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Abstract

A detailed understanding of how and when severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) transmission occurs is
crucial for designing effective prevention measures. Other than contact tracing, genome sequencing provides information to help infer
who infected whom. However, the effectiveness of the genomic approach in this context depends on both (high enough) mutation and
(low enough) transmission rates. Today, the level of resolution that we can obtain when describing SARS-CoV-2 outbreaks using just
genomic information alone remains unclear. In order to answer this question, we sequenced forty-nine SARS-CoV-2 patient samples
from ten local clusters in NWSpain for which partial epidemiological informationwas available and inferred transmission history using
genomic variants. Importantly, we obtained high-quality genomic data, sequencing each sample twice and using unique barcodes to
exclude cross-sample contamination. Phylogenetic and cluster analyses showed that consensus genomes were generally sufficient
to discriminate among independent transmission clusters. However, levels of intrahost variation were low, which prevented in most
cases the unambiguous identification of direct transmission events. After filtering out recurrent variants across clusters, the genomic
data were generally compatible with the epidemiological information but did not support specific transmission events over possible
alternatives. We estimated the effective transmission bottleneck size to be one to two viral particles for sample pairs whose donor–
recipient relationship was likely. Our analyses suggest that intrahost genomic variation in SARS-CoV-2 might be generally limited and
that homoplasy and recurrent errors complicate identifying shared intrahost variants. Reliable reconstruction of direct SARS-CoV-
2 transmission based solely on genomic data seems hindered by a slow mutation rate, potential convergent events, and technical
artifacts. Detailed contact tracing seems essential in most cases to study SARS-CoV-2 transmission at high resolution.
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1. Introduction
In recent years, genomic epidemiology has revealed itself as a
powerful tool for tracking viral outbreaks (Grubaugh et al. 2019b).
Particularly for diseases with a high proportion of asymptomatic
infections like coronavirus disease 2019 (COVID-19), the use of
genomic information might be especially relevant to understand
their dissemination. Several methods have been developed to
reconstruct infectious disease outbreaks using genomic infor-
mation (e.g. Didelot, Gardy, and Colijn 2014; Jombart et al.
2014; Worby et al. 2014a; Hall, Woolhouse, and Rambaut 2015,

2016; Lumby, Nene, and Illingworth 2018; Didelot et al. 2021).
However, these strategies rely on pathogen genomes mutating

rapidly between infected individuals (Campbell et al. 2018). Severe

acute respiratory syndrome coronavirus 2 (SARS-CoV-2), respon-

sible for the COVID-19 pandemic, has spread globally in a very

short time. SARS-CoV-2 has amutation rate in the order of 1 ×10−3

mutations per site per year (Koyama, Platt, and Parida 2020;

van Dorp et al. 2020b). For MERS-CoV-2, in principle with a similar
mutation rate, the prediction is that in most cases, the consensus
sequences sampled from a transmission pair (donor and receptor)
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will be identical, precluding a complete reconstruction of the out-
break (Campbell et al. 2018). As a counterpart, for SARS-CoV-1,
with a mutation rate four times higher, we expect to see several
mutations between transmission pairs, which considerably aug-
ments the power to resolve transmission history (Campbell et al.
2018).

These considerations are based on consensus sequences that
represent the dominant viral lineage within a host. However,
pathogens with high rates of evolution, such as RNA viruses,
accumulate new mutations more or less rapidly as they replicate
within the individuals they infect, generating intrahost genomic
variation. The generation of this genomic diversity enables viral
populations to evade host immune responses (Hensley et al. 2009;
Henn et al. 2012; Parameswaran et al. 2017), alter disease sever-
ity (Vignuzzi et al. 2006), and adapt to changing environments
(Stapleford et al. 2014; Stern et al. 2017). Notably, the study of
the shared intrahost genomic variation among individuals can be
critical for identifying contagion events and transmission clus-
ters (Didelot, Gardy, and Colijn 2014; Worby, Lipsitch, and Hanage
2014b, 2017; Park et al. 2015). Moreover, it also allows for estimat-
ing the size of the founding pathogen population transmitted from
the donor to the recipient host (i.e. the transmission bottleneck
size) (Frise et al. 2016; Sobel Leonard, Weissman, and Greenbaum
2017). Several studies have already shown that intrahost genomic
variation can be detected in most SARS-CoV-2 infections, gen-
erally at low levels, but with some variation among individuals
(Kuipers et al. 2020; Seemann et al. 2020; Shen et al. 2020; Wölfel
et al. 2020; Butler et al. 2021; Lythgoe et al. 2021; Tonkin-Hill et al.
2021; Valesano et al. 2021; Braun et al. 2021b; Wang et al. 2021b).
Most SARS-CoV-2 intrahost mutations appear at low frequencies,
often less than 5per cent, are primarily under purifying selection
and display particular biochemical signatures (Graudenzi et al.
2021; Sapoval et al. 2021; Tonkin-Hill et al. 2021; Wang et al.
2021b).

