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Abstract 

In the framework of infrastructure analysis and maintenance in an urban environment, it is important to 

address the safety of every road user. This paper presents a methodology for the evaluation of several safety 

indicators on pedestrian crossing environments using geometric and radiometric information extracted from 

3D point clouds collected by a Mobile Mapping System (MMS). The methodology is divided in four main 

modules which analyze the accessibility of the crossing area, the presence of traffic lights and traffic signs, 

and the visibility between a driver and a pedestrian on the proximities of a pedestrian crossing. The outputs of 

the analysis are exported to a Geographic Information System (GIS) where they are visualized and can be 

further processed in the context of city management. The methodology has been tested on approximately 30 

pedestrian crossings in cluttered urban environments of two different cities. Results show that MMS are a 

valid mean to assess the safety of a specific urban environment, regarding its geometric conditions. 

Remarkable results are presented on traffic light classification, with a global F-score close to 95%.     
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1. Introduction 

The assessment and improvement of traffic safety is essential for the development of contemporary and 

humanized cities. According to the European Road Safety Observatory (ERSO), more than 5000 pedestrians 

were killed in road accidents in the EU in 2014, being that a 21% of all road fatalities (ERSO, 2016). The 

most common cause of road fatality involving pedestrians are run overs in urban areas. In 2013, run overs 

were the cause of 50% of the fatal accidents in urban areas in Spain (AXA, 2014). Moreover, more than 3500 

people were injured on run over accidents, being contusions and bone fractures the most common 

consequences. However, run overs are easy to prevent to a certain extent (Fundación Mutua Madrileña, 2013). 

Most of the run over accidents happen in pedestrian crossing areas, being the driver the main responsible of 

the accident. There exists an extensive literature regarding characteristics and behavioral analysis of run over 

accidents as well as measures to take in order to prevent these accidents (Hamed, 2001; Jiménez-Mejías et al., 

2016; Retting et al., 2003; US Department of Transportation, 2001; Várhelyi, 1998). In order to assess the 

safety of the road environment, different models have been developed: Lassarre et al. (2007) measure the 

accident risk based on the exposure of a pedestrian at a certain location on an urban area; Kelly et al. (2007) 
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assess the walkability of pedestrian environments by identifying and weighting parameters such as the quality 

of the pavement, the traffic volume or the street lightning. Basile et al. (2010) develop a safety index for the 

assessment of the safety on pedestrian crossing environments which is based on four main criteria: Spatial and 

temporal design, day-time visibility, night-time visibility and accessibility.  

All the mentioned safety assessments are conducted manually, based on on-site inspections and surveys. 

Nowadays, LiDAR based mobile mapping technology is able to collect 3D data in a reliable, accurate manner 

(Puente et al. 2013) and allows for the automatic or semi-automatic collection of geometric and semantic 

parameters in road environments, hence avoiding the manual collection of a large proportion of the required 

assessment data. The literature regarding the acquisition of data that may be used for safety assessments is 

vast. Works as (Miyazaki et al., 2014; Zhou and Vosselman, 2012) are focused on the detection of curbs in 

3D data acquired with laser scanner. Serna and Marcotegui (2013) propose an accessibility analysis once the 

curbs are detected, establishing itineraries for people in wheelchairs according to the obstacles found in the 

road. In addition to being detected, several urban objects with an impact on road safety assessment can be 

semantically classified in order to get a better understanding of a 3D scene. For example, in (Serna and 

Marcotegui, 2014; Yang et al., 2015) objects such as buildings, vehicles, trees or poles are classified from 

cluttered urban 3D scenes. Recently, Yang et al. (2017) proposed a semantic labelling framework of 3D point 

clouds based on appending several features on different scales of previously segmented objects. Combining 

point-based features such as Fast Point Feature Histogram (FPFH), segment-based features (principal 

directions, sizes and dimensionality of each segmented object), object-based features (viewpoint feature 

histogram) and contextual features, a classification model was developed to distinguish objects such as traffic 

signs, guardrails or power lines among others. Research is also focused on the classification of road network 

assets, such as vertical signage (Riveiro et al., 2015; Wen et al., 2015) and road markings (Cheng et al., 2017; 

Guan et al., 2014), with promising results for both elements. Yu et al. (2016) are able to detect and classify 

traffic signage with state of the art accuracies using bag-of-visual-phrases representations for the detection 

task and a deep Boltzmann machine feature encoder for the classification task, where features are directly 

extracted from 2D images where the detected 3D traffic signs have been previously projected. Similarly, (Yu 

et al., 2015a) propose a method for the extraction and classification of road markings consisting of a 

segmentation process which relies on an intensity-based multisegment thresholding, and a classification based 

on heuristic decisions for large-size markings and a deep learning model that takes binary representations of 

the road markings as feature.  

Regarding visibility analysis, there exist research that study the effects of different hazards that may 

deteriorate the visibility conditions (Abdel-Aty et al., 2011; Mueller and Trick, 2012), but there is little 

research analyzing visibility parameters from dense 3D point clouds. A relevant work is the one presented by 

Alsadik et al. (2014)  where they address three different problems related with visibility: Camera network 

design, guidance with synthetic images and gap detection in a point cloud; based on surface triangulation and 

voxel-based approaches. 

In this work, a methodology that assists the safety assessment on pedestrian crossing environments taking 

advantage of mobile mapping technology is proposed. The motivation for this work is to close the gap that 

exists between the manual safety assessment analyses that are carried out to this day and the capabilities of 

mobile mapping technology to offer an accurate description of road environments in an automated way. The 

contributions of this work are therefore (1) The definition of a workflow that extracts geometric and semantic 

information from a 3D point cloud which can be utilized to define the safety of a pedestrian crossing 

environment; and (2) The organized visualization, as a safety map, of all the data on a Geographic 

Information System (GIS).  



  

2. Methodology 

The proposed methodology is organized in four modules, each of them aiming to collect geometric and 

semantic information on the environment of a pedestrian crossing: (1) Accessibility analysis, (2) Traffic lights 

classification, (3) Traffic signs classification, and (4) Visibility analysis. Data defining pedestrian crossings 

are considered as an input for this work as obtained from (Soilán et al., 2017). The methodology workflow is 

shown in Figure 1. 

 

Figure 1. Methodology workflow. 

