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Abstract: Monitoring forest disturbances has become essential towards the design and tracking
of sustainable forest management. Multiple methodologies have been developed to detect these
disturbances. However, few studies have focused on the automatic detection of disturbance drivers,
an essential task as each disturbance has different implications for the functioning of the ecosystem
and associated management actions. Wildfires and harvesting are two of the major drivers of forest
disturbances across different ecosystems. In this study, an automated methodology is presented to
automatically distinguish between the two once the disturbance is detected, using the properties
of its geometry and shape. A cluster analysis was performed to automatically individualize each
disturbance and afterwards calculate its geometric properties. Using these properties, a decision
tree was built that allowed for the distinction between wildfires and harvesting with an overall
accuracy of 91%. This methodology and further research relating to it could pose an essential aid to
national and international agencies for incorporating forest-disturbance-driver-related information
into forest-focused reports.

Keywords: wildfires; harvesting; land cover change; remote sensing; forestry; shape; disturbance

1. Introduction

Forests play an essential role in modern societies since they provide valuable resources
and ecosystem services, such as carbon and biodiversity reservoirs [1–3]. However, nowa-
days forests are threatened by anthropogenic pressures and climate change [1,4]. In this
context, monitoring forests and their disturbances has become essential for developing
management strategies oriented towards increasing forests’ resilience and guaranteeing
their sustainability [5,6]. Since the signing of the Paris Agreement [7], which mandated the
reporting of forest changes, carbon emissions and uptakes, a special need has arisen among
national and international agencies to conduct forest disturbances detection, identification
and quantification.

Wildfires have been identified as one of the major drivers of forest disturbances
across many different ecosystems. According to the Global Forest Goals Report 2021,
fire has been a prevalent forest disturbance in the tropics [8], as well as in boreal and
temperate forest ecosystems [9,10]. However, nowadays the fire regimes in the forested
ecosystems of Europe are currently gaining great relevance due to climate change [11]. In
fact, climate driven wildfires have been highlighted by many countries as a significant threat
compromising forest-based economic, social and environmental benefits [8]. Therefore,
monitoring wildfires is a key point in forest change reporting.

Another relevant forest disturbance is forest harvesting. Worldwide national and
international forest agencies put great effort into minimizing illegal logging in order to
reduce the degradation of forest ecosystems [12,13]. However, it is also important for
management agents to monitor legal forest harvesting in order to design sustainable
management policies and evaluate progress towards a sustainable bio-economy. The
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monitoring of forest harvestings is also needed to ensure the traceability of forest products
and to fulfill the European regulations related to legal wood supply [14]. Such forest
monitoring becomes essential in countries or regions whose forests are mostly privately
owned and with a very active forest sector. In these kind of areas, traditional forest
harvesting monitoring based on field visits may not be feasible or fully efficient.

In this context, the open access to satellite data has marked a turning point in forest
monitoring and disturbance detection [15]. Satellites, such as the family of Landsats and
Sentinel-2, have been widely used to report forest extent and forest changes [15]. In the field
of change detection, a wide range of methodologies and algorithms have been developed
that are currently well established and widely used. The most efficient ones rely on time
series analysis [16]. Some examples are the family of Breaks For Additive Season and
Trend (BFAST) algorithms [17–19], LandTrender [20] and Continuous Change Detection
and Classification (CCDC) [21]. As a result of the application of these kinds of algorithms,
the location and extent of the disturbances can be automatically obtained, as well as the
timing and degree of the disturbance.

However, proper forest monitoring requires more than the location and extent of
disturbances. It would also be essential to automatically identify the drivers of the detected
disturbances since each type of driver (i.e., harvesting, wildfires, windstorms or insect
plagues) has different implications for forest management agents [22–24]. Forest agencies
have traditionally derived this information from pre-existing databases [25–28], visual
interpretation of very high-resolution images (VHR-imagery) [29] or even field work. The
main drawbacks of these kind of approaches are that they can be outdated, time-consuming
and/or expensive. Again, remote sensing constitutes an alternative for automating the
identification of drivers in forest disturbances through efficient affordable procedures. In
this field, spectral indexes have showed to be efficient in the detection of wildfires (as for
example the NBR [30]), but they do not allow to differentiate wildfires from harvestings (the
latter are usually detected as wildfires) [31,32]. Consequently, new approaches are needed.