A key question is whether SARS-CoV-2 intrahost variation can
be transmitted during contagion. The answer is not straightfor-
ward, as shared intrahost variants among unrelated individuals
can also result from convergent evolution or mutational hotspots
(Tonkin-Hill et al. 2021; Valesano et al. 2021). So far, a few stud-
ies have used shared genomic variants between putative donor–
receptor pairs to infer narrow transmission bottlenecks of one to
ten virions, in SARS-CoV-2 (Li et al. 2022; Lythgoe et al. 2021; San
et al. 2021; Wang et al. 2021a). Limited genomic diversity can
prevent the reconstruction of disease outbreaks (Campbell et al.
2018). While distinct SARS-CoV-2 transmission clusters might be
identified using consensus sequences (Letizia et al. 2020; Popa
et al. 2020; Seemann et al. 2020), its moderate mutation rate and
rapid transmission might prevent the detailed reconstruction of
the transmission events within these clusters (Tonkin-Hill et al.
2021). Leveraging intrahost variation, San et al. (2021) studied two
nosocomial SARS-CoV-2 outbreaks, showing that potential donor–
recipient pairs are supported in some cases but not in others by
shared intrahost variants.

All in all, it is not clear whether the observed levels of
inter and intrahost variation in SARS-CoV-2 and the apparently
small size of the transmission bottleneck could limit our capa-
bility to reconstruct local SARS-CoV-2 outbreaks in detail using
only genomic information. Intrahost mutations, typically at very
low frequencies, are sensitive to methodological artifacts like
sequencing errors (Turakhia et al. 2020; De Maio et al. 2020a;
Kubik et al. 2021) and cross-sample contamination, and the occur-
rence of mutational hotspots can confound the identification of
transmission events. Here, we wanted to assess our ability to

reconstruct putative transmission chains and to infer reliable
transmission bottleneck sizes in SARS-CoV-2. For this, we obtained
high-quality genomic data from ten independent epidemiological
clusters, with two replicates per sample and with unique oligonu-
cleotide spike-ins to detect potential contamination, leveraging
both interhost and intrahost variants and ad hoc phylogenetic
techniques. Our results confirm the low levels of intrahost vari-
ability and the small transmission bottleneck of SARS-CoV-2, sug-
gesting that genomic data alone might not be sufficient to fully
resolve direct SARS-CoV-2 transmissions, revealing the need for
additional sources of information like detailed contact tracing.

2. Material and methods
2.1 Sample collection
According to the epidemiological records, we identified forty-nine
patients infected with SARS-CoV-2 conforming ten independent
transmission clusters originated in nursing homes, family house-
holds, and birthday parties in the city of Vigo, NW Spain (Fig. 1;
Table S1). After that, we recovered the corresponding diagnostic
nasopharyngeal exudates collected at the Vigo University Hospital
Complex (CHUVI). This study was conducted under the approval
of the Galician Drug Research Ethics Committee (CEIm-G code
2020-301).

2.2 Epidemiological information
Clusters A and B belong to two different nursing homes, and in
both cases, the primary case could not be established with confi-
dence (Fig. 1). Cluster C is a family in which there was a probable
transmission from C2 to C4. Cluster D is a large family spanning
four different households. D1 came from another Spanish city and
likely started the D transmission at a birthday party. Cluster E is a
family in which brothers E1 and E2 were infected abroad before
infecting their parent, E3. Cluster F is another family that was
likely infected by an unsampled case from another city in Spain.
Cluster G originates in two individuals (G1 and G4) that attended
the same event and afterward infected their respective families,
G1 to G2 and G3, and G4 to G5 (G5 failed at sequencing). Cluster H
is another family in which H3 likely infected H1 and H2. Cluster I
starts with two children (I6 and I3; I6 failed at sequencing) that got
infected at the same birthday party before infecting their families,
I6 to I1 and I2, and I3 to I4 and I5. Cluster J is a family in which J1
infected partner J2 and child J3. After that, either J1 or J3 infected
J4 and J5.

2.3 RNA extraction
Following themanufacturer’s recommendations, we extracted the
viral RNA from the nasopharyngeal exudates using the MagNA
Pure 24 Total NA Isolation kit (Roche Diagnostics, Basel, Switzer-
land). Different team members processed each RNA sample inde-
pendently to obtain two technical replicates for each patient
sample, from retrotranscription to library construction.

2.4 Viral load measurement
We measured SARS-CoV-2 genome copy concentration for each
sample by real-time polymerase chain reaction (RT-PCR) of the E
genewith the Sarbecovirus E-geneModularDx (TIBMolbiol, Berlin,
Germany) kit in a LightCycler® z480 System (Roche Molecular
Systems Inc, Meylan, France). Viral load was estimated using
linear regression (R2 > 0.99) from the standard curve generated
with the Ct values obtained for serial dilutions (log) of RNA stan-
dards with known viral RNA genome equivalents/µl (Vogels et al.
2020).
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Figure 1. Transmission clusters and epidemiological information. Black arrows indicate ‘known’ transmission events identified in the epidemiological
records. Question marks highlight potential alternatives. Samples from patients in faded color failed at sequencing.

