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Abstract

Optical lattice clocks have reached uncertainties in 1078 regime, well surpassing
the primary microwave frequency standard. Such performance levels have allowed
for applications from geodesy to fundamental physics. The performance of state of
the art optical lattice clocks are strongly influenced by black body radiation (BBR)
induced frequency shifts. Magnesium is one of the optical lattice clock candidate
elements with very low sensitivity to BBR, which makes it an interesting candidate
as an optical frequency reference.

Optical lattice clocks rely on high-Q optical transitions, where Doppler and recoil
shifts are suppressed by trapping the atoms in Lamb-Dicke regime. For Magne-
sium, due to its low atomic mass, the tunneling induced line-broadening is signifi-
cantly large. This has been a bottleneck in reducing the instability of Magnesium
lattice clock. However the large tunneling rate for Magnesium atoms in the optical
lattice also allows us to study these lattice effects using optical spectroscopy.

Lattice AC Stark shift is one of the important contributions to the uncertainty
budget for an optical lattice clock. To achieve clock uncertainties in 1078 regime,
even the contributions from multipolar polarizabilities and hyperpolarizability be-
comes significant. Therefore, operational magic frequencies have been identified
in Strontium and Ytterbium lattice clocks, where the light shift dependence on
intensity is zero to the lowest order.

In this thesis, an extensive model has been developed to understand the influence
of tunneling in a one dimensional optical lattice on the clock transition lineshape.
This model is used to simulate the spectroscopy results previously observed in
our experiment, which show strong lineshape asymmetry as lattice wavelength is
detuned from the magic condition. The strong influence of transverse states in
generating these asymmetries was highlighted by numerical simulations.

To improve the performance of our Magnesium lattice clock from the last frequency
measurements, lattice system upgrades were carried out within the scope of this
thesis. This allowed to suppress the tunneling induced line-broadening to sub-
Hz regime for the first time for magnesium, and to resolve the 'Sy — 3Py clock
transition with a linewidth of 7(3) Hz. The high line-Q thus obtained of 9(3) x 103
helped reduce the clock instability in self-comparison measurement to 7.2%7% x
10717 in 3000 seconds of averaging time.

The improved clock instability also helped estimate various systematic shifts with
much improved uncertainties. The probe AC Stark shift and Zeeman shift un-
certainties were reduced to the mid-107!" regime, while cold collision shift was
characterized with uncertainty of 1.4 x 1076, With an aim to similarly reduce lat-
tice AC Stark shift uncertainty, influence of higher order shifts was characterized
for Magnesium for the first time. The hyperpolarizability coefficient was estimated
to be 197(53) uHz/(kWem™2)2. These measurements show that the lattice shift
can be characterized with an uncertainty of 6.5 x 1071¢, paving way for a future
frequency measurement with more than an order of magnitude lower uncertainty.
Keywords: Optical frequency standard, precision spectroscopy, lattice clock
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CHAPTER 1

Introduction

Accurate timekeeping has progressively become more important for human civiliza-
tion, and while celestial bodies were used to define SI second till 1967, development
of atomic clocks led to a re-definition of SI second based on a hyperfine atomic
transition of Cesium-133. There were many steps in between these extremes of
technologies. Egyptian Sun dials, Greek water clocks, Chinese candle clocks, me-
dieval mechanical clocks and modern quartz clocks are all by themselves fascinating
stories of rich science and history. However, with atomic clocks, for the first time
absolute frequency references could be realized in laboratories around the world
leading to tremendous advancements in accurate timekeeping and the applications
dependent on them. Precise atomic clocks have since become extremely important
in applications such as Global Navigation Satellite Systems (GNSS) and Very Long
Baseline Interferometry (VLBI). Atomic clocks have also developed over the years
from microwave atomic clocks to optical atomic clocks, which forms the topic of
this thesis. As shown in Fig. [I.] in the general scheme of an optical clock, a stable
oscillator is referenced to an atomic transition using high precision spectroscopy
techniques. However, the ultrahigh line-Q of optical clock transitions necessitates
pre-stabilization of the probe laser (oscillator) to a macroscopic frequency refer-
ence. Optical spectroscopy of these atomic transitions is then used to generate
the error signal with which the probe laser is steered to the resonance. The ac-
curate timing signal is then generated from the stabilized laser using an optical
frequency comb. Before going into the technical details of these systems, in the
next section, it is worthwhile to look at the interesting history of the field to see
how each of the individual subsystems in Fig. developed to allow the optical
clock performances to reach the 1078 regime.
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Figure 1.1: Schematic of optical atomic clocks.

1.1 A brief history of Optical clocks

After decades of sustained development, atomic clocks were realized for the first
time in 1955 [I]. This first atomic clock developed by Louis Essen was based on
spectroscopy of the hyperfine transition of 33Cs, which was eventually chosen as
the SI definition for second in 1967 [2]. It is indeed very interesting to note the
dramatic improvement in accuracy of atomic clocks since their first realization.
During this time, atomic clocks have already contributed to numerous every day
applications as well as advancement of fundamental science [3]. By the end of last
century, researchers had started to push towards the next big upgrade in the clock
technology: moving from microwave atomic frequency standards to optical stan-
dards. The first optical frequency measurement was performed using a complex
microwave-optical frequency chain [4]. About the same time, ideas for an octave
spanning frequency comb were coming together as well, leading eventually to the
first measurements of the carrier-envelope-offset (CEO) frequency of mode-locked
lasers by the f-2f interference measurements [5l, [6]. This was a milestone moment
for optical clocks, since it bridged the gap between microwave clocks and optical
clocks with a table top apparatus. Very soon this discovery earned Theodor Héan-
sch and John Hall the Nobel Prize in 2005. The remarkable history behind the
frequency comb development is very well detailed in the Nobel lectures of John
Hall and Theodor Hansch [7,[8]. As can be seen in the Fig. depicting clock un-
certainties over the time, there has been a remarkable improvement in the optical
clock performance since the first demonstrations of femtosecond laser frequency
comb mediated frequency comparisons.

Optical clocks offer clear advantages over microwave clocks owing to their many
orders of magnitude higher frequency, which leads to orders of magnitude larger
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Figure 1.2: Uncertainty of microwave and optical atomic clocks over the years is shown here.
A rapid improvement in the performance of optical clocks over last two decades can be seen.

line-Q. The instability of an atomic frequency standard is given as

Av 1 T.
v ~ =S 1.1
U%(T vo SNV 7’ (1.1)

where v is the atomic transition frequency, Av is the spectroscopy linewidth, T,
is the clock cycle time, and S/N is the signal to noise ratio of the spectroscopy
measurement. Therefore, a larger clock frequency 1y dramatically improves the
clock precision and makes it possible to reduce clock instabilities down to the
107 regime. However, one big hurdle in reaching these performances was the
Doppler and recoil shift associated with optical spectroscopy of cold atomic sam-
ples. Sub-Doppler spectroscopy techniques [9, [10] were limited in both precision
and accuracy to about 107! levels. However developments in the field of ion trap-
ping and ultracold atom trapping made it possible to perform Doppler and recoil
free spectroscopy in the Lamb-Dicke regime [I1]. Tons trapped in electromagnetic
traps were the natural first choice for development of optical clocks due to their
clean unperturbed environments and technological readiness. Already in the first
decade of this century, ion clocks had demonstrated accuracy in the 10717 regime
[12], and seemed well positioned for reaching many more milestones in the years
to come.

