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Plant nutrition is a crucial factor that is usually underestimated when designing plant in

vitro culture protocols of unexploited plants. As a complex multifactorial process, the

study of nutritional imbalances requires the use of time-consuming experimental designs

and appropriate statistical andmultiple regression analysis for the determination of critical

parameters, whose results may be difficult to interpret when the number of variables is

large. The use of machine learning (ML) supposes a cutting-edge approach to investigate

multifactorial processes, with the aim of detecting non-linear relationships and critical

factors affecting a determined response and their concealed interactions. Thus, in this

work we applied artificial neural networks coupled to fuzzy logic, known as neurofuzzy

logic, to determine the critical factors affecting the mineral nutrition of medicinal plants

belonging to Bryophyllum subgenus cultured in vitro. The application of neurofuzzy logic

algorithms facilitate the interpretation of the results, as the technology is able to generate

useful and understandable “IF-THEN” rules, that provide information about the factor(s)

involved in a certain response. In this sense, ammonium, sulfate, molybdenum, copper

and sodium were the most important nutrients that explain the variation in the in vitro

culture establishment of the medicinal plants in a species-dependent manner. Thus, our

results indicate that Bryophyllum spp. display a fine-tuning regulation of mineral nutrition,

that was reported for the first time under in vitro conditions. Overall, neurofuzzy model

was able to predict and identify masked interactions among such factors, providing a

source of knowledge (helpful information) from the experimental data (non-informative

per se), in order to make the exploitation and valorization of medicinal plants with high

phytochemical potential easier.
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INTRODUCTION

Recent biotechnological reports highlighted thatmedicinal plants
constitute the source for more than the 25% of drugs officially
approved by the Food and Drug Administration (FDA; Marchev
et al., 2020). Furthermore, medicinal plant-derived products are
effectively used in the primary healthcare systems for around
the 90% of developing countries (El Sheikha, 2017). Taking
this into account, the exploitation of medicinal plants has

emerged as one of the major challenges in the biotechnological
and pharmacological industries for this decade. Additionally,
in response to current global demands, increasing efforts are
being made to satisfy the future expectations of plant-derived
food and drug production worldwide, thus requiring surface
maximization for agricultural and nutritional purposes (Pastor
et al., 2019). Consequently, novel approachesmust be undertaken
in the field of medicinal plant research with the aim of meeting
the requirements for the large-scale exploitation of medicinal
plants. In this sense, plant tissue culture (PTC) constitutes an
efficient pool of methodologies becoming a sustainable platform
to achieve true-to-type products with added-value properties
(Eibl et al., 2018; Chandran et al., 2020) and requires much
less space for achieving the same yields than conventional
open field agriculture, due to their ability for scaling-up in
bioreactors. This methodology confers an absolute independence
of climatic threats, plant pathogens and harsh agriculture
management and large storage facilities of plant materials.
Nevertheless, PTC should cope with their own difficulties,
as it requires the investment for specialized equipment and
consumables and the recruitment of trained staff to develop
the associated methodologies (Bridgen et al., 2018; Patra et al.,
2020).

One of the crucial factors that impact the success of PTC
establishment is the optimization of growth conditions and the
mineral composition of culture medium (Isah et al., 2018).
Although a high number of publications have focused on
the study of in vitro growth conditions for many species
(Batista et al., 2016; Golkar et al., 2019; Hoang et al., 2019),
culture medium composition is a paramount factor usually
underestimated during the design of plant in vitro culture
protocols (Nezami-Alanagh et al., 2014; García-Pérez et al.,
2020a). Under PTC conditions, the ingredients included in
the culture medium constitute the only source of nutrients
available for plants and subsequent nutritional imbalances
may occur discretely affecting culture development (Niedz
and Evens, 2007), reflecting substantial physiological symptoms
(Nezami-Alanagh et al., 2019). Thus, PTC media formulations
contain a wide spectrum of mineral and organic nutrients
that interact in a complex, multifactorial, nonlinear and
non-deterministic way, without considering the individual
susceptibilities and requirements that discrete species present,
leading to the existence of nutritional imbalances, causing
underlying deleterious effects that may be easily detectable
(Nezami-Alanagh et al., 2019; Phillips and Garda, 2019).

As a rule, culture media components contain, as average, 18
different mineral nutrients, some required at high concentrations
(macronutrients) such as nitrogen, potassium, calcium,

phosphorus, sulfur and magnesium, while others are required at
lower concentrations (micronutrients), such as manganese, zinc,
boron, molybdenum, copper and iron, among others, being all
essential for certain physiological processes (Twaij et al., 2020).
Together with mineral nutrients, a source of carbon, normally
sucrose, as well as other organic molecules, such as vitamins
and amino acids, some plant growth regulators, are supplied to
media to ensure a healthy plant growth and development (Saad
and Elshahed, 2012). In addition, there are additional factors
that show a significant impact on mineral nutrition, such as
the genotype, because even closely related species have been
shown to present differential behaviors toward certain media
ingredients (Gago et al., 2011; Nezami-Alanagh et al., 2014).