2.5 complementary DNA (cDNA) synthesis and
multiplex amplification
We followed the ARTIC sequencing protocol (v.3) (Quick et al.
2017), a multiplex PCR-based target enrichment that produces
400-bp amplicons that span the SARS-CoV-2 genome, with slight
modifications. First, we retrotranscribed the RNA samples to
cDNA using the SuperScript IV reverse transcriptase (Invitrogen,
MA, USA), starting with 10µl of RNA. Then we ran 30 PCR cycles
for all the samples, independently of the Ct value, using the ARTIC
primer Pool1 and Pool2 (IDT, CA, USA) and the Q5 Hot Start DNA
polymerase (New England Biolabs, MA, USA). Next, we mixed the
corresponding PCR products from each sample before cleaning
(1.2:1 ratio beads to sample). We eluted the clean PCR products
with 35µl nuclease-free water, recovered 33µ and performed
quantification with the Qubit 3.0 using the dsDNA HS or BR kit
(Thermo Fisher Scientific, MA, USA), and checked amplicon size
with the 2200 TapeStation D1000 kit (Agilent Technologies, CA,
USA).

2.6 Addition of individual barcodes
We added 1µl of an X-mer single-stranded oligonucleotide with
a unique barcode sequence at 38 fM to each retrotranscription
reaction to detect potential sample cross-contamination. To pre-
pare these barcode spike-ins, we used as a template the alcohol
dehydrogenase 1 (adh1) mRNA (XM_008650471.2) from Zea mays,

as described in the PrimalSeq v.4.0 protocol (Matteson et al. 2020).
After a cleanup step (2:1 ratio beads to sample), we recovered
a final volume of 22µl and performed QC (Qubit 3.0 and 2200
TapeStation). We added F and R primers with the same barcode
sequence at the same concentration as the ARTIC primer pools to
amplify the barcodes in the multiplex PCRs.

2.7 Library construction and genome sequencing
Webuilt ninety-eight whole-genome sequencing libraries employ-
ing the DNA Prep (M) Tagmentation kit (Illumina, CA, USA) using
¼ of the recommended volume, with approximately 125 ng of
input DNA. Finally, we checked the size of the libraries and quan-
tified them as described above. We sequenced the ninety-eight
libraries in two high-output (7.5 Gb) runs (sixty and thirty-eight
samples, respectively) on an Illumina MiniSeq (PE150 reads) at the
sequencing facility of the University of Vigo.

2.8 Detection of potential cross-sample
contamination
To assess the level of cross-sample contamination, we quantified
the specific maize barcode content in each fastq file. For this, we
aligned the raw reads against the Zea mays adh1 sequence using
BWA-mem (Li 2013) with default settings and demultiplexed the
mapped reads with cutadapt (v.2.10) (Martin 2011), specifying a
minimumoverlap of 15 and amaximumerror rate of 0.1. Then, we
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counted the number of each type of reverse and forward barcodes
present in each FASTQ file and checked if they were any different
from the ones added to the corresponding sample.

2.9 Variant calling and consensus sequences
We assessed the quality of the fastq files using FastQC (Andrews
2010) and aligned the reads to the reference MN908947.3 from
Wuhan using BWA-mem (Li 2013). We used iVar (Grubaugh et al.
2019a) to trim primer sequences and low-quality regions of the
reads, as well as remove reads with less than 30 bp. We evalu-
ated the quality of the aligned trimmed reads using Picard v2.21.8
(http://broadinstitute.github.io/picard; last accessed 20 December
2021). We used SAMtools depth v1.10 (Li et al. 2009) to calculate
the sequencing coverage along the genome for each replicate. We
only kept samples for which ten or more reads covered more than
75per cent of the viral genome in the two replicates and with less
than 2.5 per cent missing bases on the consensus sequence.

We used iVar (Grubaugh et al. 2019a) to identify single
nucleotide changes and indels, with a minimum base quality
threshold of 20 and a minimum read depth of 10. The calls
obtained were confirmed with LoFreq (Wilm et al. 2012). We only
retained variants that appeared in both replicates with a mini-
mum overall variant allele frequency (VAF) of 2 per cent. Based
on their frequency, we labeled the genomic changes detected
as fixed (VAF≥ 0.98; to account for potential sequencing errors)
and intrahost variants (0.02≤VAF<0.98). Wemasked and removed
from further analyses positions containing complex variants
(i.e. nucleotide changes plus indels) or those deemed as homopla-
sic (De Maio et al. 2020b), including the sites immediately before
and after.

To build a consensus sequence for each sample, we merged
the reads from the two replicates with SAMtools mpileup and fed
them to iVar consensus with a minimum VAF threshold of 0.5.
We assigned the consensus sequences to a SARS-CoV-2 clade
with Nextclade (https://clades.nextstrain.org; last accessed 20
December 2021) and to a SARS-CoV-2 PANGO lineage (Rambaut
et al. 2020) with Pangolin (O’Toole et al. 2021).

