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Abstract

In this paper we deal with the cost allocation problem arising in an inventory trans-

portation system with a single item and multiple agents that place joint orders using an

EOQ policy. In our problem, the fixed order cost of each agent is the sum of a first com-

ponent (common to all agents) plus a second component which depends on the distance

from the agent to the supplier. We assume that agents are located on a line route, in the

sense that if any subgroup of agents places a joint order, its fixed cost is the sum of the first

component plus the second component of the agent in the group at maximal distance from

the supplier. For these inventory transportation systems we introduce and characterize a

rule which allows us to allocate the costs generated by the joint order. This rule has the

same flavor as the Shapley value, but requires less computational effort. We show that our

rule has good properties from the point of view of stability.
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1 Introduction

In the context of modern commerce, franchising is the process of expanding a business whereby

a company (franchisor) grants a license to an independent business owner (franchisee) to sell

its products or render its services. Each party of a franchise agreement gives up some legal
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rights to gain others and to obtain benefits. The franchisor increases its number of outlets and

receives additional income. The franchisee opens an established business with strong potential

for success. Franchising offers economic agents a chance to manage and direct their own firms

without having to take all the associated risks and, at the same time, has proven to be a power-

ful and efficient means of building up a business and of creating employment and wealth both

at local and international level.

An important issue in franchising is the distribution of the products from the franchisor

to the franchisees. In this context, the centralized inventory models are especially interest-

ing. Consider a finite set of franchisees that distribute a single product manufactured by the

franchisor. The franchisees place their orders according to Economic Order Quantity models

(abbreviated to EOQ models; see for instance Zipkin, 2000 for details of these models). In EOQ

models the firms (the franchisees in this case) face two main types of costs: fixed costs per order

and holding costs. When there are two or more firms, and their fixed costs can be written as

the sum of two components, one due to common setup costs and other due to firm-dependent

transportation costs, we have what we call an inventory transportation system. In order to

study one of those systems and to propose optimal policies for the franchisees we should use

an inventory model. If we allow the franchisees to cooperate and to place orders jointly in

order to reduce the total fixed costs, then we should use a centralized inventory model. In

this case, we should in addition propose a rule to allocate the costs among the cooperating

franchisees. In this paper we introduce and analyze a centralized inventory model and an

allocation rule to tackle inventory transportation systems. Obviously, although we base our

problem on the framework of franchising, its potential applications go much further and can

be extended to many other areas.

To be more precise, in this paper we deal with the cost allocation problem in an inventory

transportation system with a single item and multiple agents that place joint orders using an

EOQ policy. In the case of our problem, the fixed order cost of each agent is the sum of a

first component common to all agents, which reflects the setup cost, plus a second component

which depends on the distance of the agent to the supplier. We assume that agents are located

on a line route. By this we mean that if a group of agents places a joint order, the fixed cost

incurred by this group of agents is the sum of the first component plus the second component

of an agent whose distance from the supplier is maximal within the agents in the group. Notice

that this kind of problem often arises in transportation management when firms use shipment
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consolidation strategies and other pooling strategies (see for instance Ülkü, 2009, for details on

shipment consolidation).

This problem is related to other problems studied in the literature. For instance, it extends

the problem studied in Meca et al. (2004). In both settings several agents need a certain product,

which is sold by a single supplier, and they agree to place the orders jointly by means of

the classical EOQ policy. The difference between this paper and Meca et al. (2004) is in the

structure of the fixed costs. Meca et al. (2004) considers an identical fixed cost for all agents,

which is shared by them if they cooperate; on the contrary we consider that a part of the fixed

cost depends on each agent and that it is proportional to the distance between the agent and

the supplier. Other variations of Meca et al. (2004) can be found in Anily and Haviv (2007),

in Zhang (2009) and in Dror and Hartman (2007), but in all these papers authors consider

problems which are different from that dealt with here. In the two first papers it is considered

that agents use POT (Power of Two) policies instead of EOQ policies, while in the third paper

it is considered that, if a group of agents place a joint order, its fixed cost is the sum of the first

component plus the sum of the second component of the agents in the group.

