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1. Introduction

Multi-state models are often used to represent and to investigate the evolution of a disease

over time. For this, several relevant transient states like ‘healthy’, ‘diseased’ and so on are

typically identified, together with one or more absorbing states (‘dead’, ‘discharged’ etc).

Emphasis often lies on estimation of the so-called transition probabilities, which allow for

long-term survival prognosis (Hougaard, 2000). The transition probabilities evaluate the

probability of occupying a particular state at some future time, given the current state of

the process. The model is said to fulfill the Markov assumption when these probabilities

are independent of the states previously visited by the process and the transition times

among them. The standard nonparametric estimator for a Markovian transition probability

matrix from possibly right-censored data is the time-honored Aalen-Johansen estimator

(Aalen and Johansen, 1978). This estimator is easily adapted to the left-truncated case

by a suitable modification of the risk sets (Andersen et al., 1993). Although the Aalen-

Johansen estimator serves to consistently estimate the occupation probabilities regardless of

the Markov condition (Datta and Satten 2001), it may be systematically biased when the

goal is to estimate the transition probability matrix and the Markov condition is violated

(Meira-Machado et al., 2006).

In a recent paper, de Uña-Álvarez and Meira-Machado (2015) compared several nonpara-

metric estimators for the transition probability matrix of a possibly non-Markov, censored

progressive illness-death model; see also Balboa and de Uña-Álvarez (2017). The estimator

showing the best performance was a Pepe-type estimator (Pepe, 1991), defined as a difference

of two Kaplan-Meier survival estimators of particular event times, computed from specific

subsamples. These authors discussed ways to apply the subsampling approach to a completely

general progressive multi-state model. The idea of subsampling proceeds by evaluating the

transition probabilities from the subset of individuals observed at the state of interest by
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the given time. This resembles the idea of landmarking, as described in van Houwelingen

and Putter (2012); see also Putter and Spitoni (2016) who introduced the landmark Aalen-

Johansen estimator and proved that it is consistent for censored, non-Markov processes. A

related piece of work was independently built up by Titman (2015), who considered multi-

state models that are possibly non-progressive.

In biomedical research, cross-sectional samplings or prevalence studies are often applied

due to their simplicity relative to incidence (prospective) designs. Cross-sectional data refer

to individuals ‘in progress’ (i.e. alive) by the sampling date; thus, the individual survival

times are left-truncated by the recruitment times. An example, further studies in Section

4, is a study on intensive care units (ICUs) conducted during 1999 and 2000 in Israel.

Five hospitals were cross-sectioned on four independent days in order to identify patients

who met pre-specified ICU criteria. Information on patients was gathered from the day of

deterioration, i.e., the day when the patient first met the ICU criteria, to 30 days afterward.

The main interest was to estimate the probability of acquiring a bloodstream infection (BSI),

a severe infection that is one of the leading causes of death inside hospitals. Thus, the process

has two transient states: 1-hospitalized without BSI and 2 - hospitalized with BSI; and two

absorbing states: 3 - discharged alive from the ICU and 4 - died in the ICU.

Under cros-sectional sampling, standard estimation procedures must be corrected for the

oversampling of individuals with a relatively large survival times. Although several authors

study nonparametric estimation from multi-state cross-sectional data (Chang and Tzeng,

2006; Mandel, 2010; Vakulenko-Lagun et al., 2017), they do not focus on estimation of

transition probabilities with full generality or they impose distributional assumptions on

the truncating variable; see also the discussion in Section 5. For non-Markov processes,

Allignol et al. (2014) and Titman (2015) consider the issue of left-truncation in a setting in

which the individual trajectory prior to the truncation time is not available. In cases when
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retrospective information is available, these latter methods ignore data on states visited

before the cross-section date, thus resulting in a potential loss of efficiency. In the ICU

data and similar data collected in hospitals, patients are closely monitored and full history

information before truncation is available. The purpose of the current paper is to introduce

and to investigate nonparametric estimators for the transition probability matrix in a general,

progressive multi-state model from cross-sectional (possibly censored) data, making use of

the available retrospective information. Neither the Markov condition, nor distributional

assumptions on the truncation time, will be imposed.

The rest of the paper is organized as follows. In Section 2 we introduce the needed notations,

the estimators and the main results. In Section 3 we conduct a simulation study to compare

the two proposed estimators. An application to the study of hospitalization time in an ICU

is given in Section 4. The main conclusions and a final discussion are deferred to Section 5.