Some interesting advances have been recently achieved in the identification of drivers
of forest disturbances. In the context of disturbances in the USA, an algorithm has been
developed that correlates each type of disturbance with the “shape” of the spectral response
of the disturbance area over time [33]. This technique has been enhanced by including
additional predictor variables that again rely on information, such as pre-existing fire-burn
perimeters from pre-existing databases [34]. This enables the prediction of the disturbance
causality on a large scale in US forests. A different study performed in boreal forests
found that studying the spectral response of the short-wave infrared (SWIR) portion of the
electromagnetic spectrum of the soil left behind after a disturbance provides an effective
way of discriminating between harvesting and wildfires [35]. Supervised classification of
different spectral metrics together with geometric metrics of changes has been used as well
by Hermosilla et al. [36]. However, it is worth noting that Neigh et al. found difficulties
when transferring between different ecosystems’ methods that rely on spectral response to
detect disturbance drivers [37]. This can severely affect the application of such methods on
very large scales [37]. Therefore, it may be valuable to analyze a different approach that is
less dependent on the radiometric responses of the disturbances.

This study presents a novel methodology based on Sentinel-2 data to automatically
identify the driver of forest disturbances, once they have been detected. Since previous
studies make the point that forest disturbances such as wildfires and harvestings manifest
different shapes [35,38,39], the proposed methodology uses the geometric and shape prop-
erties of the disturbances to identify the potential driver. It is applied to Galicia (Northwest
of Spain), a region characterized by numerous and intense forest harvestings, frequent
wildfires and a very high rate of private forests owners (99% of Galician forests are privately
owned) [40,41]. Section two describes the study area, materials and methodology. Section
three presents the obtained results. Section four accomplishes the discussion. Section five
comes to the conclusions of the described methodology and its implementation to the
selected study area.
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2. Materials and Methods
2.1. Study Area

The present study was carried out in Galicia, a region in the Northwest of Spain (see
Figure 1). This region encompasses a total of 29,574 km2, nearly 70% of which is covered
by forest land [40]. Forest area is mainly covered by Pinus sp., Eucalyptus sp. and mixed
broadleaves (riparian species, Quercus robur, Quercus pyrenaica and Castanea sativa, among
others) [40,42]. Shrubs are abundant as well, comprising approximately 30% of the forest
land cover [40,42].
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Figure 1. Study area. Galicia (Northwest of Spain).

The main forest disturbances in Galicia are due to wildfires and harvestings. In relation
to wildfires, it might be highlighted that although Galicia represents only 6% of the Spanish
land surface, between 2006 and 2015 it reported the largest number of wildfire events in
Spain (it reported 29.22% of all Spanish wildfire events occurring between these two years)
and accounted for the largest percentage of burned surface (22.51% of the total Spanish
burned surface in these years) [43]. These trends have continued throughout subsequent
years [44].

In relation to harvestings, it should be noted that Galicia has an active forestry sec-
tor [40,41,45,46]. More than half of the annual fellings in Spain are harvested in Galicia [45],
making this area one of the European regions with the highest percentage of harvesting
intensity [46]. Most forest harvesting actions are produced on private forests since 99% of
Galician forests are privately owned [41]. Management actions are rarely uniform across
the region as land property is highly fragmented; approximately 40% of the land covered by
the main productive tree species in Galicia are in cadastral parcels smaller than 0.5 ha [47].
The mean of forest harvesting processed records per year in the last six years (2015–2020)
amounts to 88,140 [41].
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2.2. Satellite Image Acquisition

Sentinel-2 images were used in this study to perform the disturbance-detection-related
steps. The data product used was the Level-2A, which includes geometric, radiometric
and atmospheric corrections [48]. Images covering the whole study area were downloaded
from the Copernicus Open Access Hub [49]. One image per month was downloaded for all
the study years (2018, 2019 and 2020). The criteria to select the images were: for each month
select the image with smallest percentage of cloud cover, discard images with a cloud cover
smaller than 50% and finally if no image satisfies the maximum cloud-cover criterion, select
an image at the end of the previous month or at the beginning of the following month.

