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Abstract: Building information modeling (BIM) is a process that has shown great potential in the
building industry, but it has not reached the same level of maturity for transportation infrastructure.
There is a standardization need for information exchange and management processes in the
infrastructure that integrates BIM and Geographic Information Systems (GIS). Currently, the Industry
Foundation Classes standard has harmonized different infrastructures under the Industry Foundation
Classes (IFC) 4.3 release. Furthermore, the usage of remote sensing technologies such as laser scanning
for infrastructure monitoring is becoming more common. This paper presents a semi-automated
framework that takes as input a raw point cloud from a mobile mapping system, and outputs an
IFC-compliant file that models the alignment and the centreline of each road lane in a highway road.
The point cloud processing methodology is validated for two of its key steps, namely road marking
processing and alignment and road line extraction, and a UML diagram is designed for the definition
of the alignment entity from the point cloud data.

Keywords: mobile laser scanning; point cloud processing; infrastructure information models; building
information modeling; Industry Foundation Classes; road alignment modeling

1. Introduction

Nowadays, reliable and effective information exchange is crucial to any industry.
Misinterpretations or delays directly translate into increased cost and time requirements. In the
architecture, engineering, and construction (AEC) domain, this effect is accentuated. This field is a
heterogeneous mix of different disciplines that are meant to work together. Such a synergy thrives
with the presence of a standard ensuring that the data are accessible and usable by everyone involved.
This is what shifted the industry toward the adoption of building information modelling (BIM). It acts
as a unique source of information, storing all relevant data about the asset. It is not only a repository,
but a workflow based on collaboration among disciplines. The model evolves as the asset does, while
each team member contributes to its development [1]. An important factor regarding BIM is that its
effects are amplified with the complexity and scale of the project. In the case of infrastructure, assets
deal with highly complex and heterogeneous information from different sources. BIM for infrastructure
has been growing over the last years, and has shown promising results [2–4]. This growth is not limited
to its applications, but is also extended to its standardization. The Industry Foundation Classes (IFC)
is an open standard for creating BIM models designed by buildingSMART, and it has been shifting
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toward the infrastructure domain over the past years. Its most recent version, IFC 4.3, was released as
candidate standard on April 2020 and has been one of the major updates for the schema. While the
previous release only included bridges, this new harmonized version also includes railways, roads,
ports, and waterways [5]. The efficiency, safety and performance of these assets are affected by all the
stages of its life-cycle, from its design to its demolition. The BIM model is capable of incorporating
information throughout its evolution. However, as the project complexity scales with its duration,
the difficulty to feed data to update the model also increases. As a result, other technologies are used
in conjunction with BIM to overcome this issue. Laser scanning provides a way to obtain both accurate
geometric representations instead of idealized forms, and to monitor the current state of the asset.

Point cloud to BIM approaches can be used to obtain an as-built model of the asset [6]. While
as-design modelling is quite common and usually straightforward, as-built modelling is challenging
because of being based on the real outcome of the construction, instead of the idea behind it. Another
application is the enhancement of inspection operations performed in the operational and maintenance
stage [7]. These inspections are the main source of data regarding the actualized state of the asset (as-is
model), and therefore heavily impact its management.

Mobile laser scanning (MLS) is widely used for many infrastructure-related applications, despite
still being an emergent technology. There is a vast literature available from the past decade, showing the
interest from researchers, infrastructure operators, and administrations on this surveying technology
and its capabilities. Some extensive reviews on the applications of laser scanning on infrastructure can
be found in [8–11]. The review from Ma et al. [10] categorizes these applications according to the assets
where the information is extracted from, namely: (1) on-road information extraction (road surface, road
markings, driving lanes, road cracks, and manholes), and (2) off-road information extraction (traffic
signs, light poles, roadside trees, and power lines). One of the most relevant road assets are traffic
signs. Their predefined design in terms of material, shape, and size, makes them a common asset to
extract information from. Recent approaches combine 2D imagery and 3D point cloud data extracted
from mobile mapping systems in order to detect and classify traffic signs along the road [12–14], and to
assess their visibility and recognizability [15]. There is also relevant research regarding the influence
of vegetation in the infrastructure in terms of clearance and visibility disruption [16–18], or works
focused on detecting several objects along the infrastructure [19,20].

Of greater interest for this work are two of the aforementioned applications: driving lane
generation and road marking extraction. Both of them are complementary applications, as the
geometric information from road markings can be employed to extract the driving lanes. As road
markings have retroreflective properties, the intensity attribute of 3D point clouds (which is directly
related with the energy of the emitted pulse once it is reflected back to the sensor) is commonly
used to extract and process them [21–23]. Wen et al. [24] propose a complete framework for the
extraction, classification, and completion of road markings that is able to extract the road markings
using a U-Net (encoder-decoder) segmentation network, and then classify them using a hierarchical
approach that uses convolutional neural networks (CNN) to classify small size markings. Finally,
occlusions and misdetections can be corrected with a context-based completion based on a conditional
generative adversarial network (cGAN). As it can be seen, deep learning frameworks are common on
the state-of-the-art for road marking extraction in 3D point clouds. Finally, regarding driving lanes
extraction, it is worth mentioning the work from Li et al. [25,26], where 3D roadmaps are generated
using the information from previously segmented road markings. Then, lane geometries and lane
centrelines can be generated, including transition lines. However, this approach does not have into
account the modelling of their outputs according to infrastructure standards.