2.1. Point cloud preprocessing 

Let {ࡼ, ,࢚ 𝓜} be the inputs for this work, where ࡼ = ,࢞} ,࢟ ,ࢠ 𝑰, ,ݔis a point cloud containing the ሺ {࢙࢚ ,ݕ  ሻݖ

coordinates together with intensity and time stamp for each 3D point, ࢚  = ,࢚࢞} ,࢚࢟ ,࢚ࢠ ࢚࢙࢚ } represents the 

trajectory of the vehicle as collected by its navigation system, and 𝓜 = ,ଵܯ} … , 𝑖ܯ , … , ,{௡ܯ 𝑖 = ͳ … 𝑖ܯ | ݊  ,.applying (Soilán et al ࡼ contains the set of pedestrian crossing objects that have been detected within  ࡼ⊃

2017) methodology, which consists of a number of processing steps that, given a point cloud ࡼ, selects 3D 

points belonging to road markings by taking advantage of the reflective properties of the paint material, and 

subsequently classifies them (distinguishing several types of arrows and pedestrian crossings), finally 

allowing to extract each pedestrian crossing as a subset of ࡼ. 

First, the input point cloud ࡼ is preprocessed. This work intends to study the environment of the pedestrian 

crossings in the point cloud, therefore a large proportion of the 3D points will not provide relevant 

information and can be removed from further processing steps. For that purpose, a transformation matrix  is ࢀ 

obtained for each pedestrian crossing in 𝓜 such that ࢀ = ଷ௫ଷࡾ  ଷ௫ଵ𝟎ଵ௫ଷ࢚ ͳ  
(1) 

 



 

where ࡾଷ௫ଷ  represents a rotation around z-axis of an angle 𝛼௭  formed between the y-axis and the 

longitudinal direction of the road marking, and  ࢚ଷ௫ଵ  represents a translation equal to the centroid of the 

pedestrian crossing coordinates.  

Using the matrix ࢀ, the input 3D data get centered on a pedestrian crossing, and orientated towards its 

principal direction (Equation 2). ࢎࢀࡼ = ࢀ ·  (2) ࢎࡼ

 

where ࢎࢀࡼ contains the homogeneous coordinates of the transformed point cloud and ࢎࡼ the original 

homogeneous coordinates. Let ࢀࡼ be the transformed point cloud removing the homogeneous notation. 

The second preprocessing step consists of the definition of the pedestrian crossing environment. Using the 

transformed point cloud ࢀࡼ, it is straightforward to select those points that define the surroundings of the 

crossing area. Indices ࢏௦ of points whose y coordinate is between ሺ݈ ʹ⁄ − ͷሻ݉ and ሺ݈ ʹ⁄ + ͷሻ݉, where l is the 

length of the pedestrian crossing along y axis, are selected. Let 𝒮ሺࡼ,  ሻ be a function that selects a subset of࢏

points with indices ࢏ within a point cloud ࡼ. The environment of the pedestrian crossing is defined as ࡼ௦ =  𝒮ሺࢀࡼ,   ሻ࢙࢏
Finally, ground and non-ground points are segmented on point cloud ࡼ௦. For this purpose, a voxel-based 

segmentation inspired on (Douillard et al., 2011) algorithm for dense data is applied. The point cloud is 

voxelized, that is, a cubic cell grid is defined. Then, for every voxel, vertical mean and variance are computed 

and subsequently a region growing algorithm groups neighboring voxels whose mean and variance 

differences are less than two respective thresholds, ݀𝜇 and ݀𝜎 . In order to speed up this process, voxels that 

contain points from the pedestrian crossing are selected as seeds for the region growing algorithm, and the 

ground segment is defined with the grouped voxels once the growing process finishes. The algorithm returns 

the indices of the points in ࢀࡼ and ࡼ (both point clouds share the same indices) that belong to the ground and 

non-ground segments, ࢏௚, ௚ࡼ ௡௚, defining ground and non-ground point clouds as࢏ = 𝒮ሺࡼ௦ , ௡௚ࡼ ௚ሻ and࢏ =𝒮ሺࡼ௦,  .௡௚ሻ respectively࢏

2.2. Accessibility analysis 

The Spanish Ministry of Public Works and Transport has defined the maximum transversal and 

longitudinal slope on accessible pedestrian routes as 2% and 8% respectively. Furthermore, the maximum 

slope on accessible ramps has been set as 12% (Ministerio de Fomento, 2010). These specifications ensure an 

accessible and safe route for disabled people, and therefore they are essential for the quality of the crossing 

environment. In this section, accessibility at the entrances of a pedestrian crossing is studied. First, it is 

necessary to detect non-accessible areas on the ground segment. Normally, urban areas intended for 

circulation of vehicles and pedestrians are separated by curbs, small steps forming an edge between the road 

and the sidewalk. An accessible pedestrian route cannot include curbs, therefore the presence or absence of 

this obstacle has to be detected in the crossing area.  

Given the geometric information in the 3D point cloud  ࡼ௦, curbs are detected following a modification of 

(Wang et al., 2015) road boundary detection algorithm, consisting on a saliency analysis which separates the 

input point cloud in two segments, one of them containing points that belong to horizontal surfaces, and other 

with the remaining points (including façades, walls or curbs). Salient points are grouped via Euclidean 

clustering (Yu et al., 2015b) and filtered based on their elevation, horizontal length and distance to the 

trajectory (Wang et al., 2015), obtaining a set of point indices ࢏௖ that represent potential curbs. Finally, false 

detections are avoided intersecting indices ࢏௖ and ࢏௚, such that a curb map ࡼ௖௨௥௕௦ = 𝒮ሺ࢙ࡼ, ሺ࢏௖⋂࢏௚ሻሻ is defined 

(Figure 2a).  

Then, ࡼ௚ is divided in a number of slices along x-axis (perpendicular to the trajectory direction) and a 

region growing process is performed on each slice following: 



  

1) Slice generation: ࡿ𝑖 = ሺݔ𝑖 , 𝑖ݕ , 𝑖ሻݖ ⊂ 𝑖ݕ | ௚ࡼ  >  ݉𝑖݊௬ + ሺ𝑖 − ͳሻ · ௦௟𝑖௖௘ݏ , 𝑖ݕ ൑ ݉𝑖݊௬ + 𝑖 · ௦௟𝑖௖௘ݏ , where ݉𝑖݊௬ is the minimum value of the y coordinate in ࡼ௚ and ݏ௦௟𝑖௖௘  is the width of each slice, which was set to 

20cm.  

2) Two different seed points are selected: ݏ௟௘௙௧𝑖 = ሺݔ, ,ݕ ሻݖ ⊂ 𝑖ࡿ  ݔ |  = minሺ࢞ ∈ 𝑖ܵ  | ݔ > Ͳሻ, and ݏ௥𝑖௚ℎ௧𝑖 =ሺݔ, ,ݕ ሻݖ ⊂ 𝑖ࡿ  ݔ |  = maxሺ࢞ ∈ 𝑖ܵ  | ݔ < Ͳሻ.  

