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A B S T R A C T

The real-time forecasting of urban flooding is a challenging task for the following two reasons: (1) urban flood-
ing is often characterized by short lead times, (2) the uncertainty in precipitation forecasting is usually high.
Standard physically based numerical models are often too slow for the use in real-time forecasting systems. Data
driven models have small computational costs and fast computation times and may be useful to overcome this
problem. The present study presents an artificial neural network based model for the prediction of maximum
water levels during a flash flood event. The challenge of finding a suitable structure for the neural network was
solved with a new growing algorithm. The model is successfully tested for spatially uniformly distributed syn-
thetic rain events in two real but slightly modified urban catchments with different surface slopes. The computa-
tion time of the model in the order of seconds and the accuracy of the results are convincing, which suggest that
the method may be useful for real-time forecasts.

1. Introduction

Urbanization may have a significant impact on the rainfall runoff re-
lation (Ferguson and Suckling, 1990; Aronica et al., 2012). Related de-
crease of pervious surface area may increase urban floods. Mainly short
term precipitation events with high intensity can lead to an exceedance
of the capacity of drainage systems and flooding of the surface. With
climate change, those events will occur more often in the future and
the monetary and the non-monetary damage may increase significantly
(Schreider et al., 2000; Dewan, 2013; Hölscher et al., 2014;36.). For the
implementation of early warning systems, fast forecast models are indis-
pensable (Henonin et al., 2013). Such models include the rain forecast-
ing and the prediction of inundated areas.

In Henonin et al. (2013), several different approaches for water level
prediction in real-time are discussed. The main outcome of that study
is that accurate physically based numerical models are too slow for real
time forecasting. Simplified physically based models (e.g. reduced in
spatial dimension) are used to overcome the problem of computation
time. Leandro et al. (2009) compared the coupling of a 1D sewer sys-
tem with a 1D and a 2D surface flow model. This study shows that
results of the 1D surface model were in good agreement with results
of the 2D model. In that study, overland flow was restricted to the
streets. Jahanbazi and Egger (2014) proposed to combine 1D and 2D

surface flow models by defining regions prone to surface flooding. Only
these regions were calculated with a 2D surface flow model. Thorndahl
et al. (2016) have shown in a case study in Denmark that the computa-
tion time of the physically based model Mike Flood (DHI, 2012) can be
minimized such that computation time is half the real-time. Also, René
et al. (2018) used a physically based overland flow model for flood fore-
casting in the city of Castries, St. Lucia.

In both studies by Thorndahl et al. (2016) and René et al. (2018),
the spatial extent of the prediction model was moderate. As pointed out
in (Bermúdez et al., 2018), for model domains of larger spatial extent,
the computation time of physically based numerical models can be lim-
iting. Also, ensemble methods might be needed to capture the influence
of uncertainties. For real-time forecasting of flooding, very fast predic-
tion methods are needed.

In order to reduce computation time and enable real-time forecast-
ing, the use of data driven models has become popular in the last years.
Bruen and Yang (2006) combined a physically based model and an ar-
tificial neural network (ANN) modeland compared model results with
observations. Chang et al. (2014) presented an ANN based model for
floodwater prediction in storage ponds. Tayfur et al. (2007) used an
ANN to predict real-time storm hydrographs for the upper Tiber river
basin in Italy. Rjeily et al. (2017) used non-linear autoregressive exoge-
nous (NARX) neural networks to calculate water depth at critical man-
holes in an urban catchment. Input of that model were both, rainfall in
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tensities and water depth at the previous time step. Results of that study
have shown that the NARX model performed well on both minor and
severe storm events. In above listed studies, flooded areas were pre-
dicted point-wise and 2D results for inundated area were not generated.
A two-dimensional real-time forecast model for urban flooding is de-
scribed in Bermúdez et al. (2018). The model described in that study
is based on two different ANNs. One ANN uses the rainfall-runoff vol-
ume determined by a conceptual sewer model as input to detect flood-
ing from the rain sewer system. The second ANN model is based on an
ensemble approach and simulates the maximum flood volume. Results
from both ANNs enable to choose a discrete flood depth map, which is
selected from a database of physically based pre-simulated scenarios. In-
terpolation between pre-simulated scenarios is not possible with the ap-
proach described in that study, Regarding the variability of rain events,
there is a need for real-time prediction of flood depth with interpolation
abilities. An approach to interpolate between different rainfall events is
given in Bermúdez et al. (2019:). In this study a hydrological model is
used to generate discharge as input for support vector machine (SVM)
models at about 25000 control points in an urban catchment. The out-
put of the SVM models is the maximum flood depth and velocity. Jhong
et al. (2017) presented a real-time forecast model for inundation maps
during typhoons in Taiwan. The model is also based on SVM and uses
a two stage approach. In the first stage inundation depths at reference
points are predicted and in the second stage the spatial expansion based
on geographic information is estimated. To the authors’ best knowledge,
a real-time forecast model based on ANN which provides 2D flood maps
with interpolation skills has not been tested so far.

