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Abstract

In this paper we analyze a situation in which several firms deal with inventory problems
concerning the same type of product. We consider that each firm uses its limited capacity
warehouse for storing purposes and that it faces an economic order quantity model where
storage costs are irrelevant (and assumed to be zero) and shortages are allowed. In this
setting, we show that firms can save costs by placing joint orders and obtain an optimal
order policy for the firms. Besides, we identify an associated class of costs games which we
show to be concave. Finally, we introduce and study a rule to share the costs among the
firms which provides core allocations and can be easily computed.

1 Introduction

The analysis of centralized inventory models is a flourishing research field in the frontier be-
tween game theory and operations research. In a centralized inventory model several agents
facing individual inventory problems cooperate by coordinating their orders for the purpose
of reducing costs. In the analysis of one of these models two main issues are usually addressed:
first, what is the optimal order policy of the group of cooperating agents; second, how the or-
der costs should be shared among the agents. Nagarajan and Sos$i¢ (2008), Dror and Hartman
(2011) and Fiestras-Janeiro et al. (2012) are recent surveys of centralized inventory models;
Fiestras-Janeiro et al. (2011) reviews the applications of cooperative game theory for sharing
cost problems.

In most inventory models a positive storage cost per item and time unit is assumed to exist.
However, in some situations storage costs are fixed (i.e. independent of the size of the stock)
and therefore can be disregarded in the optimization problem. This can be the case, for instance,

when the storage costs are only due to the maintenance of the warehouse. Notice that when
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storage costs are irrelevant and fixed order costs are positive, in a continuous review setting,
the orders should be as large as possible and, thus, the capacities of the warehouses become
significant; moreover, the corresponding optimization problem will be trivial, unless shortages
are allowed.

In this paper we analyze a situation in which several firms deal with inventory problems
concerning the same type of product. We consider that each firm uses its limited capacity
warehouse for storing purposes and that it faces an economic order quantity model where
storage costs are irrelevant (and assumed to be zero) and shortages are allowed. We first deal
with the one decision maker case, and then we study the case with n firms. We show that firms
can save costs by placing joint orders and obtain an optimal order policy for the firms; then we
obtain some results that can be helpful for allocating the joint costs among them.

An antecedent of this paper is Fiestras-Janeiro et al. (2013), which deals with an inventory
problem arising in a farming community in the Northwest of Spain. It considers a collection of
stockbreeders (each one owning a relatively small livestock farm) that need livestock feed and
place orders to an external supplier. Each farm has its own silo (warehouse), with limited capac-
ity, for keeping the feed. The only costs associated with the silos are their building costs since
their maintenance costs are irrelevant; thus, the storage cost of each stockbreeder is in fact zero.
Fiestras-Janeiro et al. (2013) analyzes then a model with n decision makers, all them facing con-
tinuous review inventory problems without holding costs, with limited capacity warehouses
and without shortages. The fact that shortages are not allow simplifies strongly the search for
optimal policies, as we remarked above. However, the case with shortages can be also used to
analyze analogous problems to the ones dealt with in that paper. In fact, the stockbreeders can
incur in little shortages since they can get extra feed from their own. Nevertheless, this extra
feed is usually of lower quality and, thus, there are losses associated with the shortages.

There are many papers dealing with limited capacity inventory models. In fact, most of the
classical and modern books on inventory management include the basic ideas on capacitated
inventory; see, for instance, Tersine (1994) and Zipkin (2000). A survey on capacitated lot sizing
can be found in Karimi et al. (2003). More recently, Ng et al. (2009) study an economic order
quantity model where the warehouse capacity is limited and is, moreover, a decision variable
of the model. Parker and Kapucinski (2011) consider the non-cooperative interaction between
a retailer and a supplier in a two-stage, periodic review, limited capacity inventory model; they
find a Markov equilibrium policy in their model.

