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Abstract

In this paper we establish the statistical properties of SGoF multitesting method under a mix-
ture model. It is assumed that the available set of p-values is statistically independent. Special
attention is paid to the huge dimension problem in which the number of tests goes to infinity.
Formulae for the power and the rate of false discoveries/non-discoveries of SGoF are given, so
the role of the gamma-parameter of SGoF is understood. The existing connection between SGoF
and a test of significance for the proportion of non-true nulls below gamma is explored. This con-
nection suggests a possible modification of SGoF which may improve the power of the method.
Simulation studies and a real data illustration are included.
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1 Introduction
Multiple-testing problems have received much attention since the advent of the -
omic technologies: genomics, transcriptomics, proteomics, etc. They usually in-
volve the simultaneous testing of thousands of hypotheses, or nulls, producing as
a result a number of significant p-values or effects (that is, an increase in gene ex-
pression, or RNA/protein levels). In this setup, several criteria have been proposed
to control for type-I errors (false positives). The family-wise error rate (FWER),
defined as the probability of committing at least one type-I error through the sev-
eral hypotheses under consideration, works as a substitute for the significance level
in the traditional (single hypothesis) context. Typically FWER control is required
in the strong sense, i.e. independently of the amount of true and false hypotheses.

Unfortunately, methods controlling the FWER have a remarkable lack of
power, that is, they are unable to detect a reasonable amount of effects (Benjamini
and Hochberg, 1995). As a more flexible strategy, the false discovery rate (FDR)
criterion persecutes to maintain the proportion of false discoveries below a given
level. Both FDR and FWER criteria coincide when all the nulls are true, but in
general FDR will be smaller than FWER, so bounding the former allows for some
improvement in the power (Benjamini and Hochberg, 1995). Traditional FWER-
and FDR- based methods are nicely reviewed by Nichols and Hayasaka (2003) as
well as by Dudoit and Laan (2008).

As a drawback of the FWER- and FDR-based methods, their power may be
rapidly decreased as the number of tests grow, being unable to detect even one effect
in particular situations (Carvajal-Rodrı́guez et al., 2009). This typically happens in
situations with a large number of tests, when the effect in the non-true nulls is weak
relative to the sample size (same reference). Storey (2003) suggested as a possible
solution a weighted criterion in which both the FDR and the false non-discovery
rate (FNR) are penalized. This issue was also explored in Cheng et al (2004), who
proposed to evaluate the distance between the empirical and the uniform quantile
processes, penalizing for the number of false discoveries. Further developments
of FDR-based methods were given by Storey and Tibshirani (2003), Storey et al.
(2004) and Nguyen (2004), among others.

Carvajal-Rodrı́guez et al. (2009) introduced a new multitesting strategy,
SGoF, with focus on the existing number of effects with p-value below a given sig-
nificance threshold (the γ parameter). SGoF method respects the FWER but only
in the weak sense, that is, when all the nulls are true. This new approach provides a
reasonable compromise between false discoveries and power (Carvajal-Rodrı́guez
et al., 2009), and several enhancements of the method have been proposed (de Uña-
Álvarez and Carvajal-Rodrı́guez, 2010). However, the theoretical statistical prop-
erties of SGoF have not been investigated in much detail so far. This paper fills this
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gap.
The rest of the manuscript is organized as follows. In Section 2 we intro-

duce the notations and we describe the method SGoF (Section 2.1) as well as a
modification SGoF1 (Section 2.2) with further power improvements. In Section 2.3
we compare the SGoF and FDR-based thresholding criteria through an illustrative
example. Theoretical results are formally presented in Section 3. Specifically, we
give expressions for the FDR, the FNR and the power of SGoF and SGoF1 strate-
gies. The influence of the SGoF’s γ parameter is investigated. All these results
correspond to the situation of independent tests. Simulation studies to compare the
several multitesting adjustments are performed in Section 4, while a real data exam-
ple is considered in Section 5. Section 6 provides a final discussion, including the
issue of dependent p-values. Technical derivations are collected in the Appendix.

2 Methods

2.1 The mixture model

It is assumed that the n p-values p1, ..., pn at hand constitute a random sample from
a mixture distribution function (df) F(x) = πoF0(x)+(1−π0)F1(x). Note that this
implies that the p-values are statistically independent; see Section 6 for a brief
discussion of the dependent case. Here, π0 is the proportion of true nulls in the
population, F0(x) = x is the df of the p-values corresponding to true nulls, and
F1 stands for the unknown df of the p-values corresponding to non-true nulls (or
effects). The p-value pi is attached to a null hypothesis H0i which may be true or
false. The a priori probability of being true forH0i is π0. Given thatH0i is true, pi is
distributed as F0 (i.e. uniformly in the (0,1) interval); on the contrary, conditionally
on H0i is false, pi follows the df F1.

In practice, both π0 and F1 must be estimated, and several estimators have
been proposed in the related literature. See Cheng et al. (2004) and references
therein. The problem is to decide which pi come from F1. If the density of F1,
f1 = F ′

1, exists and if it is monotone decreasing, traditional classification theory
(i.e. minimizing Bayes’ error) suggests the rule R (p∗) = {pi ≤ p∗} to detect the
non-true nulls, where p∗ is the solution to equation

f1(p) =
c(1|0)π0

c(0|1)(1−π0)
,

and where c(0|1) is the penalty when we accept a non-true null, and c(1|0) is the
penalty when we reject a true null. As an example, in the special case c(1|0) =

erties of SGoF have not been investigated in much detail so far. This paper fills this
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c(0|1), we come up with equation f1(p) = π0/(1−π0), this is f (p) = 2π0, which
does not need to have a solution. Besides, even when the solution p∗ exists, it may
not be meaningful as a threshold of significance when it is too large. So this idea
does not end with the classification problem. Similar comments hold true for the
weighted FDR-FNR criterion of Storey (2003), see our Section 3 for further details.

2.2 SGoF revisited

Recently, Carvajal-Rodrı́guez et al. (2009) proposed a new method for p-value
thresholding in multitesting problems. This method, called SGoF (from Sequential-
Goodness-of-Fit), can be summarized as follows. Let Fn be the empirical df of the
pi, and let γ be an initial significance level, typically chosen as a small probabil-
ity (γ = 0.05, 0.01, 0.001 and so on). Consider the intersection (or complete) null
hypothesis H0 =

⋂n
i=1H0i. Under H0 the p-values should fit well to a uniform dis-

tribution; more specifically, F = F0 and hence the expected proportion of p-values
below γ is just F0(γ) = γ . If some of the null hypotheses are false, one expect a
proportion F (γ) above γ; so SGoF performs a one-sided (meta-)test at level α for

H0(γ) : F(γ) = γ versus H1(γ) : F(γ) > γ,

with rejection region given by {nFn(γ) ≥ bn,α(γ)}, where the critical point bn,α(γ)
is defined through bn,α(γ) = {b : P(Bin(n,γ) ≥ b) ≤ α}. In the original formu-
lation of SGoF (Carvajal-Rodrı́guez et al., 2009), γ = 0.05 and α = γ , but no one
of these conditions is essential, so we investigate the general case in which γ is an
arbitrary (but known) value in the open interval (0,1), and α is possibly distinct
from γ . Interestingly, under the mixture model, the intersection null H0 holds iff
H0(γ) holds for some given γ (see Lemma 1 in the Appendix for the details).

