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Abstract  16 

Pathfinding applications for the citizen in urban environments are usually designed from the perspective of 17 

a driver, not being effective for pedestrians. In addition, urban scenes have multiple elements that interfere 18 

with pedestrian routes and navigable space. In this paper, a methodology for the direct use of point clouds 19 

for pathfinding in urban environments is presented, solving the main limitations for this purpose: a) the 20 

excessive number of points is reduced for transformation into nodes on the final graph, b) urban static 21 

elements acting as permanent obstacles, such as furniture and trees, are delimited and differentiated from 22 

dynamic elements such as pedestrians, c) occlusions on ground elements are corrected to enable a complete 23 

graph modelling, and d) navigable space is delimited from free unobstructed space according to two motor 24 

skills (pedestrians without reduced mobility and wheelchairs). The methodology is tested into three 25 

different streets sampled as point clouds by mobile laser scanning (MLS) systems: an intersection of several 26 

streets with ground composed of sidewalks at different heights; an avenue with wide sidewalks, trees and 27 

cars parked on one side; and a street with a single-lane road and narrow sidewalks. By applying Dijkstra 28 

pathfinding algorithm to the resulting graphs, the correct viability of the generated routes has been verified 29 

based on a visual analysis of the generated routes on the point cloud and on the knowledge of the urban 30 

study area. The methodology enables the automatic generation of graphs representing the navigable urban 31 

space, on which safe and real routes for different motor skills can be calculated.  32 
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 37 

1. Introduction 38 

Pedestrian pathfinding is a current challenge that still subsides in many cities. More and more cities are 39 

being adapted to new street designs that promote the displacement of the citizen by foot,  bike and public 40 

transport. Regardless of distance, either go to the nearest bus stop or walk several blocks, pedestrian 41 

displacements in urban environment entail difficulties. 42 

Applications as Google Maps, Baidu Maps, Bing Maps, etc. have inbuilt pedestrian navigation modules. 43 

However, these options do not provide a real solution to the problem because navigable ground elements, 44 

such as sidewalks and pedestrian crossings, are mostly not being considered in the network. Pedestrian 45 

routes calculated from road networks (Gerke et al., 2004) present two serious problems. Firstly, they are 46 

focused on traveling along the road, assuming that there are sidewalks close to it, which is not always true; 47 

and they do not consider crosswalks to cross the road. The provided route is not safe, proposing to walk on 48 

the road and to cross by prohibited areas. Secondly, the generated routes are not adapted to the different 49 

motor profiles of the citizens. A person without reduced mobility can walk through any ground element, 50 

however, for a person in a wheelchair, one small step or curb turns into an impassable barrier.  51 

LiDAR technology allows the acquisition of small elements in a quick and accurate way. Specifically, 52 

mobile laser scanning (MLS) is capable of acquiring entire streets with high point density (Kumar et al., 53 

2017) and, thanks to the recent advances in the field of point cloud classification, it is possible to label most 54 

of the elements forming the ground (Balado et al., 2018). However, there are still some limitations to 55 

perform a correct pathfinding directly on point clouds: 56 

 Large number of points existing in the cloud, useful for classification, becomes a problem of over-57 

information and processing cost when all points are considered as graph nodes for the application 58 

of path finding algorithms. 59 

 The density of MLS point clouds is not uniform. Point density is higher in the road areas closer to 60 

the sensor than in distant areas. Even in horizontal elements relatively close to the MLS trajectory, 61 

such as sidewalks, different levels of density can be obtained. 62 

 Occlusions, absence of information, are common in urban MLS point clouds due to the large 63 

number of existing objects in the urban environment. These occlusions produce missing nodes in 64 

the final graph and, therefore, the generated model for pathfinding does not conform to reality. 65 

In this paper, specific methods to address and solve the previous limitations are developed. The aim of this 66 

paper is to demonstrate the potentiality of the direct use of point clouds to solve  pedestrian pathfinding 67 

problems. The proposed methodology begins with the use of point clouds where ground elements are 68 

previously classified by methodologies already presented in other works (Balado et al., 2018; Riveiro et al., 69 

2015). Occlusions existing on  sidewalks are corrected by applying morphological operations (in detail in 70 

Section 4.2), so that the final graph is more similar to reality. The point cloud is simplified and internal 71 

relationships are established for each ground element, between adjacent elements and obstacles. Once the 72 

final graph model is created, Dijkstra algorithm is applied just to verify that the resulting route is safe and 73 

viable according to different person's motor skill. 74 



The methodology takes advantage of the LIDAR surveys that many cities are currently carrying out for 75 

various purposes (inventory of mobility, control of parking areas, state of the road, etc.) and gives it untested 76 

use so far, aimed at pedestrians and people with reduced mobility. The results shown in this work do not 77 

need manual processing. 78 

This paper is structured as follows. In Section 2 works related with graph generation to pathfinding are 79 

reviewed. The methodologies used for the classification of the input point cloud are summarized in Section 80 

3. A detailed description of the proposed methodology is provided in Section 4. Results obtained from the 81 

application of the methodology to several case studies are presented in Section 5. Section 6 is devoted to 82 

conclude the work. 83 

 84 

2. Related work 85 

Graphs for pedestrian pathfinding are non-directed graphs with positive values in each arc. In urban 86 

modelling, there are mainly two types of graphs for navigation: navigation graphs and cellular automata 87 

(Singhal and Kundra, 2014). Navigation graphs assign nodes/arches to constructed elements related to the 88 

end use, the intersections between them and the represented space. They are similar to graphs used for road 89 

network representations (Beneš et al., 2014; Gang and Guangshun, 2010). Navigation graphs are very useful 90 

to represent large-scale models with low precision. Cellular automata consists on a regular discretization 91 

of the space (Eckel, 2015), normally in grid or voxel-grid, maintaining constant dimensions and number of 92 

adjacency connections (Pettré et al., 2005). They are used in small study areas that require a surface based 93 

modelling with high level of detail of the environment (Butenuth et al., 2011; Izzati et al., 2015). Some 94 

studies combine both representations (Applegate et al., 2010). In this work, a discretization of the navigable 95 

space, similar to cellular automata, is chosen to distribute the nodes and generate 3D navigation graphs. 96 