In this paper we present an approach to real-time predict 2D maps
of maximum water level during a pluvial flood event in a city. Input of
the approach is the precipitation forecast in full length. The approach
described in the present study is based on an ANN and uses an ensemble
training approach in order to overcome the problem of overfitting. The
topology of the network was chosen using a network growing algorithm.
The model is tested in two test areas of different sizes and different
surface slopes with synthetic rain events. All tested rain events where
full-length events with maximum duration of two hours. The database
for training and testing of the ANN model is generated with the 2D hy-
drodynamic model HYSTEM-EXTRAN 2D [HE 2D], (itwh, 2017). The
ANN model is analysed by creating an artificial flood event with the
physically based model (HE 2D) and reproducing the maximum water
levels during the flood event with the ANN. The general structure of the
model is given in Fig. 1.

2. Methods

2.1. Artificial neural network for prediction of maximum water depth

Artificial neural network (ANN) roots in the McCulloch-Pitts-Neuron
presented in McCulloch and Pitts (1943) and the perceptron algorithm
by Rosenblatt (1958) who trained the perceptron for binary classifica-
tion. Zhang et al. (1998) have given an overview on how the method
can be extended for forecasting purposes in many ways. In order to pre-
dict maximum flood height in the present study, multilayer perceptrons
(MLP) are used. A MLP consists of an input layer, an output layer, and
several hidden layers in between. Each layer consist of a certain num-
ber of neurons, which process incoming information. Neurons are con-
nected via synapses, which are multiplied with weight factors. We use a
feed forward network (Bebis and Georgiopoulos, 1994), in which each
layer k receives input from each neuron of the previous layer . This
structure directs the information through the network from the input to
the output without inner circles. The network can be seen as a function

, where stands for the vector of output variables and for the
vector of input variables. In the present study, represents maximum
water levels in the different grid cells of the model domain and con-
tains precipitation intensities in five minutes time steps. The output oj
of a neuron j is defined as:

(1)

where φ is the activation function (in this study a hyperbolic tangent
sigmoid function) and n the number of precursors. The output oi of the
previous neuron i is multiplied with the weight wij.

The number of neurons and layers is called topology and has two
boundary conditions: (1) the number of input neurons is defined by the
number of time steps in the rain event (for a rain event of 2h duration:
24), (2) the number of output neurons, defined by the number of max-
imum water levels. In the present study, the number of hidden layers
and number of neurons per hidden layer are determined by a growing
algorithm (see Section 2.3).

2.2. Metric for prediction evaluation

To evaluate the results of the prediction model, the database is di-
vided into two sets, the training set and the test set. The test set is ex

Fig. 1. General structure of the forecast model in a flowchart scheme (illustration according to Jhong et al. (2017)).
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clusively used to evaluate the model. For the evaluation of the network,
the root mean squared error (RMSE) and the Nash-Sutcliffe efficiency
coefficient (NSE) of the predicted and measured water levels are used.
In the present study the RMSE is defined as:

(2)

where i indicates the location of the water level and n the maximum
number of cells that the urban area is divided into, where we restrict
the analysis to cells for that is flooding predicted by the physically based
model. The wlpred is the predicted and the wlexp the expected water level,
which is in this paper taken from a physically based urban flow model.
The RMSE has the unit of a length. To evaluate the performance of the
prediction model for all rain events in the test set, the RMSE is evalu-
ated for each test set sample and averaged over the domain. This per-
formance value will be denoted as . The RMSE as given in Eq. (2)
gives averaged values over the whole catchment. The spatial distribu-
tion of the model performance was evaluated by using the dimension-
less NSE. The NSE for one location is defined as:

(3)

where j indicates rain events and m is the maximum number of rain
events. The mean of all maximum water levels from the pre-calculated
scenarios for the specific location is written as . By evaluating Eq.
(3) for each location, a map of NSE can be shown. A location with a NSE
smaller than zero is better represented by the mean of all pre-calculated
water levels than by the forecast model.