Information from the European Forest Fire Information System (EFFIS) [50] was used
as complementary data to obtain the location of wildfires that took place in Galicia during
the period analyzed.

Information related to harvesting locations was obtained from one of the regional
government’s databases, which is shared by the Xunta de Galicia in the context of the
“Galician continuous forest inventory” project [51]. It consisted of a set of cadastral reference
numbers where harvesting licenses were granted during the period from 2017 to 2019. This
information was cross-referenced with the Spanish cadastral geodatabase [47] to obtain the
exact location of the harvesting activities.

The information obtained from these two sources was contrasted using VHR aerial
orthorectified images (PNOA images) dating from 2017 and from 2020 [52]. The images
are available online through the Spanish National Cartographical Institute (IGN) [52].
The images from 2017 have a spatial resolution of 0.25 m and their georeferencing mean
square error is ≤0.5 m. The images from 2020 have a spatial resolution of 0.15 m and a
georeferencing mean square error of ≤0.20 m.

2.3. Main Method

This section describes the methodology to automatically obtain the driver of a for-
est disturbance, considering the forest disturbance map as the starting point. It might
be highlighted that the methodology can be applied whatever procedure is followed to
obtain the disturbances map. The first subsection (Section 2.3.1.) describes the particular
procedural chain that was performed in this case to obtain the disturbance map of the study
area, which is the region of Galicia. The following subsections (Sections 2.3.2 and 2.3.3)
are focused on describing in detail the proposed novel methodology to distinguish among
forest disturbance drivers. A diagram of the main method is presented in Figure 2.
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2.3.1. Forest Disturbance Mapping

The forest disturbance map of Galicia was obtained through the comparison of three
consecutive annual land cover maps, specifically those corresponding to 2018, 2019 and
2020. The annual land cover maps were obtained according to the multitemporal approach
described in Alonso et al. [53]. This approach was specifically designed to optimize the
results considering the singularities of the Galician forest sector. It consists of performing
supervised classifications of multi-temporal series of Sentinel-2 images. At first, one
image is selected per single month for the study area; in that way, a group of twelve
images is considered for every analyzed year. All the images are pre-processed to remove
clouds using the cloud mask provided by the Sentinel Level 2A product. Secondly, a
dataset of training pixels is defined for every year. In our case, it was performed through
photointerpretation of the available PNOA images, dating from 2017 and from 2020 [52], as
well as Sentinel-2 images. Contours of pixels with homogeneous land use were delineated to
define the training polygons of the map classes. Once the 2019 training dataset was defined,
it was used as a starting point for building the dataset for 2018 and 2020: considering the
photointerpretation, the polygons were redefined if any land use change was appreciated.
As a result, the size of training pixels datasets was similar for every classification. Thirdly,
a supervised classification is performed on every single Sentinel image. For this end, bands
with 10 m resolution were resampled to 20 m resolution using the nearest neighborhood
interpolation. The classifications were performed applying the random forest algorithm [54].
As a result of this process, land cover maps are obtained for every single month. The last
step is the aggregation of the 12 maps of a given year in a final map. This step was
performed using the plurality voting decision criteria [53]. In that way, one aggregated map
is obtained for every analyzed year. The three obtained maps were cross-verified using a
set of points randomly distributed around the study area. The ground truth of those points
for each year was obtained by photointerpretation of PNOA images from 2017 and from
2020 [52]. The cross-verification was performed trough the creation of a confusion matrix
for each year.