Due to the high density of the point clouds, 3D ground elements must be discretized in order to reduce the 97 

size of the existing data in the final models without renouncing to a high level of detail. Although cellular 98 

automata allows 3D representations, an approximation of the built environment is necessary when the 99 

model is generated, thus losing part of the precision provided by point clouds, and the final model (such as 100 

3D image) contains more information that is not necessary and more difficult to interpret than a navigation 101 

graph. By contrast, navigation graphs based on the downsampled points have the same accuracy of the 102 

acquired point cloud with a smaller number of nodes than its equivalent in cellular automata. 103 

Graph modelling for pedestrian pathfinding has been studied in recent years mainly in indoor environments. 104 

Walking is the main way to move inside buildings and over time, buildings became larger and more 105 

complex.. These studies start from consistent geometric 2D and 3D models, extracted from BIM (Building 106 

Information Models) or point clouds. In point clouds, elements that take part of the route (floor) or that 107 

limit it (obstacles) must be located with segmentation and classification methods based on point or object 108 

features. Fichtner et al., (2018) structure the point cloud in an octree to proceed with the subdivision of the 109 

space and the classification into walkable elements (floor and stairs) and not walkable (walls and obstacles). 110 

The octree structure allows to model the navigable space inside the rooms. In a similar way, Staats et al., 111 

(2017) use voxels to structure and classify the point cloud. In their methodology, dynamic elements are 112 

subtracted from the point cloud based on the fact that they are not a constant part of the scene. The authors 113 

consider dynamic elements to be pedestrians and small vehicles in movement. Likewise, in later phases 114 

furniture is also subtracted to obtain the navigable space. 115 



The most basic model for a pedestrian graph relates rooms of buildings (Boguslawski et al., 2016). This 116 

topological model is created from adjacent rooms sharing doors. Nodes representing rooms are located in 117 

the centre of each room and distances associated with arcs are distances between room centres. The graph 118 

can be improved considering doors as intermediate nodes between room nodes (Lorenz et al., 2006). As 119 

result, the created graph represents more realistic distances between rooms than the previous one: only 120 

given distances between room centres, the real route would involve crossing walls. Another improvement 121 

involves applying visibility techniques for computational geometry to detect corners of rooms and consider 122 

them as new nodes (Liu and Zlatanova, 2011), obtaining a more realistic graph into each room. Indoor 123 

navigable space, delimited by walls and other obstacles, can be modelled using triangulation techniques, 124 

such as Delaunay (Jamali et al., 2017), or diagrams, such as Voronoi (Lamarche and Donikian, 2004). 125 

Boguslawski et al., (2016) focus on the use of graph modelling to establish routes in emergencies. In that 126 

case, the triangulation has a low density for the outer rooms and increases as it approaches the possible 127 

evacuation routes in building centre and emergency exits. Other authors preferred a different type of node 128 

distribution in space. In (Czogalla and Naumann, 2015), nodes have a hexagonal distribution to model 129 

transfer stations between means of transport. They also locate the obstacles on a map in order to avoid them. 130 

Nasir et al., (2014) compare a distribution based on a grid with a triangulation based on navigable space 131 

vertices. Different distributions change adjacencies and number of nodes of the generated graph. These 132 

models are integrated in a simulation to obtain different possible trajectories for pedestrians. In the urban 133 

environment, Y.F. Tang and S.C. Pun-Cheng, (2004) define some elements (buildings, zebra crossing and 134 

roads) as polylines, similar to a road network map. By contrast, in this work, only safe and accessible 135 

ground elements (sidewalks, stairs and pedestrian crossings) are considered to generate the navigable graph 136 

from a mesh that connects the points belonging to those elements. Vertical elements are not used as 137 

navigable nodes, but they influence the free unobstructed space of pedestrian space. The input of the 138 

methodology is a labelled point cloud of the urban environment. 139 

Serna and Marcotegui, (2013) carry out an physical accessibility study from point clouds, although these 140 

are converted into images in the early stages of the methodology. They segment obstacles, such as façades 141 

and objects, and consider the entire ground as accessible, except curbs. Soilán et al. (2018) detect curbs at 142 

the borders of pedestrian crossings to analyse the accessibility. In indoors, Maruyama et al., (2017, 2016) 143 

use simulations from 3D as-in environment models: walk surface points, navigation graphs and textured 144 

3D environmental geometry. With Digital Human Models generated from Terrestrial Laser Scanning data, 145 

they check how people move and orientate themselves inside buildings. They analyse visibility and 146 

legibility of signals, as well as their motion planning in relation to their motor skills. The methodology 147 

proposed in the present work distinguishes between static (obstacles) and dynamic elements and only 148 

considers sidewalks, stairs and pedestrian crossings as navigable surfaces (not road). Risers of stairs and 149 

curbs are considered accessibility barriers. The present work does not study the visibility or legibility of the 150 

environment. 151 

With regard to previous approaches, in this work a graph is directly created from classified point clouds. 152 

The main advantages of the direct use of point clouds over theoretical models for the generation of 153 

navigable graphs are with the use of real information from urban environments. Final nodes correspond to 154 

real and precise locations, existing in the input point cloud. Therefore, there is no risk that the theoretical 155 



models do not correspond to the as-built reality.  The location and precision of the nodes are no modified 156 

during the modelling process. Points belonging to dynamic urban elements are removed. Free unobstructed 157 

space is used as navigable space. The nodes of the final graph are distributed in a mesh grid, not in a 158 

triangulation or visibility approach, since in point clouds the objects are not defined by simple geometries 159 

as in 3D models. In addition, the graph model proposed in this paper has a higher resolution with respect 160 

to previous urban modelling works and road networks maps, allowing a precise route for pedestrians. 161 

Preliminary results of this work were presented in (López-Pazos et al., 2017). With respect to them, the 162 

following improvements have been made. 163 

 A SVM classifier has been implemented to differentiate non-ground elements into static and 164 

dynamic urban elements. Only static urban elements are considered as obstacles that generate gaps 165 

in the final graph. 166 

 The simplification of points for the final graph is now carried out through a spatial downsampling, 167 

not k-means, being faster and leaving nodes more uniformly distributed in a mesh grid (Beneš et 168 

al., 2014). 169 

 A methodology for correcting occlusions in sidewalks is proposed. The absence of data on the 170 

ground implies an absence of nodes in the final graph, even being able to generate unconnected 171 

graphs that do not fit the reality.  172 

 The final graph is generated from the free unobstructed navigable space and not from the entire 173 

ground surface, since pedestrians are modelled as a volume in the navigation space. 174 

