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Canopy detection over roads using mobile LIDAR data  

A high percentage of forest fires take place around roads. These infrastructures 

provide an escape route for the population in case of fire. Optimization of forest 

management in the surroundings of roads is a necessary task in terms of wildfires 

prevention and mitigation of their effects. Therefore, it is essential to avoid the 

horizontal continuity of vegetation across roads.  

A methodology for the measurement of canopy area over roads is developed and 

based on mobile LiDAR point clouds. The acquisition of LiDAR data is done by 

Lynx Mobile Mapper System from University of Vigo. The methodology is 

automated using LiDAR data processing (M-estimator Sample Consensus and 

near neighbour algorithms) and image processing techniques (rasterization and 

binarization). The developed algorithms are tested on a study area, the DP-3606 

road (Spain). Results are compared with ground truth data of the canopy 

projected on the road. The best obtained results present a mean geometric error of 

2.82 % for 0.25 m resolution and 104.02 % for 2 m resolution. Furthermore, the 

higher the pixel size, the greater the error was obtained with a linear correlation 

value of 0.99. 

Keywords: Canopy area, forest fire, mobile LiDAR, road management, forestry 

management, point cloud processing. 

1 Introduction 

Nowadays, the management of forest stands is a necessity for scientific, environmental 

and political studies. Prevention is one of the fundamental bases in the fight against 

forest fires (Xunta de Galicia 2012). In recent years, LiDAR technology has undergone 

great advances and show applicability to forest management. It has become a source of 

high precision geometric data with reduced human resources, which in many cases 

would be impossible to obtain by other techniques.  
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LiDAR systems used in surveys can be categorized into terrestrial laser scanning 

(TLS), mobile laser scanning (MLS) and airborne laser scanning (ALS), which collect 

data from different points-of-view, platforms and resolutions. The airborne 

Oceanographic Laser (AOL) was among the first LiDAR systems used for forestry 

applications, but was replaced by LiDAR systems developed specifically for terrestrial 

applications (Lim et al. 2003). In the early 1980s, it was demonstrated by Canadian 

Forestry Service the applicability of profiling LiDAR for the estimation of stand 

heights, crown cover density and ground elevation below the forest canopy (Lim et al. 

2003). Dubayah and Drake (2000) studied the way of predicting forest attributes using 

empirical models from LiDAR data and characteristics such as canopy heights, stand 

volume, basal area and aboveground biomass were accurately estimated. 

For the purpose of making forest inventories, Gorte et al. (2015) analysed laser 

data to estimate the number of trees, identify species, and estimate wood volumes. For 

large forest areas airborne laser scanning data were preferred as a data source, whereas 

for detailed studies at individual tree level TLS was preferred ( Bienert et al. 2006). 

In the last years Unmanned Aerial Vehicles (UAV) based studies are becoming 

more popular. Balsi et al. (2018) detected a single-tree in high density point clouds 

using a methodology focused on modelling the D-shape of the tree, which improves 

performance with respect to maxima-based models. UAV - LiDAR systems provide 

relevant information about treatment results and have the capability of providing a rich 

dataset, total tree height, crown diameter, height up to the last branch, length of the clear 

wood (Vepakomma and Cormier 2017). UAV usage reduces the cost of typical aerial 

LiDAR surveys, although decreases the coverage area. 

Mobile laser scanning systems (MLS) integrate laser scanners and navigation 

sensors on ground vehicles to capture a rich dataset while moving. Navigation sensors 
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typically include Global Navigation Satellite System (GNSS) for positioning and 

Inertial Measurement Unit (IMU) for attitude estimation. The quality of the point cloud 

is related to the precision and accuracy of the three components, as well as its 

synchronization (Bauwens et al. 2016; Puente et al. 2013; Ussyshkin 2009). 

TLS has application in forest inventories but the occlusion effect limits the 

efficient processing to extract forest attributes. The use of MLS reduces this occlusion 

and allows for 3D structure acquisition on a larger scale and in a time-efficient manner 

(Bauwens et al. 2016). 

Studies of MLS were conducted in forest environment before 2013 (Holopainen 

et al. 2013). There is a limitation in the use of MLS in forest areas probably caused by 

low GNSS signal detection under forest cover leading a low accuracy (Bauwens et al. 