2.10 Delimitation of epidemiological clusters
The simplestmethod for delimiting epidemiological clusters using
genomic data alone is estimating a phylogenetic tree using
the consensus sequences. For this, we aligned the consen-
sus sequences with the reference using MAFFT v.7 (Katoh and
Standley 2013) (mafft—maxiterate 500 <input>) and ran IQ-TREE
(v.2.0.6) (Nguyen et al. 2015) (iqtree2 -T AUTO -s <aligment.fa> -m
TEST -b 1000 -o MN908947.3) with the best-fit nucleotide substitu-
tionmodel and 1,000 bootstrap replicates. We also built a timetree
based on the output tree of IQ-TREE and the dates of the sam-
ples using TreeTime (v.0.8.1) (Sagulenko, Puller, and Neher 2018)
(treetime—aln <alignment.fa>—tree <treename>—dates <dates.csv>—
max-iter 30). In addition, we tried six heuristics developed explic-
itly for the reconstruction of epidemiological clusters described
in Worby, Lipsitch, and Hanage (2017). The weighted distance
tree and the minimum distance tree use the genetic distances
among consensus sequences. On the other hand, the weighted
and maximum variant tree strategies rely exclusively on shared
intrahost variants, while the hybrid weighted tree and maximum
tree procedures use intrahost variants and consensus genetic dis-
tances. Furthermore, we also estimated transmission clusters
using the Transcluster algorithm (Stimson et al. 2019), assuming
a mutation rate of 1 ×10−3 mutations/site/year. We explored four
values for the transmission rate (10, 25, 50, 100 transmissions

per year) and six for the transmission cutoff (one to six trans-
mission events). Finally, we also tried a probabilistic approach
such as the one implemented in Phydelity (Han et al. 2019),
which leverages the inferred phylogenetic trees and can work
without predefined genetic distance thresholds (phydelity.py—tree
<treename>—collapse_zero_branch_length).

2.11 Inference of transmission history
Within each cluster, we tried several approaches to estimate
which individuals transmitted the virus and in which direction,
that is, to learn who infected whom. First, we explored the
Worby et al. heuristics, which assume that the donor for each
sample has the most similar sequence or more shared intra-
host variants. In addition, we implemented a simple approach
that leverages the intrahost variation along a minimum span-
ning tree (MST). First, we computed Euclidean pairwise distances
among all individuals within a cluster, with the rdist R pack-
age (https://github.com/blasern/rdist; last accessed 20 December
2021), using the VAF distributions. Afterward, we built the MSTs
based on those distances with the function mst from the ape
R package (Paradis and Schliep 2019). Then, assuming a single
source for each cluster, we inferred the transmission direction
that minimized the generation of novel variants in the receptor,
meaning that in a pair of individuals, the donor should be the
one with a higher number of private mutations. Finally, we also
explored TransPhylo (Didelot et al. 2017), using the dated phy-
logeny obtained with TreeTime. We ran the algorithm for 150,000
Markov Chain Monte Carlo iterations and assumed a Gamma dis-
tribution for the generation time with shape 1 and scale 0.01917
(Perera et al. 2021).

2.12 Estimation of the transmission bottleneck
size
To estimate the transmission bottleneck size of SARS-CoV-2 (i.e.
the size of the viral population transferred from the donor
to the recipient host), we used the beta-binomial method of
Sobel Leonard, Weissman, and Greenbaum (2017). This method
assumes that the intrahost variants detected did not arise de
novo in different patients. This calculation includes only intrahost
donor variants shared with the recipient (note that they can be
fixed in the recipient but not in the donor). We identified putative
donor–recipient pairs according to the available epidemiological
information (Fig. 1). We lacked epidemiological information for
clusters D and F, and we identified possible transmission pairs
according to the genomic data (see Section 3). For the estima-
tion of the transmission bottleneck size, we used the R code at
https://github.com/weissmanlab/BB_bottleneck (last accessed 20
December 2021), under the approximate model (given that the
sequencing depth per sample was very high, around 6,000X) and
setting the maximum bottleneck size to an arbitrarily large value
of 600, and the VAF cutoff to 0.02.

2.13 Assessment of selective pressures
The ratio of non-synonymous changes per non-synonymous site
(dN) to the number of synonymous substitutions per synonymous
site (dS) is one of themost popular statistics for detecting selective
pressures at the molecular level. We estimated the dN/dS ratio for
each sample using the dNdScv package (Martincorena et al. 2017),
recently adapted for its application to SARS-CoV-2 (Tonkin-Hill
et al. 2021). We used the default substitution model with 192 rate
parameters.

http://broadinstitute.github.io/picard
https://clades.nextstrain.org
https://github.com/blasern/rdist
https://github.com/weissmanlab/BB_bottleneck
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Figure 2. VAFs per sample. VAFs were calculated after filtering recurrent variants. Fixed mutations (VAF≥ 0.98) are in gray, fixed reference alleles
(VAF<0.02) are in white, and positions with missing data (depth below 20) are in light green.

3. Results
3.1 Viral load and sequencing
Twenty-seven out of the forty-nine samples had a viral load above
103 copies/µl (Table S1). Sequencing coverage and breadth were
high (mean depth± sd: 6316.71± 2336.99; breadth: 0.999) (Table
S2), except for three samples (D11, G5, and I6, all with a Ct > 32 for
gene E), that we excluded from further analyses. We did not detect
appreciable cross-contamination between samples (Table S2).