As n grows, bn,α(γ) can be approximated by

bn,α(γ) ≈ nγ +
√
nγ(1− γ)zα (1)

where zα = Φ−1(1−α) stands for the (1−α)-quantile of the standard normal. By
using this normal approximation, we see that H0(γ) is rejected iff

Fn(γ)− γ√
γ(1− γ)/n

> zα ,

which is the traditional (asymptotic) formulation of a one-sided test for a propor-
tion. Rejection of H0(γ) in this meta-test means that there is at least one effect (i.e.
a non-true null) among the n tests.

inf
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In case of rejection, SGoF concludes that the number of effects is given by
the ’excess of significant cases’ in the meta-test, this is Nα(γ) = nFn(γ)−bn,α(γ)+
1 (Carvajal-Rodrı́guez et al., 2009; de Uña-Álvarez and Carvajal-Rodrı́guez, 2010).
Consequently, the Nα(γ) smallest p-values are declared as true effects. We de-
note the corresponding threshold p-value by p∗n,α(γ), that is, Nα(γ) = nFn(p∗n,α(γ)).
Note that, from (1),

Nα(γ) = nFn(γ)−bn,α(γ)+1
≈ n [Fn(γ)− γ]−

√
nγ(1− γ)zα +1

and

Nα(γ)

n
= Fn(p∗n,α(γ)) ≈ Fn(γ)− γ −

√
γ(1− γ)

n
zα +

1
n
,

or equivalently

p∗n,α(γ) = F−1
n

(
Fn(γ)−n−1bn,α(γ)+n−1

)

≈ F−1
n

(
Fn(γ)− γ −

√
γ(1− γ)

n
zα +

1
n

)
(2)

where F−1
n (p) = inf{x : Fn(x) ≥ p} is the so-called empirical quantile function.

Since bn,α(γ) ≥ 1 whenever α < 1, and since F−1
n is nondecreasing, we have

p∗n,α(γ)≤ γ . This ensures that only p-values below γ may enter the set of hypotheses
declared to be significant by SGoF. When only p-values below α are considered as
candidates for effects, one should use the correction Ncα(γ) =min{Nα(γ),nFn(α)}
(cfr. de Uña-Álvarez and Carvajal-Rodrı́guez, 2010).

Since Fn→ F as n→ ∞, the threshold p-value of SGoF p∗n,α(γ) approaches
to p∗(γ) =F−1 (F(γ)− γ) as the number of tests n grows (and, in particular, p∗(γ)≤
γ). This is formally established as a Proposition in the next section (Proposition
1A). Note also that the limit threshold p∗(γ) does not depend on the level α of
the meta-test. This is because as n→ ∞ we have almost perfect knowledge on the
value of F(γ) and hence the influence of the level vanishes. For finite n, however,
p∗n,α(γ) grows with α and hence more effects are declared for a larger α . It is
worthwhile recalling that the chosen α is controlling the FWER of SGoF in the
weak sense, that is, under the intersection null H0 =

⋂n
i=1H0i (Carvajal-Rodrı́guez
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et al., 2009). Since under H0 the FWER coincides with the FDR, SGoF is also
controlling the FDR in this case. It has been also referred that the power of SGoF
increases with the number of tests (Carvajal-Rodrı́guez et al., 2009). The explana-
tion of this property is found in the negative term −n−1/2√γ(1− γ)zα which turns
the p-value threshold down (i.e. less power) when n is small. In Section 3 we will
also see that p∗(γ) increases with γ up to a maximum value, and then decreases.

SGoF’s metatest statistic is related to the notion of second-level significance
testing or higher criticism introduced by Tukey in 1976. However, for the best of
our knowledge, this notion was not considered for testing individual hypotheses as
in the SGoF method. As an extension of Tukey’s idea, Donoho and Jin (2004) (see
also Hall and Jin 2008, 2010) considered the ’higher criticism’ test statistic

HC∗
n = max

1/n≤γ≤1/2
Fn(γ)− γ√
γ(1− γ)/n

to detect a small fraction of nonnull hypotheses in what they called ’sparse hetero-
geneous mixtures’. In a related context, Donoho and Jin (2008) proposed a p-value
thresholding method for feature selection based on a statistic similar to HC∗

n , where
the maximum is taken within a given fraction of the top ranking features. Simu-
lations reported in that paper suggest that this ’higher criticism thresholding’ may
be close to the ideal threshold which minimizes the missclassification rate when
selecting features. See also Ahdesmäki and Strimmer (2010). Under SGoF’s strat-
egy, an initial threshold γ is fixed by the researcher, according to the level at which
FWER is to be controlled. Hence, despite the possible similarities, no one of the
referred methods performs a multitest adjustment in the same way as SGoF do.

There exists and interesting connection between the amount F(γ)− γ and
the proportion of non-true nulls with p-value falling below γ , P1(γ) = P(H0i =
1, pi ≤ γ), where H0i = 1 means ”H0i is false”. Note that P1(γ) = (1−π0)F1(γ) =
F(γ)−π0γ ≥ F(γ)− γ , so F(γ)− γ is a lower bound for P1(γ). Hence, as n grows,
since Nα(γ)≈ n(F(γ)− γ), the number of effects declared by SGoF (Nα(γ)) can be
regarded as a lower bound for the number of true effects below the initial threshold
γ (i.e. for nP1(γ)). This also suggests a possible modification of SGoF which is
expected to increase the power. This modification is introduced in the following
subsection.

2.3 SGoF1: testing for the number of effects

Consider the following null and alternative hypotheses:

H10 (γ) : P1(γ) = 0 versus H11 (γ) : P1(γ) > 0.
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Note that, under the mixture model,H10 (γ) holds iff π0= 1, i.e. there exists a perfect
coincidence between the intersection null H0 and H10 (γ) (whatever the value of γ
is). Now, estimate P1(γ) by P1,n(γ) = Fn(γ)−π0,nγ where π0,n is some consistent
estimator of π0. Then, provided that P1,n(γ) is normally distributed for large n,
H10 (γ) is rejected iff

P1,n(γ)√
Var(P1,n(γ))

> zα ,

where Var(P1,n(γ)) stands for the variance of P1,n(γ) under H10 (γ). In this case, the
modified SGoF method, which we call SGoF1, declares as effects the N1,α(γ) =

nP1,n(γ)−n√Var(P1,n(γ))zα +1 smallest p-values. As SGoF, this method weakly
controls the FWER at level α . We can be more precise if e.g. we use the simple
estimator of π0 proposed by Dalmasso et al. (2005), namely

π0,n = −1
n

n

∑
i=1
log(1− pi).

It happens E [π0,n] ≥ π0 so π0,n will result in some overestimation of the proportion
of true nulls. Under (the intersection null) H10 (γ) it can be seen that

Var(P1,n(γ)) =
γ [1−2(1− γ) log(1− γ)]

n

(see Lemma 2 in the Appendix for a proof). This is the version of SGoF1 we
consider in this paper, although less conservative versions could be constructed.
Introduce the threshold p-value of SGoF1, which is given by

p∗1,n,α(γ) = F−1
n (n−1N1,α(γ))

= F−1
n

(
P1,n(γ)−

√
Var(P1,n(γ))zα +

1
n

)
. (3)

Note that (similarly as for p∗n,α(γ)) we have p∗1,n,α(γ) ≤ F−1
n (Fn(γ)− π0,nγ) ≤ γ;

p∗1,n,α(γ) grows with α; and p∗1,n,α(γ) tends to increase (and hence the power in-
creases) with the number of tests n. On the other hand, since P1,n(γ) → P1(γ) as
n→∞, we have that p∗1,n,α(γ) converges to p∗1(γ)=F−1 (P1(γ))=F−1(F(γ)−π0γ)
as n→ ∞, which is greater than p∗(γ). This means that asymptotically SGoF1 will
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have more power than SGoF for any given γ , and accordingly a larger FDR. We
have confirmed through simulations that this modification results in more power
also in the finite sample case, specially for large values of γ . See our Section 4
below. However, unlike for SGoF, the asymptotic power of SGoF1 increases with γ
all along the (0,1) interval.