While ion clocks were being developed all over the world, performance of neutral
atom optical clocks were limited due to the large frequency shifts associated with
trapping light fields. The great interest in neutral atom clocks was essentially
motivated by the possibility of using a large number of atoms for clock spectroscopy.
Even though there has been significant work on multi-ion clocks since the initial
days [13, 14], there are still considerable obstacles in scaling the number of trapped
ions in an ion-clock. Limited for now to single ion operation, ion clocks suffer from
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quantum projection noise (QPN) [I5], which significantly limits their stability.
Neutral atoms with much weaker long range interactions have a major advantage
over ion clocks since the instability would scale as 1/ V/N, where N is the total
atom number in the trap. However the best possible way of confining neutral
atoms in Lamb-Dicke regime would involve trapping them in an optical lattice,
which by design necessitates large AC Stark shifts. This was for a long time a
major obstacle in development of optical lattice clocks. However, following the
proposal of “magic wavelength” from Hidetoshi Katori and coworkers [16], the
scenario changed dramatically and a tremendous growth has been observed in
the development of lattice clocks all over the world. The idea of tuning the lattice
wavelength to a value where the light shift for both the clock states becomes equal,
removed the inhomogeneous frequency shifts coming from the optical lattice. Over
last decade, lattice clock performances have improved significantly faster compared
to ion clocks, already reaching the accuracy levels of ion clocks. A big reason for
this dramatic improvement has been the much better clock stability that can be
achieved with neutral atom clocks, which allows to characterize the systematic
shifts with much higher precision.

While discussing the improvements in optical clock performances, the outstand-
ing efforts in developing ultrastable lasers cannot be ignored. To make full use
of narrow optical atomic transitions with mHz or lower linewidths, light sources
with at least sub-Hz linewidths are necessary. Such lasers are therefore stabilized
to ultrastable resonators made from e.g. ultra-low expansion glass (ULE) glass or
crystalline silicon, placed in an environment with incredible control of the temper-
ature and vibration [I7]. About a decade ago, such state of the art systems were
limited in performance to about 1 x 107!% fractional instability. Over the years,
the remarkable technical improvements in ultrastable lasers in all aspects, such
as resonator materials, mirror coatings [I8] and control over residual amplitude
modulation (RAM) effects [19] have brought us to a stage where these ultrastable
lasers can in principle be seen as optical equivalents of Hydrogen Masers with in-
stabilities already in the range of 1077 fractional frequency fluctuations for a few
100 seconds of averaging time [20], 21]. Such ultrastable lasers are making it pos-
sible to perform spectroscopy with many seconds of probe time [22], thus inching
closer to reach the limits of atomic transition linewidths [[.3l

Over these years of developments, advances have been made in not only better
measurement and control of systematic shifts, but also in finding new sources of
measurement errors such as nonlinear AC Stark shifts, or shifts coming from the
amplified spontaneous emission (ASE) of lattice lasers. To combat the nonlinear
AC Stark shifts, there was again a proposal from Katori and coworkers [23] to
utilize not only the lattice wavelength, but also the lattice intensity and polariza-
tion to operate at the so called “operational magic condition” where the frequency
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Figure 1.3: Instability of ultrastable lasers over last 30 years

shifts are constant or maybe even zero in first order with respect to small changes in
lattice laser intensity. Recently there have been measurements in different groups
identifying these operational magic conditions.

One major source of the uncertainty for optical clocks has been the Black body
radiation (BBR) induced frequency shift. Technical advances in precise measure-
ment [24] and novel system designs [25] have allowed these shifts to be brought
down to the 1078 regime for clocks operated at room temperature. However, such
techniques have limitations and could potentially halt progress in improving clock
accuracies. Therefore, while the idea of optical clock in cryogenic environment [20]
has been explored, the search for new atomic elements such as magnesium, cad-
mium and mercury with low BBR sensitivity is an important field of research.

These dramatic improvements in optical clocks have already led to their perfor-
mance surpassing microwave clocks. This not only leads to the possibility of a
future re-definition of SI-second, but also for perhaps first time utilizing frequency
measurements as very precise tools in diverse fields such as relativistic geodesy
[27], spin-orbit coupling physics [28], search for variation of fundamental constants
[29,130], dark matter search [31] and even proposals for gravitational wave detection
[32]. Recently, there have also been considerable innovations in developing novel
protocols for optical trapping and spectroscopy. To reduce the effect of probe field
induced shifts in clocks, different versions of hyper Ramsey spectroscopy protocols
[33-39] have been studied. To reduce the atomic interaction induced frequency
shifts, a Fermi degenerate 3D lattice clock has been developed [40] where atom
numbers can be increased by orders of magnitude compared to current state of the
art 1D lattice clocks. In such a setup, an in-situ instability in the 107! regime
was recently demonstrated [41], and very interesting further developments are an-
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ticipated. In many groups around the world, there has also been a push to develop
an active optical clock [42H45] which could be a game changing technology. An
active optical clock not only holds the promise of generating an atomic reference
without the need for an external ultrastable oscillator, but such a system would
have an instability averaging down as 1/7, which would significantly reduce the
required measurement times, opening up possibilities for numerous applications.
There was first demonstration of super-radiant pulses in such an active laser sys-
tem [44], as well as the first measurement of the frequency instability in the 10716
regime [45]. Very recently, there have been a number of reports on development
of optical clock experiments based on micro-trap arrays [46-49], which though not
superior at the moment compared to lattice clock protocols, offers more control on
individual atoms and could offer an interesting playground for using optical clocks
as tools to study fundamental physics.

As optical clocks precision and accuracy have been steadily improving, there has
been a debate about possible redefinition of SI-second. Recent results with clock
uncertainties in 107 regime mean that these debates are no more about if, but
rather about when such a redefinition would take place. Since Cs clocks have
orders of magnitude higher uncertainties compared to optical clocks, the only way
these optical clocks can validate their performances is by performing frequency
ratio measurements. At this point, the remarkable developments in transfer of
stability over fiber links has to be pointed out. Without these advancements,
comparing clocks in different labs would not have been possible. The very early
long distance frequency comparisons over fiber links were performed between PTB
and LUH about a decade ago [50]. Since then, the technology of Erbium doped fiber
amplifiers (EDFA) and fiber Brillouin amplifiers (FBA) [51H53] helped researchers
build extensive international fiber links between different metrology labs [54] 55].
These fiber links running more than 1000 kms have already been shown to be
capable of comparing frequency references with fiber induced shifts as low as 10~
[54].

Development in all aspects of optical clocks and related fields has motivated CIPM
to already include many of the optical frequency references as secondary represen-
tation of Sl-second [56]. Following the consistent improvement in performance
seen over last decade, a road-map has already been established at BIPM, detailing
the necessary performances required to be demonstrated to initiate the SI-second
re-definition process.
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1.2 Motivation for a magnesium lattice clock

To establish optical clocks as the future time reference, the role of frequency com-
parisons between different labs is very important. To reliably measure frequency
ratios, different atomic elements need to be used. This motivates development of
optical clocks based on different atomic species. Furthermore, the research com-
munity gets to learn from the unique properties of each species leading to further
enrichment of the knowledge.

Sr Yb Hg Yb-+ Sr+ Al+ Hg+
PTB 1.5 x 1077[E7) | - - 2.7 x 10787 | - - -
INRIM | - 2.8 x 1071758 | - -
SYRTE | 4.1 x 10-"[54] | - 1.7 x 107 [9] | - -
NPL 1.0 x 10717J60] | - - 5x 1076l |5x 107762 |- -
NIST |- 1.4 x 10763 | - - - 9.4 x 107 °[64] | 1.6 x 10717[12]
JILA 2x 10724 |- - -
NMILJ |- 3.6 x 107 10[65] | - -
RIKEN | 5.8 x 10" [66] | 3.5 x 10 '7[66] | 7.2 x 10~ 7[67] | - - -
NRC - - - 1.5 x 10717[68] | -

Table 1.1: List of major optical clock performances in various metrology labs around the world.