2.3. Training algorithm

The training of an ANN can be done with different methods (Kröse
et al., 1993). In this study, supervised learning was used for the train-
ing. Supervised learning is based on samples of input and output data.
The ANN can be optimised by comparing the simulated output with
the expected output followed by a subsequent modification of the ANN.
In the present study, the ANN modification was realized by chang-
ing the topology and changing the weights. The ANN is adapted it-
eratively to minimize the difference between expectation and simu-
lation output data. Three different training algorithms for the adap-
tation of the weights were compared, namely the backpropagation
method (Rumelhart et al., 1986), a Levenberg-Marquardt algorithm
(Moré, 1978), and a resilient backpropagation algorithm Rprop
(Riedmiller and Braun, 1993). The method was tested with flood predic-
tion runs on a sub-area of one of the test scenarios (scenario 1), which
are introduced in Section 3.2. In order to compare the different meth-
ods, the training was not done for best prediction results but as a stan-
dardized test, here called test-training. As the topology for the ANN is
not known during the test-training, an ANN with 2 hidden layers and
20 neurons per hidden layer was chosen. The test-training was carried
out until an absolute error of 2·10 - 5 was reached for the normalized
output values. The number of iteration steps and the computation time
for the test-training are shown in Table 1. All simulations were done on
the same desktop PC (CPU: i7 3.6GHz, RAM: 32GB). Rprop turned out

Table 1
Test-training with three different algorithms.

Algorithm Iterations Computation time

Backpropagation 120183 124min
Levenberg–Marquardt 14 815s
Rprop 103 2s

to be the best algorithm for the given problem with respect to the short-
est computation time.

Besides the adaptation of the weights, a suitable topology has to be
found. Different approaches for topology adaptation can be found in the
literature, although it should be noted that there is not an established
best practice how to determine an appropriate topology for an ANN. Of-
ten, the topology is chosen by trial and error, e.g. in Tayfur et al. (2007).
Reed (1993) gives a survey of pruning algorithms. These algorithms aim
at finding a suitable topology by iteratively pruning a network which
is more complex than necessary. A different group of approaches are so
called growing algorithms. As described in Bishop (1995), the network
topology is chosen by starting with a small network and adding neurons
and layers during the training. In the present study a newly developed
simplified growing algorithm is used to find a suitable topology. The ap-
proach is shown as pseudo code in Algorithm 1. In general, the number
of neurons in a layer is increased as long as this improves the prediction
error. Starting with one layer, new layers are added and the maximum
number of neurons is determined again, as long as the prediction error is
improved. The topology of the network is chosen as the resulting num-
ber of layers with the respective number of neurons obtained.

The presented growing algorithm uses four parameters to control the
topology search, which has to be chosen by the user. (1) The nstop value
is the maximum number of times a neuron is added to a layer without
improving the result. It is introduced to avoid the stopping of adding
neurons due to oscillations. (2) The thresholdN (ranges from 0 to 1) is
the reduction of the prediction error that is required to add a neuron
to the layer. It is used to guarantee a benefit from adding a neuron to
a layer. (3) The thresholdL (ranges from 0 to 1) is the reduction of the
prediction error needed for adding a new layer. It is used to guarantee a
benefit from adding a new layer to the topology. (4) The search distance
sd (natural number), which was implemented to start with a number of
neurons in a new layer that is not too far away from the maximum num-
ber of the previous layer and therefore reducing the computation time.

The hidden size vector defines the structure of the hidden layers.
For example leads to an ANN with 8 neurons in the first hid-
den layer and 5 in the second. The thresholdN was chosen to 0.95 and
the thresholdL to 0.90 in the present study. The nstop value was set to 5.
The search distance sd was set to 5. As error in Algorithm 1 the RMSE is
used as described in Eq. (2).

Algorithm 1 Growing algorithm for finding a suitable topology for an ANN

1: initialize hidden size vector where hi is number of neurons in layer i
2:
3:
4: training of ANN with
5: determine error and save as errornew
6: initialize
7: initialize counter
8:
9: whileaddlayerdo
10:
11:
12: whileerrornew/errortemp⩽thresholdNorn < nstopdo
13: iferrornew⩾errortempthen
14:
15: else
16:
17:
18:
19: end if
20:
21: training of ANN with
22: determine error and save as errornew
23: end while
24: iferrornew/errorold⩽thresholdLthen
25:
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26:
27:
28:
29: else
30:
31: end if
32: end while
33: return

The oscillation of ANN simulations between the training data due
to high parameterization is called overfitting. To avoid overfitting of
the network, different strategies can be found in the literature. One
method is to use a sub-set of the training data for validating the training
progress. That method was used in the present study by evaluating the
error with respect to a validation set during the topology growing. In ad-
dition, an ensemble-approach (Hansen and Salamon, 1990) was tested
in combination with the growing algorithm.

2.4. Ensemble of ANNs

The ensemble-approach uses a positive number nens of ANNs with
identical topology trained with different initial weights. In this way, it
captures the uncertainty due to the random initialization. The result of
the maximum water level wlens, generated with the ANN ensemble is the
ensemble mean, which reads

(4)

where wlens is the maximum water level predicted by the ensemble for
one location and wli the maximum water level predicted by one of the
realizations for the same location. To maintain reasonable results, all
simulated water levels which are negative are set to zero. The optimal
ensemble size depends on the catchment and has to be found by test-
ing. Studies on the convergence are given in Section 4 for two different
catchments.