There is a nice interpretation of SGoF1’s threshold p-value, because (asymp-
totically) it is just the point for which the cumulative proportion of p-values equals
the proportion of true effects below the initial significance level γ (i.e. P1(γ)). For
finite samples, a similar interpretation holds, but in this case one should refer (rather
than to P1(γ)) to the lower limit of significance (at level α) for P1(γ), namely

P1,n(γ)−
√
Var(P1,n(γ))zα +

1
n
.

Remark. The result p∗1,n,α(γ)→ p∗1(γ) as n→ ∞ (and hence the asymptotic
interpretation of SGoF1 method) still holds when α is replaced by a sequence αn of
FWER-controlling levels such that n−1/2zαn = n−1/2Φ−1(1−αn) → 0 as n→ ∞,
see Proposition 1B in Section 3. For example, the choice αn = α/n is interesting
because it introduces a conservative version of SGoF1’s strategy, which may com-
pensate an ’excess in power’ (with a high associated FDR) when the number of
tests n is very large. Same comments apply to SGoF. See our real data example in
Section 5 for illustration.

2.4 Relationship to FDR-based methods

It is interesting to relate the p-value threshold of SGoF (resp. SGoF1) to that pro-
vided by other multitesting strategies, such as FDR-based methods, in the asymp-
totic setting. Bonferroni’s method takes the threshold p∗B,n,α = α/n, where α is
controlling the FWER in the strong sense. In this case, it is clear that the power is
lost in the limit, since Pow(p∗B,n,α) = F1(α/n) → 0 as n→ ∞ (see Section 3 for a
formal definition of the power). The same is not true for FDR-controlling strategies.
For example, Benjamini and Hochberg (1995) proposed as threshold

p∗BH,n,α(π0) =max
{
pi : pi ≤ α

π0
Fn(pi)

}
,

where α is controlling the FDR and where in practice π0 is replaced by 1 or by some
conservative estimator when it is unknown (as it happens in most of the cases). As
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n grows, Fn converges to the true mixture df F , and hence p∗BH,n,α(π0)→ p∗BH,α(π0)
as n→ ∞, where p∗BH,α(π0) is the solution of

p=
α
π0
F(p).

In some instances, this solution will be too small to detect even a single true effect
from the sequence of p-values. Of course, this problem gets worse when using the
conservative version with π0 = 1, p∗BH,α(1). In order to illustrate this, we consider
the following example. In the simulations section more evidence on the lack of
power of BH is reported.

Example 1. Consider the mixture df given by F(x) = π0x+(1−π0)F1(x)
where F1(x) = xθ for some θ ∈ (0,1). Since θ < 1, the density associated to F1
is monotone decreasing. The effect size is controlled by the θ parameter; stronger
effects are obtained for smaller values of θ . It is straightforward to see that the
solution of p= αF(p)/π0 is given by

p∗BH,α(π0;θ) =

[
α
1−α

1−π0
π0

]1/(1−θ )

,

with an associated power of Pow(p∗BH,α(π0;θ)) =F1(p∗BH,α(π0;θ)) = p∗BH,α(π0;θ)θ .
Note that p∗BH,α(π0;θ) is less than 1 provided that π0 > α . Take π0 = 0.9, θ =
0.5 and α = 0.05. Then, p∗BH,α(π0;θ) = 0.0000342 and Pow(p∗BH,α(π0;θ)) =
0.005847953, which means that with n = 1000 tests (and hence n1 = 100 true ef-
fects on average) the BH threshold would be unable to detect even a single effect.
One could argue that the asymptotic expression for p∗BH,α(π0;θ) is not valid for
n = 1000. To explore this, we have simulated 10,000 Monte Carlo trials from the
model and we have computed the number of simulations for which no effect was
found; the proportion was 41.79%, while the average number of rejections was 1.23
(standard deviation = 1.5). This shows that the problem of no power is also present
in the ’finite sample’ case (n< ∞).

Example 1 (see also the simulations in Section 4) shows that, in practice,
FDR-controlling criteria may be too strict to detect true effects. However, in some
occasions it will be the case that p∗BH,α(π0) > p∗(γ), or p∗BH,α(π0) > p∗1(γ), and
thus the BH method will be asymptotically more powerful than SGoF procedure.
Example 1 is also useful to illustrate this (see Section 4 below for further illustra-
tion). The asymptotic p-value threshold of SGoF and SGoF1 are given respectively
by

p∗(γ) = p∗(γ,θ) = F−1((1−π0)(γθ − γ))
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and

p∗1(γ) = p∗1(γ,θ) = F−1((1−π0)γθ )

where F(x) = π0x+ (1− π0)xθ . In Figure 1 we report these values for γ = 0.05
in the case π0 = 0.9. For comparison, we also report the BH threshold p-values
p∗BH,α(π0;θ) in the case α = 0.05. From this Figure 1 it is seen that p∗BH,α(π0;θ) >
p∗(γ,θ) for θ < 0.04, and that p∗BH,α(π0;θ) > p∗1(γ,θ) for θ < 0.02; in this case,
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Figure 1. Asymptotic threshold p-value for SGoF(0.05) and SGoF1(0.05) with
FWER=0.05 (thin and bold solid lines respectively) and for BH with FDR=0.05 (dashed

line) for Example 1. The proportion of true nulls is 90%.

the FDR of SGoF procedure is below α , which results in a smaller power. However,
as θ grows, the p-values corresponding to the non-true nulls are more mixed with
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those belonging to the true nulls, and BH p-value threshold goes down to zero. The
opposite behavior is found in the SGoF (respectively SGoF1) threshold (which does
not respect the 5% FDR level and hence it is more liberal) at least up to θ ≈ 0.25,
showing the compromise between FDR and power which is achieved by using this
method.

The situation with p∗BH,α(π0;θ) > p∗1(γ,θ) (corresponding to extremely
well-separated null and alternative p-values) can be interpreted as a case in which
there is no reason to pay a FDR as high as 5% (as BH do). This is at least what
it can be said under SGoF1’s view with γ = 0.05, because this method tells that
the number of true effects with p-value below γ = 0.05 is less than the number of
p-values falling below p∗BH,α(π0;θ) (and hence declared as significant features by
BH).

3 Theoretical considerations
Before establishing the main theoretical results, we recall some important defini-
tions associated to multitesting problems. The false discovery rate (FDR) is de-
fined as the expected proportion of true nulls among the rejected hypotheses. A
related measure is the positive false discovery rate (PFDR), which is just the FDR
given that there is at least one rejection. For the rejection regionR (p) = {pi ≤ p},
these quantities are functions of the threshold p-value p, so we write FDR(p) and
PFDR(p). According to Theorem 1 in Storey (2003), and putting H0i = 0 for ”H0i
is true”, we have

PFDR(p) = P(H0i = 0|pi ≤ p)
=

π0P(pi ≤ p|H0i = 0)
P(pi ≤ p)

=
π0p
F(p)

.

Besides,

FDR(p) = PFDR(p)P

(
n⋃
i=1

{pi ≤ p}
)

= PFDR(p) [1− (1−F(p))n] ,

which explains why in general FDR(p)≤ PFDR(p), and why the FDR approaches
to the PFDR as the number of tests grows. Note that, for finite n, the PFDR is
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not necessarily controlled at level α even when using a multitest adjustment than
controls FDR at that level. Proposition 1A below gives the FDR and PFDR of SGoF,
while Proposition 1B states the corresponding results for SGoF1. For SGoF1, we
assume throughout that π0,n is any strongly consistent estimator of π0.