3) For each seed, points of the slice are grouped independently on right and left side of the pedestrian 

crossing area. The region growing stops whenever a point of the curb map ࡼ௖௨௥௕௦ is found.  

After this process, accessible road entrances are determined by comparing the length of neighboring slides, 

as depicted in Figure 2b.  

Finally, the coordinates of the detected road entrances and the pedestrian crossing are matched. If the 

intersection between y coordinates of both elements leads to an interval of 2 meters or more (Figure 2c), the 

pedestrian crossing is classified as accessible (note that the accessibility is studied separately on the right and 

on the left); otherwise, it is classified as non-accessible crossing. According to (Ministerio de Fomento, 2010), 

the width of the road entrance should be between 1.2 and 1.8 meters depending on the regional normative, 

therefore the accessibility output complies with national standards. 

Other relevant parameters that can be extracted from this analysis are the longitudinal and transversal 

slopes of the pedestrian crossing area. Given the 3D point cloud data of a pedestrian crossing marking ܯ𝑖, the 

slopes can be obtained as ݁݌݋݈ݏ ݈ܽݏݎ݁ݒݏ݊ܽݎݐ ሺ%ሻ = ௠௔௫ሻݔሺݖሺݏܾܽ − ௠௔௫ݔ௠𝑖௡ሻሻݔሺݖ − ௠𝑖௡ݔ · ͳͲͲ 
(3) 

ሺ%ሻ ݁݌݋݈ݏ 𝑖݈݊ܽ݀ݑݐ𝑔𝑖݊݋݈  = ௠௔௫ሻݕሺݖ)ݏܾܽ − ௠௔௫ݕ(௠𝑖௡ሻݕሺݖ − ௠𝑖௡ݕ · ͳͲͲ 
(4) 

 

 

    where ݔ௠௔௫ ௠𝑖௡ݔ ,  are the x coordinates of two points of the road marking which form a line that 

approximates the trajectory of a pedestrian who is crossing the road,  ݖሺݔ௠௔௫ሻ,  ୫୧୬ሻ are the heights ofݔሺݖ

these points, and analogously, ݕ௠௔௫ , ௠𝑖௡ݕ  are the y coordinates of two points forming a line which is 

perpendicular to the aforementioned trajectory (Figure 2a).  

This processing module outputs the following information for each pedestrian crossing in 𝓜: 

1) Access_left (Boolean): Indicates whether the pedestrian crossing area on the left side of the trajectory 

direction is part of an accessible pedestrian route.  

     2) Access_right (Boolean): Indicates whether the pedestrian crossing area on the right side of the trajectory 

direction is part of an accessible pedestrian route.  

3) Longitudinal_slope: Numerical value of the longitudinal slope as obtained in Equation 3. National 

standards define the maximum longitudinal slope as 8%.  

4) Transversal_slope: Numerical value of the transversal slope as obtained in Equation 4. National 

standards define the maximum transversal slope as 2%.  



 

 

Figure 2. Accessibility analysis. (a) The curb map ࡼ௖௨௥௕௦ is highlighted in red, defining non-accessible areas. Green and orange lines are 

used to define longitudinal and transversal slopes respectively. (b) The point cloud is divided in slices on the right and the left sides of the 

pedestrian crossing. Each slice grows until a point from the curb map is found. By comparing the length of neighbouring slices, it is 

possible to define road entrances. (c) The accessibility is evaluated by checking the overlap between the road marking and the road 

entrance (dotted areas). 

2.3. Presence of traffic lights 

This processing module defines whether or not a pedestrian crossing area is controlled by traffic lights. 

Geometrically, traffic lights can be defined as pole-like objects with standard measures that are typically 

located close to the edge of the road. Aiming for detecting these objects, point cloud  ࡼ௡௚ is analyzed for each 

pedestrian crossing in 𝓜. It contains all the non-ground 3D points on the pedestrian crossing surroundings. 

First, a Euclidean clustering process groups 3D points together, obtaining a set of clusters  𝓒 = {𝐶ଵ, … , 𝐶𝑖, … , 𝐶௡} | 𝐶𝑖  ⊂  ௡௚. Subsequently, a segmentation process filters out those clusters that do notࡼ 

contain a pole-like object. Finally, a supervised classification approach distinguishes traffic lights from other 

pole-like objects as trees or street lights.  

2.3.1. Pole-like object segmentation 

For each cluster 𝐶𝑖, the point with minimum elevation min୦ is obtained. Then, a distance ݀௧ = Ͳ.ʹ݉ is 

defined and a group of horizontal profiles is defined such that profile number ݇  contains points with z 

coordinates within min୦ + ݀௧ሺ݇ − ͳሻ and min୦ + ݀௧ · ݇. Then, the 3D points of each horizontal profile are 

projected on a horizontal plane ܼ = min୦ + ݀௧ሺ݇ − ͳሻ  and a circle is fitted from the resulting coordinates. 

For each circle, its radius ݎ௞ , center ࡻ௞, and mean-squared error with respect to the points of the profile, ܧܵܯ௞ are computed, and the following parameters are retrieved for each cluster 𝐶𝑖 (Figure 3a): 

1) Maximum radius maxሺݎ௞ሻ | ݇ = ͳ … ݊. 



  

2) Angle 𝛼  between the principal direction of the 3D points that correspond with the circle centers  ࡻ௞  | ݇ = ͳ … ݊  (which is obtained applying a Principal Component Analysis (PCA) and selecting the 

eigenvector corresponding to the largest eigenvalue) and the vertical [0 0 1].  

3) Average value of mean-squared errors  ̅̅ܧܵܯ ̅̅ ̅̅ =  ∑ 𝑀𝑆𝐸𝑘௡௡௞=ଵ . 

4) Height of the cluster, ℎ𝑖. 
The cluster 𝐶𝑖 will be considered a pole-like object if: 

{    𝛼 < ͳͲº  max ሺݎ௞ሻ < ̅̅ܧܵܯ݉ʹ ̅̅ ̅̅ < Ͳ.ͲͲͳℎ𝑖 < ͳͲ݉  

where radius and height thresholds have been set according to the standard sizes of traffic lights, while 

angle and mean-squared error thresholds have been set empirically in order to avoid as many false positives as 

possible while avoiding false negatives.  

Clusters that do not satisfy these conditions are filtered out, and only pole-like clusters 𝓒௣ = {𝐶௣ଵ … 𝐶௣𝑖 … 𝐶௣௡}| 𝓒௣ ⊂ 𝒞 are fed into the classification step (Figure 3b).  