Due to the high heterogeneity of ingredients that make part
of culture media formulations and other additional factors, such
as plant genotype or growth conditions, the study of nutritional
requirements applied to unknown medicinal plants leads to the
design of complex multivariate experimental designs (Nezami-
Alanagh et al., 2017; Teixeira da Silva et al., 2020). In the
last decade (Hesami and Jones, 2020; Niazian and Niedbala,
2020), several ML algorithms have been successfully employed
as alternative to traditional statistical methods and/or response
surface methodology (RSM) to identify factors and interactions
on complex, non-linear and non-deterministic process such
as PTC (Landin et al., 2009; Gago et al., 2010a,c; Nezami-
Alanagh et al., 2017). Therefore, revealing all the information
encrypted over the large amount of experimental results derived
from this type of multifactorial processes becomes a highly
challenging task. In such cases, machine learning (ML) offers
a cutting-edge computer-based methodology with the ability of
handling very complex multivariate datasets, in which there are
unknown patterns between inputs and outputs or large amount
of uncategorized or different kind of data relating with complex
processes, being able to transform data into useful information
and knowledge (Gago et al., 2010c; Ertel, 2017; Bini, 2018;
Freiesleben et al., 2020). On this purpose, differentML algorithms
such as artificial neural networks (ANNs); deep neural networks
(DNNs); convolutional neural networks (CNNs); support vector
machines (SVMs) or random forest (RF) has been used in plant
biotechnology (Niazian and Niedbala, 2020) and, particularly,
in PTC (Gago et al., 2010a). Among all of them, ANNs have
been successfully applied with the aim of establishing robust
predictive models that contribute to the optimization and
characterization of multifactorial processes (Landin and Rowe,
2013; Gago et al., 2014; Arteta et al., 2018; Villarrubia et al., 2018;
Nezami-Alanagh et al., 2019). In addition, the combination of
ANNs with fuzzy logic, the so-called neurofuzzy logic, confers
several advantages in the search of critical factors that impact
plant nutrition, by providing “IF-THEN” rules that make result
interpretation easier, in other words, understandable for the
human brain (Landin et al., 2009; Gago et al., 2010b; Gallego
et al., 2011). Successful applications of neurofuzzy logic in the
field of PTC for seed germination (Ayuso et al., 2017), the
identification of physiological disorders associated to nutritional
imbalances (Nezami-Alanagh et al., 2018, 2019), improvement of
bioactive compounds accumulation (García-Pérez et al., 2020b)
and revealing the role of phytohormones on plant in vitro
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organogenesis (García-Pérez et al., 2020a) have been already
performed successfully.

Bryophyllum (genus Kalanchoe, Crassulaceae family)
constitutes a subgenus with more than 25 plant species that
have been used in the traditional medicine across both the
American and African continents (Stefanowicz-Hajduk et al.,
2020). Pharmacognostical and phytochemical analyses have
highlighted that phenolic compounds and bufadienolides were
the bioactive compounds that develop their therapeutic effects,
since Bryophyllum spp. have been largely applied to treat
infections and chronic diseases, such as diabetes, cardiovascular
diseases and cancer (García-Pérez et al., 2018a). The knowledge
derived from the combination of ML and PTC will be highly
valuable for considering the biotechnological exploitation of
Bryophyllum spp. in order to take advantage of their added-value
properties as a potential source of bioactive compounds.

In this work, we applied the ML (ANNs algorithms), to
model and provide insight about the critical factors and their
interactions that drivemineral nutrition of threemedicinal plants
from the subgenus Bryophyllum cultured in vitro, by focusing on
the content in macronutrients and micronutrients from culture
media formulations, with the aim of revealingmasked nutritional
imbalances and interactions that may occur between nutrients
that impact plant growth-related parameters.

MATERIALS AND METHODS

Plant Material and Culture Conditions
The establishment of in vitro culture was conducted for
three different Bryophyllum species, namely: Bryophyllum
daigremontianum Raym. - Hamet et Perr. (syn. Kalanchoe
daigremontinana, BD), Bryophyllum × houghtonii D.B. Ward
(Bryophyllum daigremontianum × tubiflorum, syn. Kalanchoe
× houghtonii, BH) and Bryophyllum tubiflorum Harv. (syn.
Kalanchoe tubiflora, BT).

Epiphyllous plantlets from these three species were used
for the disinfection and transference to in vitro conditions as
described in previous works (García-Pérez et al., 2019). After
surface disinfection, plantlets were cultured by groups of three
in glass culture vessels containing 25mL of previously autoclaved
MS medium (Murashige and Skoog, 1962) supplemented with
3% sucrose and solidified with 0.8% agar at pH = 5.8. Cultures
were then transferred to growth chambers and placed randomly
in the shelves at 25 ± 1◦C under a photoperiod of 16 h light (55
µmol m−2 s−1) and 8 h dark and subcultured every 12 weeks
by using newly formed epiphyllous plantlets as the explants for
next subculture.

Experimental Design
Spontaneously rooted epiphyllous plantlets from the three
Bryophyllum species, proceeding from 12-week-old plants grown
on MS medium, were subjected to nutrition experiments.
Plantlets were transferred by pairs into 10 glass culture vessels,
grown and subcultured under the same conditions stated above,
making a total of 20 replicates per treatment.

For nutrition experiment, nine different culture media
formulations, based on MS medium were used. Due to the

low mineral requirements associated to Crassulaceae plants,
as it is the case of Bryophyllum spp. (Phillips and Garda,
2019; García-Pérez et al., 2020b), each media contained
proportional reduced contents of both either MS macronutrients
(M) or MS micronutrients (µ). Thus, half-concentrations
(1/2MSM and 1/2MSµ), quarter-concentrations (1/4MSM and
1/4MSµ), eighth-concentrations (1/8MSM and 1/8MSµ) and
macronutrient and micronutrient absence (0MSM, 0MSµ) and,
as control, full MS medium was tested (Table 1). EDTA-chelated
iron, vitamins and organic molecules were supplied in all media
at same concentration than in the original MS formulation. All
media were also supplemented with 3% sucrose and solidified
with 0.8% agar at pH= 5.8.