On the contrary, as far as we know, apart from Fiestras-Janeiro et al. (2013), the literature
has not treated centralized inventory models with limited capacity and fixed storage costs.
However, there are a variety of real situations which may be modeled in this way, like the
example treated in Fiestras-Janeiro et al. (2013) and in this paper. This example is based on a
situation that we have encountered while collaborating with an agricultural cooperative in the
Northwest of Spain.



2 The model

An EOQ (Economic Order Quantity) system without holding costs is a multiple agent situation
where each agent faces a continuous review inventory problem with no holding costs, with
shortages and with a limited capacity warehouse. N denotes the finite set of agents. The

parameters associated to every i € N in one of these systems are:
e a > 0, the fixed cost per order,
e b; > 0, the shortage cost per item and per time unit,
e d; > 0, the deterministic demand per time unit,
e K; > 0, the capacity of i’s warehouse.

This model is in fact a generalization of one introduced in Fiestras-Janeiro et al. (2013): the
basic EOQ system without holding costs. These basic systems do not allow for shortages and,
then, the analysis of the model we introduce in this paper is fully different. In an EOQ system
without holding costs every agenti € N has to make a decision on his maximum shortage level
Bi. In the system operation, every time that i’s maximum shortage level is reached, i places an
order of size K; + B; (since the storage cost is zero, i's warehouse should be complete after each

order). Then, agent i’s average cost per cycle is given by

‘max{;, 0} max{B; 0}
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and agent i’s average cost per time unit is given by
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where B; > —K; in order to guarantee a positive length cycle.! We rewrite the agent i’s cost

function as
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For simplicity we take the number of orders per time unit as the decision variable, that is
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'In principle, each f; is non-negative. However, when a group of agents makes joint orders it may be optimal
that the maximum shortage level of some agents is negative; notice that in our context storage costs are irrelevant.



Then agent i’s cost function can be written as

. d:
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C'(x;) =
Observe that the ratios demand/capacity (d;/K;) play an important role in the cost functions
of the agents. They will also play a relevant role in other issues regarding this model as we will
see later on, especially in Section 5.

In this paper we explore the possibilities of cooperation in an EOQ system without holding
costs. When we look at this model from a cooperative point of view, we consider that a non-
empty coalition S C N has formed and that all its members place joint orders. It means that
the length cycle will be the same for every agentin S, i.e.
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forevery i, j € S. Equivalently, x; = x; forevery i,j € S, i.e., the number of orders per time unit
will be the same for every agent in S. For simplicity we denote x = x; for every i € S. Now, the

average cost per cycle that coalition S faces is given by

ot Z b, max{Z,Bi,O} maxilfii, 0}
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and the average cost per time unit is given by
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Using the condition of equal length cycle (2), we have that 8; = —K; + % foralli € S. Thus, for
every x > 0,
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3 Individual optimal order policies

Now we obtain the optimal order policy and the minimum average cost per time unit of each
agent i when ordering alone. Note that C' is a continuous function for every x; > 0. Besides, it
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is strictly increasing for every x; > ¢. Then,
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It is a differentiable function and attains a local extreme at x; if its derivative in x; equals zero,
ie. if

L2, (6)
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notice that x7 < % because
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Forevery 0 < x; < %, the second derivative of C' is

bid;
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Then, C' is strictly convex in (0, I%) and, moreover, x; is the unique minimum of Cin (0, I%)
Now, the continuity of Clin (0,00), (8), and the fact that C s strictly increasing in [I%, o) imply
that x} is in fact the unique minimum of C'in (0, 0). Using (5) and (7) it can be easily checked
that the minimum average cost per time unit of each agent i when ordering alone C'(x}) is

given by

, K?
Cl(xf) = \/bidi(Za + bldfl) — bl'Kl'. (9)
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Notice that C?(x}) can also be written as C'(x}) = b;3; where

Sk

Clearly, in view of (1), B} is the optimal maximum shortage level for agent i in this context.
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4 Coalitional optimal order policies

In this section we obtain the optimal order policy and the minimum average cost per time unit
of a non-empty coalition S C N when all its members cooperate by placing joint orders. For
every such S C N and every x € (0, +0) denote by S, theset {i € S : x < I%} In view of the
expression of C° given in (3), we can write