 175 

3. Datasets and overview of urban ground classification 176 

In this section, the three datasets used for the evaluation of this work are described along with the 177 

methodologies that allow them to be generated. Both point clouds have labelled ground elements 178 

(sidewalks, roads, treads, risers, curbs and crosswalks). Non-ground elements are in an independent class 179 

without dividing. Each ground element has characteristics associated with mobility, physical accessibility 180 

and safety, therefore, its knowledge is essential for the creation of a graph that allows the correct pathfinding 181 

application.  182 

The first point cloud (Fig. 1) corresponds to the intersection between Humilladero Street and Portugal 183 

Avenue in Avila (Spain). It is a complex area with a variety of ground elements and with a lot of connections 184 

between them. The point cloud contains 20.5 million points and has two strong occlusion zones, one on the 185 

ramp that joins the sidewalks of both streets and another produced by cars in Portugal Avenue. The second 186 

(Fig. 2) is a fragment of Florida Avenue in Vigo (Spain), it is a straight street with sidewalks on both sides 187 

and parked cars on one side of the street. The point cloud has 21.8 million points and occlusions on the 188 

sidewalk with parked cars. Both point clouds have been acquired using MLS LYNX Mobile Mapper of 189 

Optech (Puente et al., 2013). The third point cloud (Fig. 3) is provided by IQmulus & TerraMobilita Contest 190 

dataset (Vallet et al., 2015). It is Cassete Street in the city of Paris (France), a one-lane street with an 191 

intersection, narrow sidewalks and parked cars on both sides that cause occlusions. It contains 12 million 192 

points. It has been acquired by Stereopolis II MLS. 193 

 194 



 195 

Fig. 1. Classified point cloud of case study 1. Colour code: non-ground elements in grey, sidewalk in olive, 196 

road in dark grey, crosswalks in rose, curbs in orange, risers in green and treads in blue. Model scale: 197 

110x47x20 m.  198 

 199 

Fig. 2. Classified point cloud of case study 2. Note: the front façade line has been removed from the image 200 

to improve visualization. Model scale: 157x145x30 m. 201 

 202 



Fig. 3. Classified point cloud of case study 3. Note: the front façade line has been removed from the image 203 

to improve visualization. Model scale: 155x215x47 m. 204 

 205 

The methodology for the classification of ground elements is collected in (Balado et al., 2018). The input 206 

of the methodology is an urban point cloud without RGB-intensity information and the MLS acquisition 207 

trajectory. The methodology begins with a planar segmentation based on point cloud curvature, since each 208 

ground element can be approximated by a planar element. After planar segmentation, refining operations 209 

are performed to obtain a greater level of detail and accuracy between real elements and segmented planar 210 

element. The refining operations are: split (separation of real elements segmented in the same planar 211 

region), merge (joint of adjacent elements with similar curvature in the same region), coplanar refinement 212 

(separation of different elements contained in the same plane, usually, risers that are part of walls) and road-213 

sidewalk segmentation (separation road from sidewalk based on the MLS trajectory and the curvature that 214 

delimits roads edges). 215 

Once each real element is segmented into a planar region, a double classification is implemented: first a 216 

geometry-based classification followed by a topology-based classification. The geometry-based 217 

classification employs a decision tree built with features defined by ISO-21542 (ISO, 2011): tilt, height and 218 

width. The objective of the topology-based classification is to differentiate those elements with a similar 219 

geometry through their relationships with other elements. The topology-based classification is based on a 220 

verification of the adjacency relationships of each geometric element in the point cloud versus predefined 221 

relations of each element (previously stored in a graph library). Once the entire process is done, the point 222 

cloud is classified into: roads, sidewalks, curbs, treads, risers and non-ground elements. 223 

The methodology for crosswalks detection is available in (Riveiro et al., 2015). The input of the 224 

methodology is a point cloud with intensity information. The detection is based on the high intensity of the 225 

points belonging to road marks due to reflective painting. The point cloud is rasterized on XY plane and 226 

intensity values associated with pixels. Finally, the Hough transform is applied to detect the lines that form 227 

zebra crossing. 228 

The result of the application of both methodologies is a point cloud P = (X, Y, Z) where ground elements 229 

are labeled L in: sidewalks, roads, curbs, treads, risers and crosswalks. The rest of the elements (urban 230 

objects, people, cars, trees and buildings) are in a class defined as non-ground elements. This point cloud 231 

is used as the input to the methodology presented in this work. 232 

 233 

4. Methodology 234 

The methodology is divided into three main phases. Pre-processing phase prepares the point cloud for the 235 

following steps by reducing and standardizing point cloud density and eliminating non-relevant points. 236 

Occlusion correction regenerates empty areas in sidewalk in where there are no points due to the presence 237 

of elements between the sidewalk and the MLS during the acquisition such as parked cars. Finally, the 238 

transited areas are delimited by adjacency with other elements and they are modelled in a graph. The 239 

workflow of the methodology is shown in Fig. 4. 240 



 241 

Fig. 4. Workflow of the methodology. 242 

 243 

4.1. Pre-processing 244 

The pre-processing consists of two objectives, a reduction and uniformisation of point cloud density and 245 

the elimination of points belonging to obstacles without interest for people mobility. 246 

4.1.1. Downsampling 247 

The first phase is a downsampling, since the amount of points in the cloud is excessive for the creation of 248 

the final graph and there are strong changes in density between near and fast areas to the MLS trajectory. 249 

Density uniformisation is achieved by reducing the number of points based on the distance between them 250 

(Pomerleau et al., 2013). The remaining points are at distance d1 from their neighbours, being d1 > 251 

dinitial_point_cloud. With this operation, processing time in the following processes are reduced. 252 