Proposition 1A. (a) The PFDR and the FDR of SGoF(γ) at weak FWER
control α are respectively given by

PFDR(p∗n,α(γ)) =
π0p∗n,α(γ)

F(p∗n,α(γ))

and

FDR(p∗n,α(γ)) =
π0p∗n,α(γ)

F(p∗n,α(γ))

[
1− (1−F(p∗n,α(γ)))n

]
where p∗n,α(γ) = F−1

n (Fn(γ)−n−1bn,α(γ)+n−1).
(b) As n→ ∞ we have n−1bn,α(γ) = γ +O(zαn−1/2), p∗n,α(γ) → p∗(γ) =

F−1(F(γ)− γ), and both PFDR(p∗n,α(γ)) and FDR(p∗n,α(γ)) converge with proba-
bility 1 to

PFDR(p∗(γ)) =
π0p∗(γ)

F(p∗(γ))
=

π0F−1(F(γ)− γ)

F(γ)− γ
.

Proof. Statement (a) follows by evaluating PFDR(p) and FDR(p) at p =
p∗n,α(γ). For (b) just use (1), representation (2), and the strong consistency of both
the empirical df and the empirical quantile function.

Proposition 1B. (a) The PFDR and the FDR of SGoF1(γ) at weak FWER
control α are respectively given by

PFDR(p∗1,n,α(γ)) =
π0p∗1,n,α(γ)

F(p∗1,n,α(γ))

and

FDR(p∗1,n,α(γ)) =
π0p∗1,n,α(γ)

F(p∗1,n,α(γ))

[
1− (1−F(p∗1,n,α(γ)))n

]

where p∗1,n,α(γ) = F−1
n (P1,n(γ)−n−1b1,n,α(γ)+n−1), and where

b1,n,α(γ) = n
√
Var(P1,n(γ))zα .
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(b) As n→ ∞ we have n−1b1,n,α(γ) = O(zαn−1/2), p∗1,n,α(γ) → p∗1(γ) =

F−1(P1(γ)) = F−1 (F(γ)−π0γ), and both PFDR(p∗1,n,α(γ)) and FDR(p∗1,n,α(γ))
converge with probability 1 to

PFDR(p∗1(γ)) =
π0p∗1(γ)

F(p∗1(γ))
=

π0F−1(F(γ)−π0γ)

F(γ)−π0γ
.

Proof. Statement (a) follows by evaluating PFDR(p) and FDR(p) at p =
p∗1,n,α(γ). For (b) just use representation (3), and the strong consistency of both
P1,n(γ) and the empirical quantile function.

The situation in which very few null hypotheses are true is problematic for
FDR control. Note that the rate of false discoveries approaches to zero as π0 → 0
and hence controlling the FDR at a nominal level α will not be meaningful. In order
to illustrate this, consider our Example 1 in Section 2; in this case, the asymptotic
p-value threshold given by the optimal or ’benchmark’ BH method (which perfectly
estimates π0) is above 1 whenever π0 < α . This means that one would declare all
the null hypotheses as false regardless their associated p-values. The FDR resulting
from this decision is just π0, which will be much smaller than the nominal α as
π0 → 0. At the same time, one may not feel comfortable with a method which re-
ports a discovery when the associated p-value is large. Interestingly, the asymptotic
threshold of SGoF and SGoF1 when π0 approaches zero (i.e. F ≈ F1) are given by
p∗(γ) = F−1

1 (F1(γ)− γ) and p∗1(γ) = γ respectively, both of them below the initial
significance level γ (and, indeed, the second one equal to γ). This is not surprising
since (as discussed above) SGoF strategy answers the question ’how many effects
are there below threshold γ?’ In this way, SGoF and SGoF1 exhibit large or even
full power below γ in the case π0≈ 0 while providing reasonable p-value thresholds.
See our simulations section for further illustration.

A natural counterpart of the FDR is the false non-discovery rate (FNR), that
is, the expected proportion of non-true nulls among those being accepted. If we
condition the expectation to accepting at least one hypothesis, we come up with the
positive false non-discovery rate (PFNR), which is related to the FNR through

FNR(p) = PFNR(p)P

(
n⋃
i=1

{pi > p}
)

= PFNR(p)(1−F(p)n).

Putting H0i = 1 for ”H0i is false”, it happens (Storey, 2003)

PFNR(p) = P(H0i = 1|pi > p)
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=
(1−π0)(1−F1(p))

1−F(p)

= 1− π0(1− p)
1−F(p)

.

Propositions 2A and 2B give the PFNR and the FNR of SGoF and SGoF1 multi-
testing methods respectively.

Proposition 2A. (a) The PFNR and the FNR of SGoF(γ) at weak FWER
control α are respectively given by

PFNR(p∗n,α(γ)) = 1− π0(1− p∗n,α(γ))

1−F(p∗n,α(γ))

and

FNR(p∗n,α(γ)) =

[
1− π0(1− p∗n,α(γ))

1−F(p∗n,α(γ))

]
(1−F(p∗n,α(γ))n).

(b) As n→ ∞ both PFNR(p∗n,α(γ)) and FNR(p∗n,α(γ)) converge with prob-
ability 1 to

PFNR(p∗(γ)) = 1− π0(1− p∗(γ))

1−F(p∗(γ))

= 1− π0(1−F−1(F(γ)− γ))

1−F(γ)+ γ
.

Proposition 2B. (a) The PFNR and the FNR of SGoF1(γ) at weak FWER
control α are respectively given by

PFNR(p∗1,n,α(γ)) = 1− π0(1− p∗1,n,α(γ))

1−F(p∗1,n,α(γ))

and

FNR(p∗1,n,α(γ)) =

[
1− π0(1− p∗1,n,α(γ))

1−F(p∗1,n,α(γ))

]
(1−F(p∗1,n,α(γ))n).

(b) As n→ ∞ both PFNR(p∗1,n,α(γ)) and FNR(p∗1,n,α(γ)) converge with
probability 1 to

PFNR(p∗1(γ)) = 1− π0(1− p∗1(γ))

1−F(p∗1(γ))

13
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= 1− π0(1−F−1(F(γ)−π0γ))

1−F(γ)+π0γ
.

When the density f1 is monotone decreasing, the limit p∗(γ) = F−1(F(γ)−
γ) of the SGoF’s threshold p∗n,α(γ) is an increasing-decreasing function of the γ
parameter. As mentioned, typically one will be interested in choosing a small value
for γ , which plays the role of an initial significance level. By letting the γ parame-
ter vary, de Uña-Álvarez and Carvajal-Rodrı́guez (2010) introduced a significance
trace for the number of effects declared by SGoF. Note that, on the contrary, the
asymptotic threshold of SGoF1 p∗1(γ) = F−1(F(γ)−π0γ) increases with γ , attain-
ing its maximum value F−1(1−π0) at γ = 1.

Propositions 1A,B and 2A,B give as particular cases the asymptotic PFDR
(or FDR) and PFNR (or FNR) of SGoF(γ) and SGoF1(γ). Note that the function
PFDR(p) (resp. PFNR(p)) is monotone increasing (resp. decreasing) if f1 is a
decreasing density. In such a case, from p∗(γ) ≤ p∗1(γ) it follows that the FDR
(resp. FNR) of SGoF is smaller (resp. larger) than that of SGoF1. Also, if γ∗ is the
maximizer of the function γ 	→ F(γ)− γ , we have the bounds

PFDR(p∗(γ)) ≤ PFDR(p∗(γ∗))

=
π0F−1(F(γ∗)− γ∗)

F(γ∗)− γ∗

and

PFNR(p∗(γ)) ≥ PFNR(p∗(γ∗))

= 1− π0(1−F−1(F(γ∗)− γ∗))
1−F(γ∗)+ γ∗

.

These are asymptotic upper and lower bounds for the FDR and FNR committed by
SGoF. The upper bound for FDR can be seen as the maximum proportion of false
discoveries one could accept in a reasonable way when thresholding the p-values.
On the other hand, the lower bound for FNR says that there exists a particular choice
of the γ parameter which minimizes the proportion of true effects among the nulls
accepted by SGoF. This choice γ∗ can be easily estimated in practice by maximizing
the function γ 	→ Fn(γ)− γ . Put γ∗n for such a maximizer. We have the following
result.
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Proposition 3. As n→ ∞ we have

FDR(p∗(γ∗n )) →
π0F−1(F(γ∗)− γ∗)

F(γ∗)− γ∗

and

FNR(p∗(γ∗n )) → 1− π0(1−F−1(F(γ∗)− γ∗))
1−F(γ∗)+ γ∗

.