A summary of the current status of optical clock uncertainties in major metrology
labs around the world is given in Table where most optical clocks in major
metrology institutes already operate at 10717 level. The BBR induced frequency
shift is one of the biggest uncertainty contributions for most of these optical lattice
clocks. Therefore the research on new elements such as magnesium, cadmium [69]
and mercury [70] with low BBR sensitivities becomes further important. While
there has already been considerable research on development of Hg lattice clock,
cadmium and magnesium have not been sufficiently explored for the development
of optical lattice clocks in any of the major metrology institutes. In our lab, we
have been working towards the development of a Mg lattice clock, building on
our previous metrology research with magnesium in a free beam setup [71] and
with cold atomic samples [72]. The low BBR sensitivity of magnesium [73, [74]
(almost an order of magnitude smaller than strontium [75]) makes it a promising
candidate that can push beyond the technical limit imposed by BBR shift in other
room temperature clocks.

It is also noteworthy that magnesium is the lightest element out of all optical clock
candidates. This has two important implications. First, having fewer core elec-
trons means that atomic calculations become much easier. This therefore opens
the possibility to even use theoretical calculations to predict hard to measure fre-
quency shifts such as the BBR shift and quadrupole & magnetic dipole associated
lattice frequency shifts. Understanding the differences between experimental mea-
surements and theoretical predictions for simple systems, such as Mg and more
complicated atomic systems can be useful in optimizing different atomic physics
models.
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Another advantage of developing a clock on an element with smaller atomic number
is the small dependence of atomic energy levels on fine structure constant a. The
atomic clock frequencies for an element with atomic number Z has relativistic
corrections that vary approximately as («Z)” [76]. Therefore optical clocks with
large difference in atomic number would be ideal for detecting any variations in
fine structure constant [12]. Therefore magnesium is well suited as a reference
clock in such a frequency comparison measurement.

The system development of the magnesium lattice clock and first frequency mea-
surement in the 107! regime have been detailed in the PhD thesis from André
Kulosa [77], Klaus Zipfel [78] and Dominika Fim [79]. Due to the requirement
of relatively large optical power, line broadening induced by tunneling between
lattice sites limited the clock performance to 107'° regime. The work performed
to further improve the performance of the Mg lattice clock is the main focus of
this thesis. We aim to push the performance of our experimental setup to the
10! regime and therefore some upgrades to the setup were necessary. These up-
grades as well as the resulting measurements form the main results of the thesis.
In addition, a better understanding of spectroscopy in the shallow lattice regime
for non-degenerate Bloch bands has been explored as well. To reach the desired
performance levels, higher order lattice light shift needs to be characterized as well.
In this work, first experimental studies of these higher order shifts have also been
performed.

Outline of Thesis

In chapter 2, a brief introduction to the magnesium lattice clock will be given.
The essential aim here is to give details on the relevant physics behind an optical
lattice clock while using Magnesium as the principle example. The most impor-
tant concepts and formalism necessary to quantify clock performance will also be
introduced here. Furthermore, our experimental setup will be summarized briefly
as well, with particular focus on some of the unique features.

Chapter 3 contains the first results of this thesis where the spectroscopy in deep
optical lattice will be compared to shallow lattice regime. The gradual transition
of lineshape from one regime to the other will be studied here at magic wavelength
as well as for non-magic condition and the experimental results will be compared
to an extensive theoretical model. Other line-broadening effects associated with
lattice will be discussed in this chapter as well.

Chapter 4 deals with the details of experimental system upgrades and their ef-
fect on the stability of lattice clock. The reduction in linewidth of the clock tran-
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sition forms the major part of this chapter. Furthermore, the improvement in
self-comparison instability measurements due to lower transition linewidth is ana-
lyzed in this chapter.

Chapter 5 details the improved systematic shift measurements building on the
results from chapter 4. Besides the probe AC Stark shift, Zeeman shift and density
shift, the lattice AC Stark shift is studied in detail. Particular focus has been on
measuring the influence of higher order lattice AC Stark shifts.

In chapter 6, an outlook on future development of Magnesium clock is presented.
Details on current limitations of the measurements as well as pathways to mitigate
these limitations are given.
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Introduction




CHAPTER 2

A Magnesium lattice clock

In this chapter, technical details of a lattice clock setup will be discussed with help
of magnesium as an example. This would allow for an introduction to the physics
of lattice clocks as well as a deeper look into the unique features of our magnesium
lattice clock experiment. Afterwards, experimental details such as laser systems,
magnetic field system etc required for the experiment will be discussed.

2.1 Atomic structure of Magnesium

Optical lattice clocks are based on Alkaline earth (-like) elements with two outer
shell electrons, which facilitates the presence of a high-Q atomic transition [80].
Following Hund’s law, these electrons can either pair in a symmetric state with
total spin S = 1 (Triplet states), or in an anti-symmetric configuration with total
spin S = 0 (Singlet states). Transitions between electronic states of these singlet-
and triplet-manifolds are forbidden if spin-orbit interaction is negligible. Though
these intercombination transitions become weakly allowed once spin-orbit interac-
tion is included (which is larger for heavier elements), the transition between the
lowest singlet and triplet states (1Sy - 3Pg) still remains strongly forbidden due to
total angular momentum conservation. The presence of nuclear spin for fermionic
isotopes makes this transition weakly allowed with sub-Hz linewidths. This tran-
sition is therefore of interest for optical lattice clock development. Since the clock
states have zero total angular momentum, the first order Zeeman shift is also zero,
though that changes once nuclear spin is included in the discussion.

13
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The level scheme relevant for magnesium optical clock is shown in Fig. 2.1} As
stated above, the clock states are the lowest energy states of singlet (!1Sy) and
triplet manifolds (*Pg). Magnesium has three isotopes: **Mg (79% abundance),
Mg (10%) and *Mg (11%). Being the fermionic isotope, Mg would be the first
choice for lattice clock development. But to be used as a lattice clock, atoms need
to be sufficiently cooled to be trapped in the optical lattice. The first obvious step
to cooling is based on the 285 nm 'S - !P; transition. Due to a large linewidth of 78
MHz, the atoms can at best be cooled down to the Doppler limit of around 3 mK.
Therefore a second stage of cooling is necessary to achieve lower temperatures.
Typically, for alkaline earth elements, the 'Sy - ®P; transition has a linewidth
in the order of a few tens of kHz, which is ideal for cooling the atoms down to
uK regime. However, this is not possible for magnesium since this transition is
extremely narrow at 36 Hz. Therefore, a second stage cooling can only be based on
3P, - 3Dy transition with additional re-pumpers from *P; and 3P, states as shown
in Fig. 2.1 This cooling scheme immediately highlights the difficulty of cooling
fermionic magnesium due to additional complexity arising from hyperfine splitting
of a few hundred MHz. Therefore, the magnesium clock development work in our
lab has been focused on the bosonic ?*Mg.

W
w
-,
<.

1P1

|
L
SRS
T T =
383nm = = =
S 2 Z
||
an 1
285 nm = I 2

Figure 2.1: Energy level scheme for 2Mg, where all relevant transitions for clock operation are
shown.

Before developing the lattice clock in our lab, an optical frequency measurements of
1Sy—3P; transition in a Ramsey Borde experiment had already been performed [71].