4.1.2. Dynamic and static classification 253 

Not all points classified as non-ground elements have the same utility for pedestrian pathfinding. Elements 254 

that have a static behaviour are obstacles to navigation, such as lampposts, benches, mailboxes, etc.; while 255 

those that have a dynamic behaviour are only found in the scene during the acquisition, such as pedestrians 256 

walking or motorcycles and cars circulating. Dynamic elements change place or disappear, therefore they 257 

are not considered as obstacles. The differentiation between static and dynamic elements can be carried out 258 

as an object classification, a well-studied subject in urban environment and in point clouds (Serna and 259 

Marcotegui, 2014; Vallet et al., 2015; Yang et al., 2017, 2015), or as a change detection (Chen and Yang, 260 

2016; J Schauer and Nüchter, 2018; Johannes Schauer and Nüchter, 2018; Xiao et al., 2016, 2015). In this 261 

paper, object-based classification is used (Aijazi et al., 2013; Huang and You, 2015), since different multi-262 

temporal observations are not needed. The objects considered as static are: buildings, parked cars (although 263 

they are a dynamic element, they occupy a fixed place in the scene that is rarely empty), urban furniture, 264 

trees and pole-like objects (traffic lights, lamps and traffic signals). The dynamic elements are cars in 265 

motion, pedestrians, bikes and motorcycles. Table 1 shows the classification of the main types of elements 266 

in the urban scene: the branch of the classified ground elements, and the branch of non-ground elements in 267 

which static and dynamic must be differentiated. 268 

Table 1: Classification of elements in the urban scene. 269 

Ground elements Passable elements Accessible elements 
Sidewalks 

Crosswalks 



Non-accessible 

elements 
Treads 

Non-passable  elements 
Accessible barriers 

Risers 

Curbs 

Horizontal elements Roads 

Non-ground elements 

Static elements 

Buildings 

Parked cars 

Urban furniture 

Trees 

Pole likes objects 

Dynamic elements 

Circulating cars 

Pedestrian 

Bikes and motorbikes 

 270 

In this work, a machine learning (ML) classifier based on Support Vector Machines (SVM) is used 271 

(Mountrakis et al., 2011), because it is a classification technique that achieves high accuracy rates by using 272 

few features and training with a relatively low number of objects, in comparison with other techniques such 273 

as deep neural networks (Serna and Marcotegui, 2014). For the classification, the features defined by 274 

(Roynard et al., 2016) are used: height, standard deviation height, width, distribution of points based on 275 

histogram of five bins, area and volume of convex hull. 276 

The objects to be classified are points labelled in the point cloud Pd as non-ground class. The objects are 277 

individualized by connected components (Trevor et al., 2013) and from each one the features are extracted. 278 

From these features the objects are classified with the SVM classifier as dynamics or static objects. The 279 

points classified as belonging to dynamic objects are removed from point cloud, while those of static objects 280 

should be refined in the next step. 281 

4.1.3. Free unobstructed height 282 

Static obstacles may interfere with people movement by two ways: based on free unobstructed width 283 

(discussed in section 4.3) and on free unobstructed height. Free unobstructed space establishes a minimum 284 

height h for pedestrians to comfortably transit, therefore, the points of greater height than h of each element 285 

have no interest for this study. The points that exceed the height h of each object are removed from point 286 

cloud. For each object previously classified as static, the lowest Z coordinate zmin is calculated. Then, points 287 

with 𝑧 > 𝑧𝑚𝑖𝑛 + ℎ are removed. The remaining points are returned to the main cloud leaving a refined 288 

cloud for the following processes Pr. 289 

4.2. Occlusion correction 290 

This phase allows point generation in highly occluded sidewalk areas, because of all objects (mainly cars) 291 

between sidewalks and MLS trajectory. The regeneration of occlusions assuming the planarity is not as a 292 

reliable solution as the use of data without occlusions, but based on prior knowledge of the urban 293 

environment, it is a better alternative than obtaining an incomplete graph or the need for multiple scans 294 

with different acquisition methods. The process of correction of these zones is based on a region growing 295 

of sidewalks controlled and delimited mathematical morphology.  296 



The developed pseudo-code is indicated in Algorithm 1. This process begins with the rasterization (Díaz-297 

Vilariño et al., 2015) of the previously refined point cloud Pr (Fig. 5.a) with a grid size gs of twice the size 298 

of d distance 𝑔𝑠 = 2𝑑1 between downsampled points performed in Section 4.1. This grid size allows all 299 

pixels to be populated with points and there are not a lot of empty pixels, except those that form properly 300 

occlusions. In each pixel of the rasterized image I, the mode value of the labels L of existing points is saved 301 

(Fig. 5.b). 302 

Once the point cloud is rasterized, it is necessary to create separated binary images that correspond to the 303 

sidewalks IS (Fig. 5.c) and the rest of the elements IE (Fig. 5.d). Likewise, a global binary image IL is 304 

created that delimits the existence of the point cloud in the image (Fig. 5.e). IL combined with IE suppose 305 

the mask image IM that limits the growth of sidewalks image (Fig. 5.g). In this way, it is ensured that the 306 

growth of the sidewalks does not exceed the external limit of the point cloud or elements existing within it. 307 

In the next phase, within a loop, IS is expanded through morphological dilation (Jackway and Deriche, 308 

1996) ISd (Fig. 5.f) and the pixels that coincide IM are removed (Fig. 5.h). This loop is executed while IS 309 

contains empty pixels where it could grow without conflict with IM. At the end of the loop, the resulting 310 

image ISn is the complete sidewalks image (Fig. 5.i). 311 

 312 

Fig. 5. First part of the occlusion correction: a) Refined point cloud Pr, b) point cloud rasterized by mode 313 

I, c) binarised sidewalk image IS, d) binarised image of other elements IE, d) binarised image of the contour 314 

IL, f) dilated sidewalk image ISd, g) mask image IM, h) sidewalk dilated image after subtract mask image 315 

ISn, i) at the end of the loop, binarised complete sidewalk image ISn. 316 

 317 

By subtracting IS (Fig. 6.b) of ISn (Fig. 6.a), the image with only occlusions is obtained IO (Fig. 6.c), to 318 

which a morphological aperture is applied to eliminate the small ones and to focus on the large occlusions. 319 

