
Abstract- This communication describes a computer vision
system designed to automatically read the displays of digital
instrumentation. The system is used in calibration sessions where
many measurements have to be made and where we are interested
in getting the whole series downloaded on a host computer. Before
our system was running, a human operator had to inspect the
instruments at the right times required by the calibration protocol
and write down all the results. Note that we are speaking of very
simple and sometimes old instruments that usually do not provide
a digital interface or a removable memory.

I. INTRODUCTION

A. Purposes of Development

The computer vision system as described in this article was
designed to automatically read digital instrumentation
measurements avoiding a boring and sometimes frustrating
work of human operators. The system was first implemented at
the “Laboratorio Oficial de Metroloxía de Galicia” (LOMG:
www.lomg.es) for the task of digital thermometer calibration
(Figure 1). Nevertheless, our application will be useful with all
types of instruments exhibiting a numerical display.

As we will see later, we start with a photograph of the
instrument displaying a stable measurement. Then we use
standard image processing techniques to segment the image
characters in a manually selected region of interest. Finally, we
will see how we recognize the digits with our new approach
that combines two different classifiers.

B. Related Work

Our system is an example of character recognition in scene
images like the one implemented in [1] in a more general
context. Notice that we are not locating the character region
(like [1] does) but we have taken some ideas from there like
the interpolated threshold in non uniformly illuminated images.

Our system also shares ideas with car plate recognition
systems, e.g. [2], [3], [4]. In such a plate recognition system
designers cannot rely on human help to locate the plate but
conversely a fixed character font is assumed. In contrast, for
digital instrumentation, we have to take into account multiple
fonts (Figure 2) which is, as we will see, a source of problems.
Locating the regions of interest automatically is not an issue of
high priority, because the operator must set up the calibrating
experiment anyway.

The next section describes the methods we used for
preprocessing (e.g., binarization or skew angle correction) and
segmentation which are standard image processing techniques
adequately adjusted to our problem.

The recognition step, as detailed in Section III, combines
two methods: the first one is a classical one based on feature
extraction followed by distance classification; the second one
is an original method especially suited to recognize
instrumentation digits (as we will see is somewhat inspired by
the classical 7-segment display). The fusion of both
recognizers is also an original contribution where we use the
second recognizer to correct possible errors of the first one.

II. IMAGE CAPTURING AND PREPROCESSING

A. Image Capturing

Capturing is perhaps the most important part of the whole
system. A good capture will make recognition easy while a bad
one would make it impossible.

Fig. 1. Examples of different instruments, some of them are showing
display defects (bubbles in the first one, stripes in the third one).

Fig. 2. Examples of different displays using different character fonts.
Our system is able to deal with all of them.

Peer-reviewed version. F. Martin, E. Vazquez-Fernandez, A. Formella, H. Gonzalez-Jorge and A. Dacal-Nieto, "Automatic reading of digital
instrumentation," 2008 IEEE International Symposium on Industrial Electronics, Cambridge, UK, 2008, pp. 913-918, doi: 10.1109/
ISIE.2008.4677066.

Automatic Reading of Digital Instrumentation
Fernando Martín1, Esteban Vázquez Fernández1,3, Arno Formella2,

Higinio González Jorge3, Ángel Dacal Nieto3.
1Communications and Signal Theory Department. University of Vigo.

2Computer Science Department. University of Vigo.
3Laboratorio Oficial de Metroloxía de Galicia.

fmartin@tsc.uvigo.es, formella@ei.uvigo.es, evazquez@lomg.net

https://doi.org/10.1109/ISIE.2008.4677066

Due to the fact that we can not alter some laboratory
conditions at LOMG, image capturing has to be done without
modifying the environment illumination. We use a C-Cam
BCi4 camera with 1280x1024 resolution (Figure 3). In most of
the cases, the operator can use a 25 mm lens that is able to
focus from 15 cm to 1 m. However, sometimes the physical
conditions oblige the use of a 75 mm lens with a focal distance
from 1.5 m to 10 m.

As the observed instrument is not moving during image
capturing, we decided to rely on the user to extract the regions
of interest (Figure 4). The regions will have to be marked only
once for all the series. Currently, we are working to achieve an
automatic detection, using the methods described in [4] and,
perhaps, taking advantage of the sequence of images.