In order to analyze our cost allocation problem we use cooperative game theory. In particu-

lar, we model our problem as a cost game and study when cooperation is profitable and when

the core of the game is non-empty. Informally, the core of a cost game is the set of allocations

according to which no sub-coalition pays more than it would pay if separated from the grand

coalition. We also propose a cost allocation rule that always provides allocations in the core

of the cost game. We introduce in the paper the game theoretical concepts and results that we

use, but for more details on cooperative game theory the readers may consult, for instance,

González-Díaz et al. (2010).

The paper is organized as follows. Section 2 is devoted to introducing the inventory trans-

portation systems and to studying conditions under which cooperation among agents in those

systems is profitable. Then, we analyze the corresponding class of cooperative cost games and

give a sufficient condition for the non-emptiness of the cores of the games in this class. Sec-

tion 3 is devoted to studying and characterizing a cost allocation rule in this framework. We

complete the paper with a section of conclusions and an Appendix containing the proofs of the

main results.
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2 Inventory transportation systems

An inventory transportation system is a multiple agent situation where each agent is faced

with a basic EOQ problem and where the fixed order cost of each agent is the sum of a first

component (common to all agents) plus a second component which is proportional to the dis-

tance of the agent to the supplier. N denotes the finite set of agents. The parameters associated

to every i ∈ N in one of those systems are:

• a > 0, the first component (common to all agents) of the fixed cost per order,

• ai > 0, the second component of the fixed cost per order, which is i’s distance to the

supplier (or i’s distance multiplied by a constant common to all agents),

• di > 0, the deterministic demand per time unit,

• hi > 0, the holding cost per item and per time unit.

Each agent i ∈ N has to meet the demand in time. To attain this, i keeps stock in hand

by placing orders of size Qi > 0. It is well-known that the optimal size of the order and the

minimum cost for agent i are

Q∗i =

√
2(a + ai)di

hi
and Ci(Q∗i ) =

√
2(a + ai)dihi.

However, in a multiple agent inventory situation such as this one, the agents in every

coalition S ⊂ N can cooperate by placing joint orders (forming what we call an order coalition).

At this point we make two assumptions.

1. All the agents are located on the same line route. By this we mean that if a group of

agents S places a joint order, its fixed cost is the sum of the first component a plus the

second component of an agent in S whose distance from the supplier is maximal (that

we denote by aS; i.e., aS = max{ai | i ∈ S}).

2. The supplier accepts and even encourages agents to form order coalitions at the begin-

ning of each term. But, because of organizational reasons, once an order coalition S has

been formed, the fixed cost that the supplier charges to this coalition, for each order

throughout the term, is a + aS. This means that, if in a particular order an agent i ∈ S

does not buy units of the product, then the supplier even charges a + aS to S.
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The questions we want to answer are: (a) under what conditions it can be reasonable that

the agents in N form an order coalition, and (b) in the case that the order coalition N has been

formed, how the total cost should be allocated to the members of this coalition.

Take now an inventory transportation system (N, I) = (N, a, {ai, di, hi}i∈N) and let us com-

pute the optimal total average cost per time unit for every S ⊂ N, in the case that the order

coalition S forms. As a consequence of Assumption 2 it is clear that, if S forms, all its members

must coordinate their cycles, i.e.

Qi

di
=

Qj

dj
∀i, j ∈ S. (1)

The total average cost per time unit for S and order size1 Qi is given by

C(S, Qi) =
(a + aS)di

Qi
+ ∑

j∈S
hj

Qj

2

=
(a + aS)di

Qi
+

Qi

2di
∑
j∈S

djhj

(the second equality follows from the equality of the cycle lengths).

After some algebra one obtains that, if S forms, the optimal size of the order for agent i ∈ S

is

Q̂i =

√
2(a + aS)d2

i

∑j∈S djhj
,

the optimal number of orders per time unit is

m̂S =
di

Q̂i
=

√
∑j∈S djhj

2(a + aS)
,

and the optimal total average cost per time unit is

C(S, Q̂i) =

√
2(a + aS) ∑

j∈S
djhj = 2(a + aS)m̂S.