In order to individualize occlusions, connected components are applied. Each set of pixels belonging to an 320 

occlusion IOcc is dilated (Fig. 6.d) and sidewalk points PS that belong to occlusions contour are searched 321 

in the refined point cloud Pr (Fig. 6.f). PS is structured in a polygon Pol and, inside, new random points 322 

PSnXY are generated with XY coordinates (Fig. 6.e) with density similar to Pr. For the generation of Z 323 

coordinate, a multiple linear regression model (Preacher et al., 2006) is used (Fig. 6.g). Z coordinates of 324 

new points PSnZ are calculated as a linear function of PSnXY from XYZ coordinates in PS. This allows 325 

the new sidewalk points to present a coherent inclination with the limits of the occlusion. At last, PSnXY 326 

and PSnZ are saved as new points in R (Fig. 6.h). 327 



 328 

Fig. 6. Second part of occlusion correction: a) complete binarised sidewalk image ISn, b) initial binarised 329 

sidewalk image IS, c) binarised image of occluded sidewalk IO, d) dilated image of occluded sidewalk 330 

IOccd, e) generation of random XY points in the occlusion, f) extraction of XYZ points corresponding to 331 

the occlusion border in point cloud Pr, g) implementation of the multiple linear regression to complete the 332 

Z’ coordinate of points generated randomly in the occlusion, h) occlusion correction and insertion of new 333 

points in the new refined cloud R. 334 

Algorithm 1: Occlusion correction 335 

Inputs: Refined_Point_Cloud {Pr}, Labels {L}, grid_size gs  336 

Outputs: Regenereted_Point_Cloud {R} 337 

Raster_image {I}  Raster (P,L,gs)  338 

Sidewalk_image {IS}, Rest_of_Elements_image {IE}  binary (I) 339 

Limit_image {IL}  fill (I) 340 

Mask_image {IM}  complement (IL) + IE 341 

Sidewalk_image_prev {ISp}  zeros (IS) 342 

Sidewalk_image_new {ISn}  IS 343 

While ISp ≠ ISn do 344 

 ISp  ISn 345 

 Sidewalk_image_dilated {ISd}  dilate (ISn) 346 

 ISn  ISd – IM 347 

End_While 348 

Occlusion_image {IO}  morphological_opening (ISn - IS) 349 

CC_oclusion_image {IOcc}  ConnectedComponents (IO) 350 

R  Pr 351 

For each IOcc(i) 352 

 IOcc_dilated { IOccd}  dilate (IOcc (i)) 353 

 IOcc_dilated_Sidewalk { IOccdS}  IOccd - IE 354 

Sidewalk_Points {PS}  {P : P ∈ IOccdS} 355 

Polygon {Pol}  polygon{PS} 356 

New_Sidewalk_Points_XY {PSnXY}  random (2*gs,inpolygon(Pol)) 357 

New_Sidewalk_Points_Z {PSnZ}  linear_regresion_model (PSnXY, PS) 358 

R  Add (PSnXY, PSnZ) 359 

End_For 360 

Return {R} 361 

 362 

 363 

 364 

4.3. Graph generation 365 

In this phase, the final graphs are generated from the point cloud belonging to passable elements, delimited 366 

by non-passable elements and static objects bounded by the free unobstructed height. For the generation of 367 

the final graphs, the points of those elements that are passable must be selected as nodes. These elements 368 

are sidewalks, crosswalks and treads for pedestrian without reduced mobility graph, and only sidewalks 369 



and crosswalks for wheelchairs graph. Roads, although they are physically accessible elements, are not safe 370 

areas to walk. From these elements, points less than a free unobstructed width w to obstacles (non-ground 371 

static elements) and roads are subtracted. For the wheelchair graph, accessibility barriers (risers and curbs) 372 

are added as delimiters of free unobstructed space (Fig. 7). Free unobstructed space is defined in ISO-21542 373 

as the minimum space between elements that a person can pass comfortably. It is different for pedestrians 374 

wp and for wheelchairs ww. Once the navigable surfaces for pedestrians and accessible surfaces for 375 

wheelchair are defined, the downsampling generates the nodes of the final graph. The process for the graph 376 

generation is as follows and the pseudo-code used is collected in Algorithm 2. 377 

 378 

Fig. 7. Interaction between elements during the graph generation phase. 379 

 380 

4.3.1. Navigable surface delimitation 381 

First, the elements that make up the cloud are separated and grouped into passable surface elements Sp 382 

(sidewalks, crosswalks and treads) and accessible Sa (sidewalks and crosswalks). The rest of the elements 383 

(roads, risers, curbs and obstacles) are individualized by connected components. Because the passable 384 

elements are distributed horizontally, the rest of the elements are projected onto the XY plane and the 385 

contour B is calculated. To obtain the free unobstructed space, the contour of each element is dilated by a 386 

distance w/2 and subtracted from the passable surfaces (Fig. 8). 387 

 388 

Fig. 8. Subtraction of areas near elements to calculate the free unobstructed space: a) point cloud with static 389 

objects and calculation of free unobstructed height h, b) projection of the limited objects by h, roads and 390 



accessible barriers over the plane XY and dilation w/2 of the contour, c) free unobstructed space of sidewalk 391 

after substring element dilations. 392 

 393 

Since there are different free unobstructed widths defined by ISO-21542 and different elements of 394 

influence, contour dilations and subtractions are made separately for the two final graphs. For the pedestrian 395 

graph, only contours of static obstacles and roads are dilated with distance wp and are subtracted from Sp. 396 

For wheelchair graph, static obstacles, roads, curbs and risers are dilated with distance ww and subtracted 397 

from Sa. 398 

4.3.2. Downsampling 399 

Once surfaces navigable by pedestrians and accessible by wheelchairs are delimited, the downsampling 400 

that leaves the final nodes Np and Na of the graphs is applied. This downsampling leaves a distance nd 401 

between nodes that approximately follows a grid distribution. nd must be sufficient for future trajectories 402 

can be followed without an over-saturation of nodes and to ensure that there are no connections between 403 

nodes which there may be an obstacle. 404 

4.3.3. Node connection 405 

Finally, nodes are connected and final graphs are generated. The number of arcs in final graphs depends on 406 

the distance gd that relates the nodes (Fig. 9) (Bunn et al., 2000). If gd < nd, there is no adjacency between 407 

nodes; if gd ≈ nd, there is adjacency with four nodes; and if gd ≈ nd√2, there is adjacency with 8 nodes. 408 

