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Centro de Investigaciones en Óptica
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Abstract. We report a technique for the measurement of transient out-
of-plane displacement gradients in plane objects by double-pulsed sub-
traction TV shearography. The fringe patterns are automatically and
quantitatively analyzed by the Fourier transform method. A novel optical
setup based on the separation and further recombination of illumination
beams is demonstrated for the generation of carrier fringes. The principle
of the proposed technique is theoretically described, and its immunity to
environmental disturbances is discussed. Experimental results obtained
with a metallic plate excited by the impact of a piezoelectric transducer
are presented. © 2000 Society of Photo-Optical Instrumentation Engineers.
[S0091-3286(00)02908-1]
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1 Introduction

TV shearography~TVS!—or electronic speckle patter
shearing interferometry~ESPSI!, as it is also called—is a
nondestructive, whole-field technique that allows the m
2106 Opt. Eng. 39(8) 2106–2113 (August 2000) 0091-3286/2000/$1
surement of spatial derivatives of displacements. Early
search on shearing techniques used moire´ fringes resulting

from the superposition of two fringe patterns obtained

holographic interferometry.1 Photographic film was late
5.00 © 2000 Society of Photo-Optical Instrumentation Engineers
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replaced by electronic devices, which avoid the somew
expensive and time-consuming development process.2 Gra-
dient of displacement can also be obtained by the clos
related technique of TV holography~TVH! through image
processing.3 However, in applications that involve the me
surement of spatial derivatives of displacement~e.g., strain
analysis and detection of local defects in various materia!,
TVS outstrips TVH in several respects. First, the calcu
tion of spatial derivatives is a time-consuming operatio
while TVS yields the slope of displacement directly. Se
ond, due to its quasi-common-path design, TVS is less s
sitive than TVH to the influence of environmental distu
bances, e.g., air turbulence, external vibration, and rig
body motion. Moreover, the requirement of a light sour
with large coherence length may be relaxed. And third,
ability to change the sensitivity of the interferometer
adjusting the amount of shear broadens the measure
range of TVS.

The use of pulsed lasers in TVS relaxes even more
stability requirements for the experimental setup and ma
possible the analysis of high-speed transient events. Ne
theless, only a few papers reporting on pulsed TVS h
appeared. Spooren et al.4 originally demonstrated the appl
cation of a double-pulsed laser to electronic speckle sh
interferometry. Shear is introduced in the speckle interfe
grams by slightly tilting one of the mirrors in a Michelso
shear interferometer,5 and correlation fringe patterns ar
formed by double-pulse subtraction,6 a technique previ-
ously proposed for TVH. Emphasis was given to the stu
of fringe visibility rather than to the implementation of
phase evaluation method, and hence measurements re
qualitative. The first quantitative measurements of spa
derivatives of displacement using double-pulsed TVS h
been carried out by Pedrini et al.7 They use a Mach-
Zehnder interferometer after the imaging lens in order
record the interference between two sheared images
CCD. Lateral shear between these two images is adju
by shifting one mirror in the setup, and the spatial carrie
introduced into the speckle shear interferograms by tilt
one mirror~or one beamsplitter!. The interference phase i
evaluated using either the Fourier transform8 or the spatial-
carrier phase-shifting9 method. The optical phase chang
due to the object’s deformation is obtained as the differe
between phase distributions calculated from two differ
speckle shear interferograms recorded before and afte
formation, respectively. More recently, Da´vila et al.10 have
applied pulsed TVS to quantitatively measure the slope
transient displacements following a different approach. T
spatial carrier is introduced into the correlation fringe p
terns rather than into the speckle shear interferograms
translating manually the diverging lens that expands
illumination beam along its optical axis. The phase is th
evaluated by the spatial synchronous detection metho11

The technique has been experimentally demonstrate
laboratory conditions. Unfortunately, the long time requir
for the lens translation~several seconds! negates the advan
tages of pulsed TVS and prevents its application in ind
trial environments.

Bonding the diverging lens to a piezoelectric transla
significantly improves the immunity of the system to en
ronmental disturbances. This solution has been adopted
double-pulsed addition TVH system for harmonic vibrati
t
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measurement.12 However, it has been found that the use
a piezo-mounted lens to generate carrier fringes still
poses a lower limit to the minimum separation betwe
laser pulses because of the response time of the piezo
tric element.