3.2 Inter and intrahost variation
Most variants were fixed (VAF≥ 0.98) (Fig. 2, Figure S1). The num-
ber of differences among consensus sequences was, on average,
2.12, 2.28, and 7.57 variants, within early clusters (A–C), late
clusters (D–J), and among early and late clusters (see also Table
S3). We observed on average 19.76 variants per sample, of which
8.17 were intrahost (Table S4). Both fixed and intrahost variants
were shared among samples at different VAFs. Several intrahost
variants appeared recurrently in multiple samples, often corre-
sponding to indels at low frequency (Table S4). These recurrent
variantsmay correspond to potential sequencing errors andmuta-
tional hotspots, which might confound our analyses. Therefore,
we decided to filter out intrahost variants present in more than
one cluster. After filtering, there were 2.13 intrahost variants per
sample on average, with a maximum of 11 (Table S4). Before and
after filtering, the number of intrahost variants detected per sam-
ple was unrelated to sequencing depth, Ct values, or viral load

(Figure S2). Furthermore, VAFs between sample replicates were
significantly correlated (Pearson correlation coefficient= 0.99,
P-value= 5.6 e-113) (Figure S3). All samples were assigned to two
related clades/lineages (20A/B.1 and 20E(EU1)/B.1.177), which was
not particularly surprising as these were the dominant lineages
in the area at the time of sampling. We estimated dN/dS values
for missense variants consistently below 1, suggesting a predomi-
nance of intrahost purifying selection across samples (Figure S4).

3.3 Delimitation of transmission clusters
The maximum likelihood (ML) trees obtained with the consensus
sequences showed the epidemiological clusters as distinct groups,
mostly monophyletic and with relatively high bootstrap support
(Fig. 3). Remarkably, adding the temporal information with Tree-
Time improves the phylogenetic resolution of the clusters, which
become all monophyletic (Fig. 3B). However, standard phyloge-
netic approaches do not explicitly inform about the number of
clusters or the assignment of the different individuals to clus-
ters. In the absence of additional epidemiological information (i.e.
colors in our trees), researchers often infer putative transmission
clusters using some kind of distance threshold. The weighted dis-
tance tree and the minimum distance tree, which use consensus
sequences to explicitly delimit clusters, were identical and highly
congruent with the epidemiological information (Fig. 4A). In this
case, the only ‘error’ was that cluster D was divided into two,
although we might expect it because D1, D3, and D6 share two
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Figure 3. Consensus-sequence phylogenetic trees. (A) Maximum likelihood phylogenetic tree inferred with IQ-TREE. Numbers above branches are
bootstraps values (%). Only bootstrap values above 50 are shown. (B) Time-scaled ML tree inferred with TreeTime using the dates of extraction.

consensus mutations that the rest of the D individuals do not
present. Indeed, cluster D is large and phylogenetically diverse,
and wemight not have sampled all the infected individuals in this
transmission chain.

The weighted variant and maximum variant trees, based
exclusively on intrahost variants, were also identical and pro-
duced a very complex network in which all individuals seemed
related to each other (Fig. 4B). After removing the recurrent intra-
host variants common tomultiple individuals and clusters (taking
advantage of the epidemiological information), these methods
identified three clusters primarily compatible with the epidemi-
ological information, plus thirty-three unconnected individuals
(Fig. 4C). Cluster A was perfectly delimited, while cluster I formed
a group with a sample from cluster H. The only other three

clusterized samples were from cluster D (again D1, D3, and D6).
The hybrid transmission methods, which use the connections
established by the weighted variant and maximum variant trees
and incorporate consensus information for those samples without
a donor or recipient, did not result in any noticeable improve-
ment compared to methods based on consensus sequences (data
not shown). Finally, the transmission-based clustering method
in Transcluster was able to identify some of the epidemiological
clusters but not all (Fig. 4D). In this case, congruence with the epi-
demiological data was maximal after setting a transmission rate
of 25 and a transmission cutoff of 1.

In the case of Phydelity, which tries to delimitate transmis-
sion clusters upon a given phylogeny, the inferred clusters were
often subsets of the epidemiological clusters, both when using
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Figure 4. Clustering approaches. (A) Weighted distance/minimum distance tree. (B) Weighted variant/maximum variant tree after standard masking.
(C) Weighted variant/maximum variant tree after removing recurrent low-frequency variants (D) Transcluster transmission network (transmission
rate=25, transmission cutoff=1).

the ML (Figure S5A) and the TreeTime tree (Figure S5B). For exam-
ple, Phydelity divided cluster D into two subclusters (one of them
composed again by D1, D3, and D6) and three other samples were
left unassigned in both trees, while for most of the other clusters
(A, B, C, E, F, and I) there were one or more unassigned samples.
Phydelity precisely identified clusters G and J when using the ML
tree, while H is the only cluster that was correctly delimited in
both the ML and the TreeTime tree.