2.5. Physically based numerical model

The purpose of the ANN is to provide a fast simplified model as sub-
stitute for a slow physically based numerical model. Therefore, we use
flood simulations generated with a physically based numerical model as
virtual truth. The model results are used for training of the ANN as well
as to assess the ANN as a method for flood prediction. The physically
based numerical model is a hydrodynamic coupled surface and sewer
network model. The governing equations for the surface flow are the
diffusive wave approximation of the shallow water equations. The flow
in the sewer network is described by the 1D Saint Venant equations. A
Preissmann slot (Preissmann, 1961) is used for the pipes under filled
up conditions. The surface and the sewer system model are linked by
manholes and street inlets. A description and discussion on the model is
given in Jahanbazi and Egger (2014).

2.6. Resolution of the ANN model

Physically based numerical models for urban flood prediction need a
high spatial resolution of the surface. This resolution is not necessary for
data driven models like the ANN model in the present study, as the rela-
tion between neighbouring cells via conservation laws is not captured.
In order to reduce the number of outputs, the irregular triangular mesh
used in the physically based model (HE 2D) is reduced to a regular rec-
tangular grid with the cell size of dx×dy. For every triangular grid cell i
of the HE 2D model that overlaps with the rectangular grid cell j an area
related weight ai,j is defined as:

(5)

where Ai,j is the sub-area of the triangle i which lies inside the rectangle
j. The maximum water levels which are used as output in the samples
are calculated as:

(6)

where wlj is the maximum water level of rectangular cell j and wli is the
maximum water level of triangle cell i. All weights ai,j for a rectangular
cell j are set to zero if j is filled less than a chosen threshold. This strat-
egy can be formulated as:

(7)

The k represents the counter for the triangles lying in the rectangle j.
The threshold t can be used to represent building edges in a more proper
way compared to the grid without a threshold. Depending on the HE 2D
mesh, the number of calculation cells has been reduced by up to 90 per-
cent.

Note that by averaging the maximum water level as described in Eq.
(6), we use a coarse grained water level that yields a good representa-
tion of the flood volume, but not necessary for other measures of flood-
ing, such as maximum water level or flooded area. Alternatively, one
could use the maximum value instead of an average in order to get a
good representation of the highest water level in the area. Such a mea-
sure would then lead to an overestimation of the flood volume. Also, a
coarse grained water level could be formulated that gives a good rep-
resentation of the flooded area, which would then again lead to a poor
representation of the flood volume.

2.7. Zero-cells

Sajikumar and Thandaveswara (1999) described that ANN should
be used for interpolation, but not for extrapolation purposes. Only cells
which have the potential to be flooded, are of interest in an early warn-
ing system. To forecast flooding in a cell which is never flooded in the
training dataset, the water level in that cell would have to be extrapo-
lated, which is not a useful approach. Thus cells which have a maximum
water level of zero in every sample of the training set are neglected. This
constraint reduces the amount neurons in the output layer.

2.8. Grid of the ANN model

If one ANN is used to simulate an entire catchment, the output vec-
tor has the length of the number of output cells. Considering a medium
urban catchment this would easily lead to a vector length of over one
hundred thousand. Because each output neuron is connected to each
hidden neuron in the previous layer, a huge number of weights has to
be adapted during the training phase. In order to reduce the memory
requirement and the computation time, the calculation area is divided
into individual subnets. The subnets are here generated by dividing the
domain into rectangular cells with a regular grid. The basis for the di-
vision was the maximum number of cells that can be handled by the
PC that was used. It should be noted that other ways to divide the do-
main would be possible, such as a division into further sub-catchments,
which could consist of few streets only. This is discussed later in Sec-
tion 5. For the cases analysed in this paper, we do not consider the
division of the domain into rectangles as critical, as no unphysical re-
sults were obtained. Every subnet has its own ANN and thereby a much
smaller output vector. This means, instead of using one ANN model,
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several smaller ANN model for different areas are set up. The subnets
are independent, which implies that the correlation between cells with
a short distance that belong to different subnets gets lost. For bigger
catchments a strategy for sub-catchments delineation and coupling pre-
sented in Wolfs and Willems (2017) could be useful. However, the phi-
losophy of a data driven model is that every correlation is contained in
the data and is therefore captured. This means the interconnection of
the subnets is included in the data.