2016). There are known challenges in maintaining accurate positioning when GNSS 

signal is weak or even absent over long periods of time. The situation could be 

improved to a certain extent with higher performance IMUs, but increasing system costs 

make such approach unsustainable in general (Kukko et al. 2017). 

MLS data sets are well suited to detect single trees and to model 3D trees in a 

highly automated manner. They preserve the outer shape of high vegetation objects, 

which represents the characteristics canopy shape and tree structure (Rutzinger et al. 

2010; Saarinen et al. 2013). Gorte et al. (2015) tested three different approaches to tree 

segmentation: a 3D grid (voxel) approach, a 2D grid (probability matrix) and 3D vector 

connected components. Results show that 3D voxelization is suitable for segmentation 

in a tree-only dataset. 

Liang et al.(2014) studied the detection of trees in a forest environment using 

MLS Sirmacek et al.(2015) studied an automated classification of trees from laser 

scanning point clouds by labelling each point to indicate whether it belongs to the tree 
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class. A grid surface is filled with probability values which are calculated by checking 

the point density above the grid. The experimental results indicated the possible usage 

of the algorithm as an important step for tree growth observation, tree counting and 

similar applications. However, false detection of light poles, traffic signs and other 

objects close to trees cannot be avoided. Puttonen et al.(2011) also studied tree species 

classification  

The installation of laser scanners on moving platforms has been studied as a 

convenient measurement method for forest mapping during several years. There are 

studies relating to the detection, classification and analysis of characteristics of single 

trees. However, there are not many studies relating to forest management as a whole. 

On the other hand, municipalities and other authorities need to build spatial 

databases from the public space they manage. In this way there could be prevented 

possible irregularities in the forest management that could influence the propagation of 

a forest fire if continuity of the trees exists.  

The aim of this work is to analyse the potential application of MLS to mapping 

crown projection areas over the roads, and developing a methodology to automatize the 

data processing. Firstly, the canopy points over the road are segmented and then 

classified in two groups: vegetation and non-vegetation points. Finally, the projection 

area of vegetation is calculated. In particular, the main contributions of this study are 

summarized as: 

(1) Determination of points located inside and outside the edges of the road using a 

classification method. 

(2) Development of a series of algorithms to automatically differentiate between 

vegetation points and non-vegetation points among the points inside the edges of 

the road. 
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(3) Design of a methodology to automatically calculate the projection area of 

vegetation points over the road. 

(4) Determination of the accuracy of the used methodology by comparison with 

ground truth data.  

2  Materials and Methods 

2.1 Area of Study 

The area of study is the road DP-3606 located in the municipality of Ferrol, northwest 

Spain (Figure 1). The section of road is located between the beaches of Vilar and 

Esmelle giving access to them. It is a tertiary type of road, with a double direction and a 

maximum speed of 50 km/h. Ferrol belongs to the Forest District I (Xunta de Galicia 

2018) and should pay great attention to the prevention of forest fires. It is catalogued as 

a high risk area and it is also classified with a very high potential risk index (Xunta de 

Galicia 2015). 

There are areas of high potential risk of forest fire (HRZ) where the application of 

defence measures is recognised as a priority due to the risk of fires, its virulence or the 

importance of threatened values. In addition, the study area belongs to Natura 2000 

Network and it is catalogued as a Place of Community Interest (Xunta de Galicia 

2014).The main tree species in the study area are formed by Eucalyptus globulus and 

Pinus pinaster but also there are the presence of leafy species like Alnus glutinosa, Salix 

alba, Sambucus nigra, Betula alba, Laurus nobilis and Quercus robur. These species 

formed the typical riparian forest in Galicia.  
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Figure 1 Location of DP-3606 road. 

 

2.2 Mobile LiDAR system  

The experimental data for this work were collected using the Lynx Mobile Mapper 

(Figure 2) by OPTECH (Optech 2011). This system was previously used in many road 

management studies (Wang et al. 2014; Iglesias et al. 2015; Riveiro et al. 2015; Puente 

et al. 2014; Martínez et al. 2014; González et al. 2013; González-Jorge et al. 2016; 

González-Jorge et al. 2016; Soilán et al. 2016). 

The Lynx Mobile Mapper generates rich survey-grade LiDAR and image data. 