In order to observe the nutritional long-term impact
on Bryophyllum growth parameters, four subcultures were
performed. At the end of each subculture (every 12 weeks) two
newly-formed epiphyllous plantlets per vessel were randomly
selected, transferred to fresh medium of the same media
(treatment) in which were cultured, and grown in the same
conditions. In the treatments in which epiphyllous plantlet
formation was not observed (such as 0MS), two rooted and
newly-formed epiphyllous plantlets from the control treatment
(MS) were selected and cultured in that media. In total, 20
replicates (10 vessels with two plantlets) were kept in each
subculture per treatment.

Thus, the experimental design included 3 different genotypes
(BD, BH and BT) × 9 different culture media formulations
(MS control + 4 macronutrient-reduced formulations +

4 micronutrient-reduced formulations) × 4 subcultures,
accounting for a total of 108 different treatments with 20
replicates each.

At the end of each subculture (12 weeks) six physiological
parameters were determined in the new epiphyllous plantlets:
shoot length (SL, expressed as cm), longest root length (RL,
expressed as cm), plantlet number (PN), leaf number (LN), aerial
parts fresh weight (AFW, expressed in g) and root fresh weight
(RFW, expressed in g).

After experimental data collection from nutrition experiment,
all data were merged into one large multifactorial database
including 108 treatments following a factorial design for 18
factors (Supplementary Table 1). Salts included in culture media
were split into their containing ions with the aim of avoiding ion
confounding (Niedz and Evens, 2006). As a result, the eighteen
factors were selected as the inputs (genotype, subculture number
and 16 ions) plus the six physiological parameters as outputs
(SL, RL, PN, LN, AFW, and RFW) for building the model. In
all cases, results were expressed as the mean ± standard error
(Supplementary Table 1).

Statistical Analysis
Initially, data derived from the nutrition experiments (SL, RL,
PN, LN, AFW, and RFW) were analyzed statistically in order
to evaluate the significance of each factor and their interactions
(significance level: α = 0.01) on the parameters studied. To that
end, factorial ANOVA was performed to elucidate the effect of
genotype, subculture and culture media and their interactions,
followed by Tukey’s HSD post hoc test (α = 0.01). Data
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TABLE 1 | Mineral salt composition included in cultured media formulations used in this study.

Salt MS

(mg L−1)

1/2MSM

(mg L−1)

1/4MSM

(mg L−1)

1/8MSM

(mg L−1)

0MSM

(mg L−1)

1/2MSµ

(mg L−1)

1/4MSµ

(mg L−1)

1/8MSµ

(mg L−1)

0MSµ

(mg L−1)

Macronutrients KNO3 1,900 950 475 237.5 0 1,900

NH4NO3 1,650 825 412.5 206.3 1,650

CaCl2 2H2O 440 220 110 55 440

MgSO4 7H2O 370 185 92.5 46.3 370

KH2PO4 170 85 42.5 21.30 170

Micronutrients MnSO4 4H2O 22.3 11.2 5.6 2.8 0

ZnSO4 7H2O 8.6 4.3 2.2 1.1

H3BO3 6.2 3.1 1.6 0.78

KI 0.83 0.42 0.21 0.10

Na2MoO4

2H2O

0.25 0.13 0.063 0.031

CuSO4 5H2O 0.025 0.013 0.0063 0.0031

CoCl2 6H2O 0.025 0.013 0.0063 0.0031

Iron source Na2EDTA 37.25

FeSO4 7H2O 27.85

normality and homoscedasticity was assessed by Kolmogorov-
Smirnov’s and Levene’s tests, respectively. Count data (PN and
LN) parameters should be analyzed by Poisson Regression, but
as number of replicates was large (n = 20) and, thus, ANOVA
had the same inference than Poisson Regression (α = 0.01; Mize
et al., 1999). ANOVA was also applied to those parameters as in
previous works (Ayuso et al., 2019). In both cases, the software
used was STATISTICA v.12 (StatSoft Inc., 2014, Street Tulsa,
OK, USA).

Modeling Tools
Data modeling was performed by using the commercial
FormRules R© v.4.03 software (Intelligensys LTD, UK) as
described elsewhere (Nezami-Alanagh et al., 2018; García-Pérez
et al., 2020a). Briefly, FormRules R© performed the adaptive-
spline-modeling-of-data (ASMOD) algorithm to minimize the
number of relevant inputs and to reduce the model complexity
and facilitating accuracy with fewer parameters (Shao et al.,
2006). Several statistical fitness criteria including cross validation
(CV), leave one out cross validation (LOOCV), minimum
description length (MDL), Bayesian information criterion (BIC)
and structural risk minimization (SRM) were investigated to
obtain the model that gave the best Train Set R2. Two of these,
CV and LOOCV, split the data into subsets that are either used
for training and testing (validation method), while the others
(MDL, BIC and SRM) are statistical significance methods,
which use all the data for training. These are designed to avoid
overtraining, minimizing a criterion that contains two terms:
(i) the number of parameters in the model (the variance) and
(ii) the prediction errors computed on the data set (the bias).
The best results were found for SRM, which ensured the highest
predictability with the minimum generalization error and
provided the generation of the simplest and more intelligible
rules (Vapnik, 1992).