Co(x) = ax + — Zzbd< Kix +d;)*. (10)

zeS

It is easy to check that this function is continuous. Moreover, if As denotes the set {% . i €S},
it is clear that C° is differentiable in every x € (0, +0) \ As. It is moreover easy to check that
the right and left derivatives of C° coincide for every x € Ag, so it is in fact differentiable in

every x € (0,+o00). Its first derivative is given by

d s, . biK? 1
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Again, it is clear that diCS is differentiable in every x € (0,400) \ As. Looking at the sign
of its derivative we obtain that ; CS is mcreasmg in every x € (0,4+) \ Ag and that it is
strictly increasing in every x & (0 maxics g- 9)\ As. Then, taking into account that £C5 is
continuous, it is clear that it is increasing in every x € (0, +o0) and strictly increasing in every
x € (0, maxjes ¢ 4.). Thus CS is a convex function in (0, +o00) and strictly convex in (0, max;eg I%)
Therefore, since

lim C°(x) = lim C°(x) = +o0

x—0 X—r+00
and C? is strictly increasing in (max;cs %, +00), there exists a unique extreme of C® in (0, +0),
which is a minimum. Now, C° is continuous and differentiable in (0, +o0) and it has a unique
minimum in (0, 4-c0) implies that this minimum is attained at the unique point x§ in which its

tirst derivative is zero. Thus, x¢ is the unique solution of the following equation:

. Lies,, bidi
Xg = e (11)
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In order to avoid a cumbersome notation from now on we denote i(S) := Sy;. In view of (10)
and (11), we have that
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Notice that, as it should be, (12) reduces to (9) when S = {i} (for any i € N). Besides, like
in the individual setting treated in the former section, we can express C°(x%) in terms of the
maximum shortage levels of the agents in S when x§ is adopted. Indeed, in view of (12),

Cxg) = X by~ 1 bki= ¥ b (5 -K) = ¥ b,

i€i(S) S i€i(S) i€i(S) S i€i(S)
where B7° is the maximum shortage level of agent i € S when coalition S places joint orders
and uses an optimal order policy.

One may wonder now how to solve equation (11). Next we describe an iterative algorithm

to solve it easily and to compute x§ and i(S) for any non-empty S C N. Denote s = |S]|.

Algorithm 4.1. 1. Let S = {iy,ip,...,is} be the agents in S arranged in non-decreasing order of

. . d,‘ d,‘ dis
the ratios demand/capacity. Thus ﬁ < i <. < ot

2. Initializek =s+1, T =©, xr =0,and Sy, = S.

3. Dowhile Sy, # T:
Setk =k—1,T = TU/{i}, and compute

Lier bid; .
xr = nel i lle and Sy, ={ij €S : x1 <

20+ Yierbig;

d;,

Kil,l .

4. Leti(S) = T and x§ = x7. STOP.

Let us note that the above algorithm finishes after a finite number of steps (smaller than or
equal to s) since equation (11) has a unique solution.

The following result shows a kind of monotonicity of the optimal number of orders of a
non-empty coalition. It is an attractive property; moreover we use it later on in this paper.

Theorem 4.1. Let (N, a,b,d, K) be an EOQ system without holding costs and take a pair of non-empty
coalitions P,S C N with P C S. Then x}, < x¢.

Proof. See Appendix. O

To finish this section we present an example that we have encountered while collaborating
with an agricultural cooperative in the Northwest of Spain. We use this example to illustrate
the concepts introduced up to now, as well as Algorithm 4.1. This example has been also

considered in Fiestras-Janeiro et al. (2013), but now we consider that shortages are allowed.