The system is composed of two LiDAR sensor heads with 500.000 measurements per 

second and a field of view (FOV) of 360°. The angle between their rotational axes is 

90° and they have an angle of 45° with respect to the trajectory of the vehicle. The 

navigation system integrates an Inertial Measurement Unit (IMU) with a two GNSS 

antenna heading measurement systems (GAMS). Furthermore, imagery data is 
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registered by four 5-MPx JAI cameras that are synchronized by the Lynx Survey 

software. 

The positioning system was designed by APPLANIX (POS LV 520) and the 

GNSS receivers belong to TRIMBLE. The system control software enables to select the 

camera image frame size for highly efficient image capture (Puente et al. 2011). 

Figure 2. Mobile LiDAR System used for the survey. 

 

Figure 3 shows two examples of the point cloud data from the area of study 

obtained using the Lynx Mobile Mapper. The dataset is divided in five sections to make 

it easier to handle. Length of the sections is as next described: section 1 (421 m), section 

2 (522 m), section 3 (499 m), section 4 (417 m), and section 5 (462 m). 

 

 

 

 

 

 

 



8 
 

Figure 3. Point Cloud of sections 1 and 5 from the road DP-3606 used in this study. 

 

2.3 Data Processing 

The sequence of algorithms and data processing is described in Figure 4. MATLAB 

software (MATLAB 2018) is used for data processing. The computer on which the data 

processing was carried out is a MSI GP72 LEOPARD PRO, with the following 

technical characteristics: 

 Processor: Inter(R) Core (TM) i7-7700HQ CPU @ 2.80GHz.  

 Installed RAM: 16.0 GB. 

System type: 64-bit operating system, x64-based processor.  
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Figure 4. Workflow of the methodology to detect canopy area over the road. 

 

Data processing begins limiting the edges of the road (Figure 5). Edge of the 

road is obtained from Cloud Compare software by point picking. This is the only 

manual part of the data processing. No effort has been made to automate this part, since 

the geometry of the road edges is usually known from project draws or geometric as-

built road inventories. 

In a following step, an algorithm is implemented in MATLAB to increase the 

density of points of edges of the road. This algorithm is based on a linear interpolation 

(Sanmiquel Pera 2003). The first part of the algorithm consists of the calculation of the 
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geometric distance and azimuth between each two neighbour points from the previously 

obtained road edge points. Then, this information is used to calculate the coordinates 

xyz of the new re-densified points with a distance step previously defined. In this study 

the distance between points was 10 meters. 

 

Figure 5. Edges of the road (red) in section 1. 

 

Once the density of points of the edges was increased, polygonal regions are 

defined every two points of each edge. Thus, points are classified depending on whether 

they lie within the limits of the polygon or not. As a result, the point cloud is segmented 

in two classes: points from the road area (includes pavement and canopy over the road) 

and points not belonging to the road area (Figure 6). 
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Figure 6. Point cloud classification of section 1. Road area points (red) and non-road 

area points (blue).  

 

Once the study points are grouped, the road is divided into 10 m slices according 

to direction of the vehicle driving (Figure 7). Thus, data are easier to handle and slope 

effect of the road cloud be avoided.  

Figure 7. Slice example of 10 meters of length of section 1. Canopy over the road can 

be easily identified. 
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Next step is focused on the classification between vegetation points and non-

vegetation points (pavement). A M-estimator Sample Consensus (MSAC), a variant of 

the Random Sample Consensus (RANSAC) algorithm (Fischler and Bolles 1981), is 

used to fit a plane to the pavement sections (Torr and Zisserman 2000). MSAC 

improves the performance of RANSAC by modifying its cost function, but it also 

requires a user-specified error tolerance (Wang, Mirota and Hager 2010). Results are 

shown in Figure 8. 

Figure 8. Slices of section 1 which contains vegetation points (red) and non-vegetation 

points / pavement (blue). Areas without vegetation over the road are not represented. 

 

The rasterization process is a widely used procedure for point cloud processing. 

First, because this process allows a simplification in the volume of data to be processed 

without significantly affecting the precision of the results. Moreover, and from the point 

of view of interoperability, the rasterization process enables the application of digital 

image processing techniques to dense 3D point clouds. The 3D points are converted to 

2D space and the pixel value is related with the z coordinate from the point cloud 

(Mitchell et al. 2011; Streutker and Glenn 2006; El-Ashmawy and Shaker 2014; Bienert 
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et al. 2007). Different spatial resolutions are used for testing the methodology (0.25 m, 

0.5 m, 1 m, and 2 m).  