In this paper, we report a novel technique for the me
surement of transient out-of-plane displacement gradie
using double-pulsed subtraction TVS and the Fourier tra
form method~FTM!. We have developed a new optic
setup without moving devices to introduce the spatial c
rier into the fringe patterns by changing the sensitivity ve
tor between laser pulses. In contrast to the technique
scribed in Ref. 10, the only lower limit to the minimum
time separation between laser pulses is imposed by
charge-transfer period of the CCD, which can be as low
;100 ns in the latest models of the so called double-fl
CCD cameras.13

2 Principle of the Technique

In this section we first present the general expression o
double-pulsed subtraction TVS fringe pattern. Later, we
rive the phase-difference increment due to combined m
chanical excitation and the proposed technique for spa
carrier generation. Finally, we calculate the gradient of o
of-plane displacement by the FTM. Throughout this sect
we use certain approximations that allow phase-differe
increment calculations to be reduced to simpler mathem
cal manipulations.

2.1 Fringe Formation in Double-Pulsed Subtraction
TVS

In double-pulsed subtraction TVS the CCD camera reco
two speckle shear interferograms in separated video fiel6

The first laser pulse is fired with the object at rest, and
corresponding intensity distribution may be expressed a

I 1~x!5I m~x!@11V~x! cosDc1~x!#, ~1!

whereI m(x) andV(x) are the mean intensity and the vi
ibility of the speckle shear interferogram at a pointx
5(x,y,L) of the object’s surface, respectively.~It should
be emphasized that only plane objects are considered in
paper.! Some time later~typically tens of microseconds! the
object is stressed and the laser emits a second pulse p
erly timed with respect to the mechanical excitation. T
resulting intensity distribution is given by

I 2~x!5I m~x!@11V~x! cosDc2~x!#. ~2!

Here the functionsDc1(x) and Dc2(x) give the differ-
ences between the phases of the interfering speckle pat
for the first and the second speckle shear interferogra
respectively.

Subtraction of the intensity distributions~1! and~2! once
they have been digitized, and subsequent full wave rec
cation, yields a speckled, high-visibility correlation fring
pattern
2107Optical Engineering, Vol. 39 No. 8, August 2000
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I ~x!5ugI2~x!2gI1~x!u

52gIm~x!V~x!Usin
Dc1~x!1Dc2~x!

2 UUsin
Df~x!

2 U,
~3!

whereg5g(l) is the spectral sensitivity of the camera f
the laser wavelengthl andDf(x) is the phase-difference
increment

Df~x!5Dc2~x!2Dc1~x!. ~4!

It should be noted that the modulus operation in Eq.~3!
introduces harmonic distortion in the fringe pattern, whi
can give rise to significant errors in the recovered pha
For this reason we use quadratic detection rather than
wave rectification for fringe analysis purposes:

i ~x!5I 2~x!5 i m~x!@12cosDf~x!#, ~5!

where the local mean intensity of the fringe pattern is giv
by

i m~x!52g2I m
2 ~x!V2~x! sin2

Dc1~x!1Dc2~x!

2
. ~6!

2.2 Phase Difference in Double-Pulsed Subtraction
TVS

According to the geometry depicted in Fig. 1, the optic
phase of one of the interfering speckle patterns produce
the first laser pulse may be expressed as

c1~x!5c i1cF1
1

2p

l
R1~x!1cs~x!1cP1

~x!, ~7!

with c i the initial phase of the light source,cF1
andcP1

(x)
the phase changes due to the propagation of light from
laser to the focusF1 and from a pointP1 on the object
surface to the image plane, respectively,cs(x) a random-
phase term due to the object surface roughness, andR1(x)
the distance from the focusF1 to the pointP1 on the ob-
ject.

In TVS, a point in the image plane receives contrib
tions from two or more points on the object.14 Let us con-
sider a situation when the pointsx andx1dx on the object

Fig. 1 Geometry of the optical-path separation approach.
2108 Optical Engineering, Vol. 39 No. 8, August 2000
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are imaged at the same point on the image plane, withdx
5(dx,dy) the object-plane shear. In that case, the ph
difference of the first speckle shear interferogram is giv
by

Dc1~x!5
2p

l
@R1~x1dx!2R1~x!#1cs~x1dx!2cs~x!

1cP1
~x1dx!2cP1

~x!. ~8!

Making a first-order approximation

R1~x1dx!2R1~x!'
]R1~x!

]x
dx1

]R1~x!

]y
dy

5¹R1~x!•dx, ~9!

Eq. ~8! may be rewritten as follows:

Dc1~x!5
2p

l
¹R1~x!•dx1cs~x1dx!2cs~x!