The latter one is used for the generation of final graphs Gp and Gw. The value of each arc in the final graphs 409 

is the Euclidean distance between the corresponding nodes. 410 

 411 

Fig. 9. Relations between the nodes based on the creation distance of the graph: a) gd < nd, b) gd ≈ nd, c) 412 

gd ≈ nd√2. 413 

 414 

Algorithm 2: Graph generation 415 

Inputs: Regenereted_Point_Cloud {R}, node_distance nd, unobstructed_width_pedestrians wp, 416 

unobstructed_width_wheelchairrrs ww 417 

Outputs: Graph_pedestrians {Gp}, Graph_wheelchairs {Gw} 418 

Sidewalks {S}, Crosswalks {C}, Treads{T}  R (X,Y)  419 

Roads {Ro}, Risers {Ri}, Curbs{Cu}, Obstacles {O}  R (X,Y) 420 

Surface_points_unobstructed_passable {Sp}  (S,C,T) 421 

Surface_points_unobstructed_acessible {Sa}  (S,C) 422 

Obstacles_passable {Op}  ConnectedComponents (Ro,O) 423 

Obstacles_acessible {Oa}  ConnectedComponents (Ri,Cu) 424 



For each Op (i) 425 

 Border {B}   boundary (Op(i)) 426 

Sp  Sp - inpolygon (buffer (B,wp)) 427 

Sa  Sa - inpolygon (buffer (B,ww))  428 

End_For 429 
For each Oa (i) 430 

 Border {B}   boundary (Oa(i)) 431 

Sa  Sa - inpolygon (buffer (B,ww)) 432 

End_For 433 

Nodes_passable {Np}  downsampling (Sp,nd) 434 

Nodes_accessible {Na}  downsampling (Sa,nd) 435 

Gp  points2graph (Np,nd√2) 436 

Gw  points2graph (Na,nd√2)) 437 

Return {Gp, Gw} 438 

 439 

5. Experiments 440 

In this section, the results of the application of the methodology to three case studies are presented and 441 

analysed. 442 

5.1. Results of methodology application  443 

The methodology is composed of several phases whose results are shown below. In order to apply the 444 

methodology and guarantee its reproducibility, the parameter values must be established (shown in Table 445 

2). Values h, wp and ww are defined by ISO-21542, while value d has been set based on the 446 

recommendations described in Section 4.1.1. The value nd is based on processing times and surface free 447 

widths (in detail in Section 5.3). 448 

Table 2. Parameter values.  449 

Section and parameter Abbreviation Value 

4.1.1. Donwsampling distance d 0.05 m 

4.1.3. Free unobstructed height h 2.1 m 

4.3. Free unobstructed width for pedestrians wp 0.8 m 

4.3. Free unobstructed width for wheelchairs ww 1 m 

4.3. Distance between nodes nd 0.5 m 

 450 

In the pre-processing phase, the point cloud density is standardized and not relevant points for graph 451 

generation are eliminated. In Fig. 10, removed points are coloured in grey and non-ground remaining point 452 

are coloured in red. As can be seen, most elements are well classified, but not all, misclassified elements 453 

are highlighted in white boxes. The classifier implemented in the methodology must be previously trained. 454 

For that purpose, 906 non-ground elements of a point cloud acquired on Camelias Street in Vigo with the 455 

same MLS have been individually and classified manually. The number of non-ground elements for training 456 

is collected in Table 3 and the features of each object have been extracted (Section 4.1.2). After training 457 

the SVM classifier with cross-validation (Golub et al., 1979; Kohavi, 1995), the accuracy of the system is 458 



94.5%, enough for this job since it is not the main objective. Even so, the misclassified elements have 459 

relevance in the final graph. 460 

 461 

Fig. 10. Fragments of classified point clouds by elements with points belonging to static elements at a height 462 

less than h in red for the case of study 1 (a), 2 (b) and 3 (c). Misclassified elements are highlighted in white 463 

boxes. 464 

 465 

Table 3. Number of elements used to train the classifier. 466 

Static elements 593 

Buildings 23 

Parked cars 150 

Trees 203 

Urban furniture 113 

Pole-like objects 104 

Dynamic elements 313 

Cars in motion 137 

Pedestrians 153 

Bikes and motorbikes 23 

 467 

Once the pre-processing phase is completed, the correction of occlusions is implemented. Fig. 11 shows 468 

the comparison before and after the occlusion correction for the most important areas of the datasets.  469 



 470 

Fig. 11. Result of the application of the occlusion correction to point clouds before the correction: case 471 

study 1 (a), case study 2 (b) and case study 3 (c); and after correction case study 1 (d), case study 2 (e) and 472 

case study 3 (f). 473 

 474 

Once the occlusions have been corrected, navigable space is delimited for graph generation, according to 475 

the motor skill of pedestrians and wheelchairs, free unobstructed height width wp and ww, and passable 476 

elements. Fig. 12 shows the classified point cloud (Fig. 12.a), with navigable surface for pedestrian in red 477 

(Fig. 12.b) and for wheelchairs in white (Fig. 12.c) respecting the distance (wp and ww) to static objects. 478 

As can be seen, the stairs are not considered navigable surface for wheelchairs. The last phase is the 479 

generation of the nodes of the graph from a last downsampling. The nodes are uniformly distributed at a 480 

distance nd from each other on passable surfaces. Fig. 13 shows the nodes with different nd for pedestrian 481 

graph in a fragment of case study 1. 482 

 483 

Fig. 12. Navigable surface in the case of study 1: a) classified point cloud, b) pedestrian passable surface 484 

in red and c) wheelchair passable surface in white. 485 



 486 

Fig. 13. Distribution of the nodes (red) on the passable surface by pedestrians in the case of study 1 with 487 

nd = 0.25 m (a), nd = 0.5 m (b). nd = 0.75 m (c) and nd = 1 m (d). 488 

 489 

An erroneous classification of objects into static and dynamic causes errors in the generation of the 490 

navigable surface. Static false positives subtract zones from the navigable surface, while dynamic false 491 

positives add it. The classifier used has misclassified 47 objects as static and 1 as dynamic. The static false 492 

objects have subtracted a total of 87.9 m2 and 72.1 m2 from the navigable surface by pedestrians and 493 

wheelchairs respectively, while the dynamic false objects have generated 0.6 m2 and 0.1 m2. The total area 494 

correctly generated was 5400 m2 for pedestrians and 3950 m2 for wheelchairs, which quantifies the error 495 

caused by the classification at 1.6% for pedestrian and 1.8% for wheelchairs navigable surfaces (detailed 496 

in Table 4). 497 

Table 4. Relation between object classification and generated navigable surface. 498 