The objective of this paper is to present a semi-automated framework that takes as input a raw
point cloud from a mobile mapping system, and outputs a IFC file that represents the centreline of the
road (called alignment or main alignment throughout the paper) and the centreline of each road lane
(offset alignment). The contributions of this paper can be listed as follows:
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(1) A point cloud-processing method that extracts the road main alignment and offset alignment of a
highway road. In order to do so, a method for detection and classification of solid and dashed
road markings is also presented. Note that this road marking processing method does not aim
to be a contribution by itself, but it is essential for the whole workflow and will be validated to
prove that it has state-of-the-art performance.

(2) A conversion of the main alignment and offset alignment as exported from the point cloud
processing method, to an IFC Alignment model, which is part of IFC 4.1 standard. The model is
supported with UML diagrams.

The structure of this paper continues as follows: Section 2 presents the case study data and the
proposed methodology, Section 3 shows the results obtained from its validation, Section 4 presents the
discussion, and finally Section 5 outlines the conclusions and the future lines of this research.

2. Materials and Methods

2.1. Case Study Data

The study area for this work consists of approximately 20 km of a highway road which was
surveyed with the LYNX Mobile Mapper by Optech (Figure 1a). It consists of two LiDAR sensor heads,
a navigation system that comprises an inertial measurement unit (IMU) and a two-antenna heading
measurement system (GAMS), and a LadyBug 5 panoramic camera. For a complete description about
the system specifications, the reader is referred to [27].
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Figure 1. Case study data. (a) Optech LYNX Mobile Mapper. (b) Raw point cloud section.

The raw data of the study area comprise 3D point cloud data as well as trajectory data, both
including a synchronized time stamp attribute that allows the georeferentiation of the trajectory with
respect to the point clouds. It is important to notice that the size of the point cloud data was too large
to be processed with the available equipment, therefore it was divided into 43 individual point cloud
sections with a manageable size. In average, each section has 3.5 million points and covers a length
of around 400 m (Figure 1b). The complete dataset has approximately 155 million points and covers
17.5 kilometres. The geographic location of the study area is not available because of confidentiality
restrictions by the infrastructure owner.

2.2. Methodology

This section presents the methodological approach of this work as a sequential set of processing
modules that take as input a 3D point cloud section of a highway road and outputs a IFCAlignment
data model according to the specifications of IFC 4.1, which defines the alignment of the road as well
as the middle point of each road lane. A schematic diagram of the workflow is shown in Figure 2.
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Figure 2. Workflow of the presented method.

2.2.1. Ground Segmentation

The first module of the methodology aims to isolate the ground in order to ease the subsequent
detection of road markings. Let Praw = (x, y, z, I, ts) be the raw point cloud, where (x, y, z)
are the 3D coordinates, I is the intensity, and ts is the team stamp of the point acquisition.
Also, letT = (x, y, z, ts, φ, θ, ψ) be the trajectory of the vehicle during the survey, where (x, y, z, tS)

are the 3D coordinates and time stamp in the same coordinate system as the point cloud, and (φ, θ, ψ)
are the roll, pitch, and heading of the vehicle at each recorded trajectory point. Also, let S(P, i) be a
function that takes a point cloud P and selects a subset of points with indices i (each index is an integer
value representing the position of a point in P).

Ground segmentation is a common process in the point cloud processing literature, and there are
several different valid approaches to achieve acceptable results for this application. Here, an adaptation
of the voxel-based method of Duillard et al. [28] is employed. First, the point cloud Praw is voxelized,
and each voxel includes the vertical mean and variance of the points within each voxel. Then, a set of
ground seed points is selected using the trajectory, and the knowledge that trajectory points are always
located directly over the ground. Finally, a region growing algorithm is applied, iteratively selecting
the neighboring voxels of those selected as ground and adding them to the ground segment when
their vertical mean and variance are under thresholds dµ and dσ .

Once the region growing is finished, the indices of the points within the voxels selected as ground,
ig, are retrieved, and the ground cloud is defined as PgS

(
Praw, ig

)
. In practice, only the indices are

stored in memory, such that Pg is generated from Praw only when it is needed. A more detailed
description of the whole ground segmentation process can be found in previous work [12]. Figure 3
shows the results of the ground segmentation process.
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2.2.2. Road Markings Detection

The objective of this module is to detect points that belong to road markings within the previously
segmented point cloud Pg. Here, a detection process based on point intensity is proposed, as it is a
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highly discriminative feature that allows separating pavement and road markings. The following
considerations are made to design the process of this module:

• The intensity of a point is an attribute that depends on the distance between the sensor and the
point itself. Therefore, usage of global intensity thresholds is not feasible. Instead, the intensity
attribute should be analyzed locally, among points with similar distance with respect to the sensor.

• Most of the markings are linear elements that follow the direction of the vehicle trajectory (solid
and dashed lines). Therefore, it seems convenient to locally search for road markings in a set of
slices parallel to the trajectory.