 

2.3.2. Traffic light classification 

Traffic lights are found via supervised classification. Specifically, two different models have been 

computed for classifying the main types of traffic light in Europe: Column traffic lights (Type 1) and mast 

arm traffic lights (Type 2). First, for each pole-like cluster, PCA is applied and the points on the cluster are 

transformed to the coordinate system of the three principal directions. Then, transformed points are projected 

into a 2D raster grid with a variable grid size such that the number of columns is fixed to 128 for every point 

cluster. Subsequently a binary image is computed from the raster grid, setting to true pixels corresponding to 

cells that contain at least one point (Figure 3c).  

Binary images 𝓘 = {𝑰ଵ, … , 𝑰𝑖 , … , 𝑰௡} are divided in two sets according to the image aspect ratio (number of 

columns / number of rows). Studying the standard dimensions of traffic lights, it was considered that images 

with an aspect ratio larger than 3 would contain all Type 1 traffic lights, while the remaining images contain 

all Type 2 traffic lights. Image sets can be defined as 𝓘𝒃 = 𝑰࢏ ∈ 𝓘 | ܽݐܽݎ ݐܿ݁݌ݏ𝑖݋ሺ𝑰𝑖ሻ ൒ ͵ , 𝓘࢙ = 𝑰࢏ ∈𝓘 | ܽݐܽݎ ݐܿ݁݌ݏ𝑖݋ሺ𝑰𝑖ሻ < ͵. 

Images from sets 𝓘࢙ and 𝓘𝒃 are resized to [Ͷʹ ͳʹͺ] and [ͻ͸ ͳʹͺ] sizes respectively. If the original image is 

bigger than the resized version, it is resized using bicubic interpolation. Otherwise, it is padded with zeros. 

With this step, it is possible to extract image-based features of fixed size for the classification stage.  

For the classification of Type 1 traffic lights, a pixel distribution feature is defined. For each resized image 

from 𝓘𝒃, the proportions of ‘1’ pixels on each row and each column are computed and subsequently appended, 

obtaining a feature of 170 elements. The model used for the classification of the features is a Cubic SVM.  

Regarding Type 2 traffic lights, the binary image is directly transformed into a feature, appending all its 

pixel values to a single vector. The binary feature has 12,288 elements and it is classified using a two layer 

feed forward neural network with sigmoid hidden and softmax output neurons.  

Model training details for both classification models can be found in Section 3. This processing module 

outputs a subset of 𝓒௣ which contains only those 3D point clusters classified as traffic lights of Type 1 or 2. 

(Figure 3d). 



 

 

Figure 3. Presence of traffic lights. (a) Pole-like objects segmentation. Circles are fit to a group of horizontal profiles. The quality of the 

circle adjustment, the position of the centers and the radius of the circles are used for defining the object as a pole. (b) Pole-like objects 

are segmented from the point cloud ࡼ௡௚. (c) Each pole-like object is projected to a 2D plane and binary images are created, where 

features for classification are extracted. (d) Two types of traffic lights are classified. 

2.4. Presence of traffic signs 

Vertical signage is an essential element of the infrastructure. It regulates traffic and warns drivers of 

potential road hazards. In the context of a pedestrian crossing environment, traffic signs may inform a driver 

of the presence of traffic lights or an area with pedestrian priority, diminishing the probability of run overs. 

Previous work (Soilán et al., 2016) posed a vertical traffic sign detection and classification algorithm, based 

on the radiometric properties of the traffic sign panels (González-Jorge et al., 2013) which are related with the 

intensity property of the 3D point cloud. Traffic sign panels are detected by selecting clusters of points with 

large intensity values, and filtering out clusters whose size and dimensionality do not correspond with 

standard sizes for traffic signs.  

Then, in order to give a semantic description of the detected traffic signs, their symbols have to be 

interpreted. However, the resolution of the 3D point cloud is not enough to recognize it, therefore RGB 

imagery provided by the MMS has to be used. Given the calibration parameters of the MMS cameras (Puente 

et al., 2013b), a cluster of 3D points can be projected onto images where it can be seen. Traffic sign 

recognition is carried out using the Deep Neural Network model from (Arcos-García et al., 2017), which 

comprises convolutional and spatial transformer layers, and show state-of-the-art performance. 



  

This processing module outputs a set of traffic sign objects containing geometrical parameters (position, 

azimuth of the traffic sign panel or distance to the trajectory, among others) and semantic information (traffic 

sign class).   

2.5. Visibility analysis 

It is important to ensure the visibility between drivers and pedestrians in pedestrian crossing environments. 

In order to avoid run overs, pedestrians are encouraged to cross the road only in places with good visibility, 

and administrations are advised to remove any obstacles (street furniture, parking spaces, vegetation) that 

prevent a good visibility (RACE; Goodyear, 2015).  

According to the Spanish department responsible for the transport network (Directorate General of Traffic 

(DGT)), any object is considered to be in the visible area of a driver when being the vehicle located at the 

minimum distance needed for it to stop in safe conditions (stopping distance), the object is within the vision 

field of the driver and there is not any obstacle occluding the visual contact. With the available 3D point cloud 

data, it is possible to check if a pedestrian would be visible for a driver on a certain location.  

First, the stopping distance (ܵௗሻ has to be computed. It is defined as:  

    ܵௗ = 𝑉͵.͸ · ௣௥ݐ + 𝑉ଶʹͷͶሺ𝜇௥ ± 𝑖ሻ 
(5) 

 

where 𝑉 is the the vehicle speed, measured in km/h, ݐ௣௥ is the reaction time, 𝜇௥ is the friction coefficient 

(whose values are tabulated, depending on the speed) between wheels and pavement, and 𝑖 is the slope of the 

road.  

Aiming for a conservative study of the visibility, the values selected for both 𝑉  and ݐ௣௥  are 50km/h 

(maximum allowed speed in urban areas) and 2 seconds respectively. Under these assumptions, the stopping 

distance of a vehicle is approximately 35 meters for a flat surface. 