Once land cover maps were obtained for 2018, 2019 and 2020, inter-annual compar-
isons were performed to detect potential land cover changes. For this end, pairs of maps
were combined into a single raster file through a simple transformation and arithmetic
raster calculation. A multiplication factor was applied to the raster file MAPyear1, and the
result was added to the MAPyear2. A graphic illustration of this combination is presented
in Figure 3. The digital values of the resulting raster file preserve the land cover classes of
the two combined maps for every single pixel: the first digit of every pixel corresponds to
the class of the earlier year, while the last digit corresponds to the class of the later year. In
this way, changes involving vegetation reduction can be easily detected. For instance, pixels
where a tree forest class has moved to any other non-tree class are considered disturbances,
and pixels where shrubs have moved to another non-vegetated class are considered distur-
bances as well. Therefore, all the pixels that in 2018 had a forest-related cover (Eucalyptus
spp., Conifer, Broadleaf or Shrub) and in 2019 had a land cover, which implied a vegetation
reduction (shrubs, crop and pastures, bare soil or anthropogenic area), were considered
as change pixels. The same criterion was followed to detect vegetation changes in the
biennium in 2019–20. All the digital values reflecting these kind of changes were reclassified
to obtain a binary result (0–1), and therefore obtain a disturbance/non-disturbance raster
file. The analyzed bienniums were combined through raster layer addition. The result can
be considered the disturbance map of the whole study area in the considered period.

2.3.2. Disturbance Pixels Clustering

Once the forest disturbance map is available for the study area, the identification of
the drivers can be accomplished over it. As previously pointed out, the subsequent proce-
dure does not depend on the methodology that was followed to obtain the disturbances
map. The only requirement is to arrange the disturbance raster layer in a binary format,
where pixels with digital value 1 correspond to a disturbance occurring in the considered
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period and pixels with digital value 0 correspond to areas where forest vegetation has
remained unaltered.
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The first step to be accomplished is the clustering of those pixels of the disturbance
map that correspond to the same disturbance event. This step is needed to be able to
automatically individualize each disturbance event to further perform the geometrical
characterization of each of them. The basic criterion to stablish the grouping is the proximity
of pixels. A cluster analysis of the disturbance pixels was performed. The algorithm
used was the Density-Based Cluster Algorithm (DBSCAN) [55]. This algorithm is an
unsupervised learning method, which is efficient at finding clusters of arbitrary shape
and when dealing with large databases. It allows to identify regions of high point density,
which can be assimilated to disturbance events, and regions of low point density, where
points do not have any other point close enough to be grouped in a cluster. Two parameters
can be configured: the minimum number of points needed in a region to be considered
dense (minPts) and a distance threshold above which it is not possible to consider two
points to be neighbors (eps). Several values of both parameters might be tested to find a
configuration that optimize the result for the study area. The result of this step is a map of
forest disturbance events.

2.3.3. Disturbance Clusters Characterization

Once change disturbance events are mapped, they can be characterized in terms of
shape-related and pattern-related metrics. According to previous experience, the shape
of a wildfire usually tends to be close to an irregular ellipse with a large number of snags,
resulting in a disturbance area with irregular boundaries [35,38,39]. On the contrary,
harvesting tends to have a more regular shape and to form a continuous patch [35,38,39].
Several metrics were obtained to characterize every single disturbance cluster.

A first set of metrics was obtained to study how the pixels in each cluster in the map of
forest disturbance events are distributed in relation to one another. All metrics were based
on a previously calculated distance matrix containing the Euclidean distance between each
pair of pixels in a cluster. The diagonal of the obtained distance matrix was set to NoData
to avoid including distances of 0 in the subsequent calculations. The metrics obtained are
presented in Table 1.
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Table 1. Set of metrics calculated for each detected disturbance cluster to study how the pixels of the
cluster are distributed in relation to one another.

Metric Description

mdmin

The average of the minimum distance from each pixel to the nearest pixel in the
cluster. To obtain this, a matrix was computed containing the distances from each

pixel to its nearest pixel. Then the mean of the values contained in the
minimum-distance matrix was calculated.

mdmax

The average of the maximum distance from each pixel to the farthest pixel in the
cluster. To obtain this, a matrix was computed containing the distance from each

pixel to its farthest pixel. Then the mean of the values contained in the
maximum-distance matrix was calculated.

mdmean

The average of the average distances from each pixel to the rest of the cluster pixels.
To obtain this, a matrix was computed containing the average of the distances from

each pixel to the rest of the pixels. Then the mean of the values contained in the
mean-distance matrix was calculated.

mdsd

The average of the standard deviation of the distances from each pixel to the rest of
the cluster pixels. To obtain this, a matrix was computed containing the standard

deviation of the distances from each pixel to the rest of the pixels. Then the mean of
the values contained in the standard-deviation matrix was calculated.

mdkur

The average of the kurtosis of the distances from each pixel to the rest of the cluster
pixels. To obtain this, a matrix was computed containing the kurtosis of the

distances from each pixel to the rest of the pixels. Then the mean of the values
contained in the kurtosis matrix was calculated.

mdskew

The average of the skewness of the distances from each pixel to the rest of the cluster
pixels. To obtain this, a matrix was computed containing the skewness of the

distances from each pixel to the rest of the pixels. Then the mean of the values
contained in the skewness matrix was calculated.