These computations allow us to associate a cost game to every inventory transportation

system. A cost game is a pair (N, c), where N is the finite set of agents and c : 2N −→ R

is the so-called characteristic function of the game, which assigns to each subset S ⊂ N the

cost c(S) that has to be paid if agents in S cooperate. By convention, c(∅) = 0. Cost games

1Notice that, once the order size Qi is fixed all the order sizes Qj for all j ∈ S \ {i} are fixed by (1).
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are commonly used to model cost allocation situations. In one of those situations a group of

agents N cooperate to develop a joint project. Then, for every S, c(S) is the minimal cost of

the project with the specifications needed by the agents in S. For an inventory transportation

system (N, I) = (N, a, {ai, di, hi}i∈N), one can naturally build the cost game (N, c) given by:

c(S) := C(S, Q̂i) =

√
2(a + aS) ∑

j∈S
djhj = 2(a + aS)m̂S. (2)

Then, a cost game (N, c) is said to be an inventory transportation game if there exists an in-

ventory transportation system (N, I) whose associated cost game is (N, c). Meca et al. (2003),

Meca et al. (2004) and Mosquera et al. (2008), among others, study intensively the class of the

so-called inventory games. An inventory game is any cost game (N, c) satisfying that, for all

S ⊂ N, c(S) ≥ 0 and, moreover, c(S)2 = ∑i∈S c(i)2. Note that, in general, inventory trans-

portation games are not inventory games (see Expression (2)).

A cost game is said to be subadditive if it is never beneficial for a coalition to split into

several smaller disjointed coalitions. Formally, for each S, T ⊂ N such that S ∩ T = ∅, it

holds that c(S) + c(T) ≥ c(S∪ T). This concept will help us to answer the first question posed

above. In an inventory transportation system, under what conditions can it be reasonable for

the agents in N to form an order coalition? When the corresponding cost game is subadditive

it can be reasonable that the grand coalition N forms.

The next example shows that the cooperation by placing joint orders in the model we are

dealing with is not always profitable. In other words, it shows an inventory transportation

system whose associated cost game is not subadditive.

Example 2.1. Consider the inventory transportation system with N = {1, 2}, a = 20, a1 = 20,

a2 = 90, d = (800, 300) and h = (0.1, 0.06). In this situation, the cooperation is not profitable since:

c(1) + c(2) = C({1}, Q∗1) + C({2}, Q∗2) =
√

6400 +
√

3960 = 80 + 62.93

< c({1, 2}) = C({1, 2}, Q̂1) =
√

21560 = 146.83.

The following theorem provides a necessary and sufficient condition for the subadditivity

of an inventory transportation game. It says that an inventory transportation game is subad-

ditive if and only if, for all disjoint pairs S, T ⊂ N such that aS ≤ aT, the optimal number

of orders for coalition T cannot be too small in relation with the optimal number of orders
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for coalition S. Roughly speaking, this condition means that cooperation is profitable when

the remote agents are not “rare clients” in the sense that their individual optimal numbers of

orders are not too small in comparison with the others’ individual optimal numbers of orders.

Theorem 2.1. Consider an inventory transportation game (N, c) associated to an inventory trans-

portation system (N, I) = (N, a, {ai, di, hi}i∈N). (N, c) is subadditive if and only if

m̂T ≥
1
2

aT − aS

a + aT
m̂S

for all S, T ⊂ N such that S ∩ T = ∅ and aS ≤ aT.

Proof. See Appendix.

In the next section we answer our second question: if we have an inventory transportation

system whose associated game (N, c) is subadditive, i.e., an inventory transportation system

in which it is reasonable for the agents in N to form an order coalition, how should c(N) be

allocated to the members of N?

3 A cost allocation rule for inventory transportation systems

We start this section with a result on the core of an inventory transportation game. Take an

inventory transportation game (N, c) and assume that the agents in N form an order coalition.