Let ܯ𝑖 ∈ 𝓜 be a pedestrian crossing object and  ࡼ௡௚  be its corresponding non-ground point cloud. In 

order to check the pedestrian-vehicle visibility, a 3D point cloud pedestrian template is merged with  ࡼ௡௚ at 

both sides of the pedestrian crossing. Note that the coordinates had been transformed such that x-axis and y-

axis represent the transversal and longitudinal directions of the pedestrian crossing (Section 2.1). Therefore, 

the integration of the template within ࡼ௡௚ is straightforward: Being ሺݔ௧௣, ௧௣ݕ ,  ௧௣ሻ the point with minimumݖ

elevation of the template, a translation vector is defined such that ࢚௧௣ = ሺݔ௧௣ − ሺܽ − ͳሻ, ௧௣ݕ − ܾ, ௧௣ݖ − ܿሻ 

where ܽ is the minimum x coordinate, ܾ is the average y coordinate and ܿ is the minimum z coordinate of the 

pedestrian crossing 3D points. This translation locates the template on the left side of the pedestrian crossing. 

A rotation of 180 degrees about the origin locates the template on the right side, allowing the visibility 

analysis on both sides of the crossing area (Figure 4a).  

The visibility analysis relies on González-Jorge et al. (2016) vision model, based on a ray-tracing 

algorithm which creates a Line of Sight (LoS) from the driver point of view to a target point, and checks for 

occlusions that may be caused by obstacles such as cars, walls or trees. Occlusions are detected as points 

within a 3D cylinder of diameter 0.5m created along the LoS. 

For the visibility between the driver and a pedestrian who is nearby a pedestrian crossing, a set of driver 

points of view (PoV) is created, using the trajectory points between the stopping distance and the pedestrian 

crossing and defining the eyes of the driver 1.2 meters above the ground.  

A visibility definition is given for each PoV such that it is labelled as 1) Point with good visibility, 2) Point 

with bad visibility, or 3) Point with no visibility. The labelling procedure is as follows: First, a LoS is created 

between the PoV ሺݔ௢, ௢ݕ , ௢ሻݖ  and each point ሺݔ௣, ,௣ݕ ௣ሻݖ  of the pedestrian template, obtaining a set of 

parametric equations 



 

ݔ     = ௢ݔ + ݐ · ሺݔ௣ − ݕ  ௢ሻݔ = ௢ݕ + ݐ · ሺݕ௣ −  ௢ሻ (6)ݕ

ݖ  = ௢ݖ + ݐ · ሺݖ௣ −   ௢ሻݖ

 

The angle 𝛼௩ between the LoS segment, whose director vector is ‖ሺݔ௣ − ,(௢ݔ ሺݕ௣ − ,௢ሻݕ ሺݖ௣ −  ௢ሻ‖ and theݖ

direction of the trajectory is computed in order to check whether or not the pedestrian is on the horizontal 

field of view (FoV) of the driver. This range depends on the vehicle speed, narrowing as the vehicle moves 

faster (tunnel vision). Considering a driver with an average eyesight, the horizontal field of view when driving 

at 50km/h is slightly less than 90 degrees (FoV = 45º on each side). If 𝛼௩ >  𝑉 for any LoS, the point of݋ܨ 

view is labelled as a point with no visibility.  

If the pedestrian is located within the horizontal field of view of the driver, the existence of occlusions is 

examined. They are found as a number of 3D points within a volume around a LoS. For each line, a number 

of points equally spaced and belonging to the line are selected by varying the parameter ݐ from Equation 6 

(Figure 4b). Each point will be the center of a sphere of diameter ݀௦௣ℎ = Ͳ.ʹͷ݉. An occlusion is found 

whenever a number ݊௣ of points of  ࡼ௡௚ lies within one of the spheres for the selected LoS. For the results 

seen in Section 4, ݐ was given values from 0.01 to 1 in steps of 0.01, generating 100 points per line; while ݊௣, 

considering the typical point cloud density for the study case dataset (Section 3) has been set to 50 points, 

therefore selecting as occlusion points spherical volumes whose densities are larger than 
݊௣ 𝑉௦௣ℎ⁄ =͹͸ͷ ݏݐ݌ ݉ଷ⁄ . Having in account the point cloud density and the distance from the laser scanner to the possible 

occlusions, these parameters ensure that occlusion points do not belong to scattered or noisy points. 

Finally, each PoV is labelled according to the following criteria, based on the proportion of visible points 

of the pedestrian from the perspective of the driver: 

1) Point of view with good visibility: More than 75% of the pedestrian points are visible. Small objects such 

as bins, benches or other urban furniture may slightly affect the visibility of small parts of the crossing area 

without affecting the visual contact between driver and pedestrian. 

2) Point with bad visibility: Between 25 and 75% of the pedestrian points are visible. Parked cars, trees or 

trash cans may impede the visibility of the pedestrian, increasing the hazard level on the pedestrian crossing.  

3) Point with no visibility: Less than a 25% of the pedestrian points are visible. The visibility is critical for 

these points.  

Furthermore, the same process can be applied in order to analyze the visibility of the detected traffic lights. 

If one or more traffic lights are detected applying the method on Section 2.3, the visibility of the point cluster 

that defines the traffic light from the stopping distance is checked. The same labelling approach assigns a 

visibility label to each traffic light.  

This processing module outputs the set of points of view used for analyzing the visibility together with the 

visibility label for each point of view, for driver-pedestrian visibility and driver-traffic lights visibility.  



  

 

Figure 4. Visibility analysis. (a) A pedestrian template is located at both sides of the pedestrian crossing in order to check the visbility 

from the perspective of a driver. (b) A set of lines of sight is defined between each point of view and each point of the pedestrian 

template. For each line, obstacles may be detected as points inside spheres centered on different points within each line of sight. 

2.6. Data exportation and visualization 

All the data obtained in Sections 2.2 to 2.5 is gathered in order to be visualized, or further processed, in a 

GIS software: 

 Accesibility: The accessibility on both sides of the pedestrian crossing is defined in Section 2.2 as 

a Boolean variable, set to true if the crossing area is accessible. In order to clarify which variable 

corresponds to the left side and the right side of the pedestrian crossing within a GIS layer (notice 

that left and right are conceptually defined given the trajectory direction), a point from each side 

of the pedestrian crossing is associated to the corresponding accessibility variable. Furthermore, 

slopes are integrated as a property of the pedestrian crossing object.  

 Traffic Lights: Those traffic lights that are classified as Type 1 are exported as the 2D centroid of 

the ሺݔ, ሻݕ  coordinates of the object. Differently, Type 2 traffic lights are exported as a 2D 

bounding box resulting from the projection of their points on the XY plane. A visibility label is 

also related to each traffic light. 

 Traffic Signs: Each traffic sign is represented in a GIS layer as a 2D point with several properties 

such as the class of the sign. Furthermore, a 2D image of the traffic sign can be attached to each 

point in the layer whenever imagery is available on the MMS data.   

 Visibility: It is represented as a group of 2D points corresponding with the projections on the XY 

plane of the analyzed points of view, each of them associated to a visibility label indicating the 

visibility degree from the vehicle stopping distance to the pedestrian crossing.  