A second set of metrics for all the clusters present in the map of forest disturbance
events was calculated. This one was focused on metrics related to the distance from each
pixel in the cluster to the center of gravity of the cluster. Therefore, the center of gravity of
each cluster was calculated and afterwards metrics presented in Table 2 were calculated:

Table 2. Set of metrics calculated for each detected disturbance cluster to study the position of pixels
in the cluster in relation to the center of gravity of the cluster.

Metric Description

dmeanCOG The average distance from each of the cluster of pixels to the cluster’s center of
gravity.

dminCOG The distance from the closest cluster of pixels to the cluster’s center of gravity.
dmaxCOG The distance from the farthest cluster of pixels to the cluster’s center of gravity.

dsdCOG The standard deviation of the distances of each of the clusters of pixels to the
cluster’s center of gravity.

dkurtCOG The kurtosis of the distances of each of the clusters of pixels to the cluster’s
center of gravity.

dskewCOG The skewness of the distances of each of the clusters of pixels to the cluster’s
center of gravity.

An additional set of metrics was calculated for all the clusters present in the map of
forest disturbance events, based on the polygon formed by each cluster. To obtain this
polygon for each cluster, the concave hull [56] of the polygon of the cluster was calculated
using the k-nearest neighbor approach to compute the region occupied by a set of points.
The value of k is used to control the concaveness of the output polygon, resulting in the
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“smoothest” polygon when the lowest k value is used. In this study, k was set to 3. Using the
resulting polygons, the shape metrics presented in Table 3 were calculated for each cluster.(

2 ∗
√
(A ∗ π)

)
/P (1)

Table 3. Set of metrics calculated on the polygon formed by each disturbance cluster. The polygon
was obtained from the concave hull of the disturbance pixel centers.

Metric Description

P.A The perimeter of the polygon divided by its area.
P.sqrt.A The perimeter of the polygon divided by the square root of its area.

Max.Distan The maximum diameter calculated as the maximum distance between the
vertices of two of the polygon’s parts.

D.A The Max.Distan divided by the area of the polygon.
D.sqrt.A The Max.Distan divided by the square root of the polygon’s area.

Shape Index
(Shap.Inde)

The inverse of the ratio of the perimeter of the equivalent circle to the real
perimeter. See Equation (1) [57].

Equation (1). Equation of the Shape Index. A stands for the area of the polygon. P
stands for the perimeter. Equation from [57].

2.3.4. Disturbance Drivers Modeling (Wildfires or Harvesting)

This step aims at classifying forest disturbance events into wildfires or harvestings
considering the obtained shape and pattern metrics. For this end, a ground truth dataset
is required. It was built by selecting clusters in the map of forest disturbance events and
assigning them to either wildfires or harvestings. Wildfires were identified through the
EFIS geodatabase [50]. Harvesting areas were identified through the information provided
by the Xunta de Galicia [51]. The information provided by these two external sources was
verified and filtered through photointerpretation by comparing the 2017 PNOA [52] and
the 2020 PNOA [52]. Finally, a total of 304 clusters were selected, 170 corresponding to
wildfires and 134 to harvesting areas. Although the sample might seem scarce, it was not
augmented to avoid having a big class imbalance. A bigger amount of harvesting reference
data was available but more records of wildfires during the study period were not found.