3. Test cases

The developed ANN model for maximum water level prediction was
tested with two synthetic test cases. The first test case is a model of a
part of a city that has a flat area. The second is a model in a part of a city
with steep slopes. Both urban catchments were modelled with HE 2D
to generate test datasets and to assess predictions with the ANN model.
From the results of the hydrodynamic model, only the maximum water
level was considered, although more information would in principle be
available.

Both test cases were derived from real catchments and were slightly
modified to maintain anonymity. Because of missing measurements and
the rarity of the considered flood events, it is not possible to calibrate
and validate the physically based model. Nevertheless the plausibility
was checked for the real catchment which is related to test case 1. For
this purpose, pictures from the press and reports of the fire brigade were
evaluated for one flood event which occurred during the summer of
2017. This comparison showed good results in the sense that areas that
were documented as have been flooded were also flooded in the model.
The modelling process with the physically based model is, however, not
part of the present study and will thus not be discussed further. Uncer-
tainties of the physically based model are not of interest in the present
paper.

The mean cell size for test area 1 and 2 is 3.1m⁠2 respectively 4m⁠2

for the physically based model (more information on the triangular
grid is given in Section 3.2). To find a proper value for the grid size

Table 2
Grid size analyses for test area 1.

dx
[m]

threshold
t

Number of
cells

Discretized area
[m⁠2]

Difference to HE2D grid
[m⁠2]

HE2D 1193222 3652336 0

6 0.00 118206 4255416 603080
6 0.25 109333 3935988 283652
6 0.50 102119 3676284 23948
6 0.75 93880 3379680 −272656
6 1.00 40995 1475820 −2176516

and the threshold t (see Eq. (7)) the discretized areas of different grid
sizes where investigated. Differences of the discretized area are due to
the different resolution of buildings and streets. This investigation was
done for test area 1. The rectangular grid size was set to . To
find the grid size three cases where tested, (1) , (2)
and (3) . The threshold value t was varied from zero to one
in 0.25 steps. The results for the grids are shown in Table
2. For all grid sizes the threshold gives the smallest deviation
in size of discretized area compared to the original grid. For the grid
size with the resulting resolution of the regular grid was much
higher than the underlying triangular grid in some areas. Therefore the

grids were not considered further. With a regular grid,
complex structures of a urban catchment can barely be represented. The
grid with and is a good compromise between computa-
tion time and complexity. This grid reduces the number of cells about
90 percent and has still a relatively small difference of the discretized
area. To maintain comparability, the same values for dx and t are used
for test area 2.

3.1. Rain events

Synthetic rain events were used for testing the model. The rain
events are spatially uniformly distributed over the test domain. For the
distribution in time, according to DWA-A 118 (2006) Euler type I and II
events were used (see Fig. 2). The rain events were mirrored to expand
the sample size. Rain events with the duration of one and two hours
were used. The rain events have eight different return periods from two
up to one hundred years. The total number of rain event samples is 64.
These samples are divided into 56 samples for the training set, 4 sam-
ples for validation during the topology search with the growing algo-
rithm and 4 for the test set. This division was made manually to obtain
a good representation of strong and weak rain events in all sets.

3.2. Test areas

The test area 1 (see Fig. 3) is about 600ha of size and has a mean
slope of less than one percent. The sewer system consists of 1224 pipe
sections and 1143 manholes. The pipe system has a total length of about
53km. The study area is divided into residential, commercial and indus-
trial areas. The proportion of paved area is slightly less than 50 percent.
The HE 2D surface model consists of 1 193 222 triangular cells. The
mean cell size is about 3.1m2 with sizes in the range from 0.108m⁠2 to
17.7m⁠2. The buildings are represented by 2186 polygons. The reduced
rectangular grid for the ANN model consists of 9623 cells after pruning
zero-cells according to Section 2.7. The resulting grid of the catchment
was divided into 23 subnets.

Fig. 2. Examples for Euler type I (left) and Euler type II (right) events. P is the precipitation intensity.
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Fig. 3. Schematic representation of test area 1, including the elements of the drainage system, road space and buildings.

To test the model in an area with steep slopes, test area 2 (see Fig. 4)
was used. The 86ha area has a mean slope of 10 percent. The propor-
tion of paved area is about 25 percent. The sewer system has a length
of about 10km. It consists of 299 pipe sections and 291 manholes. The
HE 2D surface model consists of 174226 triangular cells. The mean size
is about 4m⁠2 with sizes in the range from 0.001m⁠2 to 8.6m⁠2. The build-
ings are represented by 965 polygons. The reduced rectangular grid con-
sist of 7796 cells. The grid for the catchment was divided into 9 subnets.

4. Results

Results for the different test cases are shown in Table 4 for test case
1 and in Table 6 for test case 2. Resulting topology of the respective
ANN obtained through the growing algorithm are shown in Table 3 for
test case 1 and in Table 5 for test case 2.

