grid.

First, the navigable space is gridded. Vertices of grid cells Vc correspond to graph nodes N.
Adjacency between nodes is studied to create the adjacency matrix. Nodes are 8-connected [55]
forming edges E. Then, the accessibility of the edges is checked (Figure 10a). Edges crossed by
any non-navigable cell are removed. The location of scanning positions Sscan may not coincide
with the location of navigable nodes N, previously calculated because this process is independent
of candidate generation. In this case, scan positions are relocated to the nearest navigable nodes
Sscan ← {N : min|N, Sscan|} in order to calculate the optimal route (Figure 10b). In this way, accessibility
is ensured.
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Figure 10. (a) Graph nodes are 8-connected by edges and the ones intersecting with any no-navigable
space are removed (magenta). (b) Scanning positions (red points) are relocated to nearest nodes to
them (blue points with red contour).

Once the navigable graph is created, the shortest path P = {Np,Ep} between each pair of scan
positions is calculated using Dijkstra algorithm [56]. This information is used to create a simplified
graph in which just nodes representing scan positions and distances between them are represented
(Figure 11). This simplified graph Gs = {Ns,Es} is used to implement the Ant colony optimization
algorithm for obtaining the optimal path.
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Figure 11. (a) A navigable graph composed by navigable (blue) and scanning (red) nodes is generated.
Then, navigable nodes are abstracted from graph and (b) a simpler one is represented only with
scanning nodes (red).

When navigable space is divided into rooms, a navigable graph is generated for each of them.
The scanning nodes are determined in the same way as explained above. Due to graph disconnection,
the optimal route calculation cannot be addressed with a global approach of the space. Accessible door
positions D are considered as connection nodes between rooms N← {N, D} (Figure 12).
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Figure 12. (a) A subgraph is generated separately for each room. (b) The global graph consists of all
subgraphs joined by new nodes corresponding to door positions (yellow).

From room polygonal representation by using simple polygons arises a particular issue: when
there are rooms within other rooms. In this case, the navigable space of inner room must be subtracted
from outer room space. Doors between both rooms are considered as doors of the exterior room, even
though boundaries do not belong to its contour.

4. Results and Discussion

This section is organized in three sub-sections. The first section presents the data and instrument
employed for testing the described method. The second section collects the results obtained and the
discussion of them. The third section shows the applicability of the proposed method in a real scenario
of an under-construction building.

4.1. Instruments and Data

The method described in this paper has been tested in several cases study, some of them provided
by the International Society for Photogrammetry and Remote Sensing (ISPRS) Benchmark on Indoor
Modelling [57]. Previous results have been already published in [51].

The developed method is focused on an acquisition system composed by a TLS mounted on top of
an autonomous mobile robot. The TLS employed is FARO Focus3D X 330 [57]. The operating mode of
the acquisition system follows a strategy known as stop & go. Robot moves to next scanning position,
stop at this one and then laser scanner realized the acquisition task. This operation is repeated until
all scanning positions are reached by mobile robot. The local planning of robot mobile is out of the
framework of this work.

4.2. Results

4.2.1. Parameters and Values

In order to apply the method and guarantee reproducibility, parameters and values are summarized
in Table 1. General parameters are required in any case while specific parameters are necessary
depending on the scenario and the distribution method. For the comparison of decomposition space
methods, the values do not vary in all tests. Some results obtained with different parameters are
showed to assess their influence.
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Table 1. Input parameters.

Type of Parameter Parameter Abbreviation Value

Discretization resolution ddis 50 mm
Laser range r 5 m

Field of view v 360º
General Security Distance dsec 0.7 m

Coverage cmin 90%

Specifics
Resolution grid rgrid 1.0 m

Door accessibility door_access 0.7 m
Doors as scanning position door_scan True/False

The coverage degree cmin is given by the ratio of theoretical area that must be acquired from all
visible area of interest. The cmin parameter supposes the stop criterion in the selection of the best
scanning positions. The process ends when the ratio of structural acquired elements is greater than or
equal to cmin.

4.2.2. From 3D to 2D

BIM models are exported to 2D CAD model with DXF format. The Figure 13 shows (a) the
BIM model and (b) and (c) the 2D models—case studies—extracted from the BIM model of the case
studies. For each case study, two virtual scenarios have been proposed. On one hand, a structural
stage considering beams and columns for control of execution, and the existence of stairs as elements
influencing the visibility. The second scenario is composed by columns, walls, stairs and doors. Rooms
are also defined. Beams have been manually created to perform the simulation, since they were not
represented in the BIM.
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According to input requirements, the entities of the facilities are arranged by layers. The definition
of floor layer, which enclose the navigable space, is a preliminary condition. Auxiliary layers, such as
rooms or doors, can be used to improve the efficient of the processing.