The modeling technique used was decision-tree learning through the building of a
classification tree. This technique predicts the value of a target variable by learning simple
decision rules inferred from the features of the data [58]. This technique was selected due to
its simplicity of implementation and interpretation. In fact, there exists previous scientific
literature related with land forest disturbances that relies on this technique [59,60]. In
order to implement it, the ground truth set of data was randomly divided into training and
verification datasets. Seventy percent of the clusters were used to train the decision tree
and the other 30% were used to verify it. The decision tree was built on the training dataset
using the default parameters of the “rpart” library of the R software [61]. This library
also allows to calculate the variable importance of all the variables that formed the tree,
understood as “the sum of the goodness of split measures for each split for which it was
the primary variable, plus the adjusted agreement for all splits in which it was a surrogate”.
The library scales the results to sum 100 and omits the variables with an importance smaller
than 1%.

The resulting decision tree allowed to classify the disturbances and obtain a map of
wildfires and harvestings. This map was cross-verified with the remaining ground truth
subset. A confusion matrix was built, and the following accuracy metrics were obtained:
Overall Accuracy (OA), Users Accuracy (UA), Producers Accuracy (PA) and Kappa Index.
As the decision tree created may change as the training dataset changes, the presented
modeling steps were repeated several times in order to obtain multiple decision trees and
multiple sets of accuracy metrics. Finally, the decision tree that produced the best accuracy
metrics was selected.
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3. Results

This section is divided in four subsections. In Section 3.1. results of the disturbances
mapping are presented. The next section, Section 3.2., focuses on presenting the results
of the disturbance clustering procedure. Section 3.3. analyzes the behavior of the shape-
related metrics calculated for the clusters presented in the previous section depending on
their disturbance nature (harvestings or wildfire). The final section presents the results of
the disturbance drivers modelling step.

3.1. Disturbances Mapping

The annual land cover maps were obtained for the whole study area following the
methodology described in the previous section. The considered map classes were: conifers,
Eucalyptus spp., other broadleaves, shrubs, crops and pastures, bare soils, anthropogenic
areas and water bodies. A total of 1671 random points were obtained to perform the
cross-verification. The estimated overall accuracy obtained for each map was: 78% for the
2018 map and 79% for both 2019 and 2020 maps.

The comparison of consecutive annual maps was performed to obtain the disturbances
map. The result is a binary raster file showing all the pixels where the vegetation was
significantly reduced. The raster layer addition of the disturbances map corresponding to
2018–19 and the disturbances map of 2019–20 results in the final disturbance map for the
study area in the analyzed period. An example is shown in Figure 4.
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3.2. Disturbances Clustering

As a result of the cluster analysis, a total of 25,307 disturbance clusters were obtained
for the period of 2018–2020. An example of several of the clusters obtained is shown in
Figure 5. The configuration parameters that optimize the results considering the singulari-
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ties of the disturbances in the study area were: 10 minPts and 100 eps. High minPts values
involve wildfire ledges that are not considered individual disturbances (i.e., the ledge of
the cyan blue wildfire cluster in Figure 5). Furthermore, close individual harvests are effi-
ciently clustered together (i.e., marked harvests in Figure 5). Low eps values prevent large
wildfires from being identified as single disturbances (i.e., wildfires marked in Figure 4 that
correspond to one single wildfire event). It was observed that those clusters identified as
wildfires maintained the typical shape and point distribution of a wildfire.
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disturbance pixels. On the right: the result of the cluster analysis; all the pixels that belong to a cluster
are shown in the same color. Examples of wildfires and harvesting disturbances and clusters are
highlighted.

3.3. Disturbances Clusters Characterization

All the obtained clusters were characterized in terms of shape and pattern according
to the metrics described in the previous section. In order to accomplish the subsequent
step, consisting of modelling disturbances in the study area, the metrics of a ground truth
dataset were analyzed in detail. For this end, 304 clusters were selected, 170 corresponding
to wildfires and 134 to harvesting areas. They were identified using the complementary
databases mentioned in Section 2.3.4 and filtered by photointerpretation. The metrics of
these datasets are presented in Figures 6–8. The paired boxplots clearly show which metrics
present different values depending on the driver of the disturbance. Several Figures reveal
that wildfires have more outstanding outliers than harvestings and sometimes they take
values in a wider range (mdmax, mdsd, MaxDistan, etc.). This might be due to some
metrics being highly related to the size of the event (for instance mdmax or dmaxCOG) and
some others to the shape (mdmean, mdsd, etc.). The wildfires in the study area present an
important variability of sizes and shapes; most of them affect small areas but some of them
are large wildfires.
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Figure 6 shows the paired boxplots obtained for the metrics related to how the points
in each cluster are distributed in relation to one another. The metrics that seem to mostly
differ between harvesting and wildfires are: mdmax, mdmean and mdsd. The larger
values of mdmean in wildfires might be due to their irregular shapes, which involve larger
medium distances among points. The larger values of mdmax in wildfires might be due to
the occurrence of events with larger sizes than the size of harvestings. The combination of
larger sizes and irregular shapes result in higher values of mdsd in wildfires.