TABLE 2 | Training parameters for the construction of neurofuzzy model used by

FormRules®.

Minimization Parameters (ASMOD)

Ridge regression factor: 1 × 10−6

MODEL SELECTION CRITERIA

Structural risk minimization (SRM)

C1 = 0.95, C2 = 4.8

Number of set densities: 2

Set densities: 2

Adapt nodes: TRUE

Maximum inputs per submodel: 3

Maximum nodes per input: 15

The training process was conducted as described in detail
elsewhere (Shao et al., 2006) and training parameters are
summarized in Table 2. The quality of submodels (predictability
and accuracy), independently generated for every output, were
assessed according to the ANOVA f -ratio, mean square error
(MSE; Equation 1) and the coefficient of determination (Train Set
R2; Equation 2):

MSE =

(

∑n
i=1 (yi − y

′

i)
2

n

)

(1)

R2 =

(

1−

∑n
i=1 (yi − y

′

i)
2

∑n
i=1 (yi − y

′′

i )
2

)

× 100 (2)

Where yi represents the experimental value from the data set, yi
′

represents the predicted value by the model, and yi
′′ represents

the mean of the dependent variable. MSE are calculated to
provide information about the random error component of
the built model, thus indicating the usefulness of model fitting
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for prediction due to a smaller incidence of random error
(Hesami and Jones, 2020). Models with high Train Set R2

(>70%) and an f -ratio (>4) assess model accuracy and no
statistical differences among predicted and experimental values.
Models with higher values than 99.9% should be rejected due
to model over-fitting (Colbourn and Rowe, 2005; Landin et al.,
2009).

The results provided by the application of neurofuzzy
logic were expressed as “IF-THEN” rules, thus making their
interpretation easier, and they were given a range level (from
low to high), combined with a corresponding membership
degree value, that ranges between 0 and 1 (Gallego et al.,
2011). Supplementary Figure 1 is attached to facilitate the
understanding of the linguistic expressions of the variables

FIGURE 1 | Experimental data obtained for SL and RL. Values are expressed as the mean and vertical bars indicate standard deviation. Different letters indicate

significant differences (α = 0.01). (A) SL BD (cm); (B) SL BH (cm); (C) SL BT (cm); (D) RL BD (cm); (E) RL BH (cm); (F) RL BT (cm).
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obtained by the neurofuzzy logic model (Low, Medium
and High).

RESULTS

Traditionally plant tissue researchers used statistical method
such as factorial ANOVA to analyze data and test if two or
more treatment differ significantly from each other due to the
effect of some independent variables (factors), but also serves to
infer cause-effect relationships. Here, data analysis using factorial
ANOVA reflected that all factors studied (genotype, subculture
number and culture media) and all interactions among them,
caused a significance effect on all parameters studied, except for
the interaction genotype× subculture on RL, PN, AFWandRFW
parameters (α = 0.01; Supplementary Table 2). The combined
effect of the interactions between the number of subcultures and
the culture medium is graphically exemplified for SL and RL
in Figure 1, depending on each genotype studied: BD, BH and
BT, respectively.

In general, MS full strength media promoted high SL and
RL in all genotypes, although the final shoot and root length
varied significantly depending on the genotype and subculture
(Figure 1). Those treatments with reduced micronutrients
(1/2MSµ, 1/4MSµ, and 1/8MSµ) promoted more length than
those with reduced macronutrients (1/2MSM, 1/4MSM, and
1/8MSM), and the treatments with absence of minerals in the
media, particularly without macronutrients (0MSM), promoted
the worst results overall (Figure 1). The same effect, can be
observed for the rest of parameters (see Supplementary Table 1),
particularly for PN, which measures the organogenesis capacity,
since the absence of mineral nutrients causes the total inhibition
of the generation of new epiphyllous plantlets in the leaf margins
of all species (Supplementary Table 1: treatments 9, 18, 27, 36 for
BD; 45, 54, 63, 72 for BH, and 81, 90, 99, 108 for BT). All together,
these ANOVA results showed that MS media composition can
be modified dramatically by reducing the amount of macro
and micronutrients and obtain exactly the same results. But
little information was obtained about the effect of each mineral
nutrient or its role on the effect observed.

Data modeling by neurofuzzy logic emerges as a solution
to provide useful knowledge on Bryophyllum mineral nutrition
after training and learning from the experimental data. The
model showed high predictability with Train Set R2 values higher
than 70%, f -ratio >4 and low values of MSE in all submodels
(Table 3). In addition, model accuracy was assessed by ANOVA
f -critical, which proved that predicted values from the model did
not show statistically significant differences with respect to the
experimental values for any of the outputs (α = 0.05; Table 3).

For SL, the model generated two submodels being the
interaction between genotype and copper the one with the
highest contribution (Table 3). As previously stated, neurofuzzy
model had the ability of unraveling masked interactions between
different factors, once the salt media composition of each
treatment was formulated as their ion composition, to avoid
ion confounding. An additional submodel showed that NH+

4
concentration also caused a significant effect but with lower
contributions to SL prediction, than the interaction of genotype
× Cu2+ (Table 3). In the case of RL, two submodels were
found, being the triple interaction between the genotype, SO2−

4

and MoO2−
4 the one presenting the major contribution to RL.

