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1. Introduction

We study the existence of positive solutions of the damped regular differential equation

ẍ + cẋ = g(t)xλ − h(t)xμ (1.1)

under periodic or Neumann boundary conditions, where c ∈ R, g, h ∈ C([0, T ]) and λ, μ > 0.
Throughout the paper, by speaking about a T -periodic function x, we mean that both x and ẋ are 

periodic functions, i.e.,
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x(0) = x(T ), ẋ(0) = ẋ(T ), (1.2)

and we will identify any function defined on [0, T ) with its T -periodic extension to the whole of R. We also 
deal with the existence of positive solutions for equation (1.1) subject to the Neumann boundary conditions

ẋ(0) = ẋ(T ) = 0. (1.3)

Due to common features shared by the periodic and the Neumann boundary conditions, some methods 
can be applied to both the problems: it is the case of a recent version of the averaging [6] and the lower and 
upper solutions technique [9,15].

The models for (1.1) we have in mind are the periodic problem for the equation

ẍ + cẋ = (b + 1)e(t)x
b−1
b+1 − a(b + 1)x

b
b+1 , a > 0, b > 1,

related to the Liebau phenomenon and the Neumann boundary value problem for the equation describing 
fluid dynamics

ẍ + cẋ = q2x −
(

1 + δ sin
(

π t

T

))
x2.

More details about the models and the related bibliography are given in the corresponding sections.
The following notation is used throughout the paper: AC1(R/TZ, R) is the set of all T -periodic functions 

x : R/TZ → R such that x and ẋ are absolutely continuous and for a given continuous function x on [0, T ]
we denote

Mx = max
t∈[0,T ]

x(t), mx = min
t∈[0,T ]

x(t),

QP(x) = 1
T

T∫
0

x(s)ds

and

QN ,c(x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1
T

T∫
0

x(s)ds if c = 0,

c

ecT − 1

T∫
0

ecsx(s)ds if c �= 0.

The rest part of this paper is organized as follows. In Section 2, the asymptotic behavior of solutions of 
general second order differential equations with small parameters is given, which is used to deal with the 
regular damped differential equations; finally, it is applied to the fluid dynamics equation. In Section 3, we 
provide some results based on lower and upper solutions in the reversed order, then the results are applied to 
the Liebau-type differential equation improving and complementing some previous results in the literature.

2. The averaging method

In this section we deal with the equation

ẍ + cẋ = νg(t)xλ − h(t)xμ (2.1)
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in the presence of a parameter ν.
We are going to apply an averaging technique recently developed in [6] that allows us to deal simulta-

neously with both the periodic and the Neumann boundary conditions. Let I ⊂ R be an open interval and 
let

f : [0, T ] × I × R × (−ε1, ε1) → R,

(t, u0, u1, ε) �→ f(t, u0, u1, ε)

be continuous and such that ∂f

∂u0
, ∂f

∂u1
exist and are continuous. Let us consider the problem

ẍ + cẋ = εf(t, x, ẋ, ε) (2.2)

and define the periodic averaged function

FP : I → R, κ �→ FP(κ) := QP(f(·, κ, 0, 0))

and the Neumann averaged function

FN ,c : I → R, κ �→ FN ,c(κ) := QN ,c(f(·, κ, 0, 0)).

Theorem 2.1. If there exists κ0 ∈ I such that

FP(κ0) = 0 and F ′
P(κ0) �= 0 (resp. FN ,c(κ0) = 0 and F ′

N ,c(κ0) �= 0),

then there exists ε0 ∈ (0, ε1) such that for 0 < |ε| < ε0, the periodic problem (2.2), (1.2) (resp. the Neumann 
problem (2.2), (1.3)) has a unique solution x(t, ε) in a neighborhood of κ0 and lim

ε→0+
x(t, ε) = κ0 uniformly 

in t ∈ [0, T ].