Example 4.1. This example is based on feedback obtained from dairy farmers in northwestern Spain,
although the data considered here are fictitious. A standard dairy farm in northwestern Spain has be-
tween 40 and 150 dairy cows. The cow feeding is varied and the feeding ration must have the necessary
nutrients to maintaining a high daily production of milk (between 25 and 35 liters). The feeding ration



can be decomposed into two parts. On one hand, a part that has to be stored at the farm in warehouses,
called silos. On the other hand, a part that must be daily obtained and that cannot be stored. We are
interested in the management of the former part, the one that is stored. From now on, we refer to this part
of the feeding ration as the dry feed. The silos, where the dry feed is stored, have a constant maintenance
cost. Indeed, this cost is negligible and can be considered to be zero. The dry feed is ordered to an external
supplier. There is a fixed cost of a euros each time that an order is made; this fixed cost is mainly due to
transportation. Each cow consumes about 10 kg of dry feed for producing about 30 liters of milk per day.
When there is a shortage of dry feed, the feeding ration has to be changed. The daily production of milk
can be maintained but its quality decreases. So, although the cost of the feeding ration does not change
significantly, there is a cost due to the economic impact of the decrease of the quality; this cost is b euros
per ton and day.

For simplicity we consider an example with four dairy farms N = {1,2,3,4}. The dairy cattle is
formed by 45, 95, 105 and 120 cows, respectively. The fixed cost per order is a = 180 (in euros) and the
demand (in tons per day), the shortage costs (in euros per ton and day) and the capacity of silos (in tons)

for each dairy farm are given in the next table, whose last column depicts the ratios demand/capacity.

di | b | Ki I‘i
04515 5 | 0.090
095 | 15 | 7.5 | 0.127
10510 | 8 |0.131

120 {12 | 9 | 0.133

-~

= W N -

Assume that the dairy farms 1, 2 and 4 decide to cooperate by ordering together, so S = {1,2,4}.
Let us compute c(S) = C5(x%). First we calculate i(S) and x%. We proceed iteratively using the
non-increasing arrangement of the dairy farms’ ratios demand/capacity. Take T = {4} and compute

xr = Lierbidi  _ bds \/w = 0.11094
T K on+ b G 3604810 '
2a + ZIET 1 d; a+ by dy

Let us note that Sy, = {i €S : xr < I%} = {2,4} and Sy, # T. Then, xt does not satisfy (11) and,
consequently, x§i # xp and i(S) # T. Take now T = {2,4} and compute

o [ Dbt [obrha, [ TBIE
- 2 ) 2 — = U. .
24 T b \20+ 0,505V 360+ 88816+ 810

Now, since S, = {2,4} = T, xt satisfies (11) and, consequently, i(S) = T = {2,4} and x§{ = x1 =
0.117983. Finally, using (12), we have that

bydy + bad 14.25 + 14.4
= Tk Ky = 2 105108 = 2233

CS *
(x3) xh 0.117983

Following similar operations, one can obtain C5(x%) for every non-empty S C N.
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S \ 1 2 3 4 12 13 14
CS(x}) \ 14.75 20.87 2090 21.80 20.87 2090 21.80

S ‘ 23 24 34 123 124 134 234 N
C5(x%) ‘ 2192 2233 2250 2192 2233 2250 2267 22.67

5 Profitability of the grand coalition and cost allocation procedures

In the last section we obtained an expression for the minimum cost associated with each non-
empty coalition S C N when its members place joint orders for a given EOQ system without
holding costs (N,a,b,d,K). In terms of cooperative game theory, we have obtained the cost
game ¢ associated to the system (N, a,b,d, K), c being a map which assigns to every non-empty

S C N the real number C° (x%). So, from now on, we write?

K?
2a + Eiei(s) bl‘df;_
Lici(s) bidi ici(8)
for every non-empty S C N. For the results we prove in this section, assume that a system
(N,a,b,d,K) is given and that c is its associated cost game.
We consider now the following issue. Is it profitable for the agents in N to form the grand
coalition to place joint orders? In this section we prove that the answer to this question is

positive because c is a subadditive game, in the sense that
c(SUT) <¢(S) +¢(T),

forall S,T € N with SUT = @. Notice that the superadditivity condition implies that if N
is partitioned into disjoint ordering coalitions (whose integrants place joint orders) the corre-
sponding cost will not decrease.