Additionally, a second submodel for RL included the interaction
of number of subcultures with sodium (Table 3). Exactly the
same submodels were also predicted for PN and, interestingly,
this finding suggests that sulfur and molybdenum play a crucial
role not only on Bryophyllum nutrition, but on controlling
its asexual reproduction. The second submodel spotted the
interaction of number of subcultures with sodium for PN, too.
Concerning LN only one model was generated, being predicted
by the interaction between the genotype and NH+

4 concentration
(Table 3), what indicates that this output is closely related and
highly influenced by this nitrogen-containing macronutrient ion.
In the case of AFW, the interaction between genotype, SO2−

4

and MoO2−
4 was the only factor spotted as the most significant

affecting this output, in the same way than RL and PN. Finally,
RFW was predicted by two submodels, showing the interaction
between the genotype, Cu2+ and SO2−

4 the major contribution
(Table 3), being the only output that was dependent on copper
besides SL. An additional submodel for RFW was predicted by
molybdate concentration.

TABLE 3 | Quality parameters and critical factors detected by neurofuzzy logic model.

Output Submodel Significant inputs MSE Train Set R2 f ratio df1, df2 f critical (α = 0.05)

SL 1 NH+
4 0.92 74.97 42.79 7, 100 2.10

2 Genotype × Cu2+

RL 1 SO2−

4 × MoO2−

4 × Genotype 0.74 76.97 10.91 25, 82 1.64

2 Subculture × Na+

PN 1 SO2−

4 × MoO2−

4 × Genotype 60.60 72.85 8.76 25, 82 1.64

2 Subculture × Na+

LN 1 Genotype × NH+

4 9.00 72.90 45.29 6, 101 2.19

AFW 1 SO2−

4 × MoO2−

4 × Genotype 0.04 89.89 43.66 18, 89 1.72

RFW 1 Genotype × Cu2+
× SO2−

4 0.001 79.69 25.75 14, 93 1.80

2 MoO2−
4

Bold inputs indicate the strongest effect associated to each output.
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In general, the application of neurofuzzy logic identified all
the significant factors on all the outputs related to Bryophyllum
in vitro growth and their concealed interactions. Nevertheless,
the information conferred by this machine learning-based
tool was useful, thanks to the establishment of “IF-THEN”
rules, which described how these inputs influenced their
corresponding outputs. The full set of rules can be found in
Supplementary Table 3, while the rules including the highest
membership degrees for each output were summarized in
Table 4. In order to make result interpretation easier, all factors
were ranged as low, mid and high at the same time, according
to their effect on every output and the experimental space
tested. The graphical ranging of each ion can be visualized in
Supplementary Figure 1.

As previously stated, the observed changes in the output SL
was mainly caused by the interaction between genotype and
Cu2+ and, besides that, the model generated the corresponding
rules. The rules for SL indicate that high values were obtained in
the case of BT when cultured under Low Cu2+ concentrations
(<0.05µM) with a membership degree of 0.77 (rule 7; Table 4).
In fact, it was the only case that presented a High SL
response related to copper. In contrast, the lowest SL value
(showing a membership degree of 1.00) was obtained for BD
under Low Cu2+ concentrations (rule 5; Table 4). Concerning
the rules associated to the other submodels, High SL values
were obtained under High NH+

4 concentrations (>10.31mM)
with high membership (0.83, rule 2; Table 4). These results
suggest a predominant effect of genotype and copper, over the
NH+

4 , on SL.
RL, PN and AFW were predicted mainly by the interaction of

three factors: genotype, SO2−
4 andMoO2

4. Thus, the response with
the highest contribution to High RL values (membership 1.00) is
the interaction between Low SO2−

4 concentrations (<1.01mM)

with Mid MoO2−
4 concentrations (0.25–0.75µM) for BT (rule

14 for RL, rule 40 for PN, and rule 72 for AFW; Table 4). On
the contrary, the interaction between Low SO2−

4 concentrations

(<1.01mM) with Low MoO2−
4 concentrations (<0.25µM) for

BH showed the highest contribution to Low RL, PN and AFW
values (rules 9, 35, and 67, respectively; Table 4). In addition, RL
and PN presented another submodel, based on the interaction
between the number of subcultures and sodium (Table 3). In
all cases, the model rules showed that High Na+ concentrations
(0.22mM) causedHigh RL and PN in all subcultures (rules 27–34
for RL, and 53–60 for PN; Table 4).

LN was exclusively predicted by the interaction between
the genotype and NH+

4 concentrations. High LN values were
predicted only byHighNH+

4 concentrations for BT (>10.31mM,
membership degree 0.74, rule 66; Table 4), showing Low values
for the rest of cases, specially BD at Low NH+

4 concentrations
(membership degree 0.96, rule 63; Table 4). These results suggest
a predominant role of genotype, as LN was exclusively favored
on BT, only if High NH+

4 concentrations were supplied into
the media.

Finally, the major submodel predicting RFW included the
interaction between genotype, SO2−

4 and Cu2+ concentrations.
The High RFW values with the highest membership degree

(1.00) were obtained for BH cultured under High SO2−
4

concentrations (>0.88mM) and Low Cu2+ concentrations
(<0.05µM, rule 87; Table 4). Meanwhile, Low values were
predicted by Low concentrations of both ions (membership
degree 1.00, rule 85; Table 4), independently of the genotype
used (rules 85, 89 and 93; Table 4). In addition, the
second submodel generated for RFW pointed at molybdate
concentrations as the significant output, causing Low RFW
values in all cases (rules 97–99; Table 4). These results
suggest a predominant role of genotype, favored when
High SO2−

4 and/or Cu2+ concentrations were included into
the media.