Figure 7 shows the paired boxplots obtained for the metrics related to the distance
from each point in the cluster to the center of gravity of the cluster. The metrics which
present the least overlap between boxplots are dmaxCOG, dmeanCOG and dsdCOG. Here
again it might be highlighted that the fact that dmaxCOG and dmeanCOG are larger in
wildfires has to do with the larger size of wildfires and their more irregular shape.

Figure 8 shows the paired boxplots obtained for the metrics calculated focused on the
shape of the polygon formed by the cluster. The greatest differences between the harvesting
and wildfire boxplots can be seen in P.A and D.A followed by Max.Distan. In fact, above
all the metrics presented, P.A and D.A are the ones that present the greatest differences.
In small events, the quotient between perimeter and total area, or between diameter and
total area is higher. Harvestings usually present smaller areas than wildfires, and this is
reflected in their respective P.A and D.A boxplots.

3.4. Disturbance Driver Modeling (Wildfire or Harvesting)

Shape and pattern-based metrics of wildfires significantly differ from the characteristic
metrics of harvestings. The decision tree that optimized the classification of disturbances
according to its driver is shown in Figure 9. The metrics present in this tree are D.A,
mdmin and P.A. This indicates that generally, when the relation between the diagonal of
the polygon formed by the cluster of a disturbance and the area of the polygon is greater
than 0.01, that the disturbance is harvesting; however, when this relation is smaller, more
conditions must be analyzed. First, if the average of the mdmin is relatively large (>30), it
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is a wildfire. If it is not, an additional condition needs to be analyzed. This last condition is
the relation between the perimeter and the area of the polygon that is formed by the cluster
(P.A). If this relation is smaller than 0.014, the disturbance is a wildfire; on the contrary, it is
a harvesting event.
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Figure 9. Decision tree that allows for the differentiation between harvesting and wildfires using the
shape-related metrics calculated. D.A: the maximum diameter of the polygon formed by the cluster,
calculated as the maximum distance between the vertices of two parts of the polygon, divided by
the area of the polygon. mdmin: the average of the minimum distance from each disturbance pixel
to its nearest disturbance pixel in the disturbance. P.A: the perimeter of the polygon formed by the
disturbance divided by the area of the polygon.

The variable importance results are presented in Figure 10. Variables with a greater
importance are D.A. and P.A., followed by Max.Distan and mdmax. It might be highlighted
that although mdmin forms parts of the final decision tree, its importance by itself is
around 10%.
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The confusion matrix obtained by applying this decision tree to the test points is
presented in Table 4. In general, high accuracy metrics were obtained. The OA was 91%
and the UA and the PA range between 87% and 94%. The Kappa Index obtained was 0.82.

Table 4. Confusion matrix resulting from the application of the decision tree that classifies distur-
bances according to their drivers (wildfires or harvesting) to the test set of data. PA: Producer’s
Accuracy; UA: User’s Accuracy; OA: Overall Accuracy; KI: Kappa Index.

Ground Truth

Decision tree Harvestings Wildfires Total UA (%)
Harvestings 34 5 39 87

Wildfires 3 49 52 94
22Total 37 54 91
PA (%) 92 91 OA (%) 91

KI 0.82

4. Discussion

The shape and pattern metrics of disturbances revealed that wildfires in the study
area tend to affect larger surfaces and/or affected areas and present larger extensions than
harvestings, which tend to present more regular shapes than wildfires. This analysis is
aligned with previous experiences [35,38,39].