We should point out that the ’automatic choice’ of γ given by γ∗n may have
some drawbacks. Firstly, the value reported by γ∗n may not be meaningful if it is
too large, unless the researcher is decided to be definitively liberal. On the other
hand, by minimizing the FNR one may end with an undesirably high FDR. Note
that this strategy is useless for SGoF1 because minimization of FNR with respect to
γ always reports γ = 1.

Storey (2003) proposed as a possible thresholding criterion to minimize a
weighted average of the PFDR and PFNR, namely

Wu(p) = (1−u)PFDR(p)+uPFNR(p)

= (1−u) π0p
F(p)

+u
[
1− π0(1− p)

1−F(p)

]
.

Recall that PFDR increases with p, while the opposite is true for PFNR. The choice
of u is left to the researcher who must proceed according to the importance of the
rate of false discoveries relative to that of false nondiscoveries. In the case of SGoF,
and when n is large enough, this criterion looks for the minimizer of γ 	→Wu(p∗(γ)),
which will be closer to γ∗ as u→ 1. However, smaller values of γ will appear as
minimizers as u moves away from one. Importantly, one should keep in mind that
the functionWu(p) may not reach a minimum inside the interval (0,1), and hence
this criterion is not always useful.

Ameasure somehow connected with (but not equal to) the FNR is the power.
The power is defined as the expected proportion of true effects which are detected
by a multitesting strategy. For a rejection region of typeR (p) = {pi ≤ p} we have

Pow(p) = E

[
1
n1

n

∑
i=1
I (pi ≤ p,H0i = 1)

]

where n1 = ∑ni=1 I (H0i = 1) is the (random) number of non-true nulls among the
n nypotheses. By using the iid assumption and that, conditionally on n1 = k,
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∑ni=1 I (pi ≤ p,H0i = 1) ∼ Bin(k,F1(p)), we obtain

Pow(p) = F1(p);

that is, the power of R (p) is just the cumulative df of the non-true p-values evalu-
ated at threshold p. Obviously, the power increases as p increases, and hence more
power is associated with a higher FDR and a smaller FNR. Next two results provide
the power associated to SGoF and SGoF1 procedures. In particular, it is shown that
the power of SGoF1 is larger than that of SGoF.

Proposition 4A.The power of SGoF(γ) at weak FWER control α is given
by

Pow(p∗n,α(γ)) = F1
(
p∗n,α(γ)

)
.

As n→ ∞ we have Pow(p∗n,α(γ)) → F1(p∗(γ)) = F1(F−1(F(γ)− γ)) with proba-
bility 1.

Proposition 4B.The power of SGoF1(γ) at weak FWER control α is given
by

Pow(p∗1,n,α(γ)) = F1
(
p∗1,n,α(γ)

)
.

As n→ ∞we have Pow(p∗1,n,α(γ))→ F1(p∗1(γ)) = F1(F−1(F(γ)−π0γ)) with prob-
ability 1.

The maximum power of SGoF is asymptotically achieved by γ∗, which cor-
responds to the minimum FNR as discussed. On the other hand, since F1 ≥ F ,
lower bounds for the power are easily obtained from Proposition 4A,B, namely
F1(p∗(γ)) ≥ F(γ)− γ and F1(F−1(F(γ)−π0γ)) ≥ F(γ)−π0γ . This means that at
least the 100(F(γ)− γ)% (resp. the 100(F(γ)−π0γ)%) of the true effects will be
detected by SGoF(γ) (resp. by SGoF1(γ)) when n is large.

We end this Section by recalling Property 3 of SGoF multitest in Carvajal-
Rodrı́guez et al. (2009). This Property 3 says that the probability of rejecting the
intersection null with SGoF multitest increases with the number of tests n. Under
the mixture model, it is straightforward to see that the probability of rejection equals
(with Φ the cumulative df of a standard normal)

rn = P

(
Fn(γ)− γ√
γ(1− γ)/n

> zα

)
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= 1−Φ

(
zα

√
γ(1− γ)

F(γ)(1−F(γ))
−√

n
F(γ)− γ√

F(γ)(1−F(γ))

)
,

which satisfies rn → 1 as n→ ∞ whenever F(γ) > γ . Note that F(γ)− γ = (1−
π0)(F1(γ)− γ) is large when the proportion of non-true nulls is large or when
F1(γ)− γ is large (strong effects).

4 Simulation studies
In this Section we investigate the finite sample behavior of the proposed methods in
a simulated scenario. The number of hypotheses being tested is n = 100, 1000, or
10000, sampled from a population with a proportion of true nulls given by π0 = 1,
0.9, or 0.7. The p-values corresponding to true nulls are generated according to
a uniform distribution on the (0,1) interval. For the generation of p-values under
the alternative, we consider a one-sided test for the mean μ of a normal population
(with unknown variance σ2) based on a sample of size s, where H0 : μ = 0 and
H1 : μ > 0. The test statistic is distributed as a Student’s t with s− 1 degrees of
freedom. Sample sizes s= 5, 20, and 80 are considered, leading to effect levels

w=
√
s

μ −0
σs−1

where σ2s−1 is the sampling variance which is distributed as σ2χ2s−1/(s−1). This
means that the non-true p-values are generated as

pi = 1−Φs−1

(
Zi√

Ai/(s−1) +
√
s

μ −0√
σ2Ai/(s−1)

)

where Zi ∼ N(0,1) and Ai ∼ χ2s−1 are independent random variables, and Φs−1
stands for the cumulative df of a t variable with s− 1 degrees of freedom. We
always take μ = 1 under H1, and the variance is fixed to σ2 = 6. Note that, as the
sample size s increases, we get stronger relative effects w; specifically, the given
values for s (5, 20, and 80) lead to w around 1.13 (weak effects), 1.90 (moderate),
and 3.68 (strong effects) respectively.

In Tables 1 to 3 we report the FDR and the power reached by the several
methods along 1000 Monte Carlo trials. The methods under comparison are SGoF
with γ = 0.05, γ = 0.01, and γ = 0.001; SGoF1 with the same values for γ , and BH.
To favor the BH method, we have used the true value of π0 in its implementation;
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note that this value is unknown in practice. Level α = 0.05 was taken in all the
cases; recall that this α controls the FDR in BH but only the FWER in the weak
sense for SGoF and SGoF1 methods. Besides the FDR and the power, we report the
quotient power/FDR as a sensible measure of performance, which we call here the
’relative power’. Note that results with higher relative power reveal benefits when
increasing the p-value threshold, because for those cases the FDR is increased but
at a rate lower than that of the power. From Tables 1 to 3 we see that:

(a) Under the intersection null all the methods respect the nominal FDR
(FWER) quite well, although some anticonservativeness is appreciated for SGoF
and SGoF1 methods when applied with a small γ value (specially for small to mod-
erate number of tests). Besides, SGoF seems to be a bit more liberal than SGoF1.

(b) When some of the hypotheses are false, both versions of SGoF present
a power which, unlike for BH, increases with the number of tests. An exception is
Table 3, in which the power of BH does not decrease or even slightly increases with
the sample size. This can be justified because when s= 80 the p-values correspond-
ing to the non-true nulls are extremely well-separated from those associated to the
true nulls, and hence a 5% of FDR is more than enough to detect a large proportion
of effects.