3.4 Inference of transmission history
3.4.1 Transmission in nursing homes
For clusters A and B, we had no epidemiological information other
than the corresponding nursing home. In cluster A (Fig. 5), the
four samples share what seems to be an intrahost variant (27695-
TCTTA). However, given its high VAF (0.93–0.95) and the fact that
the individuals do not share other variants, this deletion may be a
truly fixed variant, where sequencing or calling errors prevented
its identification in all reads. In any case, the genetic data does not
help identify the different transmission events in this cluster with
confidence. In cluster B, no shared variation was apparent. B2 has
two private apparently fixed variants, suggesting it was infected
later than the other cluster members or from a different source.
Again, it was not possible to infer the transmission network for
this cluster.

3.4.2 Transmission in clusters with partial contract trace
information
We had partial contact trace information for clusters C, E, G, H, I,
and J. However, the lack of shared intrahost variants prevented a
detailed reconstruction of their transmission history inmost cases
(Fig. 5). The epidemiological record suggests a transmission from
C2, the index case, to C4 in cluster C. This event is compatible
with the genetic data, as C2 has a single intrahost variant at low
frequency (0.05), which could have been lost during transmission
to C4, which has no intrahost variants. Private variants with low
VAFs in C1 and C3 could have arisen de novo within each individ-
ual after transmission, but three of them with higher VAFs (0.27,
0.34, and 0.67) are more difficult to explain in the same way. In
cluster E, the genetic information cannot resolve whether E1 or
E2 infected E3. In cluster G, we did not observe shared intrahost
variants. In contrast, the distribution of the private variants is
compatible with the epidemiological information, and it does not
help resolve further the transmission history.

In cluster H, the three samples share five fixed (VAF≥ 0.98), or
almost fixed, variants. The index case (H3) does not seem to have
intrahost variants, contrary to H1 and H2. However, the quality of
the sequencing data in the case of H3 is well below average, so it is
possible that low-frequency variants were overlooked in this sam-
ple. All five members of cluster I share three variants with high
VAF—or fixed in several cases. Variants 445C and 25062 could be
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Figure 5. Variant sharing within clusters. Gray boxes indicate index cases or originating events. Gray dashed lines delimit households (nursery homes
for clusters A and B). Shared variants are highlighted with the same color. Fixed variants (VAF≥ 0.98) common to all members of a cluster are not
shown. Crossed samples could not be sequenced.

genuinely fixed in all samples, including cases where the apparent
VAF is 0.95–0.97. The distribution of variant 29366T is remarkable,
as it appears in all cases with a VAF of 0.68–0.86. Another salient
observation is that I3, one of the index cases, has a well-supported
variant (9430T) with a VAF of 0.96 that does not appear in the other
samples from this cluster. Cluster J lacked shared intrahost vari-
ants, so the genetic data neither confirmed nor invalidated the
contact tracing information.

3.4.3 Inferring transmission in the absence of contact trace
information
3.4.3.1 Ad hoc approaches.We did not have detailed informa-
tion about contacts in clusters D and F, so we tried to identify

transmission events considering just the genomic data (Fig. 6). In
cluster D, the transmission started at a birthday party where the
index case was D1. D1 shares two variants with D3 and D6 (4543T
and 18431T), both fixed (VAF≥ 0.98) in D1 and D6 and close to fixa-
tion in D3 (0.96 and 0.94, respectively). Therefore, we hypothesize
that D1 → D3 and D1 → D6, but alternatively D3 → D6, could
be transmission pairs. These two variants also appear in D2 but
at a very low VAF (0.07 and 0.06, respectively). D3 and D2 further
share 4142 A, but this variant has a low VAF in D3 (0.07) and a high
VAF (0.89) in D2. Furthermore, D2 has 15857T at high VAF (0.88).
Given that we assumed that D1 infected D3, we considered that D3
could have infected D2. However, the explanation for the observed
VAF patterns might imply recombination and de novo mutation.
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Figure 6. Shared variants and inferred transmission events for clusters D and F. Below each sample ID, we show variant site and allele, followed by its
VAF in parenthesis. Fixed variants (VAF≥ 0.98) shared by all members of a cluster are not shown. Dashed arrows indicate putative transmission
events. Question marks highlight potential alternatives.

Finally, D10 shares with D2 variants 4142A and 15857T at high
frequency, so we also considered D2 → D10 another likely trans-
mission pair. In cluster F, where we do not have an index case,
F1 and F3 share a fixed variant (3737 T). Given that F1 has seven
private variants at low frequency, but F3 only two, F1 might be the
pair’s donor because it seems easier to lose these variants during
the F1→ F3 bottleneck than to arise de novo in F1 after an F3→ F1
transmission. F2 also has 3737T fixed. Following the same logic,
F2 could have been infected by F1, but also by F3.

3.4.3.2 Statistical and graphical approaches. The Worby et al.
approaches were not as helpful in inferring transmission as for
delimiting clusters. Assigning the source of each sample to the
patient with the highest number of shared intrahost variants or
the minimum genetic distance (using weights or absolute values)
resulted in samples withmultiple potential sources and pairs with
bidirectional transmission (Fig. 4A, B). Relying only on intrahost
shared variants proved inefficient, as most samples were not con-
nected to any other (Fig. 4C). Consensus sequences from the same
cluster were very similar, so multiple samples were often equidis-
tant, preventing choosing one of them as the source. The MST
analysis (Figure S6) was incompatible with the epidemiological
information. Apart from tied transmission paths for some of the
clusters (clusters D and E, with three and two options, respec-
tively), the starting point of the transmission did not coincide with
the epidemiological information in any of the cases. TransPhylo
could differentiate the different clusters (Fig. 7, Figure S7); how-
ever, the inferred direct transmission events within clusters were
often not compatible with the epidemiological information.