4.1. Test area 1

For the 23 subnets of test area 1, the topology search with the grow-
ing algorithm was conducted for ensemble sizes of 1, 5 and 10. The
resulting numbers of hidden layers and neurons per layer are shown
in Table 3. The number of weights is a measure for the complex-
ity of an ANN. The grid of ANN with ensemble size shows

the biggest range of number of weights, but also the smallest average
number of weights.

The computation time for whole test area 1 with an ensemble size
of 10 for one rain event is in the range from 2 to 3 s. The computation
time with the physically based numerical model was in a range from
10 to 55min. The results for the events from the test dataset are sum-
marized in Table 4. The decreases with the ensemble size from
0.35cm to 0.26cm. The highest RMSE of the simulation with an ensem-
ble size equal to 10 is 0.43cm for a Euler type 2 event with return pe-
riod of 50years and duration of 1h. Table 4 illustrates that with increas-
ing ensemble size the number of cells with a NSE>0.9 is increasing.
The number of cells with NSE values lower than zero, which can be seen
as outliers is decreasing with increasing ensemble size.

The ensemble approach was tested at the test location in test area
1 (see Fig. 3). In total 99 rain events were generated by interpolating
between the Euler type II rain events. For this purpose, the precipita-
tion rate was interpolated in the range from a return period of two years
up to one hundred years. The model was set up with an ensemble size
of 10 for those events. To show the correlation between the precipita-
tion and the flooding, the maximum water level is plotted over the cu-
mulative rainfall Psum. The result is shown in Fig. 5. The data points
of the training set (red circles) are well represented by the simulation.
The maximum water level for the rain event with a return period of
50years with a rainfall volume of about 29mm (green cross) is overes
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Fig. 4. Schematic representation of test area 2, including the elements of the drainage system, road space and buildings.

Table 3
Resulting topologies from growing algorithm with different ensemble sizes for test area 1.
Abbreviation are: ensemble size (nens), number of hidden layers (nhl), number of neurons
per layer (nn), number of weights (nweights).

nens nhl nn nweights

1 1–4 1.96 7–28 10.84 273–16775 4815
5 1–5 2.44 5–20 11.57 273–23019 5723
10 1–4 2.00 7–18 9.34 273–27627 4402

timated by the model. This rain event is part of the test dataset. Also
the maximum water level for the validation data point with a re-
turn period of 20years with a rainfall volume of almost 26mm (black
square) is overestimated. Fig. 5 shows that the ensemble mean (blue

Table 4
Comparison of the results from the ANN model against the HE 2D model for the test data
in area 1.

nens computation time [s] [cm] cellsnse < 0 cellsnse > 0.9

1 1.4 0.35 408 4387 (46%)
5 2.0 0.29 285 4794 (50%)
10 2.4 0.26 49 6693 (70%)

graph) smooths out the oscillations of the single realizations (gray
graphs) that occur due to the strong parametrization of the model.

The comparison of flood depth maps in Fig. 6 shows good agree-
ment of the physically based numerical model and the ANN based
model. Shown is a representative detail of the urban catchment with a
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Fig. 5. Results with ensemble size 10 for the test location in test area 1 for Euler type II events with duration of 1h. Training data is marked with red circles, validation data with a black
square and test data with a green cross. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Maximum water level maps for a detail of test area 1 for an Euler type II event with duration of 1h and a return period of 50years. HE 2D model (left) and ANN based forecast
model with (right).

size of about 0.11km2. At some places the ANN based model overesti-
mates the maximum water level. Due to the reduction of spatial reso-
lution, the water levels are more spread, but the general shape of in-
undation is represented by the forecast model. The inundated area for
the event shown in Fig. 6 is 96233 m⁠2 for the physically based model
and 138204 m⁠2 for the ANN model. The mismatch is mainly due to
the coarsening of the grid and the definition used here for the coarse
grained water level (Eq. (6)). To illustrate this, the inundated area with
the water level defined as in Eq. (6) was calculated for the coarsened
model, resulting in 130104m⁠2. Therefore, 33871m⁠2 of the mismatch
can be attributed to the coarsening. As mentioned before, the definition
of the coarse grained water level was chosen such that a good represen-
tation of the flood volume is achieved. The flood volume is 5372 m⁠3 for
the physically based model and 5463 m⁠3 for the ANN model.

The map of NSE in Fig. 7 shows the NSE for all events in the test
dataset for the detail of test area 1. In general the map shows NSE
values higher than 0.9. However there are locations which have NSE
values less than 0.5. Most of these locations have low maximum wa-
ter levels in a range from 0 to 1cm. The number of cells with negative

NSE decreases with increasing ensemble size. For ensemble size 1 the
number of these cells is 408 out of 9623 and for ensemble size 10 the
number is 49.