The visualization of these data is exemplified in Figure 5. A total of six GIS layers can be visualized 

superimposed over a georreferenced ortophoto. The road marking is visualized as a rectangular bounding box 

with the slopes as properties (Figure 5a). The accessibility (Figure 5b), traffic lights, traffic signs (Figure 5c) 

and visibility (Figure 5d) are shown as 2D points with several attributes attached to them.  

Finally, a safety rating can be computed for each pedestrian crossing using all the gathered data. There are 

different possible approaches in order to quantify the safety of an urban area. Basile et al. (2010) weight a 

large number of parameters, some of which are based on the geometry (pedestrian crossing width, 

accessibility, presence of obstacles, presence of traffic lights, etc.) but also non-geometrical parameters 

(efficiency and duration of red-green traffic light phases, audible signals, etc.). Similarly, (RACE, 2009) took 

part in a pedestrian crossing safety analysis across 22 European countries, establishing four thematic blocks 

that have an impact on the quality of a pedestrian crossing: Crossing system, day-time visibility, night-time 



 

visibility, and accessibility. Weighting all these parameters is under a subjective criteria up to the road 

authorities.  

 

Figure 5. Visualization of the output data. (a) The pedestrian crossing is defined with a bounding box and the transversal and longitudinal 

slope. (b) The accessibility is defined with two points, one on each side of the crossing area, each of them having a binary variable 

attached indicating whether the crossing area is part of an accessible route or not. (c) Traffic lights and traffic signs are defined with their 

2D coordinates, a visibility label, and a class obtained during the classification process. Traffic signs may have an image attached if the 

MMS collects 2D imagery. (d) The driver-pedestrian visibility is defined as a group of 2D points from the stopping distance with a 

visibility label attached to them.  

3. Case study 

The LYNX Mobile Mapper by Optech (Figure 6a) was used for the collection of the data. It has two 

LiDAR sensor heads with a field of view of 360º, which collects up to 500,000 measurements per second. The 

sensor heads were placed with an angle of 45º with respect to the trajectory and 90º between their rotational 

axes. The navigation system comprises an Inertial Measurement Unit (IMU) and a two-antenna heading 

measurement system (GAMS). More technical specifications can be found in (Puente et al., 2013b).  

The methodology in Section 2 was tested in two different scenarios in the northwest of Spain. The first 

one, located in the city of Lugo, is a cluttered one-way avenue surrounding the city center (Figure 6b). The 

second scenario is a two-way street in a school zone in the city of Vigo (Figure 6c). Furthermore, the 

classification models used in Section 2.3 were trained with 3D data from two large avenues in Vigo. The point 

clouds were segmented in order to find pole-like structures following Section 2.3.1 method. A label was 

manually assigned to each pole-like object, defining five classes: Traffic light (Type 1), traffic light (Type 2), 



  

street lamp, tree, and other pole-like objects. Table 1 summarizes the case study relevant data. A total of 27 

pedestrian crossing areas have been studied and the classification data contains almost 800 objects among the 

five classes.  

Table 1. Case study data. 

Area Usage Points Relevant info 

Lugo (City center) Methodology testing 97 762 746 15 pedestrian crossings 

Vigo (School zone) Methodology testing 52 779 090 12 pedestrian crossings 

Vigo (Avenues) Classifier training 438 747 846 772 pole-like objects 

 

 

Figure 6. Case study. (a) Mobile Mapping System used on the survey. (b) Lugo (city center) trajectory data. (c) Vigo (School zone) 

trajectory data.  

 

4. Results and Discussion 

In this section, the results obtained for the safety assessment of pedestrian crossing environments using 

MLS data are detailed. These results are compared with manually gathered references, and causes of error 

together with possible disadvantages of the methodology are discussed. Note that results are offered for every 

processing module within the methodology presented in Section 2 with the exception of traffic sign 

classification, as the implemented algorithm relies on previous work whose results have already been 

discussed in Soilán et al. (2016).  



 

4.1. Accessibility evaluation 

The accessibility analysis module outputs qualitative information indicating whether the pedestrian 

crossing area is part of an accessible pedestrian route. It is given by two binary variables, one for the 

accessibility of each side of the crossing.  A confusion matrix showing the results for the case study presented 

in Section 3 is presented in Table 2. A total of 54 road entrances were analyzed following the method on 

Section 2.2 (two entrances for each pedestrian crossing). It can be seen that the entirety of the pedestrian 

crossings in the case study are accessible. However, there are some cases where the method outputs the 

opposite. An error analysis shows that the presence of vehicles may lead to the detection of obstacles that are 

misclassified as curbs, and also to occlusions of the crossing area. That is the case for the pedestrian crossing 

on Figure 7a. A vehicle, illegally parked on the pedestrian crossing area, causes the algorithm to indicate that 

the road entrance is not accessible, although there exists a ramp to access the sidewalk.   

Table 2. Confusion matrix: Accessibility analysis. 

Output/Target Not Accessible Accessible 

Not Accessible 0 3 

Accessible 0 47 

 

4.2. Traffic light classification 

Traffic lights are classified according to the method on Section 2.3. The metrics used for quantifying the 

results are Precision, recall, and F-score: 𝑃ܿ݁ݎ𝑖ݏ𝑖݊݋ = ܶ𝑃ܶ𝑃 +  𝑃ܨ
(7) 

  ܴ݈݈݁ܿܽ = ܶ𝑃ܶ𝑃 +  (8  ܰܨ

 

௦௖௢௥௘ܨ = ʹ · 𝑃ܿ݁ݎ𝑖ݏ𝑖݊݋ · ܴ݈݈݁ܿܽ𝑃ܿ݁ݎ𝑖ݏ𝑖݊݋ + ܴ݈݈݁ܿܽ 
(9) 

 

  

 

where TP, FP and FN are, respectively, the number of true positives, false positives and false negatives. 

Results are shown in Table 3. The classification rates seem promisingly good having in account the simplicity 

of the features utilized for the classification. Specifically, the classification model for Type 2 traffic lights has 

been easily trained with a 100% of accuracy, generalizing for the case study data. It is relevant to notice that 

this classification process includes 5 classes: Traffic Light (Types 1 and 2), street lamp, tree and others. 

Among the ‘others’ class, vertical signage have been found to be frequently misclassified as Type 1 street 

lights. Furthermore, some traffic signs are held on traffic lights, increasing the chance of a false negative. In 

order to solve this problem, traffic sign panels detected from Section 2.4 algorithm are removed from the 

pole-like object clusters before the classification process. 