In this case, if we want to allocate c(N) to the members of N, it would be very convenient for

our allocation to belong to the core of (N, c) given by the set

C(N, c) =

{
x ∈ RN

∣∣∣∣∣ ∑
i∈N

xi = c(N), ∑
i∈S

xi ≤ c(S) for each S ⊂ N

}
.

Notice that the allocations in the core are those for which no group of agents is disappointed,

in the following sense. If x belongs to the core and a group S separates from N and forms an

order coalition, the cost c(S) it will pay is greater than or equal to the cost ∑i∈S xi allocated by

x to the members of S.

Although the core is an appealing concept in this context, it is easy to check that the core

of an inventory transportation game may be empty. For instance, this is obviously the case

in the game in Example 2.1. However, the following result shows that subadditive inventory

transportation games always have a non-empty core.
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Theorem 3.1. Consider a subadditive inventory transportation game (N, c). Then, C(N, c) is non-

empty.

We leave the formal proof of this theorem for the Appendix. However, we now give some

definitions and an outline of the proof which will be useful for the rest of this section.

Take a subadditive inventory transportation game (N, c) associated to an inventory trans-

portation system (N, I) = (N, a, {ai, di, hi}i∈N). We say that i ∈ N is an extreme agent of (N, I)

if ai = aN , i.e. if its distance to the supplier is greater than or equal to the distance to the sup-

plier of all the other agents. We denote by E(N,I) the set of extreme agents of (N, I). We will

soon see that extreme agents play an important role in the proof of this result.

Let us introduce now some concepts and notations in relation with (N, c). First we denote

by Π(N) the set of all orderings in N. Formally, every σ ∈ Π(N) is a one-to-one map which

associates to every element of N a natural number in {1, 2, . . . , n} (n denotes the number of

elements of N). σ(i) = j means that i has the j-th position in the ordering given by σ. Denote

by σ−1 the inverse of map σ. For every i ∈ N, the set of predecessors of i with respect to

σ ∈ Π(N) is Pσ
i = {j ∈ N | σ(j) < σ(i)}. Now take σ ∈ Π(N); the marginal vector associated

with σ is defined as mσ(N, c) = (mσ
i (N, c))i∈N , where mσ

i (N, c) = c(Pσ
i ∪ {i})− c(Pσ

i ) for each

i ∈ N. Notice that for every marginal vector mσ, it holds that ∑i∈N mσ
i (N, c) = c(N). Hence, a

marginal vector of (N, c) is an allocation of c(N) which allocates to every i its contribution to

its predecessors according to a particular ordering.

Now the proof of Theorem 3.1 simply consists of demonstrating that if mσ(N, c) is a marginal

vector and its ordering σ satisfies that σ−1(1) is an extreme agent of (N, I), then mσ(N, c) be-

longs to the core of (N, c). This proves the theorem, but provides a second output: we know

that all those marginal vectors are allocations in the core. Below we use this feature to define

our allocation rule.

First let us say what we actually mean by allocation rule. Our target is to propose for every

inventory transportation system whose associated game (N, c) is subadditive an allocation

of c(N) among the agents in N. An allocation rule is a mechanism with which to do this.

Formally, an allocation rule for inventory transportation systems is a map φ which associates

to every inventory transportation system (N, I), with associated cost game (N, c), a vector

φ(N, I) = (φi(N, I))i∈N satisfying that ∑i∈N φi(N, I) = c(N).

Now we define an allocation rule which always proposes allocations in the core of the

corresponding inventory transportation game whenever it is subadditive. Take an inventory
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transportation system (N, I) and consider all the orderings σ ∈ Π(N) which invert the or-

dering given by the distances from the agents to the supplier, i.e., all the orderings σ ∈ Π(N)

which satisfy that σ(i) ≤ σ(j) implies that ai (distance of i to the supplier) is greater than or

equal to aj (distance of j to the supplier), for all i, j ∈ N. We denote by Π(N, I) the set of those

orderings in (N, I). We define our allocation rule as the rule that proposes for every inventory

transportation system (N, I) the average of the marginal vectors associated to orderings in

Π(N, I). We give now the formal definition of our rule, that we call the line rule.