• The generation of those slices needs to have into account the curvature of the road. The longer the
slice in the direction of the trajectory at a point, the larger the effect of the curvature of the road.
Hence, it is preferable to define short slices and process them iteratively.

With these considerations, the point cloud Pg is divided into a number of sections following
the trajectory of the vehicle. For each point (x, y, z)i ∈ T , a geometric transformation is applied to
both the point cloud and the trajectory. First, they are translated such that the origin of coordinates
corresponds to (x, y, z)i and then rotated around the Z axis an angle given by the trajectory heading,
ψi, such that the next point (x, y, z)i+1 ∈ T is located along the Y-axis. Then, the indices igi of the
points with Y coordinates in the range [0, ymax] are obtained and the point cloud Pgi = (Pgi, igi) is
extracted, where ymax is the y coordinate of (x, y, z)i+1 ∈ T plus an overlap of 2 m set to avoid losing
points in curved areas of the road. Then, eachPgi is subsequently divided, following the same process,
in bins [bin1, bin2 . . . bini, . . . binN] of length binl (with binl/2 of overlap), and width binw. This process
is graphically illustrated in Figure 4.

The average intensity value of the points within each bin will be used to generate intensity profiles
of the road. As it was mentioned, the intensity of a point depends on the distance with respect to
the sensor, so the intensity profile is normalized by subtracting the average ground intensity across
the profile. Then, in order to find consistent intensity peaks, the intensity profile is smoothed with a
gaussian-weighted moving average filter with window size wg, and with a top-hat filter with a filter
size wth. Finally, peaks are selected as local maxima with values higher than the intensity average
across all bins. First and last bins are removed from the peak selection to avoid boundary artifacts.
Points within bins selected as peaks are considered road marking candidates (Figure 5).
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Figure 5. Road markings detection. (a) 3D point cloud employed to generate a single intensity profile.
(b) Intensity profile, with normalized and filtered intensities. (c) Detected road markings on the 3D
point cloud are colored in red.

Once every Pgi has been analyzed, the road marking candidates are clustered via Euclidean
distance clustering. As every bin selected during the process may have both road marking and
pavement points, the latter are removed by applying an Otsu thresholding [29] to each cluster and
its neighboring points, in a neighborhood ns. This process results in a set of indices im that allow the
selection of a point cloud Pmk = S(Praw, imk) with the detected road markings (Figure 6).
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2.2.3. Road Markings Processing

The objective of this module is to assign semantics to the points detected as road markings in the
previous step of the methodology. The following considerations have been made:

• The main objective of the whole process is to extract the center of the road and each lane using the
information given by the road markings. Therefore, the relevant markings to be classified are
solid and dashed lines.

• The knowledge about the semantics of the road markings will allow to analyze the presence of
false positives as well as occlusions and other false negatives on the point cloud of detected road
markings, Pmk.

First, the point cloud Pmk is retrieved from the indices extracted in the previous step. Then,
it is rasterized, following the rasterization approach in [30] with a raster size rs; and a binary image
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representing the pixels that contain at least one point is generated. Then, the eccentricity of each
connected component is computed. The eccentricity is defined as the ratio of the distance between the
foci of the ellipse that has the same second-moments as the connected component, and its major axis.
Only those components with an eccentricity close to 1 (larger than eccth), hence elongated elements, are
selected as either solid or dashed lanes. A soft length filter is applied, initially classifying as dashed
those lines whose length is between dashth and solidth1, and solid if they are longer than contth. This soft
thresholding allows to apply different processing approaches to solid and dashed lines to achieve a
final classification result.

For each solid line in Pmk, a Gaussian Mixture Model (GMM) fits the intensities of the points of
Pmk and its neighborhood in Pg to two different classes (ground and road marking). Then, a region
growing process is defined to detect false negatives or partially occluded areas of the lines, where
rectangular regions of interest [roi1, roi2, . . . roii, . . . , roiN] centered on the line are iteratively defined,
following the direction of the line until no more points are found. Each roii is defined to have a length
of lroi and a width, wroi, equal to two times the width of the line. The intensity of the points within each
region is classified using the GMM, and every point classified as road marking that is not found in the
original solid line is added to it. This step allows to merge solid lines separated by an occluded area
and to refine the detection of road marking points in the direction of the line. This process is illustrated
in Figure 7a.

Finally, to deal with false positives, each solid marking is set to meet two conditions: First, since
the solid line has to be parallel to the trajectory, the angle αtm between their principal directions
is computed and markings whose angle is larger than αs are considered false positives. Similarly,
markings whose length lm is shorter than solidth2 are considered false positives as well (Figure 7a).
Note that solidth1 < solidth2, as the previous step is expected to reconstruct solid markings with
small occlusions.

Regarding dashed markings in Pmk, the objective is to find all markings that belong to the same
line, considering that there may be more than one road lane separated with dashed markings. First,
length and width of all dashed markings is computed, and they are clustered in groups such that
the length and width of each marking is closer than tolerances tl and tw to the average value for all
markings in the cluster. For the markings within each cluster, they are iteratively analyzed computing
(1) the angle αcd between the principal direction of the dashed marking and the direction of the vector
that joins its centroid with the centroid of the closest marking in the cluster, and (2) the distance
dcd between centroids (Figure 7b). Two markings are merged as part of the same line when these
parameters are under thresholds αth and dth.