  



  

Table 3. Traffic light classification results. 

 Precision Recall F-score Number of objects 

Traffic Light: Type 1 90.0% 96.4% 93.1% 28 

Traffic Light: Type 2 100% 100% 100% 8 

Traffic Light: Types 1-2 92.1% 97.2% 94.6%  

 

4.3. Visibility analysis 

Driver-pedestrian visibility analysis is described in Section 2.5. Different points of view, from the stopping 

distance of the vehicle to the proximity of the pedestrian crossing, are labelled according to the visibility 

obtained by tracing a line of sight from the driver position to a pedestrian on the sidewalk. The visibility for 

all 27 pedestrian crossings (therefore, 54 road entrances) of the case study was obtained and qualitative results 

show that the majority of the points are labeled indicating good visibility (52 out of 54 analysis). Two of the 

pedestrian crossing entrances show bad visibility, due to the presence of obstacles close to the pedestrian 

location, therefore occluding the visibility from the driver point of view (Figure 7b). Although this analysis is 

useful in order to locate static, big objects that may occlude the position of a pedestrian, there are several 

factors that cannot be addressed with the point cloud data. The presence of vehicles double-parked or illegally 

parked on the pedestrian crossing at the moment of the survey may jeopardize the outputs. Furthermore, the 

lightning conditions do not have impact on the geometric information gathered by the MMS, hence night-time 

visibility. 

 

Figure 7. Results and error analysis. (a) Occlusions caused by vehicles may lead to a wrong accessibility indicator. (b) Example of a 

pedestrian crossing with bad visibility; orange points represents points of view labelled as bad visibility, due to the presence of an 

obstacle.  

5. Conclusions and future work 

This work presents an automatic methodology for the assessment of several safety indicators in an urban 

pedestrian crossing environment, using 3D point cloud data collected with a Mobile Mapping System. The 

methodology consists in four processing modules, analyzing: Accessibility, presence of traffic lights, presence 

of traffic signs, and visibility. Each module outputs several parameters that can be exported to a Geographic 

Information System in order to be visualized. Weighting these parameters according to the criteria of the 

traffic authorities will allow defining a safety index for each pedestrian crossing, highlighting those areas that 

need maintenance or any improvement on the geometrical conditions of the crossing area. Conceptually, this 



 

work intends to offer an approach towards the automation of infrastructure assessment processes that are 

conducted manually and subjected to the subjective criteria of the operator. Furthermore, the traffic light 

classification algorithm presents state-of-the-art results with a global classification score of almost 95%, while 

using simple, fast to compute features. In essence, a rich semantic description of a specific area within a 3D 

point cloud is given, with a set of parameters that allow a safety-related definition. This work does not intend 

to propose a specific safety index, as the criteria for its definition should be agreed with road authorities, but 

contributes with (1) a framework to extract information from mobile mapping data that allows the eventual 

definition of a safety index, and (2) proof that mobile mapping is a valid mean for the analysis of certain 

safety parameters in urban environments. 

Future work may have different aspects. On the remote sensing area, there is room for improvement on 

every processing module that has been developed. The accessibility information should be considered not 

only for the crossing area but also for the sidewalk. The visibility model can be improved, representing the 

vision of a driver with more accuracy. Finally, a weighting scheme for the extracted indicators may be needed 

in order to translate them to a meaningful safety index for a road crossing area.     

Acknowledgements 

This work has been partially supported by the Spanish Ministry of Economy and Competitiveness through 

the project HERMES:S3D – Healthy and Efficient Routes in Massive Open-data based Smart Cities (Ref.: 

TIN201346801-C4-4-R), Xunta de Galicia (Grant No. ED431C 2016-038) and Human Resources program 

FPI (Grant BES-2014-067736). 

References 

 

Abdel-Aty, M., Ekram, A.A., Huang, H., Choi, K., 2011. A study on crashes related to visibility obstruction due to fog and smoke. Accid. 

Anal. Prev. 43, 1730–1737. doi:10.1016/j.aap.2011.04.003 

Alsadik, B., Gerke, M., Vosselman, G., 2014. Visibility analysis of point cloud in close range photogrammetry. ISPRS Ann. 

Photogramm. Remote Sens. Spat. Inf. Sci. II-5, 9–16. doi:10.5194/isprsannals-II-5-9-2014 

Arcos-García, A., Soilán, M., Alvarez-García, J.A., Belén, R., 2017. Exploiting synergies of mobile mapping sensors and deep learning 

for traffic sign recognition systems. Expert Syst. Appl. doi:10.1016/j.eswa.2017.07.042 

AXA, 2014. Atropellos a peatones 2014. Tráfico y Segur. no189. 

Basile, O., Persia, L., Usami, D.S., 2010. A methodology to assess pedestrian crossing safety. Eur. Transp. Res. Rev. 2, 129–137. 

doi:10.1007/s12544-010-0036-z 

Cheng, M., Zhang, H., Wang, C., Li, J., 2017. Extraction and Classification of Road Markings Using Mobile Laser Scanning Point 

Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 10, 1182–1196. 

Douillard, B., Underwood, J., Kuntz, N., Vlaskine, V., Quadros,  a., Morton, P., Frenkel,  a., 2011. On the segmentation of 3D lidar point 

clouds. Proc. - IEEE Int. Conf. Robot. Autom. 2798–2805. doi:10.1109/ICRA.2011.5979818 

ERSO, 2016. Traffic Safety Basic Facts 2016 - Pedestrians. doi:10.1136/bmj.330.7487.367 

Fundación Mutua Madrileña, 2013. Estudio de siniestralidad vial y atropellos. 

González-Jorge, H., Díaz-Vilariño, L., Lorenzo, H., Arias, P., 2016. Evaluation of Driver Visibility From Mobile Lidar Data and Weather 

Conditions. ISPRS - Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XLI-B1, 577–582. doi:10.5194/isprsarchives-XLI-B1-

577-2016 

González-Jorge, H., Riveiro, B., Armesto, J., Arias, P., 2013. Evaluation of road signs using radiometric and geometric data from 

terrestrial LiDAR. Opt. Appl. 43, 421–433. doi:10.5277/oa130302 



  

Guan, H., Li, J., Yu, Y., Wang, C., Chapman, M., Yang, B., 2014. Using mobile laser scanning data for automated extraction of road 

markings. ISPRS J. Photogramm. Remote Sens. 87, 93–107. doi:10.1016/j.isprsjprs.2013.11.005 

Hamed, M.M., 2001. Analysis of pedestrians’ behavior at pedestrian crossings. Saf. Sci. 38, 63–82. doi:10.1016/S0925-7535(00)00058-8 

Jiménez-Mejías, E., Martínez-Ruiz, V., Amezcua-Prieto, C., Olmedo-Requena, R., Luna-Del-Castillo, J.D.D., Lardelli-Claret, P., 2016. 