DISCUSSION

The combination of artificial neural networks (ANNs) with fuzzy
logic, called neurofuzzy logic, constitutes ML algorithms used
for predicting and identifying critical factors of multifactorial
nonlinear systems (Shihabudheen and Pillai, 2017), as it is
the case of plant in vitro nutrition (Gallego et al., 2011).
Advantages of ANNs algorithms over traditional statistics have
been pointed out previously (Landin et al., 2009; Gago et al.,
2010a,c). In this work, the application of neurofuzzy confers
a simple and efficient solution about which factors determined
the effects found on each Bryophyllum growth parameter, by
extracting the knowledge among the deep interactions learnt after
data training.

Genotype was a widely distributed factor identified for
the prediction of all outputs either alone or in combination
with one or two additional factors. This indicates that,
although the three species of the Bryophyllum subgenus
are considered closely genetically related, each species shows
different nutritional requirements, including macronutrients
and micronutrients. These differences may probably be due
to the transcriptional regulation of uptake systems, such as
the primary response to nutrient limitation conditions, since
they are highly inducible by environmental conditions (Bird,
2015). Thus, the establishment of in vitro culture results in an
effective system to test nutritional imbalances, as it eliminates
the influence of side biotic or abiotic factors that impact mineral
acquisition, such as pathogen and soil-mediated interactions
(Comerford, 2005; Ferrante et al., 2017). These differential
patterns for Bryophyllum species have already been related to leaf
morphology (Chernetskyy et al., 2018) and other discrepancies
in physiological processes, such as the biosynthesis of phenolic
compounds (Fürer et al., 2016; Bogucka-Kocka et al., 2018;
García-Pérez et al., 2020a) and organogenesis (García-Pérez et al.,
2020b). Furthermore, the specific growth responses predicted by
the ANN model, denote that Bryophyllum spp. present a tight
range of concentrations to achieve an efficient mineral nutrition
(Shrivastav et al., 2020).

Another factor, associated to PTC technology and identified
by the model as critical, was the number of subcultures.
The number of subcultures was identified in combination
with sodium to be significant in a secondary submodel for
RL and PN. The differential number of subcultures required
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TABLE 4 | Summary of “IF-THEN” rules generated by ANN modeling.

Rules Genot Subcult NH+

4 SO2−

4 Na+ Cu2+ MoO2−

4 SL RL PN LN AFW RFW Membership

1 I

F

Low T

H

E

N

Low 0.98

2 High High 0.83

5 BD Low Low 1.00

6 BD High Low 1.00

7 BT Low High 0.77

8 BT High Low 1.00

9 I

F

BH Low Low T

H

E

N

Low 1.00

10 BD Low Low Low 1.00

11 BT Low Low Low 1.00

12 BH Low Mid High 1.00

13 BD Low Mid High 1.00

14 BT Low Mid High 1.00

15 BH Low High Low 1.00

16 BD Low High Low 1.00

17 BT Low High Low 1.00

18 BH High Low High 1.00

19 BD High Low High 1.00

20 BT High Low High 1.00

21 BH High Mid High 1.00

22 BD High Mid High 1.00

23 BT High Mid Low 1.00

24 BH High High Low 1.00

25 BD High High Low 1.00

26 BT High High Low 1.00

27 ONE Low Low 1.00

28 ONE High High 1.00

29 TWO Low Low 1.00

30 TWO High High 1.00

31 THREE Low Low 1.00

32 THREE High High 1.00

33 FOUR Low Low 1.00

34 FOUR High High 1.00

35 I

F

BH Low Low T

H

E

N

Low 1.00

36 BD Low Low Low 1.00

37 BT Low Low Low 1.00

38 BH Low Mid Low 1.00

39 BD Low Mid High 1.00

40 BT Low Mid High 1.00

41 BH Low High Low 1.00

42 BD Low High Low 1.00

43 BT Low High Low 1.00

44 BH High Low High 1.00

45 BD High Low High 1.00

46 BT High Low High 1.00

47 BH High Mid High 1.00

48 BD High Mid Low 1.00

49 BT High Mid Low 1.00

50 BH High High Low 1.00

51 BD High High Low 1.00

52 BT High High Low 1.00

53 ONE Low Low 1.00

54 ONE High High 1.00

(Continued)
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TABLE 4 | Continued