2. Notations, estimators and main results

2.1 Model

Consider a progressive multi-state process formed by transient and absorbing states; each

state can be visited once at maximum. Let X (t) denote the state occupied by the process

at time t, t > 0. Let T 0 denote the total survival time or absorption time, that is, the

time up to reaching one of the absorbing states. For a given state j, let E j denote the set

of states from which j is reachable. Let Z0,j and T 0,j denote the sojourn times in E j and

E j ∪ {j} respectively. When E j is empty, we set Z0,j = 0 by convention. Note that the event

{X (t) = j} can be written as {Z0,j 6 t < T 0,j} and, therefore, the occupation probability

for state j satisfies

P (X (t) = j) = P (T 0,j > t)− P (Z0,j > t). (1)

Hence, the occupation probabilities can be recovered from a difference between two particular
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survival functions corresponding to the sojourn times Z0,j and T 0,j. If j is the only absorbing

state of the process, then P (T 0,j = ∞) = 1, Z0,j = T 0, and P (X (t) = j) = 1 − P (T 0 > t)

is the cumulative distribution function of the absorption time T 0 at time t. If j is one

among several absorbing states, we rather get from (1) a cumulative incidence function,

P (X (t) = j) = P (Z0,j 6 t, νj = 1), where νj stands for the indicator of visiting state j. Since

Z0,j equals T 0 in the presence of νj = 1, one may write P (X (t) = j) = P (T 0 6 t, νj = 1);

that is, the occupation probability equals the cumulative incidence function of T 0 for the

event ‘reaching the absorbing state j’.

Similar formulae can be derived for the transition probabilities of the process, which are

defined as

pij(s, t) = P (X (t) = j | X (s) = i),

where i, j are states and s, t are time points with s < t. Explicitly, when j is transient we

will refer to

pij(s, t) = P (T 0,j > t | X (s) = i)− P (Z0,j > t | X (s) = i), (2)

while when j is absorbing we will rather use

pij(s, t) = P (T 0 6 t, νj = 1 | X (s) = i). (3)

Under cross-sectional sampling, an individual is observed if and only if L 6 T 0, where L

denotes the time from onset to cross-section, and plays the role of left-truncation time.

For simplicity, we assume that the lower limit of the support of L, aL say, is zero; note

that, in general, with left-truncated data one can only identify the conditional distribution

of T 0 given T 0 > aL. Furthermore, there is in general some risk of right-censoring after

recruitment. Let C denote the potential censoring time, with P (C > L) = 1; so rather

than (L, T 0) with L 6 T 0 one observes (L, T,∆) with L 6 T , where T = min(T 0, C) and

∆ = I(T 0 6 C). It is assumed that retrospective information on the sampled individuals
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is fully available, including the states visited before recruitment and the transition times

among them. This is in contrast to the more standard left-truncated scenario with event

history data, in which information on the individual is restricted to the follow-up after the

date of sampling (Andersen et al., 1993). In our context, the data at hand are iid copies

of (L,Zj, δj, T j, δ̃j, T,∆) conditionally on L 6 T , for the various states j of the process.

Here Zj and δj (T j and δ̃j) denote the possibly censored sojourn time in E j (E j ∪ {j})

and its censoring indicator. Note that ∆ = 1 (uncensored trajectory of the process) implies

δj = 1 for each j. In the case ∆ = 1, the absorbing state reached by the individual is also

observed. Our goal is to nonparametrically estimate the transition probabilities from such

left-truncated and right-censored sojourn times on the basis of equations (2) and (3).

We assume that the pair (L,C) is independent of the process of interest, as is usual with

left-truncated and right-censored data. This independence assumption just means that the

cross-sectional sampling and the follow-up of the individuals are unrelated to the process

under investigation. However, we allow C and L to be dependent; indeed, under cross-

sectional sampling, L and C are correlated due to the restriction P (C > L) = 1. The

two estimators we propose below for pij(s, t) are computed from a specific subsample, S(s)
i ,

determined by the state i and the time point s. Explicitly, S(s)
i denotes the subsample of

individuals observed in state i by time s, that is, the ones satisfying the condition {X (s) =

i, C > s}. Note that the independence between (L,C) and the process remains in such

subpopulation. This ensures the consistency of the methods.

2.2 Product-limit integral type estimator

The first estimator we propose is a combination of special product-limit integrals as those

considered by Sánchez-Sellero, González-Manteiga, and Van Keilegom (2005). Specifically,

let Z0 denote either Z0,j or T 0,j in (2), and let Z = min(Z0, C) be the observable version of
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Z0. Then, the joint distribution function of (Z0, T 0) can be estimated from the left-truncated

and right-censored data by (see Web Appendix A)

F̂Z0T 0(z, t) =
n∑
k=1

ŜT 0(Tk−)∆k

nK̂T (Tk)
I(Zk 6 z, Tk 6 t), (4)

where ŜT 0(t) and K̂T (t) are, respectively, the product-limit estimator of ST 0(t) = P (T 0 > t)

under left-truncation and right-censoring (Tsai, Jewell, and Wang 1987), and the proportion

of observations satisfying Lk 6 t 6 Tk, which serves to consistently estimate KT (t) = P (L 6

t 6 T | L 6 T ). Explicitly,

ŜT0(t) =
∏
Tk<t

(
1− ∆k

nK̂T (Tk)

)
, K̂T (t) =

1

n

n∑
k=1

I(Lk 6 t 6 Tk). (5)

It is easily seen that with no ties, the weight attached by (4) to the datum (Zk, Tk) equals

the jump of ŜT 0(t) at t = Tk. This implies that the marginal of (4) corresponding to T 0 is

just the product-limit estimator of Tsai et al. (1987).