3.5 Transmission bottleneck size
We selected individual pairs representing direct transmission
events to estimate the transmission bottleneck size according to
the epidemiological and genomic information. We discarded clus-
ters A and B (nursing homes) from this analysis because it was
impossible to identify likely transmission pairs in these cases.
We had contact information about at least a transmission pair
for clusters C, E, G, H, I, and J. The situation was more complex
for clusters D and F, so we identified possible transmission pairs
considering both the epidemiological and the genomic data, as
described above.

Across the studied transmission pairs, we found an average of
0.38 (range 0–3) shared intrahost variants (Table S6). Accordingly,
the estimated transmission bottleneck sizes were typically small
(one to two viral particles) (Fig. 8, Table S6). To ensure that our
selection of transmission pairs in clusters D and F was not biasing
these estimates downwards, we also calculated the transmission
bottleneck sizes for all potential pairs within these two clusters.
The estimated bottlenecks were consistently one to two. Note that
the bottleneck size can only be estimated when there is at least
one variant in the donor (regardless of whether that variant is
observed in the recipient). If none of the donor variants appear
in the recipient, the estimated bottleneck size will be one, with
a variable confidence interval depending on the variant calling
threshold.

4. Discussion
Understanding SARS-CoV-2 transmission is crucial to identify
which situations minimize or maximize the risk of infection and,
therefore, implement more effective control strategies. Former
studies have tried to reconstruct SARS-CoV-2 local transmission
chains with more or less success using a combination of epi-
demiological and genomic data (Popa et al. 2020; Sekizuka et al.
2020; Shen et al. 2020; Hamilton et al. 2021; San et al. 2021).
However, it is unclear whether, in situations for which contact
tracing information is limited, we can use SARS-CoV-2 genomic
information alone to understand who infected whom. Here, we
show that while SARS-CoV-2 genomic variation can be helpful,
at least in some cases, to delimit distinct transmission clusters,
it is not enough to resolve with confidence transmission chains
and direct transmission events. Using themost likely transmission
pairs, we infer a narrow effective transmission bottleneck size for
SARS-CoV-2 in the order of one to ten viral particles.

Unlike most of the previous studies of SARS-CoV-2 intrahost
variation, we made use of substantial laboratory and bioinfor-
matic controls to stress variant calling reproducibility, including
the use of unique barcodes to discard cross-sample contamina-
tion, sequencing replicates, high sequencing depth, multiple vari-
ant callers, and curation of recurrent variants. While a few studies
have included some of these controls to a different extent (Lythgoe
et al. 2021; Tonkin-Hill et al. 2021; Braun et al. 2021b), this is
the first study to consider contamination, replicates, andmultiple
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Figure 7. TransPhylo transmission graph. Gephi (Bastian, Heymann, and Jacomy 2009) depiction of TransPhylo’s consensus transmission tree. Gray
dots represent inferred unsampled individuals.

Figure 8. Estimated transmission bottleneck sizes. Labels on the Y-axis
represent donor–recipient pairs. Estimates were obtained with the
beta-binomial ML method (Sobel Leonard, Weissman, and Greenbaum
2017). Horizontal lines represent 95per cent confidence intervals. The
X-axis is on a logarithmic scale.

variant calling strategies directly for each of the samples studied,
plus the use of contact information. We found a limited number
of intrahost variants (∼8 before filtering recurrent variants and∼3

after filtering), as reported in earlier studies (Kuipers et al. 2020;
Seemann et al. 2020; Shen et al. 2020; Wölfel et al. 2020; Butler
et al. 2021; Tonkin-Hill et al. 2021; Valesano et al. 2021; Braun
et al. 2021b; Wang et al. 2021b). Half of our samples (twenty-
seven/forty-eight) had a viral load above 103 copies/µl, which is
the threshold determined in Valesano et al. (2021) for reliable iden-
tification of intrahost variants with a VAF≥2per cent in single
replicates.