Finally, a process to search false negatives is carried out. The average of the minimum distances
between the centroids of two markings within the same line, davg is computed, and when a gap is
found between the two consecutive markings, the position of the missing ones is obtained using the
aforementioned distance and the direction of the line (Figure 7b). In order to detect only the points
belonging to the dashed marking, a rectangular region is computed and a binary intensity classification
of the points within the region in Pg (using a GMM in an analogous manner than for solid lines)
is applied.

Once solid and dashed lines are processed, they are stored as objects with several properties as
shown in Table 1. That is, for each Pmk, a set of road markingsM = [M1, . . . , Mi, . . . , Mn] ∈ Pmk are
defined with semantics and relevant properties. Note that not all properties are computed at this stage,
and also that road marking points that are not classified as neither solid or dashed are considered of
class “Others” but still stored as part of the output of this module. Road markings Mi of a road section
are shown in Figure 7c.
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Figure 7. Road markings processing. (a) False negatives or occlusions on solid lines are corrected using
a region growing method that follows the detected line. False positives are removed based on angle
αtm (which has been exaggerated for better understanding of the figure) and length of the marking lm.
(b) Dashed markings are merged together based on angle αcd and distance dcd false negatives can be
found using parameter davg. (c) Processed road markings are shown in the 3D point cloud (solid lines
colored in red, dashed lines colored in green).

Table 1. Properties of each road marking object inM .

Property Description

path Path of the point cloud Praw
indices Indices of the marking in Praw
points Nx3 array with the coordinates of the marking
class Class of the marking (solid, dashed, or others)

geometry Geometric properties of the marking
line Polynomic parametrization of the marking

2.2.4. Road Edge Detection

This module aims to detect those road markings that delineate the edges of the road. The precise
knowledge of road edges is essential to extract the center point of the road and hence, to build the IFC
alignment models. The following considerations have been made:

• The geometric data that are exported to build the IFC alignment model must not contain any
error, so the model can be created correctly. This will be ensured if road edges are detected with
no errors.

• A fully automated approach is not desirable for this module. Even if complex heuristics are
defined, it is not possible to ensure that road edges are correctly detected in all cases. Therefore,
an efficient approach would include an automated process with manual verification, and only in
those cases when errors are detected, a manual delineation of road edges would be enabled.

• Manual verification of the results allows the definition of simple heuristics that are able to
efficiently detect road edges in most cases, even if they are not robust enough to perform correctly
in all cases.
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With these considerations, an automatic road edge detection process is defined, and the results
for each point cloud Praw are manually verified by the user. If errors are found, the user is asked to
manually select the road edges.

Regarding the automatic process, markings M as computed in the previous module are
retrieved together with the ground point cloud Pg and the trajectory T . Then, Pg is divided
following the direction of the trajectory, retrieving the sections Pgi as detailed in Section 2.2.2.
Then, the spatial coordinates of each road marking within Pgi are defined, obtaining a subset
Mi =

[
M1, . . .M j, . . .MN

]
⊂M. Each M j is analyzed, computing its length LMj and its transversal

distance with respect to the trajectory DMj. Note that this distance is defined as negative if it is
measured to the left in the direction of the trajectory, and positive otherwise). Those M j whose LMj
is smaller than the 90% of the section length are filtered out, and from the remaining M j those with
largest positive and negative DMj are selected as part of the right edge and left edge respectively.

These heuristics are simple but efficient. The result should be correct unless there exist false
positives outside of the road edges or the edges themselves are false negatives. For these cases, the user
will be asked to delineate road edges, selecting a rectangular region in Pgi for each edge.

This results, independently of the type of process, in a couple of arrays of indices, (ire, ile) allowing
the selection of both road edges such that Pre = S

(
Pg, ile

)
, Ple = S

(
Pg, ile

)
are the point clouds of the

right and left edge respectively (Figure 8).
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2.2.5. Alignment and Road Lane Processing

The objective of this module is to detect and define the alignment of the road and the centerline of
each road line. For that purpose, the point clouds of the road edges Pre and Ple are used together with
the point cloud of the ground Pg and road markingsM. First, a linear polynomic curve is fitted to the
(x, y) coordinates of each edge. If the quality of fit is good (R2 coefficient larger than R2min) the linear
model is kept. Otherwise, it is replaced by a quadratic polynomic curve, that will get a better fit in
curved sections of the road.

The polynomic curves are subsequently sampled, obtaining a point each dsample meters. This results
in two sets of coordinates that represent the road edges with a set of uniformly distributed 2D points.
In order to retrieve the third coordinate, the closest neighbor in the (x, y) coordinates ofPg is obtained,
and the z coordinate of the closest neighbor assigned to the sampled edge point.

Finally, the alignment is defined using the left edge as reference. For each point on the edge,
the closest point of the right edge is selected, and the closest point to the geometric mean of both
edge points in Pg is computed and considered an alignment point (Figure 9). This way, a set of
points Pal = (x, y, z) ⊂ Pg is defined and will be used to build the IFC alignment model. Note that Pal
coordinates should be ordered following the direction of the trajectory.
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Once the coordinates Pal are retrieved, the middle point of each road lane is computed. First, it is
necessary to make some considerations:

• The first necessary step is to detect the number of road lanes. This number is not constant along the
study area, and a single point cloud Pg may have different numbers of lanes when, for instance,
there is a highway entrance or exit.