1¹cP1
~x!•dx. ~10!

2.3 Spatial-Carrier Generation

The object surface undergoes a local displacementu(x)
5@u(x),v(x),w(x)# because of mechanical excitation b
tween exposures. Let us now suppose that the first and
second laser pulses propagate through separated path
shown in Fig. 1. Assuming that neither the object displa
ment nor the change in the illumination geometry intr
duces speckle decorrelation, the optical phase of
speckle pattern corresponding to the second laser pulse
then be expressed as

c2~x!5c i1cF2
1

2p

l
R2~x!1cs~x!1cP2

~x!, ~11!

where cF2
and cP2

(x) are the phase changes due to t

propagation of light from the laser to the focusF2 and from
a point P2 on the displaced object surface to the ima
plane, respectively, andR2(x) is the distance from the fo
cusF2 to the pointP2 on the object.

In a first-order approximation, the phase difference
the second speckle shear interferogram is given by

Dc2~x!5
2p

l
¹R2~x!•dx1cs~x1dx!2cs~x!

1¹cP2
~x!•dx. ~12!

Provided that the in-plane components of the object d
placement are negligible and that the object surface
placed perpendicular to the observation direction, we
approximate the difference of the phase changes due to
propagation of light from the pointsP1 andP2 to the image
plane by

cP2
~x!2cP1

~x!'
2p

l
w~x!, ~13!
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and hence

@¹cP2
~x!2¹cP1

~x!#dx'
2p

l
¹w~x!•dx. ~14!

Thus, Eq.~4! may be rewritten in the form

Df~x!5
2p

l
¹@R2~x!2R1~x!1w~x!#•dx. ~15!

Referring to Fig. 1, we can write

R1~x!5~x21y21L2!1/2, ~16!

R2~x!5$x21y21@L1w~x!2d#2%1/2, ~17!

and introducing Eqs.~16! and ~17! in Eq. ~15! yields the
rather long result

Df~x!5
2p

l
S H x1@L1w~x!2d#

]w~x!

]x

Ax21y21@L1w~x!2d#2

2
x

Ax21y21L2
1

]w~x!

]x
J dx

1H y1@L1w~x!2d#
]w~x!

]y

Ax21y21@L1w~x!2d#2
2

y

Ax21y21L2

1
]w~x!

]y
J dyD . ~18!

Obviously, direct application of this general equation
volves huge mathematical complexity. However, if we
troduce certain approximations, calculations are reduce
simple linear operations. Our approximations will be bas
on two assumptions:~a! the distanceL between the focus
F1 and the object plane is much greater than any ot
distance that appear in Eq.~18!, and ~b! the distanced
between the fociF1 and F2 is much greater than the ou
of-plane displacementw(x). These assumptions may b
formalized as follows:

L@x, L@y, ~19a!

L@d@w~x!. ~19b!

If the conditions above are satisfied, we can make a fur
approximation

ax1by

~x21y21L2!1/2
'

a

L
x1

b

L
y, ~20!

wherea and b are coefficients. Taking into account Eq
~19! and ~20! allows Eq.~18! to be rewritten as
r

D f~x!52p
d dx

lL2 x1
4p dx

l

]w~x!

]x
12p

d dy

lL2 y

1
4p dy

l

]w~x!

]y
. ~21!

This result demonstrates that the phase difference in
ment in double-pulsed subtraction TVS with separated
tical paths is the sum of two terms proportional to the s
tial derivatives of displacement across horizontal a
vertical coordinates as well as two terms proportional to
coordinates themselves. These last two terms may be
sidered as a spatial carrier whose frequency component~in
units of fringes per image! are

f cx5
d dx X

lL2 , ~22!

f cy5
d dy Y

lL2 , ~23!

where X and Y are the horizontal and vertical fields o
view, respectively.

2.4 Quantitative Determination of the Out-of-Plane
Displacement Gradient

The phase-difference increment~21! can be extracted from
the fringe pattern~5! by the FTM8

Df~x!5unwF tan21S Im@I21$I$ i ~x!%W~ f!%#

Re@I21$I$ i ~x!%W~ f!%# D G , ~24!

whereI is the 2-D Fourier transform,W(f) is a suitable
window in the Fourier plane, and unw denotes a gene
phase-unwrapping operation.