4.2. Test area 2

For the 9 subnets of test area 2, the topology search with the growing
algorithm was conducted for ensemble sizes of 1, 5 and 10. The result-
ing numbers of hidden layers and neurons per layer are shown in Table
5. The grid of ANN with ensemble size shows the biggest range
of number of weights, and also the highest average number of weights.
The grid with ensemble size shows the smallest average number
of weights.

The computation time for the whole test area 2 for one rain event
is about one second for all 3 investigated ensemble sizes. The com-
putation time with the physically based numerical model was in a
range from 8 to 49min. The results for the events from the test dataset
are summarized in Table 6. The decreases from ensemble size

to from 0.19cm to 0.12cm. The for
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Fig. 7. NSE map for a detail of test area 1 for all events in the test dataset simulated with the ANN model with .

Table 5
Resulting topologies from growing algorithm with different ensemble sizes for test area 2.
Abbreviation are: ensemble size (nens), number of hidden layers (nhl), number of neurons
per layer (nn), number of weights (nweights).

nens nhl nn nweights

1 1–3 1.78 7–26 12.56 1908–31221 12513
5 1–4 2.11 7–21 12.53 1910–18105 10927
10 1–3 1.56 8–26 13.93 2483–22904 11153

Table 6
Comparison of the results from the ANN model against the HE 2D model for the test data
in area 2.

nens Computation time [s] [cm] cellsnse < 0 cellsnse > 0.9

1 0.7 0.19 3 7388 (95%)
5 0.9 0.12 0 7572 (97%)
10 1.1 0.13 1 7568 (97%)

with 0.13cm is not further improved. The highest RMSE of the simula-
tion with an ensemble size equal to 5 is 0.14cm for a Euler type 1 event
with return period of 10years and duration of 2h. Table 4 illustrates
that with increasing ensemble size from to the number
of cells with a NSE> 0.9 is increasing. Further increasing to ensemble
size gives only marginal benefit. The number of cells with NSE
values lower than zero is almost zero for all tested ensemble sizes. The
comparison of flood depth maps in Fig. 8 shows good agreement of the
physically based numerical model and the ANN based model. (Fig. 9).

5. Discussion

When looking at the general performance of the ANN to predict
maximum water levels during a flood event, simulation results of the
ANN based forecast model are generally in good agreement with simu

lations of the physically based numerical model. In particular, no unrea-
sonable results, such as water towers in single cells or large differences
between neighbouring cells were generated with the ANN. Many stud-
ies stated, that ANN models cannot [e.g. Minns and Hall, 1996], or only
barely [e.g. Tayfur et al., 2007] be applied for extrapolation of data.
This means that ANN based forecast models can only be used in the
range of training data. Thus, a classification of the rainfall input might
be beneficial for the presented flood forecast model as a criterion for the
applicability of the model.

The inundated area is overestimated by the forecast model by more
than 40 percent. The inundated area of the rectangular grid compared
to the triangular grid is overestimated by about 35 percent. The ANN
model overestimates the inundated area of the coarser grid by about 6
percent. Thus the overestimation is mainly due to the coarser grid com-
pared to the physically based model. With the formulation in Eqs. (5)
and (6) the water levels are averaged over the area. With this approach
the inundated area is overestimated because water levels are spread to
the whole area of the coarser grid cell. In contrast to that the predicted
flood volume is in good agreement with the physically based model.

The forecast model gives maximum water levels without temporal
distribution. A temporal distribution of water levels is a challenge for
further developments of the model, but the model can be seen as a
first step for early warning purposes. Also, flood durations could be pre-
dicted. First tests showed that the network structure would have to be
chosen very differently from the ones obtained for the maximum flood
height, so that this was here not considered. First tests to use the same
ANN structure that was applied here to predict maximum water height
in order to predict the time of the maximum peak showed that a di-
rect transfer of the model is not possible. It would, in any case, be most
useful to have a more complete information about the time character-
istics of a flood event. In future studies, the model should be expanded
to cover information about the duration of a flood. A recursive neural
network to predict the full temporal distribution of the flood could be
tested for this purpose. Instead of using only precipitation data as in-
put one could additionally use an initial state of water levels as input to
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Fig. 8. Maximum water level maps for the test area 2 for an Euler type II event with duration of 1h and a return period of 50years. HE 2D model (left) and ANN based forecast model
with (right).

calculate a future state of water levels as output. For single locations this
approach was already used with success in Rjeily et al. (2017).

A further limitation of the presented model is that it was only tested
in urban catchments without real-time controlled sewer systems. The
failure of pumping stations or defects in the pipe system and exchange
fluxes with the subsurface are also not captured by the ANN based
model. Changes in the urban catchment have to be implemented in the
physically based numerical model to rebuild the database and the ANN
model requires new training. The presented forecast model cannot re-
place physically based simulations. Nevertheless, despite the necessary
and not yet realized further developments listed above, the presented
model can be seen as a step towards 2D real-time flood prediction for
pluvial floods.