(c) In most of the cases SGoF and SGoF1 present more power than BH. Ex-
ceptions to this are (again) well-separated distributions (Table 3), and intermediate
effect sizes (Table 2) when the γ parameter is taken too small. Of course, larger
powers are associated to an increase of the FDR. In general, the power (also the
FDR) decreases as γ decreases (this is because the considered values of γ are below
the γ∗ for which the power is maximum). But this is not true for Table 3 in the case
π0 = 0.9, where γ∗ seems to be around 0.01. In relative terms, the choice γ = 0.05
could be considered as optimal because it leads to the maximum relative power (but
this depends on the situation, since more relative power is sometimes achieved at
γ = 0.001). However, the FDR level for γ = 0.05 could be taken as too large in
some applications (specially for large n), so one may prefer the more conservative
γ = 0.01 or even γ = 0.001 in special instances.

(d) SGoF1 exhibits a power at least as good as SGoF, with a better relative
performance for larger values of γ . This is in agreement with the theoretical results.
Both versions of SGoF are almost equivalent for γ = 0.001. On the other hand, in
Table 1 the relative power of SGoF1 is larger than that of SGoF, while the opposite
is true in Table 3 -even when in all the cases the power of SGoF1 is above that of
SGoF.

(e) SGoF and SGoF1’s FDR levels under a 30% of effects may be smaller
or greater than those corresponding to π0 = 0.9, depending on the choice of γ .
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(f) The relative power of both versions of SGoF is in general above that
pertaining to BH. The situation is the opposite in Table 2 with n = 100, and in the
same Table 2 with π0 = 0.7 for the smallest value of γ .

Table 1. FDR, power, and relative power of Benjamini-Hochberg (BH), SGoF, and SGoF1
methods performed at 5% level, with weak effect level (w= 1.13, or s= 5), see text. The
number of hypotheses is n, the proportion of true nulls is π0, and π0,n stands for its
estimated value. Averages along 1,000 Monte Carlo trials (standard deviations for π0,n

between brackets).

π0 = 1 π0 = 0.9 π0 = 0.7
FDR FDR Pow RP FDR Pow RP

n= 100 ;π0n : 0.996 0.946 0.825
(0.094) (0.097) (0.092)

BH 0.052 0.044 0.003 0.069 0.049 0.006 0.119
SGoF(0.05) 0.063 0.126 0.016 0.125 0.180 0.038 0.212
SGoF1(0.05) 0.059 0.133 0.017 0.125 0.210 0.046 0.220
SGoF(0.01) 0.076 0.100 0.008 0.083 0.104 0.015 0.141
SGoF1(0.01) 0.076 0.100 0.008 0.083 0.104 0.015 0.141
SGoF(0.001) 0.085 0.067 0.006 0.089 0.064 0.006 0.088
SGoF1(0.001) 0.085 0.067 0.006 0.089 0.064 0.006 0.088
n= 1000 ;π0n : 1.002 0.942 0.825

(0.032) (0.031) (0.030)
BH 0.046 0.049 1×10−4 0.008 0.052 0.001 0.012
SGoF(0.05) 0.043 0.391 0.017 0.042 0.341 0.068 0.199
SGoF1(0.05) 0.045 0.443 0.022 0.051 0.350 0.085 0.242
SGoF(0.01) 0.069 0.253 0.005 0.019 0.297 0.017 0.056
SGoF1(0.01) 0.041 0.242 0.005 0.019 0.310 0.019 0.061
SGoF(0.001) 0.092 0.105 0.001 0.012 0.131 0.002 0.013
SGoF1(0.001) 0.092 0.105 0.001 0.012 0.131 0.002 0.013
n= 10000 ;π0n : 1.000 0.941 0.824

(0.010) (0.010) (0.009)
BH 0.068 0.043 3×10−5 0.001 0.048 5×10−5 0.001
SGoF(0.05) 0.046 0.651 0.036 0.056 0.346 0.084 0.242
SGoF1(0.05) 0.044 0.656 0.045 0.069 0.352 0.101 0.287
SGoF(0.01) 0.067 0.609 0.008 0.013 0.317 0.022 0.069
SGoF1(0.01) 0.065 0.628 0.010 0.015 0.320 0.026 0.080
SGoF(0.001) 0.081 0.268 0.001 0.002 0.298 0.002 0.007
SGoF1(0.001) 0.049 0.268 0.001 0.002 0.299 0.002 0.008
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(g) The quantity π0,n overestimates the proportion of true nulls, specially
for a small sample size s (i.e. weaker relative effects) in the case π0 = 0.7. Hence,
there is still some possibilities of enhancing the power of SGoF1 by considering
more accurate estimators.

Table 2. FDR, power, and relative power of Benjamini-Hochberg (BH), SGoF, and SGoF1
methods performed at 5% level, with moderate effect level (w= 1.90, or s= 20), see text.
The number of hypotheses is n, the proportion of true nulls is π0, and π0,n stands for its
estimated value. Averages along 1,000 Monte Carlo trials (standard deviations for π0,n

between brackets).

π0 = 1 π0 = 0.9 π0 = 0.7
FDR FDR Pow RP FDR Pow RP

n= 100 ;π0n : 0.995 0.909 0.739
(0.096) (0.091) (0.096)

BH 0.045 0.055 0.075 1.355 0.048 0.175 3.633
SGoF(0.05) 0.058 0.172 0.169 0.982 0.110 0.349 3.173
SGoF1(0.05) 0.051 0.178 0.176 0.988 0.117 0.374 3.207
SGoF(0.01) 0.072 0.138 0.133 0.967 0.069 0.202 2.904
SGoF1(0.01) 0.072 0.138 0.133 0.967 0.069 0.202 2.904
SGoF(0.001) 0.090 0.070 0.071 1.017 0.022 0.068 3.092
SGoF1(0.001) 0.090 0.070 0.071 1.017 0.022 0.068 3.092
n= 1000 ;π0n : 1.000 0.913 0.739

(0.031) (0.030) (0.028)
BH 0.053 0.060 0.026 0.426 0.052 0.144 2.763
SGoF(0.05) 0.063 0.263 0.279 1.059 0.122 0.402 3.277
SGoF1(0.05) 0.058 0.277 0.300 1.085 0.133 0.433 3.249
SGoF(0.01) 0.093 0.187 0.173 0.924 0.071 0.224 3.167
SGoF1(0.01) 0.065 0.187 0.173 0.928 0.072 0.230 3.183
SGoF(0.001) 0.075 0.097 0.051 0.533 0.034 0.062 1.833
SGoF1(0.001) 0.075 0.097 0.051 0.533 0.034 0.062 1.833
n= 10000 ;π0n : 1.000 0.913 0.739

(0.010) (0.010) (0.010)
BH 0.061 0.057 0.012 0.207 0.050 0.141 2.824
SGoF(0.05) 0.051 0.295 0.325 1.103 0.129 0.422 3.279
SGoF1(0.05) 0.052 0.309 0.347 1.120 0.140 0.453 3.248
SGoF(0.01) 0.054 0.202 0.190 0.942 0.072 0.231 3.212
SGoF1(0.01) 0.056 0.206 0.196 0.951 0.074 0.239 3.227
SGoF(0.001) 0.091 0.107 0.057 0.535 0.031 0.065 2.067
SGoF1(0.001) 0.053 0.107 0.057 0.535 0.031 0.065 2.078
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Table 3. FDR, power, and relative power of Benjamini-Hochberg (BH), SGoF, and SGoF1
methods performed at 5% level, with strong effect level (w= 3.68, or s= 80), see text.
The number of hypotheses is n, the proportion of true nulls is π0, and π0,n stands for its
estimated value. Averages along 1,000 Monte Carlo trials (standard deviations for π0,n

between brackets).