Finally, to calculate the out-of-plane displacement g
dient we proceed as follows. First, we introduce pure ho
zontal shear (dy50) together with optical-path separatio
The resulting fringe pattern shows a set of vertical, equa
spaced carrier fringes modulated by the transient defor
tion. We denote the corresponding phase difference in
ment byDfx

d(x). In order to isolate the term proportiona
to the displacement derivative, we subtract the carrier c
tribution from the recovered phase. This method is cal
subtraction of the phase of the undeformed carrier frin
~SPUCF!.15 The carrier contribution in the horizontal direc
tion, Dfx

c(x), is evaluated from a fringe pattern obtaine
without mechanical excitation. Next, the interferometer
arranged to introduce pure vertical shear (dx50), so that
the resulting carrier fringes are now a set of horizont
equally spaced fringes. The experiment is then repea
with and without mechanical excitation. We denote the c
responding phase difference increments byDfy

d(x) and
Dfy

c(x), respectively. Gradient determination is straigh
forward from these definitions

¹w~x!5
l

4p S Dfx
d~x!2Dfx

c~x!

dx
,
Dfy

d~x!2Dfy
c~x!

dy D .

~25!
2109Optical Engineering, Vol. 39 No. 8, August 2000
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2110 Optical Engi
Fig. 2 Schematic experimental setup used to generate carrier fringes in double-pulsed-subtraction TV
shearography: BS, beamsplitter; BC1 to BC3, beam combiners; M1 to M9, mirrors; NL1 and NL2,
negative lenses (their foci are shifted by a distance d).
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3 Optical Setup

Our experimental setup for spatial-carrier generation
double-pulsed TVS is shown in Fig. 2. The light sour
consists of two separateQ-switched Nd:YAG oscillators,
commonly seeded by a diode-pumped Nd:YAG cw lase
obtain mutual coherence between their beams. The infra
outputs are combined at BC1 before passing throug
frequency-doubling crystal that makes alignment tasks
signal detection safer and easier. Moreover, the sensit
of the interferometer is doubled. Each cavity produces
mJ in 20-ns pulses atl5532 nm at a rate of 25 Hz. Giving
a small tilt to mirror M4, the green radiation produced
cavity 1 goes through a different path than light produc
by cavity 2. Both beams are expanded through diverg
lenses and then are made collinear at BC2. The lens NL
placed a distanced ~exaggerated in the diagram for clarity!
nearer to BC2 than NL1, and therefore the curvature rad
of the illumination beam is greater for the first laser pu
than for the second, as required for spatial-carrier gen
tion ~Fig. 1!. The lens NL2 is mounted on a translatio
stage that allows the distanced to be precisely adjusted
Either horizontal or vertical shear is introduced in t
speckle interferograms by slightly tilting the mirror M9 i
the Michelson arrangement placed in front of the imag
system.

4 Experimental Results

We have demonstrated the optical setup schematically
resented in Fig. 2 for the measurement of the out-of-pl
displacement gradient of impact-induced transient bend
waves in metallic plates. The operation of our doub
pulsed TVS system is as follows. The laser continuou
emits twin pulses at a rate of 25 Hz, properly timed w
respect to the video signal. When the operator gives
order to start, the test object receives an impact from
piezoelectric transducer, and a video frame is digitized
stored as 512351238 bits in a framegrabber. The irrad
ance values recorded by the CCD during both the first
the second laser pulses, Eqs.~1! and ~2!, are contained in
the even and the odd lines of that image, respectively.
tensity fluctuations between first and second laser pu
neering, Vol. 39 No. 8, August 2000
d

-

-

s

are digitally compensated. Next, a frame processor s
tracts even lines from the adjacent odd ones and rect
the result, Eq.~5!, yielding a set of equally spaced straig
carrier fringes modulated by the spatial derivative of n
mal displacement.~The interested reader is directed
Refs. 16 and 17 for further details on the synchronism s
tem.!

The specimen used in our experiment is an alumin
plate (300312033.5 mm) clamped along its left and it
right edges. An area of approximately 124 mm (X) by 84
mm (Y) was measured. The object was impact-excited
the central point of the back side of this area. The tim
separation between laser pulses was set to 50ms. The delay
between the piezoelectric transducer driving signal and
firing of the second laser pulse was adjusted to 20ms by
means of a programmable delay generator. We set the
tancesd andL to 6.35 mm and 2.09 m, respectively. Th
numerical values of horizontal and vertical object shear
dx532.5 mm anddy537 mm, respectively. One can ca
culate horizontal as well as vertical carrier frequencies
ing Eqs.~22! and~23!. For the experimental conditions jus
mentioned, the theoretical values aref cx511.01 andf cy

58.49, expressed in fringes per image. These predicti
are in good agreement with experimental results.