The marginal survival function of Z0 can be estimated by ŜZ0(z) = 1− F̂Z0(z), where

F̂Z0(z) = F̂Z0T 0(z,∞) =
n∑
k=1

ŜT 0(Tk−)∆k

nK̂T (Tk)
I(Zk 6 z). (6)

By calculating this estimator using only the subsample S(s)
i and the variables Z0,j and T 0,j,

we obtain an estimator for pij(s, t), namely

p̂ij(s, t) = Ŝ
T 0,j ,S(s)i

(t)− Ŝ
Z0,j ,S(s)i

(t). (7)

Confidence intervals can be calculated using the bootstrap by sampling with replacement

from the original data and calculating either quantiles or the bootstrap variance. For the

latter approach, we have found that constructing confidence intervals for log[− log{pij(s, t)}]

and transforming them for the parameter of interest, pij(s, t), perform well; see Web Ap-

pendix C.

Estimator (7) may be systematically biased under right-censoring. To see this, let bT be

the upper bound of the support of T , and note that the estimator (6) converges to F bT
Z0 (z) =

P (Z0 6 z, T 0 6 bT ) (Sánchez-Sellero et al., 2005; de Uña-Álvarez, 2017), which is not equal
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to FZ0(z) = P (Z0 6 z) when the support of the censoring variable is strictly contained

in the support of lifetime (something which often occurs in practice). This possible bias is

immediately transferred to p̂ij(s, t). To be explicit, the limit of (7) is

pbTij (s, t) = P (Z0,j 6 t < T 0,j, T 0 6 bT | X (s) = i)

(see Section 2.6), which is in general smaller than the target pij(s, t). Note that this problem

remains even for small values of t. Therefore, with censored data, alternative methods are

needed. In the particular case with no censoring, or if the censoring support contains the

support of T 0, we have F bT
Z0 = FZ0 and (7) is asymptotically unbiased.

2.3 An alternative estimator

The second estimator is based on existing relationships between the survival functions of Z0,j

and T 0,j and that of the absorption time. For any random variable ξ introduce the function

Kξ(t) = P (L 6 t 6 ξ | L 6 T ).

If ξ is observable, this function can be consistently estimated by

K̂ξ(t) =
1

n

n∑
k=1

I(Lk 6 t 6 ξk).

Due to the independence of (L,C) and X (t), it is easily seen that (see Web Appendix A)

SZ0(t) := P (Z0 > t) =
KZ(t+)

KT (t+)
P (T 0 > t), (8)

where Kξ(t
+) = P (L 6 t < ξ | L 6 T ) denotes the right-hand side limit of Kξ at t. This

suggests the estimator

Ŝ∗Z0(t) =
K̂Z(t+)

K̂T (t+)
ŜT 0(t). (9)

Note that Ŝ∗Z0 reduces to ŜZ0 in the particular case in which Z0 = T 0. Asymptotic prop-

erties of (9) in the setting of disease-free survival estimation with cross-sectional data were

established in de Uña-Álvarez (2017), who also reported a comparative simulation study and

showed that (9) is preferred to (6) in the censored setting. There is no guarantee that (9) will
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provide a monotonically decreasing estimator. Obviously, the modified monotone estimator

infz6t Ŝ
∗
Z0(z) can be used for practical purposes. At this point, the possibility of constructing

an improved estimator by using the monotonicity constraint is an interesting open question,

which is left for future research.

The estimator (9) can be used to introduce estimators of the survival functions of the

sojourn times Z0,j and T 0,j and, from these, an estimator of pij(s, t) can be constructed.

Explicitly, the estimator alternative to (7) is defined as

p̂∗ij(s, t) = Ŝ∗
T 0,j ,S(s)i

(t)− Ŝ∗
Z0,j ,S(s)i

(t), (10)

where, as before, the subscript S(s)
i indicates that the estimator Ŝ∗Z0(t) is computed from

that subsample. Similar to the product-limit estimator, confidence intervals can be obtained

using the bootstrap. The estimator (10) is consistent along the support of T , which is the

maximum one can expect under right-censoring. See the technical results in Section 2.6.