π0 = 1 π0 = 0.9 π0 = 0.7
FDR FDR Pow RP FDR Pow RP

n= 100 ;π0n : 1.000 0.909 0.704
(0.101) (0.095) (0.095)

BH 0.060 0.051 0.833 16.42 0.049 0.945 19.25
SGoF(0.05) 0.066 0.026 0.572 22.31 0.015 0.812 55.83
SGoF1(0.05) 0.06 0.027 0.576 21.15 0.020 0.844 42.64
SGoF(0.01) 0.086 0.033 0.742 22.35 0.014 0.843 59.33
SGoF1(0.01) 0.086 0.033 0.742 22.35 0.014 0.843 59.33
SGoF(0.001) 0.112 0.011 0.671 59.25 0.004 0.681 137.6
SGoF1(0.001) 0.112 0.011 0.671 59.25 0.004 0.681 137.6
n= 1000 ;π0n : 0.998 0.900 0.703

(0.031) (0.031) (0.032)
BH 0.049 0.050 0.838 16.68 0.050 0.942 18.99
SGoF(0.05) 0.062 0.036 0.784 21.63 0.019 0.871 45.33
SGoF1(0.05) 0.045 0.047 0.816 17.26 0.030 0.907 30.19
SGoF(0.01) 0.086 0.040 0.810 20.14 0.016 0.859 52.54
SGoF1(0.01) 0.063 0.041 0.811 19.89 0.017 0.865 49.68
SGoF(0.001) 0.080 0.012 0.654 55.54 0.003 0.667 196.1
SGoF1(0.001) 0.080 0.012 0.654 55.54 0.003 0.667 196.1
n= 10000 ;π0n : 1.000 0.901 0.702

(0.010) (0.010) (0.010)
BH 0.045 0.050 0.840 16.87 0.050 0.942 18.87
SGoF(0.05) 0.049 0.053 0.844 16.06 0.024 0.892 37.09
SGoF1(0.05) 0.048 0.067 0.872 12.52 0.038 0.926 24.31
SGoF(0.01) 0.051 0.046 0.831 18.08 0.018 0.866 48.91
SGoF1(0.01) 0.050 0.049 0.837 17.12 0.019 0.874 45.16
SGoF(0.001) 0.081 0.012 0.661 55.18 0.003 0.669 200.4
SGoF1(0.001) 0.051 0.012 0.661 55.18 0.003 0.670 199.9

In summary, one may say that both SGoF and SGoF1 approaches will be
often more powerful than BH, but the situation may change if the null and the
alternative p-value distributions are very well separated (large effect sizes); that the
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relative power of SGoF’s is in general above that of BH; and that SGoF1 slightly
outperforms SGoF in the sense of the power but not necessarily in relative power
(e.g. SGoF may be preferable to SGoF1 for strong effects).

0.02 0.04 0.06 0.08

0.
00

0.
02

0.
04

F
D

R

0.02 0.04 0.06 0.08

0.
2

0.
6

1.
0

P
ow

er

0.02 0.04 0.06 0.08

0
20

0
40

0
60

0

P
ow

er
/F

D
R

0.02 0.04 0.06 0.08

0.
0

0.
4

0.
8

T
hr

es
ho

ld
 p

Figure 2. FDR, power, relative power, and threshold p-value as functions of the proportion
of true nulls, for the several methods performed at 5% level, with moderate effect level
(s= 20) and n= 1000 tests: BH (◦), SGoF or SGoF1 with γ = 0.05 ( ), 0.01 (+ ), and
0.001 (×). Continuous lines for SGoF1 and dashed lines for SGoF. Averages along 1,000

Monte Carlo trials.

In Section 3 we discussed the case in which π0 ≈ 0. It was mentioned that
BH tend to declare all the null hypotheses as false in such a case, with a resulting
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FDR of 100π0% regardless the nominal α . For illustration purposes, here we sim-
ulate from our model the simultaneous testing of n = 1000 null hypotheses with
π0 = 0.01, 0.03, 0.05, 0.07, and 0.09, with moderate effect level (s = 20) under
the alternative. Results for BH at nominal FDR of 5% and for SGoF and SGoF1
methods at the same nominal (weak-control) FWER are reported in Figure 2. It is
seen that the power of both SGoF’s strategies is about half that of BH when using
γ = 0.05, with worse results for smaller γ’s. However, the relative power of SGoF
and SGoF1 is (up to six times) larger than that of BH for small π0, indicating that
paying a FDR as large as 100π0% (as BH do) is not justified. Figure 2 also reveals
that BH identifies as true effects p-values close to 1 when 0.01≤ π0 ≤ 0.05, with a
threshold p-value still as large as 0.52 for the largest π0 (π0 = 0.09). The threshold
p-value of both SGoF versions is never above 0.045 in these simulations, according
to the maximum value fixed for γ (γ = 0.05).

5 An example
As an illustrative example, we took the microarray study of hereditary breast can-
cer by Hedenfalk et al. (2001). One of the goals of this study was to find genes
differentially expressed between BRCA1- and BRCA2-mutation positive tumors.
Thus, for each of the 3,226 genes of interest, a p-value was assigned based on a
suitable statistical test for the comparison. Following previous analysis of these
data (Storey and Tibshirani, 2003), 56 genes were eliminated because they had one
or more measurements exceeding 20. This left n=3,170 genes.

We have applied SGoF and SGoF1 multitesting approaches to these data for
several choices of γ , specifically γ = 0.05, γ = 0.01, γ = 0.005, and γ = 0.001.
Besides the standard version with (weak) FWER control α = 0.05, we have consid-
ered the conservative versions based on α/n= 1.577×10−5. In Table 4 we report
the number of discoveries with the corresponding threshold p-value for each of the
eight different combinations. We see that the multitest correction becomes more
conservative as the γ parameter decreases. The more conservative version among
the eight metatests corresponds to SGoF with γ = 0.001 and FWER of α/n, which
declares 64 tests as true effects, with a p-value threshold of 0.00071. The SGoF1
version declares 67 tests as significative in this case; we can interpret these numbers
by saying that there is statistical significance about the existence of 67 (SGoF1) or
more than 64 (SGoF) true effects with p-value smaller than 0.001.

The estimated rates of false discoveries, proportions of effects detected, and
relative powers are provided in Table 5. These quantities were estimated by using
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the following formulae:

FDRn(p) =
π0,np
Fn(p)

, π0,n = −1
n

n

∑
i=1
log(1− pi) = 0.7177,

and

Pown(p) =
Fn(p)−π0,np
1−π0,n

.

In terms of relative power, the best option among the eight considered metatests is
performing SGoF with γ = 0.005 and α = 0.05; this choice provides an estimated
detection rate of more than 16.45%, with a FDR of 5.05% among the 155 discover-
ies (threshold p-value of 0.00341). For comparison, we have applied the Benjamini-
Hochberg multitest correction (based on π0,n = 0.7177) at 5% of FDR, resulting
almost the same results: 157 discoveries and a threshold p-value of 0.00344. The
BH’s estimated power is 16.67% and its estimated relative power is 3.34. Hence, in
this example the ’optimal’ results (in the sense of the relative power) are achieved
for a FDR of around 5% (the same happens in Table 2 of the simulation section,
case n = 100 and π0 = 0.7), but in general this does not need to be the case (as it
becomes clear from our simulation section).

Note also that in general one may play with the values of γ and α in the
application of SGoF and SGoF1 to fit a given FDR. This is because the thresholds
p∗n,α(γ) and p∗1,n,α(γ)may be increased or decreased by changing these parameters,
as discussed in Section 2.

Table 4. Number of discoveries (threshold p-value between brackets) for SGoF and SGoF1
when applied to Hendefalk data (n= 3,170).

FWER α : 0.05 0.05/n
γ SGoF SGoF1 SGoF SGoF1
0.05 428 (0.02538) 471 (0.03133) 395 (0.02260) 438 (0.02724)
0.01 225 (0.00731) 233 (0.00771) 208 (0.00641) 219 (0.00692)
0.005 155 (0.00341) 160 (0.00374) 143 (0.00306) 149 (0.00316)
0.001 71 (0.00078) 71 (0.00078) 64 (0.00071) 67 (0.00074)
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Table 5. FDR, power (Pow) and relative power (RP) estimated for SGoF and SGoF1 when
applied to Hedenfalk data.