• Both solid and dashed markings can separate two lanes. However, the separation between the
same lines can change along the road (for instance, a dashed line can be replaced by a solid line
for a road section with prohibition of overtaking).

With these considerations, the point cloud Pg is transversally divided in sections Pgi and
subsequently in bins

[
bin1, bin2 . . . bin j, . . . binN

]
following the same approach than in Section 2.2.2,

but defining each bin with the same length than Pgi and a width of binw2, and considering only
bins between the edges Pre and Ple. Then, an occupancy vector Oi = [O1, O2, . . . , O j, . . . , On

]
is

computed such that Oi indicates whether or not there are either solid or dashed markings fromM in
bini. The presence of markings in a bin indicates a separation between two lanes, hence Oi indicates
how many road lanes are in Pgi (Figure 10). The number of lanesNi in each Pgi is stored in an array
N = [N1, . . . , Ni, . . .NN], and it is analyzed with the following criteria: (1) the number of lanes has to
be constant for a distance of at least dlane. If any discrepancy is found in the number of lanes Ni of a
section Pgi, it is assumed to has the same number of lanes as the previous correct section.

Finally, the middle point of each road lane is obtained following the same approach than for the
alignment coordinates Pal, starting on the left margin and computing iteratively the middle point with
respect the next lane separation until the right margin is reached.
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Figure 10. Road lane processing. (a) Example of a road section with two lanes. (b) Example of a road
section with three lanes.

At this point, two different tables are created as .csv files to export the results. The first one
includes a Nx3 matrix with the coordinates of Pal as a set of ordered 3D points defining the center of
the road with a small resolution. The second one is a Mx3 matrix that allows the positioning of the
middle point of each road lane from Pal, including:

• OffsetXY: The perpendicular distance between each point in Pal and each middle point of each
road line.

• OffsetZ: The vertical distance between each point in Pal and each middle point of each road line.
• Offset_id: Since there may be more than one lane per point in Pal, an index is stored for each pair

of (OffsetXY, OffsetZ) that points to the coordinate in Pal from which the offsets were obtained,
allowing the offset alignment generation as explained in Section 2.2.6.

Figure 11 shows the results of this module. The road alignment, as well as the middle point of
each road lane, are described as a set of ordered points with a small resolution such that a polyline can
be defined without introducing a relevant error, even when there is a certain curvature on the road.
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Figure 11. The alignment (black points) and the centerline of each road line (which is employed to
define the offset alignment -red and green points-) are shown in the 3D point cloud.

2.2.6. IFC Alignment Model Generation

The purpose of this module is to obtain an IFC model that contains the alignments for both the
center of the road (main alignment) and the lanes (offset alignments).

To support the explanation of the procedure, both an UML class diagram and a general flowchart
are provided to be understood along each other. The UML can be seen in Figure A1 (Appendix A) and
the flowchart is visible in Figure 12.
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The process revolves around an alignment hierarchy where the main alignment stands on
top and the offset alignments depend on it for their geometry definition. While the nature of the
hierarchy implies that the main alignment has to be created first, the process can be explained
simultaneously, since the building process is quite similar. First, the data matrices obtained from the
point cloud are fed into the system, where they are formatted into packages. These packages are
called constructors and they contain the necessary information to define a unique curve. Depending
on whether they describe the center of the road (MainAlignmentConstructor) or one of its lanes
(OffsetAlignmentConstructor), the formatting varies, but the objective is the same: one constructor equals
one curve. Then, these constructors are used to create segments describing the center of the road
(IfcAlignment2DHorizontalSegment & IfcAlignment2DVerticalSegment), and offset points based on them
that describe the shape of each lane (IfcDistanceExpression). Afterwards, the segments are concatenated
forming the curve of the main alignment (IfcAlignmentCurve), and the points are connected forming
the curves of the offset alignments (IfcOffsetCurveByDistances). Finally, these curves are used as the
base for their corresponding IfcAlignment instances, and the model is exported into an IFC file.

For a more detailed explanation, the process can be broken down into its two stages: formatting
the data, and creation of the alignments. As mentioned previously, the end goal of the formatting
stage is to obtain one constructor for each curve. Additionally, it also serves to express the input
data from the matrices (.csv) in an appropriate form, so that it can be easily used throughout the
program. For the main alignment, this stage is a simple redistribution of the data found in the Nx3
matrix. This means that the constructor contains the coordinates of Pal in an ordered list. However,
for the offset alignments, the possibilities of incorporation lanes and missing data are also taken into
account. The solution for both these issues is based on the Offset_id parameter. The Offset_id is an
index that indicates to which main alignment point the accompanying OffsetXY and OffsetZ are related.
Therefore, by querying all its values for repetition, a counter list is obtained. This counter list reflects
the amount of times each index is repeated, indicating the number of lanes for each Pal. This allows
the consideration of incorporation lanes, since the counter would increase in the moment a new lane
appears, and decrease when it disappears. As for the missing data, if there is a jump in the sequential
values of Offset_id (e.g., 1, 1, 2, 2, 15, 15, 16, 16), it means that there are no related OffsetXY and OffsetZ
for the Pal in between. To avoid misrepresenting that part of the road, the curves are split if the jump
surpasses certain threshold. This implies that points before and after the split will belong to different
curves and, therefore, to different constructors.