While this narrow 36 Hz intercombination transition does not allow for efficient
Doppler cooling, it was suited for a first frequency measurement in 10~'4 regime.
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For a frequency reference, the influence of external fields has to be minimized
and characterized with great precision. In addition, the dominant line-broadening
mechanism that can reduce the line-Q have to be controlled as well as an efficient
spectroscopy of such narrow (for bosons, forbidden) transitions needs to be ensured.
Next sections deal with these challenges in development of an optical lattice clock.

2.2 Doppler- and recoil-free spectroscopy

Free atoms always move with a non-zero velocity. Performing spectroscopy of
such atoms would lead to optical Doppler shift much like the Doppler shift for
acoustics. Depending on the temperature of atomic cloud, the atomic velocities will
be distributed around the mean velocity. This therefore gives rise to a distribution
of frequency shifts around a mean value. For typical temperatures in cold atomic
samples, this can be as high as a few kHz. In addition, absorption of a photon
by a free atom has an associated photon recoil shift. Therefore these two effects
do not allow for optimum use of the narrow clock transitions. To suppress recoil
and Doppler shift in optical clocks, it is necessary to perform spectroscopy in the
Lamb-Dicke regime [I1] where the atomic transition takes place without changing
the motional state. In neutral atom optical clocks, the ideal way to reach this
regime is by trapping atoms in optical lattices [81]. In late 1990’s, optical lattices
were predominantly studied for their utilization in Raman sideband cooling of the
atomic clouds [82H84] trapped in the Lamb-Dicke regime. But in optical clocks,
this sub-wavelength trapping allows suppression of the recoil and Doppler shifts.

There are many ways in which the Lamb-Dicke regime can be understood. One
such approach is to consider a free particle as a limit condition of a particle trapped
in a box potential as the size of the box becomes infinite. For the case of particle
in a box (this was also the case considered in original paper by R. H. Dicke [11]),
the energies are quantized as

2?2
By=% o (2.1)

where n is the quantization index, and L is the length of the box. The wavefunc-
tions are also defined completely by n and L

0 otherwise

1/1n(I)={ %Sin(%ﬂ($+§>) —§<x<§' (2.2)

Assuming an atom in one of these eigenstates to be interacting with an electro-
magnetic field with wavevector k, the excitation probability from state n to n’ can
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be calculated:

P, ~ f_%% i (z) exp(ikx ), (x)dx

1. .
die” 2™ ((—1)mtr2tlexp(ikL) JkLninon?
- k4L4+(n%—n§)2ﬂ4+4n1n2k2L2ﬂ2

(2.3)

Now Eq. can be used to look at the change in the transition probability between
different states as the strength of confinement is varied from strong confinement
(L < 1/k) to the free particle regime (L >> 1/k). As can be seen in Fig. 2.2
for strong confinement where the length of the box is of the same order as the
wavelength of excitation laser, the probability to change motional state is negligi-
ble. On the contrary, for a weakly confined particle where the length of the box is
much larger than the wavelength of laser, the excitation process has a very strong
probability to change the motional energy of the particle, leading to a significant
frequency shift due to the excitation process. This is precisely the source of recoil
and Doppler shift.

: p : T 025
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Figure 2.2: Excitation probabilities for different degrees of confinement: (a) For strong con-
finement, excitation/de-excitation process has a very small probability to change the motional
state, and therefore the associated Doppler shift/broadening is small whereas for the case of
weak confinement(b), it is in fact more probable to change the motional state during excitation
or de-excitation process and hence the associated Doppler shift/broadening is very large.

Further using Eq. [2.3] it can be shown that the probability for staying in the same
motional state is
2
(kL
sin ( %
P = ( 2 )

2
kL
(%)
This is plotted in Fig. [2.3] where one can clearly see that as the length of box
becomes larger than probe laser wavelength, the probability of preserving the mo-
tional state in an excitation process becomes much smaller than 1. This therefore

sets a cut-off regime where optical clocks can operate to suppress Doppler and
recoil shifts. This is precisely the condition for Lamb-Dicke regime:

(2.4)

L <<\ (2.5)
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The condition in Eq. [2.5| can also be re-written in terms of energy by converting
both length scales to their respective energy counterparts. The length of the box
scales the quantized energy values for the stationary states given by Eq. and
the wavevector k (or wavelength A) of the spectroscopy light can be converted to
the recoil energy Fecoi = % associated with the photon absorption by an atom
of mass m in free space. The Lamb-Dicke regime can therefore be expressed as

Erecoil << Etrap (26)

where Fi,,p is the energy separation between quantized states which provides the
energy scale of the confinement of atoms in a trap.
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Figure 2.3: Probability of preserving the motional state during excitation process is shown here
as a function of length of the box potential.

For neutral atom traps, strong confinement can be achieved by using a far detuned
optical lattice. The intensity pattern obtained from interference of a monochro-
matic laser beam with a back-reflected copy of itself generates the spatially mod-
ulated potential with periodicity of half the laser wavelength. If the depth of
potential is high enough, atoms can be confined to individual wells of the lattice
where they would satisfy the Lamb-Dicke criterion. In the literature, there are
plenty of resources available where spectroscopy in a harmonic oscillator trap po-
tential is discussed in detail. Since the individual lattice sites can be reasonably
well approximated by harmonic oscillator potential, these analyses apply quite
well to spectroscopy in optical lattices as well. However, since in this thesis the
details of shallow as well as deep optical lattice depth regime will be looked into,
an analysis of Lamb-Dicke spectroscopy from the point of view of periodic lattice
potentials will be discussed here. Whenever necessary, the approximation to har-
monic potential will also be utilized to highlight the transition into deep lattice
regime.
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Spectroscopy in optical lattice

To perform Doppler and recoil free optical spectroscopy, the atoms need to be
confined to sub-wavelength regions. Optical lattices provide the necessary trapping
potentials to achieve such strong confinement. Typically optical lattice is generated
by back reflecting a single mode laser beam such that it interferes with itself. For
our magnesium lattice clock, an optical lattice is created inside an enhancement
cavity where significantly higher intra-cavity intensity leads to much deeper trap
depth. Such an interference pattern can be written as

I(rz) =2 {(607"0) exp(—2r2 /w(2)?) sin(kr.2) | (2.7)

w(z)

where n is the impedance of the medium in which wave is traveling, ¢, is the
permittivity of free space, wy is the beam waist, kj is the wave vector, w(z) =
woy/1 4 (2/zr)? is the beam radius at position z and zg = kLng is the Rayleigh
range for the Gaussian beam. This can be re-written in terms of incident laser
power Py as

8P,
I(r,z) = 71w(2)2 exp(—2r? Jw(z)?) sin? (ky,2). (2.8)
And if the AC polarizability of the atom is «, the potential experienced by the
atom would be
8P()Oé

U(r,z) = e () exp(—2r?/w(2)?) sin®(ky2). (2.9)

This equation can be rewritten as

U 5 exp(—2r? Jw(z)?) sin® (ky.2), (2.10)

V0D = G

%{f’sg. Assuming the region of interest to be well within the Rayleigh

range w(z) & wy, this complete potential can be re-written to separate terms of
different order in r and z.