SGoF SGoF1
γ FDR Pow RP FDR Pow RP
FWER 0.05

0.05 .1349 .4137 3.06 .1513 .4466 2.95
0.01 .0739 .2328 3.15 .0752 .2407 3.20
0.005 .0501 .1645 3.29 .0532 .1693 3.18
0.001 .0250 .0773 3.10 .0250 .0773 3.10
FWER 0.05/n

0.05 .1302 .3839 2.95 .1415 .4201 2.97
0.01 .0701 .2161 3.08 .0719 .2271 3.16
0.005 .0487 .1520 3.12 .0483 .1584 3.28
0.001 .0253 .0697 2.75 .0252 .0730 2.90

6 Discussion and concluding remarks
Traditional multitest adjustments aim to control the FWER or, when being more
liberal, the FDR. This means that, given a (small) type-I error rate α , the proportion
of true nulls among those being rejected (FDR) is maintained below α . In many
applications, particularly when the number of tests is large, such criteria result in a
small power, i.e., the proportion of rejected nulls among the false ones is low. The
problem gets worse when using the more stringent FWER instead of the FDR. On
the contrary, given a (small) γ , SGoF method performs a meta-test of significance
at level α to determine the number of effects (non-true nulls) with p-value smaller
than γ . SGoF controls the FWER at level α but only in the weak sense, that is,
when all the nulls are true. We have shown that SGoF is able to detect at least the
100(F (γ)−γ)% of the existing effects as the number of tests grows, independently
of the α value. This result is achieved by declaring as significant features all the
p-values falling below the threshold p∗ (γ) = F−1(F(γ)− γ). The per comparison
error rate (PCER) attached to the threshold p∗ (γ) is given by π0p∗ (γ), which is
always bounded by π0γ ≤ γ , but possibly much smaller according to the distance
F(γ)− γ and the special shape of F (see Figure 1). This shows that SGoF is not
equivalent to any procedure aiming to control the PCER at a given level. When
the number of tests is relatively small, both the power and the threshold p-value of
SGoF decrease when using a smaller α .
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The fact that the FDR of SGoF is not controlled at any level can be consid-
ered as a drawback of the method, and this limitation should be taken into account.
However, at the same time it has interesting consequences. The first one is the
power improvement, as discussed. Secondly, it is useful to identify situations in
which paying a 100α% of FDR for the fixed α could be too much. This may hap-
pen when the effects are strong relative to the sample size (e.g. Table 3). Then,
SGoF meta-test may reveal that there is no statistical significance to declare as
many effects as a FDR-based method would do. Finally, according to the provided
theoretical results, the FDR of SGoF may be maintained as low as desired by an
appropriate tuning of the γ parameter, the value of α being also important when the
number of tests is moderate.

A modification of SGoF, SGoF1, has been introduced and investigated in
this paper. The theoretical results show that SGoF1 is more powerful than SGoF,
particularly for large values of γ , with a corresponding extra in the FDR. It is not
always the case, however, that the performance of SGoF1 is better in the sense of the
relative power, i.e. the quotient Power/FDR. All these features have been analyzed
through simulation studies and also by exploring real data.

Inside the SGoF family, there exists a member which minimize the false
non-discovery rate, leading to an optimal power. This member corresponds to the
choice γ = γ∗, where γ∗ denotes the point at which the distance between the ob-
served and expected p-value cumulative distribution functions (F(γ)− γ) is max-
imum. Even when most practitioners will prefer to fix γ in advance, the choice
γ∗ could report interesting additional results to help the interpretation. In partic-
ular, the FDR attached to γ∗ is the maximum FDR one should accept in a given
multitesting problem, at least under SGoF’s point of view.

The technical results stated in this paper are valid under the assumption that
the available p-values are statistically independent. However, in many applications
it will be the case that the multiple tests under consideration are dependent. As
noted by Owen (2005), dependences may greatly affect the variance of the num-
ber of discoveries. This means that the denominator in SGoF’s metatest statistic√

γ(1− γ)/n should be replaced by a more conservative quantity when analyz-
ing dependent p-values. Indeed, Carvajal-Rodrı́guez and de Uña-Álvarez (2011)
showed that SGoF’s method, as defined in this paper, loses its FWER control when
the p-values are highly correlated. Several corrections of the variance for depen-
dences have been proposed in different multitesting scenarios (Owen, 2005; Efron,
2010), and this is without any doubt an exciting research area. We will investigate
in our future work the possible application to SGoF method of such corrections for
dependence.
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7 Appendix: Technical results
In this Section we collect some technical results which have been referred along the
paper.

Lemma 1. Assume that the density of F1, f1 = F ′
1, exists, and that it is

a differentiable, monotone decreasing function. Then, the intersection null H0 is
characterized by the meta-null hypothesis H0(γ) tested by SGoF (γ).

Proof. It is clear that the complete null hypothesis H0 implies H0(γ), so we
prove the converse. Assume F(γ) = γ for a given 0 < γ ≤ γ∗ where γ∗ stands for
the maximizer of ϕ (x) = F(x)−x; note that ϕ ′(x) = f (x)−1= (1−π0)( f1(x)−1)
and that ϕ ′′(x) < 0 because f1 is decreasing, so γ∗ is the solution of f1(x) = 1 which
always exists. Then, for x< γ we have

0≤ F(x)− x≤ F (γ)− γ = 0

where the first inequality follows becauseϕ1(x) =F1(x)−x satisfies ϕ1(x)≥ϕ1(0) =
0 under the given conditions. Hence, we get F(x) = x for 0 ≤ x ≤ γ from which
F1(x) = x in the same interval. This gives f1(x) = 1 for 0 ≤ x ≤ γ and since f1 is
decreasing and integrates 1 on the interval [0,1] we conclude f1 ≡ 1. In the case
γ > γ∗ we have F(x) = x for γ ≤ x≤ 1 from which f1(x) = 1 for γ ≤ x≤ 1, and the
same argument applies.

Lemma 2. Let P1,n(γ) = Fn(γ)−π0,nγ where

π0,n = −1
n

n

∑
i=1
log(1− pi).

Under the intersection null we have

n1/2
P1,n(γ)√

γ [1−2(1− γ) log(1− γ)]
→ N(0,1)

in distribution.
Proof. Put ϕ(x) = − log(1− x). We have

P1,n(γ) = Fn(γ)−π0,nγ =
1
n

n

∑
i=1

[I (pi ≤ γ)− γϕ (pi)] .

Now,

E [I (p1 ≤ γ)− γϕ (p1)] = F(γ)− γ
∫

ϕdF,

27

de Uña-Alvarez: Statistical Properties of SGoF Multitesting

Published by Berkeley Electronic Press, 2011



while

E [I (p1 ≤ γ)− γϕ (p1)]2 = F(γ)+ γ2E
[
ϕ (p1)2

]
−2γE [I (p1 ≤ γ)ϕ (p1)] .

Under the intersection null we have∫
ϕdF = −

∫
log(1− x)dx= 1,

so E [I (p1 ≤ γ)− γϕ (p1)] = F(γ)− γ = 0; besides, straightforward calculations
give

E [I (p1 ≤ γ)ϕ (p1)] = −
∫ γ

0
log(1− x)dx= (1− γ) ln(1− γ)+ γ

and

E
[
ϕ (p1)2

]
=

∫
log2(1− x)dx= 2.

Summarizing, under the intersection null E [I (p1 ≤ γ)− γϕ (p1)] = 0 and

E [I (p1 ≤ γ)− γϕ (p1)]2 = γ [1−2(1− γ) log(1− γ)] .

Apply the central limit theorem to conclude.
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