Rules Genot Subcult NH+

4 SO2−

4 Na+ Cu2+ MoO2−

4 SL RL PN LN AFW RFW Membership

55 TWO Low Low 1.00

56 TWO High High 1.00

57 THREE Low Low 1.00

58 THREE High High 1.00

59 FOUR Low Low 1.00

60 FOUR High High 1.00

63 I

F

BD Low T

H

E

N

Low 0.96

66 BT High High 0.74

67 I

F

BH Low Low T

H

E

N

Low 1.00

68 BD Low Low Low 1.00

69 BT Low Low Low 1.00

70 BH Low Mid Low 1.00

71 BD Low Mid Low 1.00

72 BT Low Mid High 1.00

73 BH Low High Low 1.00

75 BT Low High Low 1.00

76 BH High Low High 1.00

77 BD High Low High 1.00

78 BT High Low High 1.00

79 BH High Mid High 1.00

80 BD High Mid High 1.00

81 BT High Mid Low 1.00

85 I

F

BH Low Low T

H

E

N

Low 1.00

86 BH Low High High 1.00

87 BH High Low High 1.00

88 BH High High High 1.00

89 BD Low Low Low 1.00

90 BD Low High High 1.00

91 BD High Low High 1.00

92 BD High High High 1.00

93 BT Low Low Low 1.00

94 BT Low High High 1.00

95 BT High Low High 1.00

96 BT High High High 1.00

97 Low Low 1.00

98 Mid Low 1.00

99 High Low 1.00

Inputs with the highest membership degree, showing the major contibutions for each response on every output, are indicated in bold. Only the rules with the highest membership degree

were selected Genot: genotype; Subcult: number of subcultures. SL and RL were expressed in cm. AFW and RFW were expressed in g.

to achieve certain responses reveals that nutrient deficiencies
may be sensed at different periods during the culture time.
The delay in responses under nutritional deficiencies, may be
explained as a consequence of the induced stress triggered by
the increased synthesis of signaling molecules, such as nitric
oxide and reactive oxygen species (ROS), mainly driven by
macronutrient limitations and micronutrient limitation to a
lesser degree (Hajiboland, 2012; Pérez-Pérez et al., 2012; Buet
et al., 2019). Its importance relies on the decrease in the rate

of epigenetic variation after successive subcultures (Smulders
and de Klerk, 2011). This factor becomes crucial to assess
the genetical stability of in vitro-cultured plants, making their
valorization easier. Moreover, long-term subcultures constitute
an efficient strategy to improve interesting phenomena under in
vitro conditions, such as rooting (Mendonça et al., 2019; Wang
and Yao, 2020), plant regeneration (Konar et al., 2019) and callus
induction (Nakasha et al., 2016), very useful for biotechnological
production of by-products from medicinal plants.
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Among the nutrients, the model has identified as critical
factors, the macronutrients NH+

4 and SO2−
4 , and the

micronutrients Cu2+, Na+, and MoO2−
4 . The effect of ammonia,

the source of nitrogen along with nitrate in most culture media,
is clear on the SL parameter. Furthermore, its effect varies
depending on the genotype for LN (Table 3). Nitrogen plays a
controversial role on crassulacean species, such as Bryophyllum
spp. Differential rates of crassulacean acid metabolism (CAM)
have been observed as a function of nitrogen source (Pereira
et al., 2017). Thus, two groups are distinguished: nitrate-
enhanced CAM species and ammonium-enhanced CAM species
(Rodrigues et al., 2014). Nevertheless, there is no general rule
for this classification, since different Bryophyllum species show
particular preferences toward both nitrogen sources (Pereira
and Cushman, 2019). Our results suggest that nitrogen source
preferences is species-dependent. The effects caused by NH+

4
on CAM activity are mainly negative, due to the inhibition of
nocturnal transport rates of organic acids into the vacuole and the
cost, in terms of energy, required for ammonium mobilization
(Lüttge et al., 2000; Britto et al., 2001). However, it could be
noted that such paradigm has been established for soil-grown
plants and nitrogen influence may not be the same under in vitro
conditions. In this sense, only BT presented high LN values under
high NH+

4 concentrations (rule 66), while BD and BH always
showed low values, whatever the ammonium supply was within
the limits of the study (rules 61–65; Supplementary Table 3).
Secondarily, high SL values were obtained under high NH+

4
concentrations (rule 2; Table 4). In addition to being an
essential nutrient for plant development, NH+

4 has recently been
identified as a signal molecule that triggers both, physiological
and morphological responses (Liu and von Wirén, 2017). A
recent report has shown that ammonium concentration lower
than 15mM improves the biosynthesis of phenolic compounds
in the aerial parts of Bryophyllum spp. cultured in vitro as a
consequence of a physiological response induced by abiotic
stress (García-Pérez et al., 2020a). Consequently, in order to
characterize the impact of ammonium on Bryophyllum spp.,
further studies at a molecular level are required.

The model reveals a close relationship between sulfur and
molybdenum, whose effects on RL, PN and AFW parameters
depend on the genotype (Table 3). This close interaction between
both nutrients has been already reported in other species,
since molybdenum is a crucial component of molybdoenzymes,
involved in sulfur metabolism, being both nutrients essential for
the development of aerial tissues and roots (Mendel and Hänsch,
2002; Naqib and Jahan, 2017; Blasco et al., 2018; Bouranis et al.,
2020). Furthermore, due to the identical chemical configuration
of both ions, the uptake of molybdate and sulfate by roots, may
take place via sulfur-specific receptors found in root tissues,
thus enabling the co-absorption of molybdate with sulfate (Ali
et al., 2020). This could be suggested according to the model
results, since low RL, PN and AFW values were observed under
low SO2−

4 concentrations and high MoO2−
4 concentrations, and

conversely, RL, PN and AFW values were high under high SO2−
4

concentrations and low MoO2−
4 concentrations (Table 4). In

the case of RL, sulfate plays a positive role, by promoting root

biomass accumulation and nutrient uptake during root growth
(Alarcón-Poblete et al., 2018), in agreement with the results
describe here for RFW (Table 3). These observations indicate that
sulfur is essential for in vitro root development on Bryophyllum
spp., although molybdate at mid concentrations may assist to its
functionwhen sulfate is limited, as demonstrated for BT (rules 14,
40, and 72; Table 4), and reported by other authors (Alhendawi
et al., 2005; Shinmachi et al., 2010).Moreover, similar results were
obtained for PN.