High accuracy metrics were obtained (OA 91%) for distinguishing between wildfires
and harvesting through the study of the geometry and shape of these disturbances. This
high OA accuracy and the accompanying high UA and PA high-accuracy metrics (between
87% and 94%) indicate that the described methodology could help to distinguish between
wildfires and harvestings once a disturbance map was obtained. Besides, this indicates that,
as previously pointed out, wildfires and harvesting tend to have different shapes [35,38,39],
a fact that aids in associating a driver to each disturbance. In fact, Hermosilla et al. [36]
already identified that some geometric metrics (area and compactness) could aid in attribut-
ing a driver to a disturbance. In this study, different metrics (D.A, mdmin and P.A) have
been found useful. The fact that other geometric metrics were useful in a quite different
study area (the boreal forest in Canada) indicates that the application of this method in
different biomes and study areas should be further studied in more detail, as wildfire
regimes and harvesting practices can greatly differ among biomes resulting in disturbances
that respond to different spatial patterns [6,62]. Such research would assess the adaptation
of the method to different realities, contemplate the introduction of different metrics and
identify which decision tree would best suit each different situation.

Although decision-tree algorithms were found useful in this study, there exists the pos-
sibility of testing different machine learning algorithms. For example, Random forest [54],
a widely used machine learning algorithm in disturbance-related scientific works [63,64].
Besides, by using such algorithms, the repetition of the modelling steps to select the tree
that retrieved better results could be avoided as this algorithm is based on the combination
of multiple decision trees.

One of the key points in the described methodology is the aggregation of change
pixels to individualize disturbance events. This step is needed in any disturbance driver
attribution methodology that relies on the disturbance’s geometry and shape. A novel way
of performing this step has been described here (cluster analysis). The main advantage of
this method is that it can be used with any change-detection method relying on remote-
sensing imagery, whereas, in previous studies, the individualization of a disturbance was
dependent upon knowledge of the date and duration of the event [35,36]. This meant
that, while many other methods have been successfully developed, the change detection
in these studies had to be performed mainly by dense time-series analyses [16,65]. The
fully automatic methodology described here could be used in conjunction with any other
type of change-detection methodology so long as its result contains the localization of the
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change pixels. The main difficulty that the cluster analysis may represent is pinpointing
the optimum configuration of the cluster algorithm parameters to correctly individualize
disturbances. It was found that with the parameters selected in this study, some areas
of the disturbance events were detached into different clusters (i.e., in the case of large
wildfires) and that disturbances smaller than 4 ha were not detected due to the need for
setting the minpts to 10. Nonetheless, for detecting wildfires, the selected parameters confer
an improvement in terms of scale when compared with studies using other databases, for
example those that rely on MODIS data (250 m spatial resolution) [50]. Therefore, further
research should be conducted to fine-tune this step and improve the cluster results as well
as to include small disturbances in the analysis and test the methodology in such cases.

5. Conclusions

A novel method based on the analysis of the shape and geometrical pattern of forest
disturbances was described. It allows to identify whether forest disturbances have been
driven by wildfire or by harvesting. High accuracy metrics were obtained for the study
case, displaying the effectiveness of the methodology. The main novelty of this approach
relies on the single use of geometrical and shape metrics of forest disturbances. The main
advantages of the method are its ability to fully automate the process of distinguishing
between drivers, and the possibility of applying it to any set of forest changes regardless of
the remote-sensing-based method used to detect them. This may be a major advantage,
as different study areas might require the use of different methodologies to detect forest
disturbances due to different climatic conditions (e.g., the continuous presence of clouds)
or landscape configurations (e.g., high fragmentation), among others. For our record, this is
the first method to derive forest disturbance drivers that is not linked with the methodology
followed to obtain the disturbances. Besides, the methodology is highly affordable, as it
does not require additional sets of data, and it can be performed in near real-time as soon
as the disturbances are detected. Advances such as this one in forest disturbance driver
detection could be essential in aiding national and international agencies incorporate this
information into their forest-related reports. Therefore, further studies on drivers and
the utility of the geometric properties of disturbances in different biomes and study areas
would be relevant. This will aid in the design of management actions aimed at improving
forest sustainability as well as in the decision-making process of designing responses to
the disturbances, thus contributing to the preservation of forests and supporting their key
roles in the current context of climate change.
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