2.4 Absorbing states

As discussed above, if j is an absorbing state for the process, the transition probability

pij(s, t) equals the cumulative incidence function of the total survival time T 0 corresponding

to state j, at time t, for the subpopulation {X (s) = i}; see equation (3). This can be

estimated by

p̂ij(s, t) =
n∑
k=1

Ŝ
T 0,S(s)i

(Tk)∆k

ni,sK̂T,S(s)i
(Tk)

I(Tk 6 t, νjk = 1)I(k ∈ S(s)
i ), (11)

where ni,s stands for the cardinality of S(s)
i . This is again a product-limit integral in the sense

of Sánchez-Sellero et al. (2005), where the state indicator νj plays the role of the covariate

in that paper. Unlike for transient states, product-limit integral type estimators for the

transition probability pij(s, t) are consistent when j is absorbing even under censoring, as

long as t 6 bT . This can be proven by applying the asymptotic results in Sánchez-Sellero et

al. (2005) when L and C are independent; see de Uña-Álvarez and Veraverbeke (2017) for
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an extension of the asymptotic theory to the dependent setting. This is the only estimator

we recommend for absorbing states. The estimator (11) can be regarded as an adaptation

to left-truncation of the standard empirical cumulative incidence function in a competing

risks model. When there is only one absorbing state, P (νj = 1) = 1 and (11) becomes Tsai

et al. (1987)’s product-limit estimator for left-truncated and right-censored data computed

from the subsample S(s)
i .

2.5 Progressive illness-death model

The progressive illness-death model consists of three states, {1, 2, 3} say, and three possible

transitions among them: 1 → 2, 1 → 3, and 2 → 3. States 1 and 2 are transient, while

state 3 is absorbing. With the notation above, both T 0,1 and Z0,2 represent the sojourn time

in state 1, U0 say; both T 0,2 and Z0,3 are the absorption time T 0; while Z0,1 and T 0,3 are

degenerated at zero and infinity respectively. A direct application of (2) thus gives

p11(s, t) = P (U0 > t | X (s) = 1),

p12(s, t) = P (T 0 > t | X (s) = 1)− P (U0 > t | X (s) = 1),

p13(s, t) = 1− P (T 0 > t | X (s) = 1),

p22(s, t) = P (T 0 > t | X (s) = 2),

p23(s, t) = 1− P (T 0 > t | X (s) = 2).

In these expressions, the probabilities involving T 0 are estimated by Tsai et al. (1987)’s

product-limit estimator (5) from the corresponding subset of individuals; note that formula

(9) gives the same estimator in this case. On the other hand, the probability involving U0

can be estimated from two different approaches: the one in (6) (product-limit integral type

estimator), or that in (9), giving rise to p̂ij(s, t) or p̂∗ij(s, t) respectively. Obviously, both

estimators agree for the cases (i, j) = (1, 3), (2, 2), and (2, 3). Therefore, we focus on the

estimators of p11(s, t) and p12(s, t) in the comparative simulation study in Section 3.
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In the particular case with no truncation (P (L = 0) = 1), the estimators p̂∗ij(s, t) ‘almost’

reduce to the empirical transition matrix proposed by de Uña-Álvarez and Meira-Machado

(2015) for the censored progressive illness-death model. More specifically, when there is no

truncation, p̂∗11(s, t) reduces to the Kaplan-Meier estimator of the survival function of U0

(computed from the individuals observed in state 1 by time s) but for a factor which is

the rate of two different estimators of P (C > t | C > s): the one based on the censored

subsample of the U0’s, and that based on the censored T 0’s. This rate converges to 1 as the

sample size increases. Therefore, p̂∗11(s, t) approximates de Uña-Álvarez and Meira-Machado

(2015)’s estimator in the non-truncated case. On the other hand, since for non-truncated data

Tsai et al. (1987)’s product-limit estimator reduces to the ordinary Kaplan-Meier estimator,

p̂∗13(s, t), p̂
∗
22(s, t) and p̂∗23(s, t) equal de Uña-Álvarez and Meira-Machado (2015)’s estimators

in that case.

2.6 Asymptotic results

In this section, the asymptotic properties of the estimators p̂ij(s, t) and p̂∗ij(s, t) are given;

the proofs are deferred to Web Appendix B. Theorems 1 and 2 below establish asymptotic

representations for the product-limit type estimator and for the alternative estimator as sums

of iid random variables plus negligible remainders. The uniform order for the remainder in

Theorem 1, which is enough for obtaining e.g. the consistency and asymptotic normality

of the estimator, comes from the technical derivations for general product-limit integrals in

Sánchez-Sellero et al. (2005). Although in that paper the independence between the censoring

and truncation variables was imposed, de Uña-Álvarez and Veraberbeke (2017) showed that

the result holds even in the dependent setting. The order of the remainder in Theorem 2,

which again suffices for most applications, follows from the representation in Zhou and Yip

(1999) when applied to subsamples.

Theorem 1. Under conditions C1-C4 given in Web Appendix B, we have, uniformly on
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s 6 t 6 b < bT ,

p̂ij(s, t)− pbTij (s, t) =
1

nP
(s)
i

n∑
k=1

η
(s)
k (t)I(k ∈ S(s)

i ) +R(s)
n (t),

where the η
(s)
k (t)I(k ∈ S(s)

i )’s are iid zero-mean random variables whose explicit forms are

given in Web Appendix B, P
(s)
i = P (X (s) = i, C > s), and sups6t6b |R(s)

n (t)| = O(n−1 log3 n)

with probability 1.