Proof. The result for the periodic problem (2.2), (1.2) is just a particular case of [6, Theorem 4]. The proof 
for the Neumann problem (2.2), (1.3) is similar by taking into account that for z ∈ C([0, T ]) the Neumann 
problem

ẍ + cẋ = z(t), ẋ(0) = 0 = ẋ(T )

is solvable if and only if QN ,c(z) = 0. Then the rest of the proof goes through as in [6, Remark 5]. �
Therefore, as an application of Theorem 2.1 to equation (2.1) with the periodic or the Neumann boundary 

conditions, we obtain the following corollary. In the periodic setting it is a complementary result to [6, 
Theorem 7].

Corollary 2.2. Assume that c ∈ R, μ �= 1, λ �= μ and g and h are continuous functions with Q(g) · Q(h) > 0, 
where Q stands for QP or QN ,c.

If Q = QP (resp. Q = QN ,c), then the periodic problem (2.1), (1.2) (resp. the Neumann problem (2.1), 
(1.3)) has a solution x(t, ν) provided that either one of the following conditions holds:

(i) μ − 1
μ − λ

> 0 and ν > 0 is small enough,

(ii) μ − 1
< 0 and ν > 0 is large enough.
μ − λ
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Moreover, in case (i) the following asymptotic behavior holds

lim
ν→0+

ν
1

λ−μ x(t, ν) =
(

Q(g)
Q(h)

) 1
μ−λ

uniformly in t ∈ [0, T ],

while in case (ii)

lim
ν→+∞

ν
1

λ−μ x(t, ν) =
(

Q(g)
Q(h)

) 1
μ−λ

uniformly in t ∈ [0, T ].

Proof. Setting x = ν
1

μ−λ y, equation (2.1) becomes, after simplification by ν
1

μ−λ ,

ÿ + cẏ = ν
μ−1
μ−λ (g(t)yλ − h(t)yμ),

and hence, choosing ε = ν
μ−1
μ−λ , we have

ÿ + cẏ = ε(g(t)yλ − h(t)yμ). (2.3)

Now, it is easy to show that equation (2.1) satisfies the conditions of Theorem 2.1. To see this, we prove 
the corresponding result for Q = QP . Indeed, for any κ > 0 we have

FP(κ) = QP(g)κλ − QP(h)κμ and F ′
P(κ) = λQP(g)κλ−1 − μQP(h)κμ−1,

and then for κ0 =
(

QP(g)
QP(h)

) 1
μ−λ

> 0 it holds

FP(κ0) = 0 and F ′
P(κ0) = (λ − μ) QP(g)

μ−1
μ−λ

QP(h)
λ−1
μ−λ

�= 0.

A similar argument holds for the case Q = QN ,c. Namely, it is enough to replace FP by FN ,c. �
2.1. Application to a fluid dynamics equation

The following Neumann problem, related to an equation arising in fluid dynamics, has been studied for 
example in [1,3,11,12,17]⎧⎪⎨⎪⎩ẍ = q2x −

(
1 + δ sin

(
π t

T

))
x2, t ∈ (0, T ), q > 0, δ ≥ 0,

ẋ(0) = ẋ(T ) = 0.

(2.4)

In fact, we are dealing with a more general version of the problem, namely,{
ẍ + cẋ = q2x − h(t)xp, t ∈ (0, T ),

ẋ(0) = ẋ(T ) = 0,
(2.5)

and we provide an existence result that complements [1, Theorem 3].

Theorem 2.3. Suppose that c ∈ R, q > 0, 0 < p �= 1 and h is a continuous function in [0, T ] such that 
QN ,c(h) > 0.
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Then, there exists q0 ∈ (0, ∞) such that, for 0 < q < q0, problem (2.5) has a solution x(t, q) such that

lim
q→0+

q
2

1−p x(t, q) =
(

1
QN ,c(h)

) 1
p−1

uniformly in t ∈ [0, T ].

Proof. It is a particular case of Corollary 2.2 with ν = q2, g(t) ≡ 1, λ = 1, μ = p and Q = QN ,c. Take into 
account that QN ,c(1) = 1 for each c ∈ R. �

As an application of the previous theorem to problem (2.4), we obtain the following result.