Figure 3~a! is an experimental fringe pattern obtaine
with pure horizontal shear, which shows vertical carr
fringes modulated by the transient deformation. Figure 3~b!
is the fringe pattern resulting from the repetition of th
experiment without mechanical excitation. Application
the FTM, Eq.~24!, to the fringe patterns in Figs. 3~a! and
3~b! yields Dfx

d(x) and Dfx
c(x), respectively~see Sec.

2.4!. We used a filtering windowW(f) that yields 1 for the
points inside a circle and 0 otherwise. Following the a
proach of Takatsuji et al.,18 we set the frequency coordi
nates of the center of this circular domain to the same v
ues as the peak of the sidelobe of the Fourier spectrum,
its diameter to the maximum value that yields a phase m
without strong discontinuities~15 pixels for the fringe pat-
terns in Fig. 3!. Wrapped phase maps were unwrapped
ing an algorithm based on a least-squares minimiza
technique that is solvable by the discrete cos
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Fig. 3 Transient bending waves in a metal plate 25 ms after mechanical excitation: (a) to (c), horizon-
tal shear; (d) to (f), vertical shear; (b), (e), carrier fringes; (a),(d), corresponding double-pulsed-
subtraction TV shearography fringe patterns, deformation plus carrier; (c), (f) three-dimensional plots
of the spatial derivatives of the out-of-plane displacement.
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transform.19 In this approach, invalid pixels due to pha
inconsistencies and regions with missing data are exclu
from the unwrapping process through the assignmen
zero-valued weights. In this way, the algorithm c
smoothly interpolate the phase over pixels with bad da

The weighted problem is solved using a precondition
conjugate-gradient method, which gives guaranteed
faster convergence. The spatial derivative along the h
zontal direction can be determined by subtractingDfx

d(x)
from Dfx

c(x) and scaling the result, Fig. 3~c!. Following an
analogous procedure, we evaluated the phase distribu
Dfy

d(x) andDfy
c(x) from their corresponding experimen

tal fringe patterns obtained with pure vertical shear, Fi
3~d! and 3~e!, to determine the spatial derivative along t
vertical direction, Fig. 3~f!. Finally, Fig. 4 is a representa
tion of the out-of-plane displacement gradient.

5 Discussion

We have developed an optical setup for spatial-carrier g
eration without moving parts. This makes our syste
highly immune to environmental disturbances, because
time separation between laser pulses can be as short a
transfer period of the CCD camera~see Sec. 1!. However,
the inherent immunity of our system to noise is strong
affected by the method employed for carrier removal. W
have used SPUCF because it is the method that introd
the lowest errors in the phase distribution; nevertheless,
immunity to environmental disturbances is dramatically
duced due to the relatively long time elapsed between
recording of the two necessary fringe patterns~40 ms!. This
fact may be disregarded as long as the working conditi
are controlled, as they are in a laboratory, but it is relev
for operation in industry. In that case, the phase must
d
f

s

-

he

s

calculated from a single fringe pattern, and therefo
SPUCF is inadequate. The solution is to use other car
removal methods~e.g., translation of the sidelobe to th
frequency origin, or least-squares fitting!, that do not re-
quire a second fringe pattern for phase evaluation. The
fluence of the main existing carrier removal methods on
accuracy of the results and on the immunity to noise
discussed in more depth in Ref. 15.

Obviously, the arguments above are completely t
only for the calculation of one component of the displac
ment gradient, either the horizontal or the vertical spa
derivative, because of the long time required~tens of sec-

Fig. 4 2-D representation of the transient out-of-plane displacement
gradient in the central area of the tested specimen.
2111Optical Engineering, Vol. 39 No. 8, August 2000
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onds! to repeat the experiment with a different shear dir
tion.

Finally, it is possible to obtain a sequence of quantitat
measurements showing the temporal evolution of the m
sured magnitude by repeating the experiment with a v
able time delay between the mechanical impact and
second laser pulse.

6 Conclusions

We have reported a new technique for the measuremen
transient out-of-plane displacement derivatives by doub
pulsed subtraction TV shearography. The introduction
carrier fringes by mismatching the distances from the
verging lenses to the beam combiner allows quantita
analysis of the fringe patterns using the Fourier transfo
method. The inherent immunity of our system to noi
which is a valuable feature for industrial application,
strongly affected by the method employed for carrier
moval. We have shown experimental results with a meta
plate excited by impact to illustrate the performance of o
approach.
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