After rasterization, the image is binarized. This process requires the introduction of a 

threshold to convert raster images to a binary image (Figure 9). The threshold is relative 

to the signal levels possible for the class and is automatically obtained following the 

Otsu method (Otsu 1979). It chooses the threshold that minimizes the intraclass 

variance of the black and white pixels. 

Figure 9. Binary image presentation of resolutions used of section 1. Black pixels 

represent vegetation and white pixels represent pavement area inside the edges of the 

road (parallel lines in North-East orientation).  

 

The last step is to calculate the area occupied by selected vegetation in previous 

steps. For this purpose, the binary image is used and the area is calculated based on the 

histogram of the image and the pixel area.  
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3 Results and Discussion 

Figures 10 - 14 show the results of the canopy area over the road sections under 

study. Results are obtained using the automated procedure developed for this work with 

a focus on the different resolution values between 0.25 m and 2 m. 

Figure 15 shows the geometric error of the method described for all studied 

sections. The error (equation 1) is obtained by comparing the canopy area over the road, 

AC, automatically obtained with the methodology developed for this work, and the area 

manually calculated by an experienced surveyor, AGT. The surveyor uses the same input 

point cloud and estimates the contour and area by manual drawing. 

                         error %  100                     (Equation 1) 

Figure 16 shows the elapsed time of the method described for all studied 

sections. The highest resolution (0.25 m) exhibits the most accurate results with a mean 

error of 2.82 % and limited in all cases by 4 %. On the other hand, the lowest resolution 

(2 m) shows a mean error of 104,02 %. This error reached 72 % in the best case. As 

expected, resolution and error correlate, with a value of correlation coefficient of 0.99 

for a linear function. Elapsed time for algorithm computation is also depicted. It 

increases with the increasing of grid resolution. 

Future research could follow the line of current legislation. It would be 

interesting to know the distance from the vegetation to the road and be able to determine 

vegetation of road areas that does not keep to with the minimum distance specified in 

the law. Comparison with high resolution satellite remote sensing could be also 

interesting for example to the classification the tree species over the road. 
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Figure 10. Detail of two vegetation stretches of section 1. Resolution of 0.25 m (red) 

and 2 m (green). 

Figure 11. Detail of two vegetation stretches of section 2. Resolution of 0.25 m (red) 

and 2 m (green). 
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Figure 12. Detail of two vegetation stretches of section 3. Resolution of 0.25 m (red) 

and 2 m (green). 

Figure 13. Detail of two vegetation stretches of section 4. Resolution of 0.25 m (red) 

and 2 m (green). 
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Figure 14. Detail of two vegetation stretches of section 5. Resolution of 0.25 m (red) 

and 2 m (green). 

 

Figure 15. Error of the algorithms for each section studied. 
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Figure 16. Elapsed time of the algorithms for each section studied.  

4 Conclusions 

An automated methodology for evaluation of canopy area projected on the road limits 

was developed. It is based on the combination of point cloud and image processing 

algorithms implemented in MATLAB software. 

The methodology is automated in a way that could provide a vegetation 

condition on roads, which is difficult to measure by human methods. However, there is 

a first manual part focused on determining the road edges by clicking points on the PC. 

The geometric information from road limits is provided in the project data, thus this 

manual part is not very detrimental for the automation strategy.  

The methodology to calculate projection area of canopy over road is analysed 

and compared with ground truth data from manual drawing. The mean geometric error 

for the maximum resolution of 0.25 m is 2.82%. The resolutions studied suggest that the 

limit of admissible resolution would be 1 m with an average error of 47.81 %. The 

smaller the pixel size, the more accurate the area evaluation and higher the elapsed time 
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to run the algorithms. The computational time is typically not higher than 50 s for the 

road sections under study. 

The method will be improved in future works, specially related to the 

classification method. In the current approximation, objects appear on the road, that are 

classified as canopy (i.e. power lines). The effect is not very strong in the case of 0.25 m 

grid, but significantly increases with the grid size. 

The results of this study are of special interest for forest management, in 

particular to know the condition of horizontal continuity of vegetation on roads being 

able to spread a forest fire.  
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