Theorem 2. Under conditions C1-C4 given in Web Appendix B, we have, uniformly on

s 6 t 6 b < bT ,

p̂∗ij(s, t)− pij(s, t) =
1

nP
(s)
i

n∑
k=1

ψ
(s)
k (t)I(k ∈ S(s)

i ) +R∗,(s)n (t),

where the ψ
(s)
k (t)I(k ∈ S(s)

i )’s are iid zero-mean random variables whose explicit forms

are given in Web Appendix B, P
(s)
i = P (X (s) = i, C > s), and sups6t6b |R∗,(s)n (t)| =

O(n−1 log log n) with probability 1.

3. Simulation study

We conducted an extensive simulation study in order to investigate the finite sample perfor-

mance of the two estimators defined in Sections 2.2 and 2.3. We considered the progressive

illness-death model (see Section 2.5) under various assumptions on the truncation and

censoring variables and the process itself, and we focused on the estimation of p11(s, t)

and p12(s, t). We report here a selection of the simulations’ results for three models; detailed

tables for these models are given in Web Appendix C. We used only replications in which

Tsai et al. (1987)’s product-limit estimator, ŜT 0 , was well defined, that is, replications for

which the risk set vanished before the last observation entered to the study were replaced.

Tables 1-3 present the simulation results of three different models of censoring, C = ∞,

C = L+ 1, and C = 2.5, respectively. Specifically, we generated X1, X2 independently from

the Exponential distribution with rate parameters 2.1 and 0.9 respectively. The sojourn

time in state 1 of the illness-death model was calculated as U0 = min(X1, X2), where the



Biometrics, December 2008

transition was 1→ 2 if X1 < X2 and 1→ 3 otherwise. Conditional on the transition 1→ 2

and the sojourn time U0, the sojourn time in state 2 was sampled from a Weibull distribution

with shape and scale parameters 1.5 and {2 exp(−U0)}2/3. The models considered for (L,C)

were:

(1) For Table 1 (Web Tables 1 and 2), the truncation variable L had a Uniform distribution

on (0, 2) and C =∞ (no censoring).

(2) For Table 2 (Web Tables 3 and 4), the truncation time, L, was sampled from the

Exponential distribution with rate parameter 1, and the censoring time was defined

as L + 1. The censoring proportion was about 47%. In this setting, the censoring and

absorption times have the same support, so the methods discussed in Sections 2.2 and

2.3 are both consistent.

(3) For Table 3 (Web Tables 5 and 6), the truncation variable L had a Uniform distribution

on (0, 2), and the censoring time was fixed at C = 2.5. The censoring proportion of

this model is about 15.5%. This model mimics the setting of the data analyzed in the

next section. Under this setting, the right limit of the support of the absorption time is

larger than that of the censoring time, and hence the product-limit estimator (7) is not

consistent while the alternative estimator (10) is.

For each model and for various sample sizes, we replicated the simulation 400 times and

calculated the empirical bias, mean squared error (MSE) and coverage of 95% confidence

intervals. We tested five versions of bootstrap confidence intervals (see Web Appendix C for

details), but report here only the coverage of the simple quantile confidence interval.

The MSE of the alternative estimator p̂∗ij(s, t) decreases with sample size in all simulations,

and the variance is much larger than the square of the bias. The same phenomenon is observed

for the product-limit type estimator p̂ij(s, t) in the first two settings (Tables 1 and 2), but

for the model with fixed censoring time (Table 3) the MSE does not decrease and the bias
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is large for all n. This reflects the bias of this estimator when the right limit of the support

of C is smaller than that of T (see the discussion under Equation (7)). The product-limit

type estimator outperforms the alternative estimator when data are not censored; see Table

1. The difference between the MSEs seems to be larger in the estimation of p11(s, t) than in

that of p12(s, t), where the variance in estimation is quite high for both methods. The fact

that the variance of p̂11(s, t) is much smaller than that of p̂∗11(s, t) is not very surprising since,

in the uncensored setting, the former can be introduced as a maximum-likelihood estimator

(de Uña-Álvarez, 2017). However, in the more frequent scenario where data are censored,

as studied in Table 2, the alternative estimator performs better than the product-limit type

estimator even though they are both consistent. In the specific model studied in Table 2,

p̂∗ij(s, t) performs much better than p̂ij(s, t), especially for p11(s, t). Moreover, although the

bias of the latter estimator decreases with sample size, it remains quite large even for n = 500.

For example, in Table 2, the bias of the product-limit type estimator for p11(s, t) accounts

for about 20-25% of the MSE for n = 500. Considering confidence intervals with coverage

less than 0.925 as having poor coverage (see Web Appendix C), we found the coverage of the

confidence intervals for the alternative estimator quite satisfactory, especially for n > 200.

For the product-limit type estimator, the coverage is good for the uncensored case, but the

confidence intervals seem anti-conservative when data are subject to censoring. In general,

the confidence intervals that are based on the complementary log-log transformation perform

very well for n > 200 (see Web Appendix C).