U, Uy (2r? —2r?
U(nz):Uosinz(kLz)—w—gr?jL?O <u;—1+exp< w; ))
0 0 0

_U; (eXp <_j§2> - 1> cos(2ky,2), (2.11)

0

where Uy =

In the Eq. the third term is all the non-harmonic corrections to the Hamil-
tonian in the radial axis, whereas the fourth term gives the contribution coming
from coupling of the radial and axial Hamiltonian terms. Analysis of this com-
plete potential will be the subject matter for next chapter. However, for now to
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understand spectroscopy in the Lamb-Dicke regime in an optical lattice, a deep
optical lattice potential with depth much larger than the atomic temperature, and
Rayleigh range much larger than the atomic cloud size is considered. In such a
case, the higher order transverse contributions can be neglected and the potential
takes the simplified form

Ul(r,z) = Upsin®(kpz) — %7”2. (2.12)

wg

This potential captures the most important aspects of lattice physics. The first
term is the more important periodic potential that gives the strong confinement
necessary for achieving the Lamb-Dicke regime. This term originates from the
interference of the laser beam with itself. The second term on the other hand
is the direct result of Gaussian beam profile and therefore the associated dipole
potential can be approximated in the vicinity of the trap center by a harmonic
potential. Therefore in the transverse axes, the eigenstates are simply harmonic
oscillator states quantized by the transverse quantum numbers n, and n,. This
leads to an important observation for spectroscopy in 1D optical lattice. Since the
atoms in transverse axes will always be weakly confined (wg >> \), it is important
to suppress the excitation process that couples the transverse states. This can most
easily be achieved by aligning the spectroscopy laser beam with the lattice axis,
which ensures that the excitation field with wavevector koo has no component
along the transverse axes. Therefore the coupling between two transverse states
|n.) and |n’) will be

Prynr ~ (1] exp (tkeciock?) [Na) = Ongnr - (2.13)

First most obvious approximation right now could be to further expand the periodic
potential in the neighborhood of a minimum and only keep the terms up to second
order. Such a harmonic approximation allows for a similar analysis as in the last
section. The only qualitative difference is in the energy spacing, which unlike a
box potential is constant for all states in a harmonic oscillator potential. However,
for completeness, as well as anticipating the requirements of the next chapter,
the complete, periodic potential will be considered here, and the transition from
strong trapping to a free particle can then straightforwardly be varied by varying
the parameter Uj.

The Hamiltonian for the motion along z-axis can be written as

o)
p Up A

H, =—4+ —(1-— 2 2.14

. 2m+ 5 ( cos (2k12)) ( )

Since the potential considered here is periodic along z-axis, the Bloch theorem
states that a set of eigenstates can be written as

Un,q(2) ~ expl(igz)un(2), (2.15)
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where u, (z4+7/kL) = u,(2) is also a periodic function with same periodicity as the
lattice potential. Looking at the ansatz in Eq. [2.15] free particle wave functions
would be the ideal choice for numerically solving for the eigenstates. Therefore the
Hamiltonian can be re-written in harmonic wave basis

Hyi = (mﬁ + UO) 5(k—K)— ZO (6 (K — (k+2kp)) + 6 (K — (k — 2kz)))

2m 2
(2.16)
Such a representation of the Hamiltonian immediately makes it clear that the
Hamiltonian is periodic in reciprocal space with a period of 2k;. Therefore the
energy spectrum can also be understood completely within the first Brillouin zone
(restricted zone scheme) ¢ €|—ky, kr]. To numerically calculate the energy spec-

trum, the Hamiltonian in Eq. can be diagonalized

H |7L, q> - qu |n’ q>

oo
|n7 q> = Z Cnm,q |’€i,q>

1=—00

(2.17)

where K; , = ¢+ 2tk At any given value of ¢, there will be infinite discrete energy
levels indexed by n. Due to its similarity with the wavevector of a free particle, ¢
is referred to as the quasimomentum. At this point, it is important to highlight
this similarity as well as the differences between the two. For a free particle, the
wavefunction is simply given by its wavevector kg

Yy ~ exp (thez) (2.18)

This wavevector is directly related to momentum of the particle p = hk;. Now
the similarity of k¢ with ¢ lies in the Eq. where the phase modulation of the
wavefunction is also determined by ¢. Further similarities between the two show
up in the energy spectrum, which will be discussed later in the section. The major
difference between momentum and quasi-momentum lies in the symmetry breaking
of the system. While momentum is a conserved quantity for a free particle in free
space, quasi-momentum is conserved only within the Brillouin zone.

The energy spectrum obtained by diagonalizing the Eq. is plotted in Fig.
2.4(a) for Uy = 0, and Uy = 5Eg (Fig. R.4(b)). The spectrum in Fig. 2.4(a) is
nothing but the folded parabolic dispersion of a free particle. Now the similarity
between quasimomentum ¢ and momentum of a free particle k¢ becomes clearer
where one can see that a smooth transition from quasimomentum to momentum
is possible as the trap depth is lowered to Uy = 0.

Using this formalism, one can again understand the origin of Doppler and recoil
shifts. For the parabolic dispersion relation for a free particle, the motional energy
E = (h*k?)/2m depends only on the velocity v or the corresponding wavevector k.
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Figure 2.4: (a) Energy spectrum in restricted zone scheme for Uy = 0 and (b) for Uy = 5Egr

In such a case, the momentum conservation implies that the final momentum of
the particle is direct sum of initial momentum and the recoil momentum imparted
by the photon:

ko — k1 = Kelock (2.19)

where k1, ky and kgoq are the initial, final and photon wavevectors respectively.
The energy dispersion relation gives the change in energy from absorbing the pho-
ton

k7)

(k3

(kQ + kl) clock
(Qk'l + kclock) kclock
le kclock _'_ CIOCk

52

>

AE

(2.20)

mw‘mw‘\,w‘
SRIRSRS

The second term in Eq. 2.20]is nothing but the definition for photon recoil energy
Er. The first term is the Doppler energy shift which can be re-written in usual

formalism as
v

Avp = 1y— (2.21)
c

where 14 is the unperturbed frequency of the incident photon. Establishing these
relations are important to highlight that both the recoil as well as Doppler shift
can be fully understood from the energy dispersion relations, where the sum of
both shifts is nothing but the result of change in energy corresponding to a change
in momentum from absorbing a photon.

Now the effect of periodic potential can be qualitatively understood. First, rather
straightforward observation is the flattening of the dispersion relation in the lowest
band. This therefore means that the energy shift associated with equivalent change
in quasimomentum will be smaller. The width of these Bloch bands therefore
dictate the change in energy from absorbing photon momentum. And since the
width of the band decreases as the trap depth Uy is increased, as can be seen in
Fig. [2.5] the energy shift associated with photon absorption also decreases as the
trap depth is increased.
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Figure 2.5: Energy bandwidth for three lowest Bloch bands as a function of trap depth.

A natural question arises with introduction of periodicity in energy spectrum.
After absorbing a photon, an atom can make a transition to any of the bands
within the Brillouin zone. This seems counter-intuitive as we transition to the
case of a free particle, where as we saw in Eq. [2.20] there is only one transition
possible on the parabolic energy spectrum. This can be resolved by looking at the
probability of excitation to each of the neighboring bands as the trap depth Uj is
varied. A comparison between transitions starting from both edges of the Brillouin
zone is particularly interesting.