In fact we prove that c is not only subadditive but also concave, in the sense that

c(TUj)—c(T) <c(SUj)—c(S) (13)

forallj € NandallS,T C NwithS C T C N\ j. Itis a well known result in cooperative game
theory that every concave game is subadditive. Moreover, the concavity property provides us
with additional information about the game: the marginal contribution of an agent diminishes

as a coalition grows (according to (13)).

Theorem 5.1. Let (N, a,b,d, K) be an EOQ system without holding costs with associated cost game c.
Then c is a concave game.

Proof. See Appendix. O

2By convention, ¢(®) = 0.



So we proved that in an EOQ system without holding costs (N, a,b,d, K) it is efficient that

all players place joint orders. In that case, the optimal average cost per time unit is given by

K2

20+ Yicin) bigh
C(N): Z bidi - — 2 biKi.
ici(N) Liei(n) bidi i€i(N)

An allocation rule for EOQ systems without holding costs is a map ¢ which assigns a vector
¢(c) € RN to every EOQ system without holding costs (N, 4, b, d, K) with associated cost game
¢, satisfying that } ;. ¢i(c) = ¢(N). Each component ¢;(c) indicates the cost allocated to i,
so an allocation rule for EOQ systems without holding costs is a procedure to allocate the
optimal cost among the agents in N when they cooperate. An allocation rule should have good

properties from the following points of view.

1. The proposal of the rule for a particular system should be computable in a reasonable
CPU time, even when the number of agents is large.

2. Itis very convenient that the rule proposes for every system an allocation which belongs
to the core of the associated cost game (see, for instance, Gonzalez-Diaz et al. (2010)
for details on the core of a cooperative game). This means that, for every EOQ system
without holding costs (N, a,b,d, K) with associated cost game ¢, ¢ should satisfy the fol-
lowing;:

Y ¢i(c) < c(S),forevery S C N.

i€s
Notice that this condition assures that no group S is disappointed with the proposal of
the rule, because the cost allocated to it is less than or equal to the cost it would support if

its members formed a coalition to place joint orders independently of the agents in N \ S.

3. The proposal of the rule must be understandable and acceptable by the agents, in the

sense that no one of them should feel unfairly treated.

Since the cost games associated to EOQ systems without holding costs are concave, cooper-
ative game theory provides allocation rules for EOQ systems without holding costs with good
properties at least with respect to items 2 and 3. We highlight the Shapley value and the nucle-
olus, which always provide core allocations in this context (see Gonzalez-Diaz et al. (2010) for
details on them). However, both allocations are hard to compute when the number of agents
increases.

Next we define an allocation rule for EOQ systems without holding costs and discuss its
qualification with respect to the three items enumerated above. In fact, the interest of this rule
is that it selects in a very natural way a point in the core. It has excellent properties with respect

to items 1 and 2, but its interest from the point of view of item 3 is not so clear.

Definition 5.1. The rule R we propose assigns to every EOQ system without holding costs (N, a, b,d, K)

10



with associated cost game c the allocation vector R(c) € RN given by:

K2
2a+ Y, bldfl

: 1
—s5a— —biKi ifi €i(N)
I€i(N)

0 otherwise.

This rule can be computed easily. Moreover, its complexity increases polynomially on the
number of agents. So, it is clear that R is a good rule from the point of view of computability.
With respect to the second item, the following theorem shows that R proposes for every

system an allocation which belongs to the core of the associated cost game.?

Theorem 5.2. Let (N, a,b,d, K) be an EOQ system without holding costs with associated cost game c.
Then, for every S C N,

Y Ri(c) <c(S).

ieS

Proof. See Appendix. O

Now we make some comments on our rule R which have to do with the third item. R can

be explained in the following way.

e Only agents having a large ratio demand /capacity will have to contribute to the payment
of the ordering costs. With large ratio we mean that it is larger than the optimal number
of orders per time unit.

e Each agent having a large ratio will pay his own shortage cost plus a part of the fixed cost

which depends on his ratio. This part is computed in the following way:.