PN was the only output associated to reproduction of
Bryophyllum spp., since this process constitutes the mechanism
developed by these species for their asexual reproduction. It
combines several processes belonging to both organogenesis and
embryogenesis phenomena, that have not been fully elucidated
to date (Garcês et al., 2014). Such process takes place at the
margin of adult leaves and is considered the major mechanism
driving Bryophyllum clonal invasiveness, as it has been reported
for BD, BH and BT (Guerra-García et al., 2015). Fully developed
plantlets require the formation of their proper root systems
before detaching from mother plants to form new functional
clones. The development of such process may explain the close
relationship between RL and PN according to their same critical
factors spotted by themodel (Table 3), since rooting should occur
at both adult plants and newly-formed plantlets. Additionally,
RL and PN presented a secondary submodel, indicating that
high sodium concentrations were required for high values of
both parameters from the first subculture (Table 4; >0.223mM),
which is in accordance to the sodium requirements previously
reported for BT and other Crassulaceae species (George et al.,
2008). In this sense, this asexual reproductive mechanism
makes Bryophyllum spp. a suitable biological system for the
establishment of in vitro culture, thanks to their constitutive
plantlet formation. Furthermore, PN was strongly dependent on
genotype, and it could be explained because of the mechanisms
of plantlet formation: BH and BD develop this process along the
whole leaf margins (Garcês and Sinha, 2009; Herrando-Moraira
et al., 2020), whereas PN is restricted to the distal leaf end in
BT (Guerra-García et al., 2018), thus potentially causing such

genotype influence (Figure 2).

Copper was revealed as the most influential micronutrient
on Bryophyllum spp. cultured in vitro, since it was selected as
a critical factor for SL, interacting with genotype, and RFW,
interacting with genotype and sulfate concentrations (Table 3).
The results from the neurofuzzy logic model indicate that this
nutrient affects Bryophyllum physiology in a species-dependent
manner, as it was always found in combination with genotype.
In this sense, the interaction between genotype and copper
was the major factor that influenced SL. In fact, this nutrient
played a differential role among the three genotypes. Only BT
showed high SL values cultured under Cu2+ concentrations
below 0.05µM (rule 7). This indicates that BT was the genotype
most affected negatively by copper, suggesting that toxicity events
may occur for this species. These findings reveal that a fine-
tuned control of copper homeostasis is required to prevent its
toxicity due to a copper excess, since this nutrient is essential
for the correct cell function, being part of highly important
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FIGURE 2 | Plantlet formation in Bryophyllum spp. cultured in vitro. (A) Plantlets forming along the leaf margins on BD. (B) Plantlets forming along the leaf margins on

BH. (C) Plantlets forming at the distal leaf end on BT.

metalloproteins as a cofactor (Printz et al., 2016; García-Pérez
et al., 2018b). Its importance relies on its contribution to basic
physiological processes in plants, such as early plant growth,
photosynthetic efficiency, mitochondrial respiration and the
impairment of oxidative stress (Schulten and Kramer, 2017;
Blasco et al., 2018). This wide influence on plant physiology
could aid explaining why this nutrient was crucial for SL,
associated to aerial part development, SL, and linked to root
formation and growth, RFW. Such hypothesis is reinforced by
the sophisticated mechanism of copper distribution within plant
tissues that contains preventive molecular mechanisms enabling
its accumulation by preventing eventual toxic effects at root
level (Castro et al., 2018; Migocka and Malas, 2018). In the
case of RFW, the coordinate action of sulfate with copper, as
described by the ML model (Table 3), may indicate that sulfur
contributes to such copper-induced toxic prevention, as it was
earlier stated to other metals. In addition, RFW presented a
second submodel that includedmolybdate as a critical factor, that
was shown as a negative factor on this parameter, according to the
model rules (rules 97–99). This observation can be justified by
the effects reported for molybdenum excess, including a severe
impairment of photosynthetic efficiency and the inhibition of
rooting in other species (Arif et al., 2016). Thus, our results
suggest that a minimum copper supplementation (< 0.05µM)
may efficiently contribute to in vitro-cultured Bryophyllum
plant growth.

In conclusion, our results show that the lack of specific culture
media forces the use of universal formulations, as MS medium.
Although such formulations contain complete combinations
of mineral essential nutrients, may suppose supra-optimal
concentrations for the cultivation of many species (Phillips and
Garda, 2019), particularly for little-studied medicinal plants
with high phytochemical potential. The nutritional imbalances
spotted by ML offered a source of knowledge for the prediction

of critical factors affecting Bryophyllum spp. plant in vitro
culture. Through the ion split approach, neurofuzzy logic model
was able to shed light on the masked interactions that take
place during the in vitro culture of three different Bryophyllum
species, by additionally highlighting the importance of related
factors, such as the genotype and the number of subcultures.
The essentiality of achieving an enhanced nutritional profiling
for the correct development of medicinal plants, as it is the
case of Bryophyllum spp., is a paramount feature that should
be successfully accomplished in order to get a sustainable
exploitation of such species with the aim of reaching large-
scale applications in several fields, such as food, cosmetics and
nutraceutical industries.
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