B. Binarization

Binarization is the process that converts a grayscale or color
image into a binary one with only two levels.

We start by converting our colored images to grayscale
giving preference to the ITU-R BT.709 recommendation (gray
= 0.2125R + 0.7154G + 0.0721B), because instrument displays
often are green or, at least, dominated by the green channel. As
expected, the resulting gray level distribution shows a bimodal
histogram (two main peaks, see Figure 5).

We use a combination of the well known Otsu method from
[5], implementing it via an approximate iterative version found
in [6] and the method taken from [7] that is based on searching
the histogram peaks (and locating thresholds on the minima
between them).

As can be seen in Figure 6, the Otsu method can create some
segmentation problems due to the thicker characters it
produces. We also experienced some problems with images
with important illumination gradients (Figure 7). In these
cases, a global threshold is not enough. This can be solved
dividing the image into sub-images and applying interpolated
thresholds [1] (the improved results are shown in Figure 8).

The final solution consists of applying first the peak
detection method and then measuring threshold quality using
the histogram area in the threshold neighborhood. If that area is
bigger than usual the threshold is considered incorrect and we
switch to an interpolated threshold with 12 sub-images (4x3
sub-image grid). We use Otsu threshold on each piece.

To measure the threshold quality, we compute the histogram
area in the threshold boundary (Figure 9). The area should be

Fig. 3. Camera used for capturing.

Fig. 4. User selection of the region of interest.

Fig. 5. Left: example of a grayscale display image. Right: gray histogram of
the left image.

Fig. 7. Left: Image with illumination gradient. Right: binarization with a
single threshold.

Fig. 8. Images binarized with interpolated thresholds. Left: 8x8 sub-images.
Right: 4x3 sub-images.

Fig. 6. Left: Peak detection method. Right: iterative Otsu method.

small, so if it is exceeds 2.5% of the entire histogram area we
will consider it as an invalid threshold.

C. Skew Angle Correction

To correct a possible skew angle, we estimate the upper
contour of the characters and compute the slope of the resulting
straight line (see Figure 10).

D. Character Row Extraction

Extracting the character row is the same as removing the
blank lines above and below the characters and also to the left
and to the right of them. As shown in Figure 11, this is an easy
process using an horizontal and a vertical image projection.

On each projection, we detect the region of interest
beginning and ending by searching for large gradients, first
from left to right (top to bottom) and afterwards in the opposite
direction.

III. CHARACTER SEGMENTATION

To isolate the different characters in a preprocessed row, we
use what we call “enhanced projections”. For instance, the
enhanced horizontal projection of an image is the vector that
contains in position i the dot product (∑>=< jjyxy,x)
between the (i-1)th and (i+1)th column. Figure 12 illustrates the
advantages of an enhanced projection. As can be observed, the
minima that mark character transitions are deeper compared to
the standard projections.

The main procedure consists of searching the horizontal
projection from right to left while applying a kind of hysteresis
process. The right to left direction is chosen as the digit ending
is usually more evident than its beginning (most digits end by a
vertical line, i.e., a strong projection gradient). We use the
word hysteresis because the threshold to detect a character
beginning is different (bigger) to the threshold used to detect
an ending (Figure 13).

To detect segmentation errors (linked characters), we
compute the aspect ratio of all segmented items
(R=height/width). For a ratio R of less than 1.2 we decide that
we rather have two characters. In this case, we first compute
the local maxima and minima of the projection (using a sliding
window procedure as described in [7]). The deeper minimum

Fig. 9. Threshold quality measuring, X=0.15(M1-M0).

Fig. 11. Binary display image and both projections.

Fig. 10. Skew angle correction.

Fig. 12. Standard projection (left) and enhanced one (right).

that is between two peaks is selected as the optimum breaking
point.

In most cases, our segmentation is able to detect the decimal
point (something very important for this application).
Sometimes, however, we have skewed characters that confuse
the projection. When the point is not found in the first run, we
try again using a projection of the lower part of the characters,
note that characters are already segmented (Figure 14).

Even with this effort, the decimal point does not yield a
correct detection rate bigger than 70%. That is why we ask the
user for the position of this point (number format) before
beginning recognition of a series of images.