Agent i’s shortage cost per time unit when the number of orders per time unit is x3; and

i € i(N) is given by

1 b . 1 b .
aziclli(_KixN +d;)? = %ﬁ(df + Kixyy) — biK;.

Assuming that agent i € i(N) pays his own shortage cost per time unit, then the part of

the fixed cost per time unit that he pays according to R is given by

! 1

biK;

1 o x ﬁ( bidi  biK?
X3y Xy 2d;

> " od N

1
b;d; dlz + Kl-zx}‘\,z) + b;K; = f*(
XN

Then, the part of the fixed cost a that agent i € i(N) pays each time that an order is made

3Notice that R provides in fact a PMAS of ¢ in the sense of Sprumont (1990); it easily follows from Theorem 5.2
and the definitions of R and c.
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is

K
%(bldi B bl’Kiz x}k\]z) _ 0 le%N)bl”TZ b;d; B biKiz _ ([l n Z blKlz) b;d; B biKiz’
XN 2 2611‘ IE%N)bldl 2 Zdl‘ I€i(N) 2d1 IE%N)bldl Zdl‘
which can be written as
bid; bid; B B

1

a—+ .
Yieiny bidr Laein) bidi () 241 24;

Notice that R does not divide a in a proportional way among the agents in i(N). The first
term is, in fact, a proportional splitting of a. The second term is a proportional division
of the total average cost per cycle when each agent’s deficit level equals his warehouse
size. Finally, the third term is agent i’s average cost per cycle when his deficit level is his

warehouse size.

e Agents having a large ratio should probably re-dimension the capacity of their ware-
houses (in view of their demands). That is the reason why it does not seem unfair that
they are forced to support the ordering costs.

We finish this section computing the proposal of R in Example 4.1 and comparing it with
the proposal of other rules.

Example 5.1. Consider again the EOQ system without holding costs of Example 4.1 and its corre-
sponding cost game. It can be easily proven that i(N) = {2,3,4}. Then Ry(c) = 0. To obtain R;(c) for
i €{2,3,4}, we compute

= 8.2547.

2 ) 5 N
20+ Y icin) bz’% B 2a+b2§—§+b3% +b4%
Yoici(N) bid; bodo + bsds + byd,

Then
Rz(c) = 8.2547 bzdz — szz = 5.13,

Rg(c) = 8.2547 b3d3 — b3K3 = 6.67,
R4(C) = 8.2547 b4d4 — b4K4 = 10.87.

Finally, we compute the proposal for this example of other two well-known solution concepts, the
Shapley value and the nucleolus. The proposal of the three rules are displayed in the next table.

Ri(c) | Shi(c) | Nui(c)
0 3.69 5.35
5.13 6.04 5.52
6.67 6.14 5.70
10.87 | 6.80 6.10

B W N~ -
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Observe that in this example the three rules consider that the bigger the ratio demand/capacity of an
agent is the more that this agent will have to pay (this is not true in general). With this principle in
mind the nucleolus tends to equalize the costs supported by the agents whereas our rule tends to take
more account of the differences; the Shapley value plays a more moderate middle.

6 Conclusions

In this paper we analyze multiple agent situations where each agent faces a continuous review
inventory problem without holding costs, with shortages and with a limited capacity ware-
house. We find a collective optimal policy when a group of agents agrees to cooperate placing
joint orders. In this context we show that the formation of the largest possible coalition (the
grand coalition) is profitable. Moreover we indicate how cooperative game theory can be used
to allocate the cost among the agents and we identify a natural allocation for each problem
which satisfies attractive properties from the points of view of computability and stability. We
illustrate our results with an example that we have encountered while collaborating with an
agricultural cooperative in the Northwest of Spain.
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Appendix
Proof of Theorem 4.1.

Proof. We distinguish three cases.