The creation stage for the main alignment is focused on the definition of linear segments connecting
each sequential pair of Pal. Following the IFC schema, the vertical and horizontal components
of the alignment are defined separately. Horizontal segments (IfcAlignment2DHorizontalSegment)
contained in the XY-plane are described by their StartPoint, their SegmentLength, and their StartDirection.
The StartPoint is given directly from Pal and the SegmentLength is obtained as the norm of the vector
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connecting two consecutive Pal. The StartDirection is the counterclockwise angle of said vector,
with respect to the x-axis. Vertical segments (IfcAlignment2DVerticalSegment), on the other hand, are
defined based on their horizontal counterpart. Their description contains StartHeight, StartGradient,
and HorizontalLength. As before, the StartHeight is given as the z coordinate of Pal . Their StartGradient
is the slope, and the HorizontalLength is the same as the SegmentLength of their horizontal counterpart,
since they are described for the same pair of Pal . These segments are then concatenated into the curve
of the main alignment (IfcAlignmentCurve) and passed down for the creation of the offset alignments.

Modelling the offset alignment requires the consideration of the tangential discontinuity present
when two consecutive segments of the main alignment have different StartDirection. This causes an
angle difference between the segments, that translates into the issue depicted in Figure 13a. Because
the point is between two segments with different perpendicular directions, it is not possible to directly
place the OffsetXY measurement for that Pal . Furthermore, the angle difference also means that the
lanes will be modeled differently from one another. Picture a smooth curve in a road, the interior lane
has a different curvature radius than the exterior one, in order to keep the shape of the road. This effect
is also translated when using line segments, the interior lane has to change direction sooner than the
exterior lane. To do so, a shifting parameter D is calculated, whose purpose is to change the point in
which the OffsetXY will be applied. This approach, seen in Figure 13b, solves both the discontinuity
and this modelling issue. The perpendicular direction is obtained from the segment connecting to
the target Pal . The point to apply the OffsetXY is then shifted backwards or projected forwards by D
depending on whether it is an interior or exterior lane, respectively.
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These points (IfcDistanceExpression) are then connected to form each of the offset alignment curves
(IfcOffsetCurveByDistances). The final step is to use the curves obtained from the creation stage as the
base for the IfcAlignment instances of the center of the road and the lanes. Finally, the model is exported
as an IFC file.

3. Results

3.1. Parameters

In Section 2.2, several parameters and thresholds were introduced. In Table 2, they are summarized
together with the values used for the validation of the method. In most cases, the definition of the
parameters comes from previous knowledge of the problem (e.g., the geometric properties of road
markings), and an empirical verification that is needed in every methodology heavily based on
heuristics as the one presented in this work.
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Table 2. Values of the parameters used for the validation of the method.

Parameter Value Parameter Value

dµ 0.05 m lroi 3.5 m
dσ 0.05 αs 10º
binl 1 m solidth2 20 m
binw 0.15 m tl 0.75 m
wg 15 tw 0.75 m
wth 5 αth 15º
ns 0.5 dth 50 m
rs 0.2 m R2min 0.999
eccth 0.98 dsample 1 m
dashth 0.5 m binw2 0.5 m
solidth 7.5 m dlane 100 m

3.2. Road Marking Detection and Processing

This section is focused on the validation of the methods from Sections 2.2.2 and 2.2.3 for road
marking detection and processing respectively. Ground truth data were obtained by randomly selecting
a 20% of the point cloud sections Pgi generated during the process and labelling them manually.
This results in approximately 4 km of road that is used for validation. To simplify the labelling process
for the manual operator, the point clouds were rasterized with a raster size of 0.1 m, and a pixel-wise
labelling was carried out over the intensity image of the raster structure. To obtain validation results for
road marking processing, two different classes are annotated: solid line and dashed line (Figure 14a).

Remote Sens. 2020, 12, x FOR PEER REVIEW 14 of 22 

 

properties of road markings), and an empirical verification that is needed in every methodology 

heavily based on heuristics as the one presented in this work. 

Table 2. Values of the parameters used for the validation of the method. 

Parameter Value Parameter Value 

  𝑑𝜇   0.05 m   𝑙𝑟𝑜𝑖    3.5 m 

  𝑑𝜎   0.05   𝛼𝑠   10º 

  𝑏𝑖𝑛𝑙   1 m   𝑠𝑜𝑙𝑖𝑑𝑡ℎ2   20 m 

  𝑏𝑖𝑛𝑤   0.15 m   𝑡𝑙   0.75 m 
  𝑤𝑔   15   𝑡𝑤   0.75 m 

  𝑤𝑡ℎ   5 𝛼𝛼ℎ 15º 

  𝑛𝑠   0.5   𝑑𝑡ℎ   50 m 

  𝑟𝑠   0.2 m   𝑅2𝑚𝑖𝑛   0.999 

  𝑒𝑐𝑐𝑡ℎ   0.98   𝑑𝑠𝑎𝑚𝑝𝑙𝑒   1 m 

  𝑑𝑎𝑠ℎ𝑡ℎ   0.5 m   𝑏𝑖𝑛𝑤2   0.5 m 

  𝑠𝑜𝑙𝑖𝑑𝑡ℎ   7.5 m   𝑑𝑙𝑎𝑛𝑒   100 m 

3.2. Road Marking Detection and Processing 

This section is focused on the validation of the methods from Section 2.2.2 and Section 2.2.3 for 