IV. DIGIT RECOGNITION

First, we normalize the extracted characters by scaling them to
a fixed size of 16x16 points. Note that we do not maintain the
aspect ratio. We had started by keeping that ratio (getting a
character with 16 points height and less than 16 points width)
followed by centering with vertical lines [8]. Nevertheless, we
discovered that, in the end, we yielded slightly worse results.

Distorting characters is not a problem as long as we also distort
the patterns as well.

A. Feature Extraction

We extract features in two ways. First, we take advantage of
the already computed horizontal and vertical projections of the
individual characters. Obviously, different characters may have
almost the same projection (see Figure 15). Therefore, we split
each character into two halves (an upper and a lower one) and
then compute 4 vectors: upper horizontal (16 values), upper
vertical (8 values), lower horizontal (16 values), lower vertical
(8 values). So projections yield a feature vector of length 48.

Second, we use features based on Kirsch gradients [6], [8].
The Kirsch operator computes a first order derivative (similar
to other operators like Prewitt, Sobel, Canny, etc. [9]). Our
purpose is to compute image components along four
directional axes: horizontal, vertical, right diagonal and left
diagonal. For example, the horizontal component is computed
via a vertical gradient (being always perpendicular to the
desired direction).

Kirsch defines an algorithm that uses the following notation
to index the pixels as neighbors to a certain pixel (i,j):

4A5A6A
3Aj)(i,7A
2A1A0A

Fig. 13. Detection with hysteresis.

Fig. 14. Above: skewed characters that make the point detection difficult.
Below left: lower part of “2”. Below right: projection of fragment.

Fig. 15. Two characters with almost identical projections.

Fig. 16. Directional components.

The equations are:
2+k1+kkk AAA=S ++

7+k6+k+5k4+k+3kk AAAAA=T ++++

{ }4D4DDDD 3T-5S,3T-5S1,max=j)(i,G ++
 (1)

Where GD(i,j) is the gradient for pixel (i,j) in direction D and
sub-indexes of A are evaluated modulo 8.

With the help of these equations, we compute feature maps
in four directions: horizontal (H, D=0), vertical (V, D=2), right
diagonal (R, D=1) and left diagonal (L, D=3).

Eventually, we obtain four local feature maps as 16x16
images. Using all of them as a feature vector would result in a
vector of length 1024. In [8] it is suggested to decimate the
16x16 images to size 4x4. However, in our particular system
we obtained better results leaving the 4 directional components
in its original size (Figure 17).

We combine the two feature vectors, i.e., projections and
Kirsch, yielding a total vector of length 1024+48=1072.

The relative sizes of the two vectors to be joined are so
different that perhaps the conclusion may be drawn that the
projection vector is not important. Note that we were planning
4x4 components (a final vector of length 64+48).

B. Classifier

We tried various classifiers (like probabilistic neural networks,
Gaussian classifiers and k-NN) and achieved the best results
for the nearest neighbor algorithm (1-NN). This is not very
surprising as it is explained in [10]. In our system, we have to
deal with several different character types (7-segment,
graphical fonts, skewed, not skewed, etc.). In this multi-font
situation, there exists sometimes more variance between the
samples of the same character in different fonts than between
different characters in the same font (intra-class variance
greater than inter-class variance, Figure 18).

As patterns for the 1-NN classifier we chose perfect ones
(obtained from the different fonts). We tried to use patterns
from segmented input digits but the 1-NN got better results for
the artificial, perfect ones.

C. Classification via Visual Inspection

Visual inspection is an intuitive method. We developed it
studying the reasoning that people express when they describe
how they recognize characters.

The alphabet of digits (‘0’ to ‘9’) in different fonts is
reduced and we can find a defining characteristic for each
class. For example, no matter which font, the number ‘2’ has
always two openings: one in the upper left part and the other in
the lower right one.

We implemented this method as a complete recognizer based
on a template that defines the regions of interest (Figure 19).
We check whether the seven regions are active or not by
majority voting between foreground and background pixels.
Note that the template is a 7-segment detector where we have
removed the corners (which are sharp in some fonts and
rounded in others).

Visual inspection by itself does not achieve a high enough
recognition rate but combined with the more classical approach
described above we got a very robust system.