1. PNi(S) = @. Theni(P) Ni(S) = @. Consequently, for alli € i(P), x§ > 1% Besides x}, < 1%
foralli € i(P). Then, xp < x¢.

2. PNi(S) = i(S). In view of Algorithm 4.1 it is clear that in this case x}, = x%.

3.0 # PnNi(S) Ci(S). Notice that (11) implies that

> —, foreveryj€i(S). (14)

KZ
2a + Zlei(S) bltTi K]
Yicics) bid di’

By square both sides of (14), multiplying by b;d;, for every j € i(S) \ P, adding up, and dividing
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by Y jci(s)\p bjdj, we obtain

K?
20+ Tieis) bist  Tjeis)p bz
>

(15)
Yici(s) bidi Lijci(s)\p bjd;
(note that Y jc;(s)\p bjd; # 0 because PNi(S) C i(S)). Expression (15) is equivalent to
K
) bidi2at ) big) > ) b 2 b d (16)
j€i(S)\P 1€i(S) I€i(S) j€i(S)\P

Substracting ) jci(s)\p bidi Lici(s)\p bl%z and adding 24 } c;(s)np bid) to both sides in (16),

2a Z bd; + Z bd, Z bl?} > 2a Z bd; + Z byd, Z bl a’ (17)
El

1€i(S) l€i(S)\P lei(S)nP 1 )np lei(S)NP l€i(S)\P
adding Y ici(s)np bidi Liei(s)np bl%z to both sides in (17), we obtain

KZ
a Z bd; + Z bd, Z bldil > 2a Z bd; + Z bldl Z bld (18)
i(S)N €i(S i(

l1€i(S) I€i(S) lei(S)nP l )NP lei( I€i(S)

Finally, dividing both sides for }_ bldl Y b;d; in (18), we obtain
Y, & lei(S l€i(S)NP

K2
20+ Yicis)np bigh 20+ Lieis) byg] d,
Yici(s)np bidi Yiei(s) bzdz

(19)

(note that Y ci(s) bid Yjei(s)np bidi # 0 because @ # PN i(S)). Rewriting (19) and combining it
with (11), we have

Yici(s)np bidi _ Yicis) bidi a2
K2 2
20+ Yicisnp bigr 28+ Yieics bz dz Kj

for every j € i(S).

In particular,

Yici(s)np bid _ Yiei(s) bid a2
K? 2’
20+ Yicisnp gt 20+ Lieigs) b dz K;

forevery j € PNi(S).

The definition of i(P) and this last inequality imply that P Ni(S) C i(P); then PNi(S) C
i(P)Ni(S) and thus PNi(S) = i(P) Ni(S). Now we check that

2a +Zl€z b[ a - 2a+Zl€l bl a

20
e bldl Yo - (20)

14



If i(P) = PNi(S), (20) is in fact (19). If PNi(S) # i(P) then i(P) \ i(S) # @ and, by the
definition of i(S), we have

K2 2a + Zlez bl d,

L > , foreveryjici(P)\i(S 21
d]2 — ZlGl bldl YJ ( )\ ( ) ( )

and then, multiplying by b;d; in both sides of (21), adding up for j € i(P) \ i(S), and dividing
by Y ici(pi(s) bjdj, we obtain

2161 bl a5 S 2a + Zlez bl dz 22)
Z]EZ b d N Zlez bldl
(note that Y ici(p)\i(s) bjd; # 0 because i(P) \ i(S) # ©). Besides, using (22) and taking into
account that z(P) = ( (P) Ni(S)) U (i(P)\i(S)), we have
K? 2a+ Y jcis bl n
2a+ Y bl > 20+ Y. b+ Z bid; l
l€i(P) d 1€i(P)Ni(S) i jei(P)\i(S) Lici(s) bldl
Using (19) and i(P) Ni(S) = P Ni(S), we obtain
KZ 2a + ZZEZ bl ar 2a + ZZEZ bl ar
2a+ Y b=t> Y bd; 1 Y. bd; 1
1€i(P) i j€i(P)Ni(S) Lici(s) bldl jei(P)\i(S) Liei(s) bldl
and then (20) holds. O

Lemma A.1. Let (N,a,b,d,K) be an EOQ system without holding costs and take a pair of non-empty
coalitions S, T C NwithS C T. Then CT (x) — C%(x) = CT\$(x) —ax forall x € (0, +-o00). Moreover,
CP(x) — ax is a non-increasing function in (0, +o0) for all non-empty P C N.