Another novel aspect of this work is the explicit exploration
of established methods that use viral interhost and/or intra-
host genomic variation to delimitate transmission clusters and
to identify transmission chains and direct contagions, and the
comparison of these results with the available epidemiological
information. In our samples, all from the same city and cor-
responding to two time points, the level of interhost genomic
variation was generally low. However, this did not prevent the
distinction among local clusters. When the sampling dates were
taken into account, the concordance between genomic and epi-
demiological clusters was maximized, highlighting the relevance
of the temporal information. Methods for cluster delimitation
that rely exclusively on intrahost variants did not work well in
this regard. In contrast, methods based on differences at the
consensus level could differentiate the clusters near perfectly.
These results suggest that in SARS-CoV-2, consensus sequences
might be enough in some cases, to separate samples belonging
to different clusters from the same area. But caution regarding
sampling is always necessary. There might be unsampled individ-
uals that do not belong to any of these clusters but that might
have identical consensus sequences. At the same time, intra-
host SARS-CoV-2 diversity does not seem sufficient for cluster
delimitation.
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Here, transmission history within nursing homes or house-
holds, where most SARS-CoV-2 infections occur (Lee et al. 2020),
was complicated to decipher. In general, all the methods we
tried, even those relying on intrahost variation, could not identify
clear transmission patterns within clusters, as seen before in care
homes (Hamilton et al. 2021) or in nosocomial outbreaks (Abbas
et al. 2021). This poor resolution can be explained by a lack of
genetic variation but also by homoplasy, as we observed several
shared intrahost variants among apparently unrelated samples.
In addition, we noticed that if VAF thresholds are relaxed, unique
or uncommon mutations appear in many individuals, suggesting
these variants are either recurrent artifacts or hotspot muta-
tions (Tonkin-Hill et al. 2021). Deciding which shared intrahost
variants in SARS-CoV-2 are the result of transmission events is
not easy. Much care should be taken regarding reliable geno-
typing and identifying recurrent events, particularly for samples
with low viral loads (van Dorp et al. 2020a,b; Kubik et al. 2021;
Valesano et al. 2021; Braun et al. 2021b). Recurrent, low-frequency
insertions in SARS-CoV-2 have already been detected elsewhere
(Kuipers et al. 2020; Rayko and Komissarov 2020; Turakhia et al.
2020; Tonkin-Hill et al. 2021).

Although not addressed in this study, another potential com-
plication regarding the identification of shared intrahost variants
is the occurrence of significant intrahost evolution. Several stud-
ies have reported VAF changes within days in SARS-CoV-2 (Jary
et al. 2020; Tonkin-Hill et al. 2021; Voloch et al. 2021; Wang et al.
2021b), even faster in immunocompromised individuals (Avanzato
et al. 2020; Kemp et al. 2021). On the other hand, more rigorous
studies report that diversity does not increase over time, although
this does not imply that VAFs cannot change significantly among
different time points (Valesano et al. 2021). Significant intrahost
evolution would imply that the amount of sharing between sam-
ples could change depending on the exact sampling dates, so the
inferences derived from it.

Consistent with previous studies, our estimates indicate that
the SARS-CoV-2 transmission bottleneck size is small or very small
(Gu et al. 2022; Li et al. 2022; Lythgoe et al. 2021; San et al.
2021; Wang et al. 2021a; Braun et al. 2021b), with only a few
viral particles being responsible for the successful growth within
the recipient. Notably, tight bottleneck estimates have also been
obtained for a highly transmissible SARS-CoV-2 lineage like Delta
(Li et al. 2021). In contrast, Popa et al. (2020) estimated an average
transmission bottleneck size for SARS-CoV-2 of 1,000, but these
estimates have been recently revised because of the inclusion of
suspicious, highly shared intrahost variants (Martin and Koelle
2021; Nicholson et al. 2021). A strong transmission bottleneck
reduces, in general, the efficacy of selection, impeding the con-
tribution of intrahost diversity to viral adaptation at a global scale
(McCrone and Lauring 2018), although exceptions to this rule exist
(Zwart and Elena 2015; Braun et al. 2021a). Still, interhost compe-
tition among SARS-CoV-2 variants canmaintain and increase viral
fitness. On the other hand, a small transmission bottleneck size
for SARS-CoV-2 is compatible (but not proof of) with a dominance
of aerosol transmission over direct contact, as seen in influenza
(Varble et al. 2014; Frise et al. 2016; McCrone and Lauring 2018).
Further studies are necessary to elucidate whether this is really
the case for SARS-CoV-2.

If only one or a few unique virions are passed during trans-
mission, then most of SARS-CoV-2 intrahost variation has to be
due to the accumulation of de novo mutations (Valesano et al.
2021; Voloch et al. 2021). These de novo mutations seem to
be mainly deleterious. We inferred strong intrahost purifying

selection across the genome for missense variants, as in prior
studies (Shen et al. 2020; Lythgoe et al. 2021; Tonkin-Hill et al.
2021).

Our results suggest that SARS-CoV-2 genomic diversity is help-
ful to delimitate different transmission clusters within a relatively
small area, but that could be insufficient to fully resolve trans-
missions within a household or in the same social event. In other
words, genomics alone cannot help identify who infected whom—
but might discard putative contagions. Thus, contact tracing data
will be essential to study direct SARS-CoV-2 transmission events,
as it occurs in typical slow-evolving pathogens (Campbell et al.
2018, 2019).

Overall, the biological picture that has become apparent
after this and preceding studies is that SARS-CoV-2 intrahost
variation is low and mainly determined by genetic drift and
purifying selection. The transmission bottleneck is very nar-
row, with only a few virions effectively contributing to the
genomic diversity of the infection, so intrahost variants are infre-
quently transmitted from one host to another. Under this sce-
nario, only a minority of infections, typically prolonged ones,
should lead to the appearance of novel variants. Therefore,
managing long-term SARS-CoV-2 infections should become a
priority.
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