Case 

study 
User 

Generated 

navigable 

area (m2) 

Static false 

positives 

Lost 

navigable 

area (m2) 

Dynamic 

false 

positives 

Added 

navigable 

area (m2) 

Erroneous 

area 

CS1 
Ped. 1835 

24 
40.6 

1 
0.6 2.2% 

Wheel. 1714 32.6 0.1 1.9% 

CS2 
Ped. 2687 

13 
33.5 

0 
0 1.2% 

Wheel. 1511 30.4 0 2.0% 

CS3 
Ped. 878 

10 
13.8 

0 
0 1.5% 

Wheel. 725 9.1 0 1.2% 

TOTAL 
Ped. 5400 

47 
87.9 

1 
0.6 1.6% 

Wheel. 3950 72.1 0.1 1.8% 

 499 

 500 

 501 



Through the phases, a continuous reduction of points is obtained, from the initial point cloud to the final 502 

graph. Its objective is to obtain a better performance of the methodology and the calculation of final routes, 503 

discarding non-relevant points. For the case studies presented in this paper, with nd = 0.5 m, the final 504 

number of nodes in the pedestrian graph is 8059 (case study 1), 5304 (case study 2) and 3341 (case study 505 

3); and for wheelchairs 6826, 4904 and 2660 respectively. Only 0.1% of ground points of each point cloud 506 

is used in the generation of the final graph. 507 

The methodology has been implemented in Matlab and the three case studies has been processed on an Intel 508 

Core i7-7700HQ CPU 2.80 GHz with 16GB RAM. The details of processing times are reflected in Table 509 

5. The processing time is good for the case study 1 and 3 with 412 seconds and 416 seconds respectively 510 

(7 minutes approximately), and acceptable in the case study 2 with 1578 seconds (26 minutes 511 

approximately). Although the first two datasets have a similar size, this time difference is due to the large 512 

number of points in the non-ground elements class, 8.2 million points vs. 11.6 million points respectively, 513 

and the geometry of the street. The operations that consume more time are those that involve the use of 514 

connected components to large amounts of points, that are repeated in the pre-processing and in graph 515 

generation.  516 

Table 5: Processing times of the methodology application to the case studies. 517 

 Number 

of points 
Pre-processing 

Occlusion 

correction 

Graph 

generation 
Total 

CS1 20.5M 223.6 s 21.1 s 167.3 s 412.0 s 

CS2 21.8M 472.5 s 68.1 s 1038.2 s 1578.8 s 

CS3 12.0M 254.9 s 38.2 s 123.1 s 416.2 s 

  518 

5.2. Results of pathfinding application 519 

To test the viability of the graphs generated with the methodology, the Dijkstra algorithm is used to 520 

calculate routes in a series of points of origin and destination. Dijkstra algorithm is a simple and well-521 

known algorithm used in many applications (Kang et al., 2008; Ngoc Nha et al., 2012; Soltani et al., 2002). 522 

The time in which the algorithm finds a correct route is directly related to the number of nodes, this 523 

parameter is selectable by nd in the methodology. Table 6 shows the relationship between the time it takes 524 

for the algorithm to find a route and the distance between nodes nd for a start and end node located at a 525 

linear distance of 100 m. All nd distances guarantee the application of the real-time pathfinding, although 526 

an increase in time is observed decreasing nd. Considering the time increase in low nd and distances close 527 

to wp and ww do not guarantee a correct obstacle representation in the final graph, nd = 0.5 m have chosen 528 

for the final graph generation. 529 

Table 6: Relationship between the distance between nodes nd and the time to calculate a route with Dijkstra 530 

algorithm. 531 

nd (m) 1 0.75 0.5 0.25 0.1 

time  (s) 0.0160 0.0194 0.0357 0.0398 0.0758 



 532 

The results for the routes calculated by Dijkstra algorithm are shown in Fig. 14 for case study 1, Fig. 15 for 533 

case study 2 and Fig 16. for case study 3. In Fig. 14, a distinction is made between pedestrian routes without 534 

reduced mobility and wheelchairs. Pedestrian routes (Fig. 14.a and Fig 14.c) follow a direct route crossing 535 

stairs, by contrast, equivalent routes for wheelchairs (Fig. 14.b and Fig 14.d) deviate until find no 536 

accessibility barriers. The proposed routes follow the shortest suitable trajectory according to their motor 537 

skill, avoiding obstacles and following a safe course, crossing road by crosswalks and not by dangerous 538 

areas. This can be seen especially in Fig. 15, where the proposed route joins one sidewalk to the opposite 539 

one crossing the road by the crosswalks. The routes shown in Fig. 15 are for pedestrians since there are no 540 

accessibility barriers in the area. The routes shown in Fig. 16 correspond to case study 3. Fig. 16.a shows 541 

the generated route for the displacement of a pedestrian. The route cannot run on one sidewalk because its 542 

width is insufficient according to ISO-21542, so there is no navigable surface on it (Fig 16.d). Fig. 16.b 543 

shows a possible route for crossing the street. The route shown in 16.c shows a small wheelchair route from 544 

a crosswalk to the opposite sidewalk. Fig. 16.e and Fig. 16.f show the routes taking into account the 545 

navigable surface for pedestrians and wheelchairs. It can be seen as one of the sidewalks is not accessible 546 

due to the proximity between the bollards. For the same reason, the route takes different layouts for 547 

pedestrians and wheelchairs on the opposite sidewalk. In addition, all the generated routes do not collide 548 

with any static object and cross areas that in the initial cloud did not have points such as the ramp in case 549 

study 1 and the sidewalk in front of parked cars in case study 2. 550 

 551 

Fig. 14. Pedestrian routes (coloured in white) obtained with the application of Dijkstra algorithm in graphs 552 

generated by the proposed methodology over point cloud of case study 1: a) route for pedestrians, b) 553 

equivalent route for wheelchairs, c) route for pedestrians and d) route for wheelchairs. 554 