Proof. Clearly

CT(x)—C(x) = Z]eTx 2d - (— Kx+d) Z]esx 2,1 - (— Kx+d)
b;
% Lje(1\9)x 2dj(_fo +dj)? = CT\S( ) — ax.

In Section 4 we proved that CP(x) is differentiable in (0, +c0) for all non-empty P C N. Thus
CP(x) — ax is differentiable in (0, +oc0). Its first derivative is given by

K;b;
sz (K + )~ - ¥ (Kt d). (23)

]eP Y jep, 4

Notice that (23) is smaller than or equal to zero because x < I%_ for every j € Py, so the proof is
finished. B
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Proof of Theorem 5.1.

Proof. Takej € Nand S C T C N\ j. We will prove that c(TUj) —¢(T) < ¢(SUj) —c(S). We
distinguish two cases.

o Ifx} > xguj, then

o(TUJ) —e(T) = CMi(xp,) —CT(x) < CTVi(x3) — CT(x})

= CO(x}) —ax}

where the first inequality follows from the fact that x7,; gives the minimum value of C TV
and the second line follows from Lemma A.1. If S # @, by Lemma A.1 and the fact that
x5 gives the minimum value of Cs,

Cl(x7) —axt < Cl(xh;) —axg,; = COV (xg,j) — C°(xy;) < e(SUJ) —C3(x5) = c(SUj) —c(S).
If S = @ then, by Lemma A.1

Ci(x}) — ax} < C(xt)) — axgy; = C(x}) — ax} < CI(x}) = c(j) — c(®).

e If x7 < xg; then following a similar reasoning as above we have

c(TUj)—c(SUj) = CTU]'(x%]-) — CSUf(xgu]-) < CTUf(xguj) — CSUf(xéuj)
CT\S(xgu]') — axg ;.

If S # @, by Lemma A.1 and the fact that x§ gives the minimum value of CS,
CTV(xg;) —axgy; = CT(xy;) — Co(xgy;) < CT(xp) — C¥(x7) < e(T) — C5(x%) = ¢(T) —c(S).
If § = @ then x7 < x5 ,; becomes x7 < x7 and, by Lemma A.1

CT\S(xEUj) —axgy; = CT(x]’f) —axj < CT(x%) —axk < c(T) = ¢(T) — c(D).

Proof of Theorem 5.2.

Proof. By the definition of the allocation rule R, it is clear that ) ;cn R;(c) = ¢(N). Take S C N.
If SNi(N) = @, then

Y _Ri(c) <c(S).

ieS
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If SNi(N) # @, Theorem 4.1 implies that

K? K?
2a + bl?ﬁ 20+ ) bl?ﬁ
l1€i(S) l€i(N)
_— > | — 24
Y bd Y. bd, 29
l€i(S) I€i(N)

Moreover, it is clear that i(S) Ni(N) C SNi(N). In view of Algorithm 4.1 it is easy to check
that SNi(N) C i(S) Ni(N). Now, using (11), (24) and the definition of i(S), we have

Yies Ri(c) —=c(S) = Yiesniony Ri(c) + Lieis) biKi — Liei(s) bidi

2a+ Y bl%z
K; 1€i(S)
= Yicisninn bidigh — bidiy | —5 57—
1€i(S)
20+ ¥ b,%z 2a+ Y b,%
I€i(N) L€i(S)
+  Yicis)nin) bidil T ¢ bd W] <0.
I€i(N) l€i(S)
Then, ;.5 Ri(c) < ¢(S). -
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