Definition 3.1. The line rule is the allocation rule which associates to every inventory transportation

system (N, I), with associated cost game (N, c), the allocation L(N, I) = (Li(N, I))i∈N given by:

Li(N, I) = 1
|Π(N, I)| ∑

σ∈Π(N,I)
mσ

i (N, c)

for all i ∈ N.

Notice that all orderings σ ∈ Π(N, I) satisfy that σ−1(1) is an extreme agent of (N, I),

and then mσ(N, c) ∈ C(N, c) when (N, c) is a subadditive game. Since C(N, c) is a convex set,

then L(N, I) ∈ C(N, c) whenever (N, c) is subadditive. We formally state this in the following

result.

Theorem 3.2. Consider an inventory transportation system (N, I) having a subadditive associated

cost game (N, c). Then, L(N, I) ∈ C(N, c).

Now we include an example in which we compute the line rule of an inventory transporta-

tion system. We also compute the Shapley value for the system in the example. The Shapley

value is a very well-known solution concept for cooperative games. For details on the Shapley

value, for instance, the survey in Moretti and Patrone (2008) can be consulted. With the no-

tation of this paper, the Shapley value of an inventory transportation system (N, I) with cost

game (N, c) is the vector Φ(N, I) = (Φi(N, I))i∈N given by

Φi(N, I) = 1
|Π(N)| ∑

σ∈Π(N)

mσ
i (N, c)

for all i ∈ N.

Example 3.1. Consider the inventory transportation system (N, I) with N = {1, 2, 3}, a = 200 and
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i ai di hi

1 300 90 0.06

2 300 80 0.06

3 900 20 0.1

The associated inventory transportation game is

S ∅ 1 2 3 12 13 23 N

c(S) 0 73.48 69.28 66.33 101 127.59 122.31 163.83

It is easily checked that (N, c) is subadditive. Moreover E(N,I) = {3} and Π(N, I) = {(3 1 2), (3 2 1)}.

So,

{mσ(N, I) | σ ∈ Π(N, I)} = {(61.26, 36.24, 66.33), (41.52, 55.98, 66.33)}.

Then, the line rule for this system is

L(N, I) = (51.39, 46.11, 66.33) ∈ C(N, c),

The Shapley value requires more computational effort and, moreover, may lie outside the core. In this

example

Φ(N, I) = (53.83, 49.09, 60.91) 6∈ C(N, c),

since the core condition fails for coalition S = {1, 2}. 3

We see that the line rule is an allocation rule for inventory transportation systems which

has the same flavor as the Shapley value, but requires less computational effort and relates

better with the core. Let us now see two properties which are intimately connected with the

line rule, in the sense that they characterize it within the set of possible rules for inventory

transportation systems.

The two properties are concerned with the distances of the agents to the supplier. These

distances are an important feature in this model, the feature which distinguishes it from other

centralized inventory models. The first property is a fairness property that states that if two

agents are equally distant from the supplier, they must be treated in a balanced way by the

rule.

Balanced Treatment for Equally Distant Agents (BT). An allocation rule φ for inventory trans-

portation systems satisfies BT if the following is fulfilled. Take an inventory transporta-

tion system (N, I) = (N, a, {ai, di, hi}i∈N) and take j, k ∈ N with aj = ak. For every l ∈ N
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denote by (N \ {l}, I) the inventory transportation system (N \ {l}, a, {ai, di, hi}i∈N\{l}).

Then,

φj(N, I)− φj(N \ {k}, I) = φk(N, I)− φk(N \ {j}, I).