In the scenario with fixed censoring time, an obvious modification of the product-limit

estimator that considers the censoring status as a new terminal state is consistent. In an

independent simulation study, we have seen that such a modified estimator performs slightly

better than the new estimator, particularly for the estimation of p11(s, t) (results are not
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shown). However, the consistency of this modified product-limit estimator cannot be ensured

for general censoring schemes, and hence it is of limited use.

[Table 1 about here.]

[Table 2 about here.]

[Table 3 about here.]

A second simulation study was conducted in order to compare the performance of the

estimators with the one based on the Aalen-Johansen approach for Markov processes. The

latter estimator can be calculated using the R package mstate (de Wreede, Fiocco and Putter,

2011). An illness-death model was simulated with parameters similar to the ones used for

the former study, but with the sojourn time in state 2 having an exponential distribution

with mean 1.2. Table 4 compares the MSE of the three estimators under three censoring

mechanisms, when the focus is on the estimation of p11(s, t) or p12(s, t) with (s, t) = (0, 1)

or (s, t) = (0.5, 1). The main finding is that, for the tested settings, the alternative and the

Aalen-Johansen estimators are comparable. At first glance, this might seem surprising as

the Aalen-Johansen estimator exploits the strong Markov assumption and hence is expected

to be more efficient. However, it does not use data on transitions occurring before the

truncation time, while the alternative estimator does. Such data can substantially improve

the performance of an estimator; see Vakulenko-Lagun and Mandel (2016).

[Table 4 about here.]

4. Real data illustration

In this section, we analyze the ICU data described in Section 1 on a process that has two

transient states: 1-hospitalized without BSI and 2 - hospitalized with BSI; and two absorbing

states: 3 - discharged alive from the ICU and 4 - died in the ICU.

Vakulenko-Lagun and Mandel (2016) and Vakulenko-Lagun et al. (2017) describe and
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analyze the data using parametric and non-parametric models, respectively. In their analyses,

they impute values for few patients who were lost to follow-up before day 30; here we consider

these patients as censored. In addition, two patients who were hospitalized in the ICU more

than 30 days before the sampling day were removed. Thus, there are 134 patients, among

them 29 died in the ICU, 81 were discharged alive and the rest 24 were censored. Figure 1

presents the truncation times, the absorption times, and the terminal states. Information on

the BSI times for those acquiring infection (40 patients) is also provided. The figure shows

that the sojourn time in state 2 is typically long, indicating the severity of BSI.

[Figure 1 about here.]

The two possible estimates of the transition probabilities p11(s, t) and p12(s, t) are presented

in Figure 2 for s = 0 and 5 days. The two methods give close results, with differences in the

range of 0.01-0.03 for most of the time points. Interval estimates are given in Web Appendix

D. Recall that, in general, the product-limit type estimator may be biased under censoring;

hence, this closeness between the two estimators could be somehow unexpected. The small

differences are probably due to the fact that most patients stay only few days in ICUs, leading

to a low censoring proportion (18%). On the other hand, following the discussion below

Equation (7), it is easy to see that the bias of p̂12(s, t) is given asymptotically by −P (U0 6

t, T 0 > bT | X (s) = 1), where U0 and T 0 are respectively the time of hospitalization without

BSI infection and the absorption time, and where bT = 30 (days) in this case. The absolute

value of this asymptotic bias is bounded by P (U0 6 30 < T 0 | X (s) = 1) = p12(s, 30), which

is small in the current example (see Figure 2). The bias of p̂11(s, t) is also expected to be

small since asymptotically it equals P (U0 6 t, T 0 > bT | X (s) = 1).

The probability of staying in state 1 (without BSI) on day 3 is only about 0.6 (Figure 2,

left panel). This reflects a very high rate of leaving state 1 immediately after entering to the

ICU. This finding is consistent with Mandel’s (2010) estimates of the cause-specific hazards
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of patients in an ICU. For a patient who stayed in state 1 for five days, the probability of

staying in this state in the next 3 days is much larger, about 0.8 (right panel of Figure 2).

[Figure 2 about here.]

As mentioned above, patients can be discharged from the ICU to another ward or die inside

the ICU. The time-dependent probabilities of these two terminal events were estimated using

the approach described in Section 2.4 and are depicted in Figure 3 for s = 0 and for s = 5,

with confidence intervals provided in Web Appendix D. The probability of being discharged

alive from the ICU in the few first days is quite large (left panel of Figure 3). This corresponds

to patients who were stabilized quickly and transferred to regular wards. The right panel of

the figure shows that the corresponding cumulative incidence function increases much slower

for those who stay five days in state 1. Figure 3 suggests that the probability to be discharged

alive from the ICU is smaller for patients who are still in state 1 after five days compared to

those who have just admitted to the ICU.

[Figure 3 about here.]