2

Py~ |{n=0,q9=—kp/2|exp(ikeocz) |’ = 0,¢ = —k1./2 + kcock)| (2.22)
Py~ [(n=0,q=—ky/2| exp(ikaoacz) |0 = 1,¢ = —ki/2 + kaoa)|”  (2.23)
Py~ |(n=0,q = ki/2| exp(ikaoaz) [0’ = 0,¢" = k/2 + kaoar)|”  (2.24)
Py~ |(n=0,q=k/2| exp(ikeoaz) |0 = 1,¢ =k /2 + kaoa)|”  (2.25)

where k.o is the wavevector of the probe laser, which is approximately equal to
k1. These relative probabilities are plotted in Fig. [2.6]

At lower trap depths, it is interesting to see that P; is much larger than Pj, which
appears to be strange since there is no obvious reasons for differentiating between
transitions starting from different quasimomenta. It is important here to note that
in case of P; and P,, both the initial as well as the final quasimomenta lie in the
first Brillouin zone (BZ), whereas in case of Py and Py, initial quasimomentum
lies in the first BZ, while the final quasimomentum lies in the second BZ. As the
trap depth approaches zero, it is expected that the probability P; — 0 since Py
would be the only allowed transition on the parabolic energy spectrum of a free
particle. For very large trap depths, the intra-band transition probabilities become
independent of ¢ and also much larger than inter-band transitions. This, along with
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Figure 2.6: Relative probability of transition from lowest band to lowest band (left) and the
first excited band (right)

the reduction in band-width with trap depth, leads to a suppression of Doppler
and recoil shift.

As the trap depth Uy increases, the interband transitions corresponding to mo-
tional sidebands become smaller, while at the same time, the sideband frequency
separation becomes large, which helps resolve the inter-band transition. To add
to these, the bands become flatter as well, which leads to much smaller frequency
shifts associated with a change in quasi-momentum within an intra-band transi-
tion. All these features can be seen in the Fig. 2.7]

Fig. [2.7 is calculated assuming a uniformly filled distribution in the two lowest
bands. As the trap depth increases, the Doppler broadened line splits into the
“carrier” line corresponding to the transitions maintaining the motional quantum
number n, and the blue- and red- “sidebands” on either side that correspond to a
change in n by +1. The sidebands are additionally modified due to contributions
from the radial states. These effects will be discussed elsewhere. Additionally
the curvature of the band influences the carrier lineshape as can be seen at lower
trap depths. As the trap depth becomes large enough such that the bandwidth
becomes smaller than the Rabi frequency, these deformations cannot be resolved.
These features in the carrier lineshape at low trap depths will be a topic for the
next chapter and will be discussed in detail there. But, most importantly, at large
lattice depths, the Doppler broadening can be reduced to mHz regime. This helps
improve the line-Q for the clock spectroscopy.

From the analysis above, one can see the transition from spectroscopy in free
particle regime to spectroscopy in deep optical lattice such that the effects of
atomic motion and photon recoil are suppressed. This is again quantifiable using
the Lamb-Dicke parameter

Er
Etrap

where Ei,p, is the trap frequency which corresponds to the energy separation be-

n= (2.26)
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Figure 2.7: Spectrum calculated for the Hamiltonian in Eq. for different values of Uy,
where the bands are assumed to be uniformly populated.

tween neighboring bands. As the trap depth is increased, the Bloch bands become
flatter along with increase in Ei,, leading to suppression of Doppler and recoil
shifts in the Lamb-Dicke regime n << 1.

2.3 What about the lattice AC Stark shift?

To suppress the Doppler and recoils shifts, optical lattices or such similar traps
are necessary for neutral atoms. But, in presence of such strong light fields, there
are strong lattice light induced frequency shifts. In fact these energy shifts are
responsible for generating trapping force and to enter the Lamb-Dicke regime,
large energy shifts are necessary. Typically these energy shifts are vastly different
for different atomic states and that is the case with the clock states as well, leading
to large differential AC Stark shift of the clock transition.

To overcome these influences of light shifts on atomic transitions, the idea of a
magic wavelength lattice was introduced, first for efficient cooling in optical traps
[16], and then to perform Doppler and recoil free spectroscopy in optical lattices
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[85]. The frequency shift of the clock transition in presence of the lattice with
intensity [y, is
A« ()\L)

where A, is the wavelength of lattice laser and A« (Ar) is the AC polarizability
difference between the two states. Now if we adjust the polarizabilities of the
two states by varying the lattice wavelength such that A« (\y) = 0, then to first
order in intensity, the lattice AC Stark shift can be tuned to zero as well. This
lattice wavelength A\, where light induced frequency shifts for the clock transition
disappear is called the “magic wavelength”. There are higher order frequency shifts,
but, they are much smaller.

The dynamic polarizability «; for an atomic state ¢ in presence of a light field of

angular frequency wy, = 2/\—7:3 can be calculated using the dipole matrix elements

(6] D |¢:)|” between all states j to state 4,

— % QZ z] ¢]|D|¢Z>| (228)

(1w —ot)

where w;; is the angular frequency corresponding to the transition from state ¢ to
state 7. Eq. can be re-written in terms of transition rates A;;

a; (Ar) = 6mepc® Y — Ay (2.29)

v
. 2,2
7w (wij wL)

Further modification to this relation coming from the fine structure is avoided in
case of optical lattice clocks since both states have total angular momentum J = 0.

The calculated polarizability for the states 'Sy and 3P, is shown in Fig. As
can be seen here, the two curves cross each other around 468 nm. This is the
magic wavelength for the magnesium clock transition. More detailed theoretical
models can provide a much more precise value for the magic wavelength. Such a
calculation by M. Safronova and colleagues provided a value of 468.45(23) nm [74],
in remarkable agreement with the experimentally measured value of 468.4106(2)
[79].

With suppression of lattice induced AC Stark shifts, high precision spectroscopy
can be performed where full potential of the narrow optical transition can be
utilized.
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Figure 2.8: Dynamic polarizability of magnesium clock states 'Sy and 3Pg. The lattice wave-
lengths where the two curves intersect represent the magic wavelength condition.

2.4 Spectroscopy of a forbidden transition

As mentioned already, the clock transition for optical lattice clocks is the dipole
forbidden 'Sy - 3Py transition. Therefore the question arises: how to perform
spectroscopy of such forbidden transitions? To understand this, a bit more detailed
look into the atomic structure is necessary. Magnesium, like all alkaline earth (-
like) elements has two valence electrons. The total spin-orbit interaction energy
is

Hs—o = /6151.11 + ﬁgSz.lz (230)

where s; and 1; are the spin and orbital angular momentum, while ; is the spin-
orbit interaction strength of the two individual outer shell electrons i. Since the
spin-orbit interaction is weak for lighter elements, it only acts as a perturbation on
the state |L, My, S, Mg), where L =1; + 1, and S = s; + s3. The details on this
LS coupling scheme can be found in much more detail elsewhere[86]. But since the
total spin, S and total orbital angular momentum L are assumed to be conserved,
H,_, can be re-written as

H, . = BisL.S (2.31)

Since the total angular momentum J in LS coupling is given as J =L + S, the
spin-orbit interaction can be re-written as

JJ-LL-SS

Hs—o - 5LS 9

(2.32)
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Therefore the spin-orbit interaction leads to lifting of the degeneracy of states with
different total angular momentum .J,
_ Brs
ES,O_7(J(J—|—1)+L(L+1)—S(S+1)) (2.33)
and the term 251 therefore splits into its 2*'L; components. This representation
of atomic states is named Term symbols.

The electric dipole operator responsible for electronic excitation has no spin de-
pendent term. Therefore as long as LS coupling approximation is satisfied, there
can be no electronic transitions between singlet and triplet states. Therefore,
being the lowest energy state in triplet manifold, *P, has essentially an infinite
lifetime and the 'Sy — 3P transition has vanishing linewidth. However, the same
spin-orbit interaction responsible for splitting the >T!L; states also mixes some
1P, wavefunction into the 3P; wavefunction, which results in a non-zero transition
probability to 'Sy state. In case of Mg, this 'Sy —3 P; transition linewidth is only
36 Hz, and it generally becomes larger for heavier atoms due to growing departure
from the pure LS coupling model.