The second property, Free Participation of Costless Agents (FP), states that if an order group

has formed and a set of new agents joins the group, this incorporation will not affect the al-

location to the agents in the original group if the new agents are closer to the supplier than

all the other agents. The idea under this property is that these new agents can be considered

as costless agents, because they do not perturb either the original group or any subgroup of

it, in the sense that the transportation route can be maintained without any variations after

their incorporation (apart maybe from some additional stops). Then, costless agents may be

incorporated to the order group provided that they do not modify the allocation for the agents

in the original group. FP is a desirable property in many situations. First, it is important to

notice that it is a clear, understandable for everyone, and reasonable property. Moreover, if the

supplier wants to form a large order coalition, FP seems to be a good property. To simplify our

argument assume that the agents lie in towns located on a line route; we identify the agents

in a town with the town itself. Then, for every two towns, both are not against merging: the

furthest town from the supplier is in fact indifferent, and the closest town will benefit from the

merging (if the game is subadditive).

Free Participation of Costless Agents (FP). An allocation rule φ for inventory transportation

systems satisfies FP if the following condition is fulfilled. Take an inventory transporta-

tion system (N ∪ N′, IN∪N′) = (N ∪ N′, a, {ai, di, hi}i∈N∪N′) such that N ∩ N′ = ∅ and

aN′ < ai for all i ∈ N. Denote by (N, I) the inventory transportation system (N, a, {ai, di, hi}i∈N).

Then,

φj(N ∪ N′, IN∪N′) = φj(N, I)

for all j ∈ N.

These two properties characterize the line rule. We formally state this in the following

theorem.

Theorem 3.3. The line rule is the unique rule for inventory transportation systems satisfying BT and

FP.

Proof. See Appendix.
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4 Conclusions

This paper provides a new contribution to centralized inventory problems. It examines a cost

allocation problem in an inventory transportation system with a single item, a single supplier

and multiple retailers that place joint orders using an EOQ policy with a specific cost struc-

ture: the joint order cost is the addition of a fixed part plus a transportation cost which is the

maximum of the individual transportation costs. This problem corresponds to a situation in

which the retailers are located on the same line route, in the sense that, if a retailer is served,

all retailers which are closer to the supplier are served without any additional transportation

cost. For these inventory transportation systems cooperation is not always reasonable, but if

we impose a simple condition that compares the optimal numbers of orders for every disjoint

pair of coalitions, we can ensure that cooperation is reasonable. Moreover, when cooperation

is reasonable, we prove that we can always find stable allocations (allocations belonging to

the core of the corresponding cost game). Finally we introduce the line rule, an allocation rule

which provides stable allocations when cooperating is reasonable. We also provide two prop-

erties that characterize this rule. All these results provide satisfactory answers to the questions

initially addressed. From a practical point of view, we can apply our results to franchises

operations.

5 Appendix

Here the reader can find the proofs of the theorems stated in this paper.

Proof of Theorem 2.1. Let S, T ⊂ N be such that S ∩ T = ∅ and aS ≤ aT. It has to be proven

that c(S) + c(T) ≥ c(S ∪ T)⇔ m̂T ≥
1
2

aT − aS

a + aT
m̂S. Since c(S) ≥ 0,

c(S) + c(T) ≥ c(S ∪ T) ⇔ c(S)2 + c(T)2 + 2c(S)c(T) ≥ c(S ∪ T)2

⇔ 2c(S)c(T) ≥ c(S ∪ T)2 − c(S)2 − c(T)2.

But

c(S ∪ T)2 − c(S)2 − c(T)2 = 2(a + aS∪T) ∑
i∈S∪T

hidi − 2(a + aS) ∑
i∈S

hidi − 2(a + aT) ∑
i∈T

hidi

= 2(a + aT) ∑
i∈S

hidi − 2(a + aS) ∑
i∈S

hidi

12



= 2(aT − aS) ∑
i∈S

hidi.

Then,

c(S) + c(T) ≥ c(S ∪ T) ⇔ c(S)c(T) ≥ (aT − aS) ∑
i∈S

hidi.

Moreover, the right side of the equivalence can be written as

4(a + aS)(a + aT)m̂Sm̂T ≥ (aT − aS)2(a + aS)m̂2
S ⇔ m̂T ≥

1
2

aT − aS

a + aT
m̂S.