Corollary 2.4. There exists q0 ∈ (0, ∞) such that, for 0 < q < q0, problem (2.4) has a solution x(t, q) such 

that lim
q→0+

1
q2 x(t, q) = π

π + 2δ
uniformly in t ∈ [0, T ].

Proof. It is a particular case of Theorem 2.3 with c = 0, h(t) = 1 + δ sin
(

π t
T

)
and p = 2. Notice that in this 

case QN ,0(h) = π + 2δ

π
> 0. �

Remark 2.5. The existence of a positive solution for problem (2.4) was established by Torres in [17] for each 
q > 0 by means of the Krasnosels’kii fixed point theorem. The uniqueness of such positive solution was 
added in [1] for q ∈ (0, 0.354446 . . .). The asymptotic information provided by Corollary 2.4 for the unique 
positive solution of problem (2.4) as q → 0+ seems to be new.

3. Lower and upper solutions in the reversed order

We present sufficient conditions such that problem (1.1), (1.2) (resp. (1.1), (1.3)) has a lower solution 
α and an upper solution β in the reversed order, that is β ≤ α. The construction of the lower and upper 
solutions follows the approach initiated in [10]. We point out that in the reversed order case the monotone 
method can be used to approximate the extremal solutions between β and α for any boundary value problem 
such that a uniform anti-maximum principle holds, as is the case for the periodic or the Neumann problems 
[2,9,13]. Let us also mention that the method of lower and upper solutions in the reversed order case requires 
a growth condition imposed on the nonlinear part of equation (1.1). Roughly speaking, the partial derivative 
ρx of the function

ρ(t, x) = h(t)xμ − g(t)xλ

has to be bounded from above by an appropriate constant for x ∈ [β(t), α(t)] (see [13,16]).

Theorem 3.1. Let λ, μ > 0, c2 > 0, c1, d1, d2 ∈ [0, +∞), and the functions ω, σ ∈ C2([0, T ], R) be the 
solutions of the differential equations

ω̈ + cω̇ = c1h(t) − c2g(t), t ∈ [0, T ] (3.1)

and

σ̈ + cσ̇ = d1h(t) − d2g(t), t ∈ [0, T ] (3.2)

under the periodic boundary conditions (1.2) (resp. under the Neumann boundary conditions (1.3)).
Suppose there exists x1 ∈ (0, +∞) such that

x1(ω(t) − mω) + σ(t) − mσ ≤ (c1x1 + d1)1/μ − (c2x1 + d2)1/λ for t ∈ [0, T ] (3.3)
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holds and one of the following conditions is satisfied:

i) 0 < λ < μ < 1,
ii) 0 < λ < 1 and c1 = 0,
iii) 1 = λ < μ and c2 > Mω − mω,
iv) λ = 1, c1 = 0 and c2 > Mω − mω.

Then, there exist an upper solution β and a lower solution α of the periodic problem (1.1), (1.2) (resp. of 
the Neumann boundary value problem (1.1), (1.3)) such that

0 < β ≤ α.

Proof. By condition (3.3) the function defined by

β(t) = (c1x1 + d1)1/μ − [x1(ω(t) − mω) + σ(t) − mσ] for t ∈ [0, T ] (3.4)

satisfies

(c2x1 + d2)1/λ ≤ β(t) ≤ (c1x1 + d1)1/μ for t ∈ [0, T ]. (3.5)

Moreover, in view of (3.1) and (3.2) we have

β̈ + cβ̇ = (c2x1 + d2)g(t) − (c1x1 + d1)h(t) for t ∈ [0, T ]. (3.6)

So, (3.5) and (3.6) imply

β̈ + cβ̇ ≤ g(t)βλ − h(t)βμ for t ∈ [0, T ],

and then 0 < β is an upper solution of problem (1.1), (1.2) (resp. (1.1), (1.3)).
On the other hand, note that each of the conditions i), ii), iii) or iv) implies that

lim
x→+∞

[(c2x + d2) 1
λ − (c1x + d1)

1
μ − x(Mω − mω) − (Mσ − mσ)] = +∞.