Up to this point, the clock transition is still forbidden and does not allow for
a dipole excitation. The situation changes once the nuclear spin is included in
the discussion. For isotopes with nuclear spin, I # 0, the hyperfine interaction
produces a mixing of the P state with 3P, 3P, and 'P; states. This therefore
opens the possibility of atoms decaying from the 3P state to the ground state with
lifetime ranging from few seconds to thousands of second for different elements.
This is one of the reasons why most advanced optical lattice clock experiments are
based on fermionic isotopes.

Though hyperfine interaction makes the clock transition weakly allowed for fermionic
isotopes, bestowing them with just the perfect conditions for their application as
optical lattice clocks, the clock transition in bosons still remain strongly forbid-
den. This is where the idea of using external coupling field played a pivotal role
[87]. An external homogeneous magnetic field B can be used to introduce a small
coupling between the 3P, and 3P, states, giving rise to a small admixture of 3P;
state with the clock state 3Py. This state mixing, which can be quantified by the
magnetic field dependent Rabi frequency Qg = (*Po| u.B [*Py) /A produces the

modified state 0

3p/\ __ |3 2B |3

\ P0> — \ P0> A P1> (2.34)
where Ap is the energy difference between states *P; and 3Py. The effective Rabi

frequency thus generated for exciting the clock transition is

0.0
chock: ZPB (235)
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where Qy, is the Rabi frequency coupling between the ground state 'S, with the
3P, state. The effective linewidth of the clock transition is therefore also modified
due to the state mixing

Qf/4+ Q3

Ap

where 7 is the 'Sy — 3P; transition linewidth. Since Q, and Qg depend directly
on the probe laser intensity I and the homogeneous magnetic field B, Eq.
can be written as

Vet =Y (2.36)

Qo = V1 |B| cos (2.37)

where « gives the dependence of Rabi frequency on the probe fields and 6 is the
angle between the homogeneous magnetic field and the polarization of the probe
laser light. Since quadratic Zeeman shift is Ag = $B? and AC Stark shift due to
probe light field is Ay, = kI, the effective Rabi frequency can also be written as

Qelock = &/ |ALAB]| cos b (2.38)

where £ = a/y/fk. Theoretically calculated values of these parameters for Mg are
37

a =98 Hz/(Ty/mW/cm?), [ = —217 MHz/T? and x = —0.5 mHz/(mW /cm?).

(2.39)
This method therefore allows to generate Rabi frequency up to 100 Hz using laser
intensities of up to 100 mW /cm?, and homogeneous magnetic field of 100 G. Of
course a trade-off between the strength of both the fields is necessary due to the
associated frequency shifts.

This technique of magnetic field induced spectroscopy opens the field of optical
lattice clocks to all the bosonic isotopes of the alkaline earth (-like) elements. The
disadvantage of this method is the large quadratic Zeeman shift associated with
the homogeneous field B, but yet the bosons allow for a much lower complexity in
atomic structure as well as the associated linear Zeeman shift. The magnetic field
induced spectroscopy has been used in almost all realizations of bosonic optical
lattice clocks [22] [74, [88-01] and this is also the method used for Mg clock in
this thesis.

2.5 A laser to probe the clock transition

In an ideal situation, the laser field used to probe the atomic transition should
have a longer coherence time compared to the lifetime of excited state. The re-
quirement on the probe laser eases a bit due to various decoherence mechanism
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that act on the atomic transition. Nevertheless, atomic states can maintain their
coherence for up to few seconds, which therefore means that lasers with sub-Hz
linewidth are needed to efficiently probe these narrow atomic transitions. Since
free running diode lasers typically have linewidths of the order of a few kHz at best,
they need to be stabilized to another reference with an intermediate quality factor.
This reference in most cases is a high finesse resonator, which is isolated from en-
vironmental perturbations. There can be other references such as narrow spectral
hole burnt into absorption spectrum of materials [92] or fiber based resonators[93]
as well. This section will be devoted to the ultrastable laser system used for the
measurements in this thesis and this will be used as a basis for explaining various
details and techniques which are ubiquitous in almost all ultrastable laser systems.

Before any details on the experimental setup, a discussion on characterizing clock
instability is needed. All frequency standards estimate the unperturbed frequency
of the reference system (which may be a quartz crystal, an atomic transition or any
other frequency reference) vy by the measured value v. Since the reference system
is always influenced by its environment, this leads to systematic frequency shifts
Veyst Of the measured frequency from the true unperturbed frequency. Additionally,
since the measurement process itself will at best of times introduce some noise, this
adds a statistical frequency shift v, to the measured frequency v. Therefore the
measured frequency value will be

v =1+ Vsyst + Vstat- (240)

The uncertainties associated with vgys form the error budget of an atomic clock
system. Now to compare the performances of different frequency references, it is
not convenient to directly compare the Av = v — v for different systems, but
instead to look at the relative frequency error, y = Av/yy. Systematic error is
typically estimated by measuring the dependence of v on the perturbing parameter
(such as magnetic field, laser intensity, or environment temperature). This is then
used to estimate the total frequency shift at the operating value of that parameter.
The associated measurement uncertainty contributes to the error budget for the
frequency measurement. Assuming that each of the systematic shift contributions
are independent from each other, the total systematic uncertainty therefore is given

as
N
Osyst = o| > 02 (2.41)
n=1

where o,, is the uncertainty contribution coming from each individual parameter
n.

However the final measurement of the reference frequency (and measurements of
all of the systematic shifts) are affected by the statistical measurement error, vas,
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which typically (depending on the type of statistical noise) decreases as more mea-
surements are averaged. Understanding how to mathematically describe statistical
error is important for evaluating the final clock performance and for studying vari-
ous noise processes affecting frequency standards. These methods are also relevant
for evaluating the performance of ultrastable lasers and their suitability in optical
clocks.

The fractional frequency deviation y(t) for any frequency standard is a continuous
process in time, but the measurement of this continuous function in practice gives
a consecutive series of discrete values y;

1 ti+71
== [ (2.42)
t;

If these frequency fluctuations come from a stationary statistical process, the prob-
ability distribution for p(y;) follows a Gaussian distribution, fully characterized by
the mean value and the standard deviation of this distribution. However, for non-
stationary noise processes with correlations, just the mean and standard deviation
of a data series fail in providing a complete picture. Therefore a better way of
describing such processes is necessary, and one such quantity is Allan Variance, or
the two-sample variance

1

5 <(yi+1 - yz’)2> : (2.43)

ol(t) = 5

The power spectral density S,(f) is another way of characterizing the noise in
Fourier frequency domain

S,(f) = ~F* (lim | TT At + T)Au(t)dt> | (2.44)

where F* is the inverse Fourier transform. Power spectral density (PSD) is a
more comprehensive way of describing the noise processes compared to the Allan
variance, and in fact Allan variance can be directly calculated from the power

spectral density
Sln sin® (77 f)
=2 / 2.45

(e f )de ( )
but a direct transformation in the opposite direction is not possible. Since Allan
variance provides a more intuitive picture of the noise process in time domain,
it is usually the preferred choice for characterizing frequency fluctuations. Most
frequency standards can be modeled very well by a rather simple superposition of
noise terms following power law behavior[94]

= > haf® (2.46)

a=-—2
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a Noise type Allan variance
-2 Random walk of frequency noise ~ 77!

-1 Flicker frequency noise ~ 70

0 White frequency noise ~ 771

+1 Flicker phase noise ~ T2

+2 White phase noise ~ T2

Table 2.1: Different noise components in Eq. [2.46] and their corresponding Allan deviation
behavior.

and therefore these five noise terms provide the easiest way of understanding the
behavior of frequency fluctuations. In Table the time dependence of Allan
Variance is given for all these five noise processes.