5. Discussion, main conclusions and final remarks

In this paper, two different nonparametric estimators of a transition probability matrix

for a general progressive multi-state model have been investigated. Left-truncation and

right-censoring issues which arise under cross-sectional sampling have been considered. The

estimator based on product-limit integrals is consistent and shows the best performance in

simulations when there is no censoring. With censored data, its consistency is not guaranteed

whenever the censoring support is strictly contained in the lifetime support and, therefore,

the alternative estimator is recommended. This alternative estimator follows ideas previously

exploited in the right-censored setup (de Uña-Álvarez and Meira-Machado, 2015; Titman,

2015). Even when other nonparametric approaches for left-truncated data exist, see e.g.
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Titman (2015) and references therein, they ignore the individual trajectory before cross-

section and, therefore, they are expected to be less efficient. We have illustrated this by

comparing our methods to the Aalen-Johansen estimator which, despite of exploiting the

Markov assumption, does not improve the new approach.

Other nonparametric methods to estimate the transition probability matrix have been

proposed under the extra assumption of independence between the truncation time L and

the residual censoring time C −L. Also, improved estimation may be obtained by including

information (if available) on the distribution of the truncation time. With cross-sectional

data, for example, some literature has been focused on the length-bias model in which the

truncation variable is uniformly distributed. See Vakulenko-Lagun et al. (2017) for these

alternative approaches. The two estimators considered in this paper are robust to these

assumptions and are suitable when nothing is assumed on the distribution of L.

The estimators we study require complete information on transitions occurring before the

truncation time. For applications involving medical records, obtaining the full history is often

possible, as medical records are today computerized and quite detailed and reliable. However,

there are situations in which the history is available only partially or not at all. Such cases

can be dealt with under the Markov assumption using the Aalen-Johansen estimator and,

for non-Markov processes, using the general approach described by Titman (2015).

Estimating regression effects on the transition probabilities may be conducted using pseu-

dovalues (Klein and Andersen, 2005), obtained by one of the non-parametric estimators de-

veloped in this paper. Alternatively, a direct binomial regression can be fitted, which requires

the construction of suitable random weights for the indicator I(Z0,j 6 t < T 0,j). Azarang et

al. (2017) dealt with this issue in the setting of the possibly non-Markov progressive illness-

death model. With cross-sectional data, modified weights which take the left-truncation times

into account are needed. Regression models may be restricted to covariates which are not
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time-dependent, as retrospective information for the latter is rarely available. The details for

the regression setting are currently under investigation, and will be presented elsewhere.

6. Supplementary Materials

Web Appendices A-D, referenced in Sections 2.2, 2.3, 2.6, 3, and 4 are available with this

paper at the Biometrics website on Wiley Online Library.
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Figure 1. Truncation times versus observed hospitalization times with the corresponding
terminal observed states: blue crosses for death, circles for discharged alive, and red pluses
for censoring. Patients who acquired BSIs are represented as vertical lines from BSI time
(diamonds) to total observed time. This figure appears in color in the electronic version of
this article.
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Figure 2. Estimates of transition probabilities. Left - starting at s = 0, right - starting
at s = 5. Black circles - product-limit type estimates and blue diamonds the alternative
estimates. The curves at the top correspond to estimates of p11(s, t) while those at the
bottom, connected with lines, correspond to p12(s, t). This figure appears in color in the
electronic version of this article.
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Figure 3. Estimates of absorption probabilities. Left - starting at s = 0, right - starting
at s = 5. The numbers indicates the absorbing state (3-discharged alive, 4-died in the ICU)
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p11(s, 1) p12(s, 1)

s method n bias×103 MSE×103 quantile bias×103 MSE×103 quantile

0 pl 100 0.673 0.426 93.5% 9.964 8.807 92.0%
0 new 100 1.926 0.675 93.5% 8.711 8.945 93.2%
0 pl 200 0.862 0.246 92.5% 1.066 4.750 94.0%
0 new 200 1.755 0.349 94.2% 0.162 4.804 94.8%
0 pl 500 0.190 0.085 95.2% 1.596 2.274 92.0%
0 new 500 0.199 0.117 95.0% 1.587 2.342 92.5%
0 pl 1000 0.264 0.044 94.2% 1.401 1.065 93.2%
0 new 1000 0.098 0.053 95.8% 1.566 1.087 93.0%

0.1 pl 100 -0.585 0.654 93.8% 0.126 7.701 94.0%
0.1 new 100 -0.612 0.954 92.0% 0.153 8.036 93.0%
0.1 pl 200 -0.707 0.269 96.8% -1.724 3.466 94.5%
0.1 new 200 -1.470 0.458 93.2% -0.960 3.676 94.0%
0.1 pl 500 0.071 0.120 96.2% 1.268 1.436 95.2%
0.1 new 500 -0.658 0.187 94.8% 1.998 1.478 95.5%
0.1 pl 1000 -0.974 0.062 95.8% -2.657 0.769 94.0%
0.1 new 1000 -1.260 0.096 94.5% -2.374 0.782 93.5%Table 1