Therefore, we can choose x0 > x1 such that

x0(ω(t) − mω) + σ(t) − mσ ≤ (c2x0 + d2)1/λ − (c1x0 + d1)1/μ for t ∈ [0, T ]. (3.7)

Then the function

α(t) := (c2x0 + d2)1/λ − [x0(ω(t) − mω) + σ(t) − mσ] for t ∈ [0, T ] (3.8)

satisfies

(c1x0 + d1)1/μ ≤ α(t) ≤ (c2x0 + d2)1/λ for t ∈ [0, T ]. (3.9)

In a similar way as before it can be checked that α is a lower solution of problem (1.1), (1.2) (resp. (1.1), 
(1.3)). Finally, from (3.5), (3.9) and x1 < x0 we obtain that for all t ∈ [0, T ]

(c2x1 + d2)1/λ ≤ β(t) ≤ (c1x1 + d1)1/μ ≤ (c1x0 + d1)1/μ ≤ α(t) ≤ (c2x0 + d2)1/λ. �
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3.1. Applications to a periodic problem

Consider the Liebau-type equation

ü + cu̇ = 1
u

(e(t) − bu̇2) − a, (3.10)

where a > 0, b > 1, c ≥ 0 are constants and e ∈ C(R/TZ, R). The equation (3.10) appeared in [14] as a 
simple model for the “valveless pumping” phenomenon firstly noticed by the German cardiologist G. Liebau: 
a periodic external forcing acting in an asymmetric configuration can produce a directed flow without the 
use of valves (see also [18, Chapter 8] for a discussion of this singular model).

It was pointed out in [7] that ē := 1
T

T∫
0

e(s)ds > 0 is a necessary condition in order that (3.10) has a 

positive T -periodic solution but it is still an open problem to know whether or not this condition is also 
sufficient. Therefore, any new existence criteria are welcome.

Although (3.10) is singular, it was observed in [7] and later exploited in [4,5,8,19] that the change of 
variable u = x

1
b+1 leads to the regular equation

ẍ + cẋ = (b + 1)e(t)x
b−1
b+1 − a(b + 1)x

b
b+1 , a > 0, b > 1, (3.11)

which is a particular case of (1.1) by setting

g(t) = (b + 1)e(t), h(t) = a(b + 1), λ = b − 1
b + 1 and μ = b

b + 1 .

Theorem 3.2. (Existence) Let a > 0, b > 1, c ≥ 0 and e ∈ C(R/TZ, R) with ē > 0. Suppose that ω ∈
AC1(R/TZ, R) is a periodic solution of the equation

ω̈ + cω̇ = (b + 1)(e − e(t)) (3.12)

that satisfies

Mω − mω ≤ û(x1), (3.13)

where

û(x) =
( e

a

) b+1
b

x
1
b − x

2
b−1

and

x1 =
[ e

a

(b − 1
2b

) b
b+1

]b−1
.

Moreover, let us define

β(t) =
( e

a
x1

) b+1
b

− x1(ω(t) − mω) for t ∈ [0, T ] (3.14)

and assume that 
∥∥∥∥ ab

1
b+1

∥∥∥∥ ≤ π2

2 + c2
.

β ∞ T 4
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Then equation (3.11) has a positive T -periodic solution x such that

0 < β(t) ≤ x(t) ≤ α(t),

where

α(t) = x
b+1
b−1
0 − x0(ω(t) − mω) (3.15)

with x0 satisfying (3.7) and x0 > x1.
(Stability) Moreover, if c > 0, the functions α and β are strict lower and upper solutions of the periodic 
problem (3.11), (1.2) and

mβ >

(
(b − 1)Me

ab

)b+1

, (3.16)

then equation (3.11) has a unique asymptotically stable T -periodic solution between β and α.