4.2.3. Distribution of the Navigable Space

The discretization of continuous elements has generated a variable number of units depending
on number and size of structural elements. The number of units for res_disc = 50 mm is collected in
Table 2.

Table 2. Number of units of discretization.

Scenario BEAMS COLUMNS STAIRS WALLS TOTAL

Case 1 (Structural) 9066 1038 891 - 10995
Case 1 (Rooms) - 1038 891 6296 8225

Case 2 (Structural) 6044 491 682 - 7217
Case 2 (Rooms) - 491 682 5690 6863
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The number of candidate scan positions depends on the discretization method and construction
phase. Figures 14 and 15 show candidate scan positions generated by grid-based method and
triangulation-based methods of space partition implemented. The results confirm the expected
behaviour of both methods, grid-based method led to more regular distribution than triangulation-based
method. In structural phase, grid-based method generates more candidates than triangulation. With
rooms, triangulation provides more density distributions. The number of scan positions is listed in
Table 3.
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Table 3. Results distribution of candidate positions.

Case of Study Scenario Distribution Number of Candidates Reachable Candidates Time (s)

Case 1
Structural

Grid-based 374 247 0.83
Triangulation-based 131 80 0.33

Rooms
Grid-based 297 163 0.83

Triangulation-based 368 229 1.06

Case 2
Structural

Grid-based 214 182 0.80
Triangulation-based 65 35 1.10

Rooms
Grid-based 183 105 0.79

Triangulation-based 233 138 0.68



Remote Sens. 2019, 11, 1963 16 of 26

Remote Sens. 2019, 11, x FOR PEER REVIEW 15 of 26 

 

With rooms, triangulation provides more density distributions. The number of scan positions is listed 
in Table 3.  

 

Figure 14. Candidate positions generated by both discretization methods in case study 1: (a) grid-
based method in structural phase, (b) triangulation-based method in structural phase, (c) grid-based 
method with rooms and d) triangulation-based method with rooms. Horizontal and vertical elements 
are displayed in magenta and black respectively. Green points represent position reachable by robotic 
system, unreachable positions are depicted in red. 

 
Figure 15. Candidate positions generated by both discretization methods in case study 2.

Based on these results, the implemented triangulation process provides two main advantages
respect to grid-based method for scan-planning in indoor environments. Fewer positions in the
structural phase reduces the computational cost of testing each candidate. A greater density of
positions in presence of walls dividing space into room offers enhancement in terms of coverage.
The two smallest rooms (Figures 14 and 15) are only well partitioned with triangulation-distribution.

The processing times of both discretization methods are similar, in most cases, grid-based is
slightly faster than triangulation-based. However, the generation of candidate scan positions has less
influence in total time than visibility analysis.

4.2.4. Visibility Analysis

Visibility analysis is a critical procedure in terms of time and completeness. Each candidate
position is tested, so the number of candidates have repercussions in execution time. Also, the number
of discretization units is relevant, although only those within the range of the laser scanner l_rng
are analyzed. Completeness in this process is understood as the ratio of visible elements from all
candidates. It can be used as a measure to evaluate the distributions obtained.

Results of visibility analysis (Figures 16 and 17) conducted in the four case studies are gathered
in Table 4. The level completeness is greater for denser distributions. However, this correlation
differs depending on discretization-method and construction phase. The grid-based method provides
distributions denser than triangulation in structural phase, but the degree of wholeness is not greater.
In spaces separated by rooms, triangulation supply a significant better visibility coverage with a
decreased density about 40% in the worst case.
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Figure 16. Visibility analysis results obtained from candidates generated in case study 1: (a) grid-based
candidate distribution in structural phase, (b) triangulation-based candidate distribution in structural
phase, (c) grid-based candidate distribution with rooms and (d) triangulation-based candidate
distribution with rooms. Elements determined as visible for analysis process are depicted in green,
black points represent no visible elements.
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Table 4. Results of visibility analysis.

Scenario Units To Be
Acquired Method Candidate

Positions
Visible
Units

Time
(s)

Avg.
Time (s)

Case 1 (structural) 10104
Grid-based 247 9864 15.66 0.063

Triangulation-based 80 9714 4.73 0.059

Case 2 (structural) 6535
Grid-based 182 6230 7.73 0.042

Triangulation-based 35 6173 1.53 0.043

Case 1 (Rooms) 7334
Grid-based 163 3940 2.45 0.015

Triangulation-based 229 4260 3.78 0.017

Case 2 (Rooms) 6181
Grid-based 105 3193 1.69 0.016

Triangulation-based 138 3417 2.18 0.016

With regard to processing time, there is a correlation between the number of candidate positions
and the execution time of the process. In contrast to what was observed in the completeness analysis,
the processing time seems independent of the partitioning method used. The main relevance, in terms
of time, is related to construction phase and is more relevant in structural phase. With rooms, the range
of the laser is restricted to rooms. In order to evaluate the influence of laser scanner range, structural
phase of case study 1 has been tested with l_rng = 10 m Table 5).