The ensemble approach for the ANN was successfully tested as a
measure to overcome the overfitting problem in the strongly parameter-
ized model. With an ensemble size of 10 respectively 5, oscillations are
smoothed out and for both test areas the RMSE was at least 25 percent
lower compared to the simulation with ensemble size 1. Ensemble sizes
bigger than 10 were not investigated due to the immense computation
times for the training process. The ensemble size 10 was chosen as a
reasonable compromise between accuracy and computation time. Fur-
ther improvements could be achieved by investigation on composition
of the ensemble. Combining ANN with different topologies to an ensem-
ble could be a next step.

Evaluation of NSE maps have shown good performance in general.
However, some locations have small NSE values even lower than zero.
Those locations are mostly in areas with maximum water levels in a
range from 0 to 1cm. Such levels cannot really be considered as flood
heights. Focusing on high water levels for flood prediction by setting a
threshold of a minimum water level that is taken into account in a pre

diction, this uncertainty can be seen as less important. It could in gen-
eral be questioned how relevant or useful predictions of water levels in
the range of 1cm are. Considering the uncertainties of the prediction
with the ANN (and with any model), this height is certainly in the range
of uncertainty. The predictions should thus not be read in the sense that
the model could really predict a flood height in the range of one cen-
timeter above surface. We kept here also the small water levels in order
to compare results of the ANN to results of the physically based model.
It should, however, be noted that such results would probably not be
used directly in a forecast. Instead, areas would, for example, be classi-
fied into different categories of flood hazard. Areas with flood heights
in the range of 1cm would be in a catogory of zero or maybe one.

The transfer of the model from a flat area to an area with steep
slopes was successfully tested. The performance of the ANN model was
better in this second test case. This could be due to the more pronounced
flow paths caused by steeper slopes. Further investigation could be done
for bigger catchments.

Simulation results generated with HE 2D were used as virtual truths.
The structure of the ANN model allows to replace or expand the data
base with results from other models. It would be good to include ob-
servation data into the training and testing datasets. For this purpose,
it would be useful to install monitoring systems at critical points in an
urban area and to make them available for research.

The present study uses synthetic rain events with spatial uniform
distribution for model testing. For those rain events the model shows
good performance. For more realistic test scenarios nature rain events
with spatially distribution should be investigated. A large variety of
rainfall durations can be challenging for the ANN and might require
sub-networks for different categories. A further step is to use spatial
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Fig. 9. NSE map for test area 2 for all events in the test dataset simulated with the ANN model with .

distributed rain events from radar data as input. By using the subnets
with different inputs the model is already prepared for testing spatially
distributed rain events as input.

To avoid overloading the ANN with too many output neurons, the
domain was here divided into subnets. This was done by dividing the
domain into rectangles. In the cases considered in this study, this did
not lead to unphysical results. However, as noted in Section 2.8, there
are other methods to divide the domain. For larger areas or for more
complex flooding patterns, a division into more physically based sub-
nets might be beneficial. A strategy for the coupling can, for example,
be found in Wolfs and Willems (2017), where the division would be

based on a delineation of smaller sub-catchments. In this way one could
aim at minimizing the interrelation of the response of the single subnets.
The tested areas in the present study are already small sub-catchments.

A problem of physically based numerical models like HE 2D for fast
flood predictions is the computation time. The computation time for the
presented forecast model (in the range of seconds) is short enough for
early warning system. Even the simulation of an ensemble of for Ex-
ample 20 rain inputs to capture the uncertainty in rain forecast can be
done in less than one minute. As a comparison the prediction of 20 rain
events with HE 2D would take about 10h.
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6. Conclusions

An ANN based ensemble approach for real-time water level predic-
tion in urban areas was implemented and tested in two different ur-
ban catchments. The model is based on feedforward neural network and
trained with precipitation rates as input and 2D distributed maximum
water levels as output. A growing algorithm was used to find suitable
topologies for the ANN. The maximum water levels for the training were
generated with a detailed 1D-2D dual drainage model. The model was
tested with test events and compared with the physically based numer-
ical model. Using an ensemble of ANNs was beneficial. The developed
model achieves computation times and accuracies that can be consid-
ered as sufficient for real-time forecasts. The tests show that ANNs may
be useful for flood forecast systems. It is also shown that extensions or
alternatives, such as recursive networks or sub-networks should be stud-
ied to improve predictions quality. Nevertheless, the presented model
can be seen as a step towards 2D real-time flood prediction for pluvial
floods.
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