Proof. Firstly, we are going to apply Theorem 3.1 with c2 = 1, c1 = ē
a and d1 = d2 = 0. So, take ω as a T -

periodic solution of (3.12) and σ ≡ 0. Then assumption (3.13) implies (3.3) and condition i) in Theorem 3.1
is also satisfied. Hence β and α given by (3.14) and (3.15) are, respectively, upper and lower solutions of 
the periodic problem (3.11), (1.2) such that

0 < β ≤ α.

Define now

ρ(t, x) = h(t)xμ − g(t)xλ = a(b + 1)x
b

b+1 − (b + 1)e(t)x
b−1
b+1 .

For t ∈ R and 0 < β(t) < x < α(t) we have

ρx(t, x) = b

b + 1a(b + 1)x
−1

b+1 − b − 1
b + 1(b + 1)e(t)x

−2
b+1

≤ ab

β
1

b+1
≤ π2

T 2 + c2

4 ,

then the existence part follows from the lower/upper solution technique for the periodic problem in the 
reversed case, see for instance [16, Theorem 4.2].

As for the stability part, for t ∈ R and x > 0 we have

ρx(t, x) = b

b + 1a(b + 1)x
−1

b+1 − b − 1
b + 1(b + 1)e(t)x

−2
b+1

= x
−2

b+1 [abx
1

b+1 − (b − 1)e(t)]

≥ x
−2

b+1 [abx
1

b+1 − (b − 1)Me].

So, for m2 > m1 >
(

(b−1)Me

ab

)b+1
there exists k(m1, m2) > 0 such that for all t ∈ R and m1 ≤ x ≤ m2 we 

have

ρx(t, x) ≥ k(m1, m2) > 0.
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Then, by (3.16) we can take m1 := mβ , m2 := Mα and we obtain that

ρx(t, x) ≥ k(m1, m2) > 0 for all t ∈ R and β(t) ≤ x ≤ α(t).

Thus, the existence of a unique asymptotically stable T -periodic solution between β and α follows now from 
[13, Remark 3.2]. �

We conclude this section with an example which illustrates Theorem 3.2. The graphs and some compu-
tations were made with the help of the software system Mathematica.

Example 3.3. Consider equation (3.11) with a = 0.5, b = 2, c = 1, and e(t) = sin 2πt + 2, that is,

ẍ + ẋ = 3(sin 2πt + 2)x 1
3 − 3

2x
2
3 . (3.17)

It is clear that e is continuous and T -periodic with T = 1. Moreover, e = 2, me = 1 and Me = 3. Then 
equation (3.12) reads

ω̈ + ω̇ = −3 sin 2πt. (3.18)

By standard calculations we have that

ω(t) = 3
2π(1 + 4π2) cos 2πt + 3

1 + 4π2 sin 2πt

is a 1-periodic solution of (3.18). We also have

x1 = 2 2
3 ≈ 1.5874 and û(x1) = 6 · 2 1

3 ≈ 7.5595.

Since Mω − mω = 3
π

√
1 + 4π2

≤ 0.16, the inequality Mω − mω ≤ û(x1) holds. Next, we obtain

β(t) = 8x
3
2
1 − x1(ω(t) − mω),

mβ = 8x
3
2
1 − x1(Mω − mω) = 16 − 3 22/3

π
√

1 + 4π2
≈ 15.7617,

and ∥∥∥∥ 1
3
√

β

∥∥∥∥
∞

= 1
3
√

mβ
≈ 0.3988 <

π2

T 2 + c2

4 = π2 + 1
4 .

Moreover, for x0 = 4.1 > x1 inequality (3.7) is satisfied. Defining

α(t) = x3
0 − x0(ω(t) − mω),

by Theorem 3.2 we have that equation (3.17) has a positive periodic solution x such that

β(t) ≤ x(t) ≤ α(t).
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Numerical 1-periodic solution of From down to up: β, the solution and
equation (3.17). α.
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