Table 5. Comparison between different l_rng in structural phase of case study 1.

l_rng 5 m 10 m

Grid-based
units of visible elements 9864 units 9967 units

time consumed 15.66 s 89.59 s

Triangulation-based units of visible elements 9714 units 9963 units
time consumed 4.73 s 21.18 s

To check the raytracing in the visibility analysis in case studies not aligned with the XY axes of
Cartesian Coordinates, case study 1 has been rotated 45º on the Z axis. The visibility analysis on case
study 1 rotated is shown in Figure 18. In most of areas of the scene, the behaviour of the algorithm is
right except in the framed area because the external wall is considered as visible (double green line).

4.2.5. Scan Optimization

Table 6 shows that the number of selected positions is similar between both discretization methods.
The time consumed by the optimization process depends on the number of candidate scan positions.
The result of this process is shown in Figures 19 and 20. For the selection of optimal positions, laser
constraints, such as incidence angle, density or overlapping, are not regarded. This could compromise
the quality of acquired data and cause problems in further registration. As this work is framed in indoor
acquisition, short laser range is employed (5–10 m) therefore the effect of angle of incidence is minor [58].
Despite the fact that overlapping is not taken into account during optimization, door_scan parameter
enables door locations can be used as scanning positions in order to provide the registration task.
Doors locations are added after optimization and they have no influence in scan optimization process.



Remote Sens. 2019, 11, 1963 19 of 26

Remote Sens. 2019, 11, x FOR PEER REVIEW 18 of 26 

 

With regard to processing time, there is a correlation between the number of candidate positions 
and the execution time of the process. In contrast to what was observed in the completeness analysis, 
the processing time seems independent of the partitioning method used. The main relevance, in terms 
of time, is related to construction phase and is more relevant in structural phase. With rooms, the 
range of the laser is restricted to rooms. In order to evaluate the influence of laser scanner range, 
structural phase of case study 1 has been tested with l_rng = 10 m Table 5). 

Table 5. Comparison between different l_rng in structural phase of case study 1. 

. l_rng 5 m 10 m 

Grid-based units of visible elements 9864 units 9967 units 
time consumed 15.66 s 89.59 s 

Triangulation-based units of visible elements 9714 units 9963 units 
time consumed 4.73 s 21.18 s 

To check the raytracing in the visibility analysis in case studies not aligned with the XY axes of 
Cartesian Coordinates, case study 1 has been rotated 45º on the Z axis. The visibility analysis on case 
study 1 rotated is shown in Figure 18. In most of areas of the scene, the behaviour of the algorithm is 
right except in the framed area because the external wall is considered as visible (double green line).  

 

Figure 18. Visibility analysis of case study 1 original (a) and rotated (b). Visible elements are coloured 
in green, while black zones correspond to areas of element to be acquired are not visible from any 
candidate position. 

Figure 18. Visibility analysis of case study 1 original (a) and rotated (b). Visible elements are coloured
in green, while black zones correspond to areas of element to be acquired are not visible from any
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Table 6. Results of optimization process.

Scenario Method Candidate
Positions

Scanning
Positions Acquired (%) Time (s)

Case 1 (structural) Grid-based 247 10 90.67 1.94
Triangulation-based 80 10 90.71 0.58

Case 2 (structural) Grid-based 182 7 90.48 0.92
Triangulation-based 35 7 90.07 0.17

Case 1 (Rooms) Grid-based 163 17 90.36 1.36
Triangulation-based 229 19 90.71 2.19

Case 2 (Rooms) Grid-based 105 13 92.48 0.71
Triangulation-based 138 14 90.31 0.97
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Figure 19. Optimization scan position result in case study 1: (a) grid-based method, (b) triangulation-based
method, (c) grid-based with scan positions in doors and (d) triangulation-based method with scan positions
in doors. Color code: scan positions (red points), candidates scan positions (gray points), acquired
elements (green), non-acquired elements (black).
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4.2.6. Optimal Route

The initial grid resolution is 1 m and the algorithm automatically reduces it until satisfied
den_grid_min and max_err_dist. The density of the node distribution is not uniform because a subgraph
is calculated for each room individually. Table 7 lists the processing times for the network creation,
the route calculation and the route distance. Optimal route is obtained from navigable network by
applying ant algorithm. Figures 21 and 22 show calculated optimal routes for the case of study 1 and 2,
respectively. As expected, total distance is in accordance with vertical elements of the navigable space
and not with candidate generation process.