 555 

Fig. 15. Pedestrian routes (coloured in white) obtained with the application of Dijkstra algorithm in 556 

pedestrian graph generated by the proposed methodology over point cloud of case study 2. 557 

 558 

Fig. 16. Routes (coloured in white) obtained with the application of Dijkstra algorithm in graphs generated 559 

by the proposed methodology over point cloud of case study 3 with navigable surface in red: a-b) pedestrian 560 

route, c) wheelchair route, d-e) pedestrian route over navigable pedestrian surface, f) wheelchair route over 561 

navigable wheelchair surface. 562 

 563 

5.3. Discussion 564 

Routes generated by the Dijkstra algorithm are perfectly valid for use by both pedestrians and wheelchairs, 565 

adapt to ground elements, avoid static obstacles and do not take into account the dynamics that appear in 566 

point clouds. Routes can run through areas where input cloud had no points (as seen in Fig. 14 and Fig. 15) 567 

while taking into account regulations to establish a minimum free unobstructed space so that people can 568 



transit comfortably. In addition, while the generation of the graph involves processing of minutes, the 569 

generation of the path with Dijkstra algorithm can be done in real time. 570 

The nd variable is the one that most influences the number of nodes in the final graph. A smaller nd distance 571 

allows a more detailed map, it increases the complexity of the graph and the time in route calculation. In 572 

the results presented in this work has been selected an nd = 0.5 m, because it has not seen an improvement 573 

in the use of a more detailed graph due to the inability of pedestrians to follow a route with few centimetres 574 

in an urban environment. By contrast, a larger size (more than the free unobstructed widths defined by ISO-575 

21542) can lead to omitting small static elements, making the graph lose reality with the as-built 576 

environment, one of the main objectives of the work. 577 

The results show a robust behaviour of the proposed methodology, but it is not exempt from some 578 

limitations. The generated graph at the end of the methodology depends on these two processes: object 579 

classification and occlusion correction.  Errors in graph generation will result in erroneous routes.. The 580 

classification of non-ground elements in static and dynamic is preceded by a phase of individualization. If 581 

objects are very close to others, they may not be identified correctly and they are classified as one. It is 582 

common for this error to occur with dynamic elements that are interacting with statics or near them (Fig 583 

17.a). In addition, the classification between static and dynamic is not perfect and there may be misclassified 584 

elements. The authors have chosen to use a classifier with few parameters to gain processing time and to 585 

only need XYZ coordinate information in its implementation. Errors in individualization and classification 586 

mean that the graph does not truly fit the built environment and holes appear on the navigable surface (Fig 587 

17.b). Although the erroneous area accounts for less than 2% of the navigable area generated in the case 588 

studies (Table 4), each misclassified object carries an error in the navigable area of approximately 1.8 m2. 589 

In certain locations, such as narrow sidewalks, a hole can break the continuity in the graph and lead to major 590 

changes in the generated route. Regarding the occlusion correction, the algorithm is only effective when 591 

occlusions are not at the border of the point cloud (Fig 17.c). If the occlusion is at the border, the zone is 592 

considered as an external part and no points are generated in it, therefore, it is not represented in the final 593 

graph either. In addition, occlusions can hide small static objects, which are not regenerated in the process 594 

of occlusion correction and represent a false reality. These two limitations have occurred in specific cases, 595 

not being common occurrence. An alternative to the use of an SVM for static and dynamic object 596 

classification and occlusion regeneration could be the acquisition of clouds at different multi-temporal 597 

observations, but this entails more expense in the acquisition of the built environment. In addition, while it 598 

would eliminate dynamic objects and some occlusions, others caused by static objects will continue to exist. 599 



 600 

Fig. 17. Example of limitations in the application of the methodology:  a) dynamic element merged to a 601 

static element, b) holes in the passable surface caused by a correct classification (tree) and an incorrect 602 

classification (dynamic object confused as static), and c) uncorrected occlusion at the point cloud border in 603 

the case study 2. 604 

 605 

6. Conclusions 606 

In this paper, a methodology for the direct use of point clouds for pathfinding is presented. As a result, a 607 

graph representing in detail the urban environment is automatically generated, providing a very accurate 608 

pathfinding solution for both pedestrians and wheelchairs. The methodology has been designed to solve the 609 

main limitations presented by use point clouds in real pathfinding: 610 

 The large number of points is reduced through successive spatial downsampling and density 611 

standardization. 612 

 A distinction is made between static and dynamic elements in the scene, considering static 613 

elements as obstacles and discarding dynamic ones. 614 

 Occlusions presented in point clouds are corrected and no-data areas regenerated with new points. 615 

 The navigable surfaces are selected and their free unobstructed space delimited according to their 616 

interaction with obstacles and physical accessibility barriers. 617 

The methodology has been tested in three case studies acquired in real urban environments and their 618 

navigation graphs are generated successfully. The routes are obtained in real time by applying Dijkstra 619 

algorithm to the navigation graphs. The generated routes are perfectly viable, are adjusted to ground 620 

elements, respect safety distances with obstacles and take into account accessibility barriers. In summary, 621 

the proposed routes present a high level of detail at the same time that they are safe and viable according to 622 

two motor skills (pedestrians and wheelchairs). Therefore, point clouds have proven to be optimal input 623 

data for pedestrian pathfinding in urban environments because: they provide real data of the environment, 624 

therefore there are routes based on no theoretical models; it is possible to work on 3D routes and not only 625 

on flat maps; and the accuracy of the data is sufficient to detect obstacles and include them in the navigation 626 

graph. 627 

Future work will focus on improving the classification between static and dynamic elements with Deep 628 

Learning techniques, since an incorrect differentiation reduces realism to the final model. Also the 629 



optimization and export for integration of the generated models in GIS (Geographic Information Systems) 630 

will be evaluated with the aim of reaching more users. 631 
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