road marking detection and processing respectively. Ground truth data were obtained by randomly 

selecting a 20% of the point cloud sections 𝓟𝒈𝒊 generated during the process and labelling them 

manually. This results in approximately 4 km of road that is used for validation. To simplify the 

labelling process for the manual operator, the point clouds were rasterized with a raster size of 0.1 

m, and a pixel-wise labelling was carried out over the intensity image of the raster structure. To obtain 

validation results for road marking processing, two different classes are annotated: solid line and 

dashed line (Figure 14a). 

 

Figure 14. Road markings processing results. (a) Manual reference with labels for solid and dashed 

lines. (b) False positives (red) and false negatives (black) are highlighted on the 3D point cloud. 

Road marking detection is validated by directly comparing, pixel by pixel, the manually 

annotated images with the corresponding raster images that include the road markings from 𝓟𝑚𝑘 

as defined in Section 2.2.2. The metrics used for this validation are Precision, Recall, and F-score 

(Equations (1)–(3)). 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1) 

  𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   (2) 

Figure 14. Road markings processing results. (a) Manual reference with labels for solid and dashed
lines. (b) False positives (red) and false negatives (black) are highlighted on the 3D point cloud.

Road marking detection is validated by directly comparing, pixel by pixel, the manually annotated
images with the corresponding raster images that include the road markings from Pmk as defined in
Section 2.2.2. The metrics used for this validation are Precision, Recall, and F-score (Equations (1)–(3)).

Precision =
TP

TP + FP
(1)

Recall =
TP

TP + FP
(2)

Fscore =
2 ∗ Precision ∗Recall
Precision + Recall

(3)

where TP, FP, and FN are the number of true positive, false positive and false negative pixels respectively.
Furthermore, two distance metrics are considered to offer a better insight on the value of the

validation metrics: dFP is the average distance, across the ground truth, between false positive points
and their closer true positive points. Similarly, dFN is the average distance between false negative points



Remote Sens. 2020, 12, 2301 15 of 22

and their closer true positive points. These distances allow to quantify the influence of the labelling
quality on the results; a closer distance to the raster size implies a bigger influence of boundary errors
on the labelling process. The results can be seen in Table 3.

For road marking processing, a confusion matrix of solid and dashed lines across the ground truth
is shown in Table 4.

Table 3. Road marking detection results and validation metrics.

Precision Recall F-score dFp (m) dFN (m)

0.919 0.964 0.932 0.184 0.333

Table 4. Confusion matrix for road marking classification.

GT/Prediction Solid Line Dashed Line

Solid Line 99826 163
Dashed Line 466 13805

As it can be seen, the metrics for road marking detection are promising. Even if there exist false
positives and false negatives in the validation data, most of them are in the boundaries of the markings
(Figure 14b), which is reasonable as the manual labelling was done pixel-wise in intensity-based images
with a resolution of 0.1 m.

3.3. Alignment and Road Lane Processing

This section is focused on the validation of the methods from Section 2.2.5. The output of the
point cloud processing modules is a set of ordered point coordinates that represent the alignment,
or central line, of the road (Pal). Such set of points can be validated against manual references. A similar
approach than in Section 3.2 was carried out, selecting a 20% of the sectionsPgi randomly (this selection
is independent from the one in Section 3.2), and manually defining a line on a raster image of the
section that represents the alignment. The 3D line corresponding to the pixels selected by the manual
annotation are retrieved, and two parameters are computed: the average distance of the points in Pal
corresponding to the section Pgi with respect to the reference 3D line (derror ) and the angle between
the principal component of the points in Pal and the director vector of the reference 3D line (αerror ).

The results for all selected Pgi can be visually interpreted with the box plots in Figure 15a.
The central mark of each box represents the median, which is 0.072 m for derror and 0.177º for αerror.
The top edge of the box indicates the 75th percentile, hence it can be seen that errors are small and
close to the resolution of the images used for defining the ground truth. A few outliers are also present
in the results. One of them is shown in Figure 15b, where the transition to a third lane which appears
in the boundary of the section is not captured by the manual annotation.
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Figure 15. Alignment extraction results. (a) Box plots of the error metrics derror and αerror. (b) Example
of a road section that results in an outlier for derror due to the transition to a third road lane that appears
in the boundary of the section, where manual reference is colored in red and alignment points are
colored in green

Finally, Figure 16 shows a visualization of the alignment on Google Earth. The small error found
in the validation data can be qualitatively generalized to the entire dataset given the visual results over
the satellite image.
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3.4. IFC Alignment Model Generation

The methodology employed in the IFC alignment model generation was explained in Section 2.2.6,
using the UML class diagram present in Figure A1 (Appendix A) as a guide. It is based on the IFC
4.1 version of the schema and programmed using the xBIM 5.1.274 toolkit available for Visual Studio.
However, while IFC 4.3 Draft Schema introduced several changes in the entity hierarchy and introduced
new definitions, the geometric description of IfcAlignmentCurve and IfcOffsetCurveByDistances remained
the same. Therefore, the alignment creation procedure showcased is valid for the newly released IFC
4.3. The exported IFC contains 17 offset alignments, as a result of the splitting procedure, to avoid
missrepresentation of the road because of missing data. Their instances can be seen alongside the top
view of the model in Figure 17.
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Figure 17. Top view of the IFC model and its alignment instances.