D. Classifier Fusion

To benefit from both classification schemes, we run them in
parallel and combine their results in the following manner (see
Figure 20 for a flow diagram):

We run the feature extraction and compute the norm-1
distance to every pattern yielding a distance vector.
We run the visual inspection algorithm yielding an
estimate for the digit to be recognized. This is coded as
a binary vector of length 10 where an active bit at a
position corresponds to recognition of that class.
We reduce the distances that correspond to the class that
was recognized by visual inspection by 20%, empirical.
We apply 1-NN and minimum distance wins.

Fig. 17. True example of directional components.

Fig. 18. Example of inter-class and intra-class distance. Input character
‘1’ is closer to a ‘2’ than to other ‘1’s of different fonts.

Fig. 19. Regions of interest tested (a 7-segment like template).

V. RESULTS

Our test set consisted of 16 image sequences, with a total of
449 images (examples are shown in Figure 21). The system
obtained the correct values 439 times, i.e., 98% recognition
rate (measured on display images, not on individual digits). We
have tried samples from all accessible fonts: 7-segment,
skewed, not skewed, graphic display, etc. In routine work of
the LOMG, the 7-segment displays are the most common ones,
resulting in an even higher recognition rate for the real
distribution of display types.

As an example, see that the erroneous image in figure 21 was
due to the special nature of this display. This machine uses
dotted characters that we are not able to segment (Figure 22).
Perhaps, we could solve this using mathematical morphology
(closing [6]) before segmenting. But we should pay attention to
avoid spoiling good results on other images.

VI. CONCLUSION AND FUTURE LINES

We have designed and implemented a useful system able to
read almost any display of digital instrumentation devices.

We have employed standard image processing techniques
adapted to this problem. We also designed a hybrid recognizer,
which combines a classical classifier with a visual inspection
algorithm.

The recognition rate of the final system suggests that we
have solved the problem despite the intra-class variance due to
the presence of multiple fonts.

As future work lines, we emphasize on the following:
Designing an automatic location algorithm to avoid that
users have to define the region of interest.
Optimizing the feature vector trying to detect the
principal components.
Using knowledge from previous images (for instance
the font type) when recognizing subsequent images in a
sequence.
Detecting automatically displays that are not stable yet
(i.e., its digits are changing from one value to another).

REFERENCES

[1] J. Ohya, A. Shio, S. Akamatsu. “Recognizing Characters in Scene
Images”. IEEE Transactions of Pattern Analysis and Machine
Intelligence, Vol. 16, Nº 2, pp 214-220. February, 1994.

[2] J. R. Cowell. “Syntactic Pattern Recognizer for Vehicle Identification
Numbers”. Image & Vision Computing. February, 1995.

[3] X. Fernández Hermida et al. “Automatic and Real Time Recognition of
V.L.P.'s (Vehicle License Plates)”. Lecture Notes on Computer Science.
Springer-Verlag. Nº 1311, Vol 2, pp 552-559. 1997.

[4] F. Martín, M. García. “New Methods for Automatic Reading of VLP's
(Vehicle License Plates)”. Proceedings of SPPRA-2002 (Signal
Processing Pattern Recognition and Applications). June, 2002.

[5] N. Otsu. “A Threshold Selection Method for Gray Level Histograms".
IEEE Transactions on System, Man and Cybernetics”. January, 1979.

[6] R.C. González, R.E. Woods. “Digital Image Processing”. Ed. Prentice
Hall, 2º edition, 2002.

[7] F. Martín. “Analysis Tools for Gray Level Histograms”. Proceedings of
SPPRA-2003. June, 2003.

[8] D. Cruces, F. Martín. “Printed and Handwritten Digits Recognition Using
Neural Networks”. Proceedings of ICSPAT-97 (International Conference
on Signal Processing and Applications Technology). September, 1998.

[9] A. K. Jain. “Fundamentals of Digital Image Processing”. Ed. Prentice
Hall. 1989.

[10] J. L. Blue et al. “Evaluation of Pattern Classifiers for Fingerprint and
OCR Applications”. Pattern Recognition. Pergamon Press. Vol 27, Nº 4,
pp 485-501. 1994.

FIGURE

Features Extraction

Visual
Inspection

Distance
calculation

20 % reduction to
winner figure

distance

1-NN

RESULT

Figure
vector

Distance
vector

Fig. 20. Flow diagram of classifier fusion.

Fig. 21. Some examples from our test set.

Fig. 22. Image with erroneous result.

© 2008 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