Simulation results for the uncensored case based on 400 replications. The transition probabilities are from time s to
time 1, and the true values are p11(0, 1) = 0.050, p12(0, 1) = 0.455, p11(0.1, 1) = 0.067, p12(0.1, 1) = 0.464. Methods
pl and new are the product-limit and the alternative estimators, respectively; quantile is the empirical coverage of the

95% confidence interval.
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p11(s, 1) p12(s, 1)

s method n bias×103 MSE×103 quantile bias×103 MSE×103 quantile

0 pl 100 34.894 4.284 88.2% -37.993 9.714 90.5%
0 new 100 -0.552 0.529 90.5% -2.547 6.744 93.2%
0 pl 200 24.092 1.861 88.2% -19.325 4.342 93.2%
0 new 200 0.687 0.234 94.8% 4.080 3.018 93.8%
0 pl 500 12.174 0.608 90.5% -9.771 1.692 93.8%
0 new 500 0.313 0.116 92.8% 2.090 1.282 94.2%
0 pl 1000 7.186 0.284 91.5% -8.104 1.031 94.0%
0 new 1000 -0.128 0.044 95.2% -0.789 0.833 94.5%

0.1 pl 100 32.889 5.180 90.2% -30.360 9.190 89.8%
0.1 new 100 -0.322 0.828 92.8% 2.851 5.323 92.0%
0.1 pl 200 24.143 2.493 91.2% -24.112 4.328 91.2%
0.1 new 200 1.715 0.419 91.5% -1.684 2.574 93.5%
0.1 pl 500 9.764 0.679 93.2% -11.146 1.516 93.0%
0.1 new 500 -0.881 0.165 93.2% -0.502 1.076 93.0%
0.1 pl 1000 9.007 0.374 92.8% -8.165 0.846 91.0%
0.1 new 1000 0.372 0.080 94.8% 0.468 0.539 94.8%Table 2

Simulation results for the fixed follow-up case based on 400 replications. The transition probabilities are from time s
to time 1, and the true values are p11(0, 1) = 0.050, p12(0, 1) = 0.455, p11(0.1, 1) = 0.067, p12(0.1, 1) = 0.464.
Methods pl and new are the product-limit and the alternative estimators, respectively; quantile is the empirical

coverage of the 95% confidence interval.
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p11(s, 1) p12(s, 1)

s method n bias×103 MSE×103 quantile bias×103 MSE×103 quantile

0 pl 100 77.886 7.292 23.5% -69.696 11.304 85.2%
0 new 100 0.829 0.623 93.5% 7.361 8.784 92.5%
0 pl 200 77.469 6.699 8.5% -66.951 7.728 80.5%
0 new 200 -0.255 0.281 93.5% 10.760 4.795 93.2%
0 pl 500 78.805 6.504 2.2% -75.981 7.263 41.8%
0 new 500 0.719 0.120 95.0% 2.105 2.106 94.8%
0 pl 1000 77.703 6.199 1.5% -74.329 6.436 16.8%
0 new 1000 0.618 0.059 94.8% 2.756 1.351 90.8%

0.1 pl 100 69.345 6.384 51.8% -76.022 12.152 83.2%
0.1 new 100 -0.167 0.974 91.0% -6.511 8.457 94.0%
0.1 pl 200 70.440 5.600 12.2% -70.394 7.636 74.5%
0.1 new 200 -0.525 0.509 92.0% 0.571 3.340 95.0%
0.1 pl 500 69.722 5.158 0.0% -71.445 6.321 44.2%
0.1 new 500 -0.587 0.201 94.0% -1.137 1.486 96.2%
0.1 pl 1000 68.996 4.905 0.0% -72.769 5.942 15.0%
0.1 new 1000 -0.543 0.083 97.0% -3.234 0.839 93.5%Table 3

Simulation results for the fixed censoring time case based on 400 replications. The transition probabilities are from
time s to time 1, and the true values are p11(0, 1) = 0.050, p12(0, 1) = 0.455, p11(0.1, 1) = 0.067, p12(0.1, 1) = 0.464.

Methods pl and new are the product-limit and the alternative estimators, respectively; quantile is the empirical
coverage of the 95% confidence interval.
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s t C model pl11 pl12 new11 new12 AJ11 AJ12

0 1 C =∞ 0.20 3.80 0.29 3.84 0.55 5.12
0.5 1 C =∞ 3.01 5.04 4.17 6.24 5.13 4.99

0 1 C = L+ 0.5 14.34 15.16 0.53 4.65 0.74 4.94
0.5 1 C = L+ 0.5 30.11 30.69 7.52 10.77 8.66 8.41

0 1 C ∼ U(0, 2.5) 14.28 15.23 0.34 3.58 0.51 4.05
0.5 1 C ∼ U(0, 2.5) 26.23 27.59 4.41 6.97 5.03 5.18Table 4

MSE×103 under a Markov illness-death model based on 1000 replications each with sample size n = 200. pl - the
product-limit type estimator, new - the alternative estimator, AJ - the Aalen-Johansen estimator. Labels 11 and 12

refer to the target, which is p11(s, t) or p12(s, t) respectively.