Because of the scale of the road compared to the separation between the road lanes, it is necessary
to zoom into an specific section to appreciate both the splits and lanes. Figure 18 shows several scenarios
at once: (i) separation and paralelism between the lanes and main alignment; (ii) the appearance of a
new lane; (iii) the reposition of the lanes to maintain the main alignment in the middle.

Overall, the shape of the road lanes followed the main alignment without any issues, mainly
because of the thorough point cloud preprocessing. For reference, the viewer used through the
development of the procedure and for the obtainment of the figures presented was FZK Viewer 5.3.1.
Nevertheless, the obtained IFC model is merely a skeleton for future works following the IFC 4.3
release. The body of the road can be built upon the alignments given by this procedure, and semantic
properties can be added to further enrich the model. While some of these steps would require a manual
input or a new data feed, the existence of the alignments ease the introduction of these future lines
of work.
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4. Discussion

Attending to the results shown in Section 3, the proposed methodology is able to fulfill the
objective and contributions of this work as presented in Section 1. First, the point cloud processing
workflow outputs the main alignment and offset alignment of a highway road in a format that can
be easily converted to an IFC compliant file. The validation of both road markings and alignment
processing show a good performance in terms of errors with respect to manual references and has
into consideration highway entrances and exits to define the alignment as the centerline of the road.
Conversely, it can be argued that the main drawback of this method is the fact that it is not a fully
automated process. This may have an impact on the time consumption of the method. Specifically, for
Road Edge Detection (Section 2.2.4), manual corrections were required only for 20% of the point cloud
sections of the case study but represent more than 65% of the total time of the process. Hence, it is
clear that full automated and reliable processes would save resources in terms of time and manual
interaction. Although full automation is a future objective for this research line, having a manual
verification of the results before converting them to an IFC file guarantees the final user that any
relevant error on the point cloud processing stage is corrected beforehand. Another future line of
research will be motivated by the large number of heuristics that are defined throughout the point
cloud processing workflow. With a larger amount of labelled data, it should be possible to train
supervised learning algorithms and set classification models that allow road marking classification
with no need of manual parameter tuning.

Second, a UML diagram that defines the construction of the IFC file is proposed (Appendix A).
The generation of IFC compliant files from point cloud data of road infrastructure is expected to be a
relevant research field in the next few years with the newly released IFC 4.3, where the definition of
IfcAlignment objects will be essential for the positioning of the different road elements. Furthermore,
different infrastructures could be interconnected (railways, bridges, etc.,) as a result of the harmonization
process that is at the core of IFC 4.3. As the standardization process evolves, different civil engineering
software tools are expected to be able to work with IFC files, hence the interest and potential of point
cloud processing tools that allow the generation of this type of information models. Similar processes
that allow to define IFC-compliant infrastructure entities are a natural future line for this research,
once standards such as IFC Road are published and openly available. The feasibility of this line of
research is being demonstrated in recent work [31,32]. Nevertheless, the automatic generation of an IFC
model containing the alignments should be viewed as an alternative form of presenting information.
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This means that the point cloud is to be cleaned and preprocessed before passing it down to create
an IFC-based model. Therefore, it is completely dependent on the raw data provided. If the input
data are refined and set to describe a smooth curve, it will be reflected in the outcome of the IFC as
well. The major drawback of the procedure on itself is that it uses an average number of lanes as basis.
This assists the modeling of appearing lanes, but it would present issues if the number were to drop
below that average on a section of the road. Regardless of this, the process has automatically created
alignments that describe 20 km of road and, while the techniques are to be refined as a future line of
work, it can be seen as a baseline for modelling the road itself, now that IFC 4.3 has been released.

5. Conclusions

This paper presents a methodology that outputs IFC-compliant files that model the alignment
and the centerline of the road lanes of a highway road, using point cloud data that is processed
in a semi-automated manner (automatic processing with manual validation) as input. The point
cloud processing framework includes methods for ground segmentation, road marking detection
and extraction, road edge detection based on the road markings, and finally alignment and road lane
processing. In order to validate the methodology, information extracted from both road markings
and alignment are compared with manual references, showing state-of-the-art performance for road
marking processing and average errors close to the resolution of the reference for the alignment.

This Cloud-to-IFC workflow is expected to generate interest in infrastructure owners and
administrations as BIM projects in infrastructure start to be more common, and buildingSMART just
released IFC 4.3 as the result of the harmonization procedure between different infrastructure domains.
Future research would consider expanding the alignment description to include arc segments and
transition curves, modelling the assets covered by the schema beyond their alignment, and exploring the
capabilities of remote sensing data to assist the generation of information models of built infrastructure.
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