Proof of Theorem 3.1. In this proof we use the notation and concepts introduced in the infor-

mal proof of this result provided in Section 3. Take a subadditive inventory transportation

game (N, c) associated to an inventory transportation system (N, I) = (N, a, {ai, di, hi}i∈N).

Take now a marginal vector mσ(N, c) such that σ satisfies that σ−1(1) is an extreme agent of

(N, I). We have to prove that mσ(N, c) belongs to the core of (N, c). To do this, it suffices

to show that for every non-empty coalition S ⊂ N, it holds that ∑i∈S mσ
i (N, c) ≤ c(S). We

distinguish two cases.

a) S contains the extreme agent σ−1(1). Then,

∑
i∈S

mσ
i (N, c) = c(σ−1(1)) + ∑

j∈S\{σ−1(1)}

(
c(Pσ

j ∪ {j})− c(Pσ
j )
)

= c(σ−1(1)) + ∑
j∈S\{σ−1(1)}

√2(a + aN) ∑
i∈Pσ

j ∪{j}
hidi −

√
2(a + aN) ∑

i∈Pσ
j

hidi


= ∑

j∈S

√
2(a + aN)

√ ∑
i∈Pσ

j ∪{j}
hidi −

√
∑

i∈Pσ
j

hidi


≤ ∑

j∈S

√
2(a + aN)

√ ∑
i∈(Pσ

j ∪{j})∩S
hidi −

√
∑

i∈Pσ
j ∩S

hidi


= c(S)

where the inequality follows from the fact that the function
√

x + y−
√

x is decreasing

in x for all y ∈ [0, ∞).
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b) S does not contain the extreme agent σ−1(1). In this case denote S̄ = S∪ {σ−1(1)}. Using

the same proof above we conclude that

∑
i∈S̄

mσ
i (N, c) ≤ c(S̄).

Now, taking into account that mσ
σ−1(1)(N, c) = c(σ−1(1)) and that c is subadditive, it

holds that

c(σ−1(1)) + ∑
i∈S

mσ
i (N, c) = ∑

i∈S̄

mσ
i (N, c) ≤ c(S̄) ≤ c(σ−1(1)) + c(S),

which implies that ∑i∈S mσ
i (N, c) ≤ c(S).

Proof of Theorem 3.3. It is clear that the line rule satisfies FP. Namely, take an inventory trans-

portation system (N ∪ N′, IN∪N′) = (N ∪ N′, a, {ai, di, hi}i∈N∪N′) such that N ∩ N′ = ∅ and

aN′ < ai for every i ∈ N, and its associated inventory transportation game (N ∪ N′, c). Then, it

is easy to check that |Π(N ∪ N′, IN∪N′)| = |Π(N, IN)||Π(N′, IN′)|. Moreover, for every i ∈ N

and σ ∈ Π(N ∪ N′, IN∪N′),

{j ∈ N ∪ N′ | σ(j) < σ(i)} = {j ∈ N | σ(j) < σ(i)} = {j ∈ N | σ|N(j) < σ|N(i)}.

Therefore, for every i ∈ N,

Li(N ∪ N′, IN∪N′) =
1

|Π(N ∪ N′, IN∪N′)| ∑
σ∈Π(N∪N′,IN∪N′ )

mσ
i (N ∪ N′, c)

=
1

|Π(N, IN)| ∑
σ∈Π(N,IN)

mσ
i (N, c) = Li(N, IN).

To conclude the proof it must be shown, for every arbitrary inventory transportation system

(N, I) = (N, a, {ai, di, hi}i∈N) and its associated inventory transportation game (N, c), that:

Claim 1. For every i, j ∈ N with ai = aj, it holds that Li(N, I)− Li(N \ {j}, I) = Lj(N, I)− Lj(N \

{i}, I).

Claim 2. If φ is an allocation rule for inventory transportation systems satisfying BT and FP, then

φi(N, I) = Li(N, I) for all i ∈ N.