Table 7. Results optimal route calculation.

Scenario Method Scanning
Positions

Time Graph
Generation (s)

Route
Distance (m)

Time Route
Calculation (s)

Case 1
(structural)

Grid-based 10 2.35 55.61 0.15
Triangulation-based 10 2.38 57.02 0.15

Case 2
(structural)

Grid-based 7 1.58 42.42 0.06
Triangulation-based 7 1.55 44.59 0.05

Case 1 (Rooms) Grid-based 17 3.02 103.99 0.63
Triangulation-based 19 4.27 100.34 0.94

Case 2 (Rooms) Grid-based 13 1.87 88.10 0.29
Triangulation-based 14 1.89 87.27 0.35Remote Sens. 2019, 11, x FOR PEER REVIEW 21 of 26 

 

 

Figure 21. Optimal route calculated in case study 1 whose scanning positions were obtained by: (a) 
grid-based method in structural phase, (b) triangulation-based method in structural phase, (c) grid-
based method with rooms and (d) triangulation-based method with rooms. Horizontal and vertical 
elements are displayed in magenta and black respectively. Green points represent start and end 
scanning position, the remaining ones are depicted in red. 
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Figure 21. Optimal route calculated in case study 1 whose scanning positions were obtained by:
(a) grid-based method in structural phase, (b) triangulation-based method in structural phase,
(c) grid-based method with rooms and (d) triangulation-based method with rooms. Horizontal
and vertical elements are displayed in magenta and black respectively. Green points represent start
and end scanning position, the remaining ones are depicted in red.
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In order to avoid subsequent overlapping problems in registration, door positions can be added
to route calculation. Figure 23 shows that the optimal route with door positions is not much longer
than the route with only optimal scanning positions.
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4.3. Application in A Real Case Study

This section presents the results of the entire process from the BIM model to obtaining a point
cloud acquired by the acquisition system described in Section 4.1.

The BIM model corresponds to a building under construction during the test in the city of
Badalona, Spain. The results shown here comply with one of the floors of the building (highlighted in
red in the BIM model shown in Figure 24).

The values of the parameters used to generate the scanning plan are the same as those used in
Section 4.2. Figure 23 shows the most relevant results of the process such as the calculated scanning
positions and the subsequent optimal route. The calculation of the optimal scan positions took less
than 1 second while the optimal route was approximately 2.5 seconds.
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Figure 23 also depicts the point cloud obtained by the acquisition system tracking the scan
planning calculated by the proposed algorithm. The planning consists of eleven scan positions on a
52.4 metre long route.

5. Conclusions

This paper presents a method to optimize the number and position of scans for Scan-vs-BIM
procedures following stop & go scanning method, and the shortest route for an autonomous robot
visiting once all the optimal scan positions. The input for the method is a DXF file exported by BIM in
which elements are organized by layers. Since semantic information is preserved, scan planning can
be directed to certain building elements, or types of elements. This is crucial for control of execution
processes. The method implements and compares two strategies for the distribution of scan position
candidates: a grid-based method and a triangulation-based method. This aspect is critical, especially in
large and complex scenes. Final scan positions are optimized based on visibility and data completeness
as stopping criteria, and a probabilistic ant colony optimization algorithm is implemented to obtain a
suboptimal route.

The method has been tested in two case studies performing a total of eight simulations. The method
has showed to be efficient in terms of time computing. Simulations were carried out for structural
elements including beams and columns, and for final elements including walls, doors, etc. In both cases,
the grid-based and the triangulation-based distribution have been tested and compared. The results
show that the triangulation-based method provides a robust solution in terms of completeness and
processing time. In addition, unlike most scan-planning approaches, the path planning problem has
been addressed, obtaining reasonable short routes. Scan positions have been correctly distributed on
the navigable surface, all of which are accessible by the robotic unit. Scan positions are not too close to
each other or to walls.

The method has also been implemented in a complex real case study, providing the robotic unit
with the route with the scan positions. From the information provided by the presented algorithm, the
robotic unit has performed all the scans autonomously. The point cloud has been generated with a
coverage according to the project specifications, high density and precision.
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Coverage, candidate positions distribution and selection of optimal locations are crucial aspects
for scan planning. These three problems are not independent; coverage is highly dependent on the
distribution of candidates, which in turn qualitatively influences the candidate selection process.
This interrelation involves reaching a trade-off among the matters already mentioned. Unlike most
works focused on scan planning, this paper considers vertical and horizontal structural elements for
analysis. Horizontal structural elements, such as beams, are considered to not cause occlusions because
the analysis is performed from a 2D perspective.

Future work will involve the study of scan planning from a 3D perspective in a way that not only
concerns coverage, but point cloud density and overlapping will be considered as stopping criteria.
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