Pedestrian- and driver-related factors associated with the risk of causing collisions involving pedestrians in Spain. Accid. Anal. 

Prev. 92, 211–218. doi:10.1016/j.aap.2016.03.021 

Kelly, C.E., Tight, M.R., Page, M.W., Hodgson, F.C., 2007. Techniques for Assessing the Walkability of the Pedestrian Environment. 8th 

Annu. Int. Conf. Walk. Liveable Communities, Walk 21 13. 

Lassarre, S., Papadimitriou, E., Yannis, G., Golias, J., 2007. Measuring accident risk exposure for pedestrians in different micro-

environments. Accid. Anal. Prev. 39, 1226–1238. doi:10.1016/j.aap.2007.03.009 

Ministerio de Fomento, 2010. Accesibilidad En Los Espacios Públicos Urbanizados. doi:751-10-026-3 

Miyazaki, R., Yamamoto, M., Hanamoto, E., Izumi, H., Harada, K., 2014. A line-based approach for precise extraction of road and curb 

region from mobile mapping data. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. II-5, 243–250. doi:10.5194/isprsannals-

II-5-243-2014 

Mueller, A.S., Trick, L.M., 2012. Driving in fog: The effects of driving experience and visibility on speed compensation and hazard 

avoidance. Accid. Anal. Prev. 48, 472–479. doi:10.1016/j.aap.2012.03.003 

Puente, I., González-Jorge, H., Martínez-Sánchez, J., Arias, P., 2013a. Review of mobile mapping and surveying technologies. Meas. J. 

Int. Meas. Confed. doi:10.1016/j.measurement.2013.03.006 

Puente, I., González-Jorge, H., Riveiro, B., Arias, P., 2013b. Accuracy verification of the Lynx Mobile Mapper system. Opt. Laser 

Technol. 45, 578–586. doi:10.1016/j.optlastec.2012.05.029 

RACE, 2009. Informe sobre los pasos de peatones europeos. 

RACE; Goodyear, 2015. Informe Race-Goodyear: Atropello de peatones en zona urbana. 

Retting, R.A., Ferguson, S.A., McCartt, A.T., 2003. A Review of Evidence-Based Traffic Engineering Measures Designed to Reduce 

Pedestrian-Motor Vehicle Crashes. Am. J. Public Health 93, 1456–1463. doi:10.2105/AJPH.93.9.1456 

Riveiro, B., Diaz-Vilarino, L., Conde-Carnero, B., Soilan, M., Arias, P., 2015. Automatic Segmentation and Shape-Based Classification 

of Retro-Reflective Traffic Signs from Mobile LiDAR Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. pp. 

doi:10.1109/JSTARS.2015.2461680 

Serna, A., Marcotegui, B., 2014. Detection, segmentation and classification of 3D urban objects using mathematical morphology and 

supervised learning. ISPRS J. Photogramm. Remote Sens. 93, 243–255. doi:10.1016/j.isprsjprs.2014.03.015 

Serna, A., Marcotegui, B., 2013. Urban accessibility diagnosis from mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 84, 

23–32. doi:10.1016/j.isprsjprs.2013.07.001 

Soilán, M., Riveiro, B., Martínez-Sánchez, J., Arias, P., 2017. Segmentation and classification of road markings using MLS data. ISPRS 

J. Photogramm. Remote Sens. 123, 94–103. doi:10.1016/j.isprsjprs.2016.11.011 

Soilán, M., Riveiro, B., Martínez-Sánchez, J., Arias, P., 2016. Traffic sign detection in MLS acquired point clouds for geometric and 

image-based semantic inventory. ISPRS J. Photogramm. Remote Sens. 114, 92–101. doi:10.1016/j.isprsjprs.2016.01.019 

US Department of Transportation, 2001. Pedestrian facilities users guide. Providing safety and mobility. 

Várhelyi, A., 1998. Drivers’ speed behaviour at a zebra crossing: A case study. Accid. Anal. Prev. 30, 731–743. doi:10.1016/S0001-

4575(98)00026-8 

Wang, H., Luo, H., Wen, C., Cheng, J., Li, P., Chen, Y., Wang, C., Li, J., 2015. Road Boundaries Detection Based on Local Normal 

Saliency From Mobile Laser Scanning Data 12, 2085–2089. 

Wen, C., Li, J., Member, S., Luo, H., Yu, Y., Cai, Z., Wang, H., Wang, C., 2015. Spatial-Related Traffic Sign Inspection for Inventory 

Purposes Using Mobile Laser Scanning Data. IEEE Trans. Intell. Transp. Syst. 17, 27–37. doi:10.1109/TITS.2015.2418214 

Yang, B., Dong, Z., Liu, Y., Liang, F., Wang, Y., 2017. Computing multiple aggregation levels and contextual features for road facilities 

recognition using mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 126, 180–194. 

doi:10.1016/j.isprsjprs.2017.02.014 

Yang, B., Dong, Z., Zhao, G., Dai, W., 2015. Hierarchical extraction of urban objects from mobile laser scanning data. ISPRS J. 



 

Photogramm. Remote Sens. 99, 45–57. doi:10.1016/j.isprsjprs.2014.10.005 

Yu, Y., Li, J., Guan, H., Jia, F., Wang, C., 2015a. Learning Hierarchical Features for Automated Extraction of Road Markings From 3-D 

Mobile LiDAR Point Clouds. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 8, 709–726. 

Yu, Y., Li, J., Guan, H., Wang, C., Yu, J., 2015b. Semiautomated Extraction of Street Light Poles From Mobile LiDAR Point-Clouds. 

IEEE Trans. Geosci. Remote Sens. 53, 1374–1386. doi:10.1109/TGRS.2014.2338915 

Yu, Y., Li, J., Wen, C., Guan, H., Luo, H., Wang, C., 2016. Bag-of-visual-phrases and hierarchical deep models for traffic sign detection 

and recognition in mobile laser scanning data. ISPRS J. Photogramm. Remote Sens. 113, 106–123. 

doi:10.1016/j.isprsjprs.2016.01.005 

Zhou, L., Vosselman, G., 2012. Mapping curbstones in airborne and mobile laser scanning data. Int. J. Appl. Earth Obs. Geoinf. 18, 293–
304. doi:10.1016/j.jag.2012.01.024 

 

 

 