14



First of all, assume without loss of generality that N = {1, . . . , n} and that a1 ≥ . . . ≥ ai ≥

. . . ≥ an. Now denote

N1 = {i ∈ N | ai = a1} and n1 = |N1|,

N2 = {i ∈ N | ai = an1+1} and n2 = |N2|,

. . . (3)

Nk = {i ∈ N | ai = an1+...+nk−1+1 = an} and nk = |Nk|.

where |·| denotes the cardinality function. Notice that N = N1 ∪ . . . ∪ Nk and Nr ∩ Nt = ∅ for

every r, t ∈ {1, . . . , k}, r 6= t.

Let us prove Claim 1. Assume that i, j ∈ Nl with 1 ≤ l ≤ k. Define the cost game (Nl , cl) by

cl(S) := c(∪l−1
r=1Nr ∪ S)− c(∪l−1

r=1Nr)

for all S ⊂ Nl . The Shapley value of a cost game (N, c) is Φi(N, c) = 1
|Π(N)| ∑σ∈Π(N) mσ(N, c)

(see Moretti and Patrone, 2008), and then

Φi(Nl , cl) =
1

|Π(Nl)| ∑
σ∈Π(Nl)

mσ
i (Nl , cl) = Li(N, I),

where the last equality follows from Π(Nl , INl ) = Π(Nl).

In fact what we want to prove is that

Φi(Nl , cl)−Φi(Nl \ {j}, cl) = Φj(Nl , cl)−Φj(Nl \ {i}, cl)

(in the cost game (Nl \ {i}, cl) cl means the restriction of cl to Nl \ {i}). But this is immediately

obtained from the so-called balanced contributions property of the Shapley value (proved in

Hart and Mas-Colell, 1989) which states that, for every cost game (N, c) and every i, j ∈ N,

Φi(N, c)−Φi(N \ {j}, c) = Φj(N, c)−Φj(N \ {i}, c).

Let us prove now Claim 2.

a) We first prove that ∑i∈Nj
φi(N, I) = ∑i∈Nj

Li(N, I) for all j ∈ {1, . . . , k}. We do this

by induction on j. For j = 1, since φ and L satisfy FP and N = N1 ∪ (N \ N1), then
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φi(N1, IN1) = φi(N, I) and Li(N1, IN1) = Li(N, I) for all i ∈ N1.

Therefore, by definition of allocation rule

∑
i∈N1

φi(N, I) = ∑
i∈N1

φi(N1, IN1) = c(N1)

= ∑
i∈N1

Li(N1, IN1) = ∑
i∈N1

Li(N, I).

Take j > 1. Assume that the statement is true for all l ≤ j− 1. Now, φ and L satisfying

FP implies that

∑
i∈N1∪...∪Nj

φi(N, I) = c(N1 ∪ . . . ∪ Nj) = ∑
i∈N1∪...∪Nj

Li(N, I),

and the induction hypothesis implies that ∑i∈Nj
φi(N, I) = ∑i∈Nj

Li(N, I).

b) We now prove that φi(N, I) = Li(N, I) for all i ∈ N. Take i ∈ N and l ∈ {1, . . . , k}

such that i ∈ Nl (remember that {N1, . . . , Nk} defined as in (3) is a partition of N). We

prove the statement by induction on nl = |Nl |. If nl = 1, a) obviously implies it. Take

nl > 1. Assume now that the statement is true for nl − 1. Take j ∈ Nl different from i.

Considering that φ and L satisfy BT we have that

φi(N, I)− φj(N, I) = φi(N \ {j}, I)− φj(N \ {i}, I),

Li(N, I)− Lj(N, I) = Li(N \ {j}, I)− Lj(N \ {i}, I).

The induction hypothesis implies that Li(N \ {j}, I) = φi(N \ {j}, I) and Lj(N \ {i}, I) =

φj(N \ {i}, I).

Therefore,

φi(N, I)− φj(N, I) = Li(N, I)− Lj(N, I).

Thus φj(N, I)− Lj(N, I) is constant for all j ∈ Nl . Now a) implies that this constant has

to be zero and hence φi(N, I) = Li(N, I).
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