At low Fourier frequencies, typically random walk of frequency noise dominates
the other noise contributions, whereas at very high Fourier frequencies, the white
phase noise becomes the dominant term. For the Fourier frequencies in between
these extremes, the other three terms dominate depending on their strength h,, and
the Fourier frequency. And as can be seen from the Table 2.1 the Allan variance
typically decreases for smaller averaging times as 1/7% or 1/7, whereas for longer
time scales, there is typically a rise in Allan variance as 7.

Different noise terms also typically indicate contribution of different noise sources.
For example, random walk of frequency noise typically arises due to environmental
perturbations such as temperature and vibration, whereas the flicker frequency
noise could be due to Brownian noise in resonator cavities.

For a diode laser, the PSD typically is flicker frequency noise upto a certain cutoff
frequency, beyond which it follows the white frequency noise behavior. Depending
on the PSD at the cutoff frequency, the spectral lineshape follows a Gaussian or
a Lorentzian profile[95] with linewidth in the range of 10 kHz to few hundreds of
kHz (depending on measurement duration). To enable clock spectroscopy, such
a diode laser is typically locked to a Fabry-Perot resonator. Since a Fabry-Perot
cavity only allows certain frequency modes v, = qc¢/2L depending on the length
L of the cavity, the laser frequency is in effect locked to the length of cavity such
that the frequency fluctuation depend on the length fluctuation of the resonator

Av_ AL

— == (2.47)

The laser frequency is stabilized to the resonator using Pound-Drever-Hall tech-
nique [96], where the error signal is inversely proportional to the full width at half
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maximum (FWHM) of the resonance linewidth, A/, of the Fabry Perot cavity:
Af
Ayjp

This immediately shows that a small A/, leads to a steep error signal slope. Since
Ay /5 depends on the finesse F of the cavity as

e(Af) ~ — (2.48)

c

Ay = SLF’

one needs to make optical cavities with very high finesse to achieve large error signal
slope. For our ultrastable laser system, the resonator has a finesse of 600,000 for
light at 916 nm and length of 10 cm, which gives a cavity resonance with A/, = 2.5
kHz linewidth. With such a narrow resonance feature, it is possible to stabilize
the laser frequency to sub-Hz linewidth. However, as can be understood from
Eq. [2.47] the frequency stability depends directly on the length stability of the
resonator. To suppress thermally induced length changes, the resonator is made
out of an ultra low expansion (ULE) glass as can be seen in Fig. [2.9] This
kind of glass is known for its low thermal expansion coefficient (£30 ppb/°C).
To further reduce the length fluctuations, temperature fluctuations affecting the

(2.49)

Figure 2.9: Schematic (Left) and picture (Right) of the ultrastable resonator system used in
the magnesium lattice clock experiment[97]

resonator is decreased by surrounding it with a layer of passive thermal shield.
This shielding is made of gold plated polished Aluminum, which acts as a low
pass filter to any temperature variations in the outside environment. This whole
system is then placed inside a vacuum chamber, whose temperature is actively
stabilized to further reduce the temperature fluctuations acting on the resonator.
Besides suppressing the influence of refractive index changes, the vacuum chamber
is needed to reduce the convective thermal contact between the resonator system
and the outer environment. The thermal shields are chosen to have high thermal
conduction, which helps to maintain a uniform temperature distribution over the

shields.
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The other big challenge for maintaining length stability of this resonator at such
remarkable levels is vibrations. To mount the resonator, it needs to be in contact
with the base plate or the optical table at more than one support point. Therefore,
vibrations can exert a differential force on the resonator through these support
points, modifying the optical length of the cavity. To avoid this, the resonator is
placed on four symmetric support points using viton balls to dampen the vibration
coupling. There are more advanced mounting strategies that can further reduce
the vibration sensitivity of the resonator length [98]. In case of our resonator
setup, frequency sensitivity to acceleration was measured to be (27.3, 9.7, 4.9)
kHz/(m/s?). To further attenuate the vibrations acting on the system, the setup
is placed on top of an active vibration isolation stage, which is placed on another
passive isolation table.

Having taken care for these technical noise sources acting on the resonator, one
encounters the more fundamental noise that limits the length stability of the res-
onator: Brownian noise. At non-zero temperature, there will always be microscopic
fluctuation in any material, which is called Brownian motion. This motion in the
ULE spacer, mirror substrate as well as mirror coating leads to length fluctuations
that depend solely on the material properties and the temperature of the system.
This kind of noise appears as flicker frequency noise and therefore in the Allan
deviation plot gives rise to a constant noise floor which cannot be surpassed re-
gardless of averaging time. The biggest contributors to the Brownian noise are the
mirror coating and the mirror substrate. Fused silica substrates have much lower
Brownian noise compared to ULE glass substrates. Therefore, in our resonator
setup, fused silica substrates were used even though this negatively influences the
thermal expansion coefficient of the resonator. For the resonator system used in our
experiments, this thermal noise floor arising from the Brownian noise is 3 x 10716
in Allan deviation of fractional frequency fluctuations. This noise term can be fur-
ther reduced by changing the mirror coating from the amorphous material layers
used in our experiment to crystalline coatings [18].

In addition to these dominant noise terms, there are additional noise contributions
such as residual amplitude modulation (RAM), intensity fluctuation noise, and
noise coming from vacuum pressure fluctuations. More details on all these noise
contributions can be found in the PhD thesis from Andre Papé [97] and Steffen
Rihmann [99]. These laser systems reach frequency instabilities of such low lev-
els that they are sensitive to even the path length fluctuations due to the air’s
refractive index fluctuations. Since there are not many frequency standards that
have such incredible frequency stability, the best way of characterizing them is by
comparing them with another identical system. Therefore two identical resonator
systems were constructed, which were compared against each other to estimate
their performance by assuming equal noise contribution from each ultrastable laser
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system. In our case, the instability at 1 second was 4 x 107!, while the perfor-
mance at longer time scales was limited by frequency drift of the order of few Hz/s
due to residual temperature fluctuations affecting the system [99]. This frequency
drift influenced the spectroscopy measurements as will be seen in the later chap-
ters. Nevertheless, the instability at 1 second of 4 x 10716 translates to sub-Hz
linewidth, which therefore can be used to effectively probe optical clock transition.

Now that all the tools needed for performing spectroscopy of the atomic clock
transition have been discussed, the locking of the spectroscopy laser to the clock
transition can be discussed. Assuming a symmetric spectroscopy feature f(v), the
error signal can be obtained by taking the derivative of this spectroscopy feature

Ly o L0 20 — = Av)

2Av
from measurements at frequency v and v + Av, which gives an anti-symmetric
signal around the resonance condition. Using this approach, assuming a Gaussian
spectroscopy lineshape, one can calculate the error signal £(v), which is shown in
Fig. [2.10| (a). As can be seen here, the slope of the error signal becomes larger
as the step frequency Av is lowered. This can be quantitatively seen in Fig. [2.10
(b) as well, where a saturation in the slope is also visible below a certain step
frequency. Therefore, one would expect the ideal step frequency to be as small as
possible to have a large error signal slope.
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Figure 2.10: (a) The error signal for different values of step frequencies Av, (b) Slope of the
error signal near the resonance condition plotted as a function of the step frequency Av

However, in a real world scenario, there is always additional noise on top of the
measured spectroscopic signal, which could be due to the quantum projection noise,
noise of the spectroscopy laser or the detection noise. This therefore distorts
the generated error signal as well, as can be seen in Fig. [2.11] (a). It is also
clearly visible that the error signal is more affected by the noise for smaller step
frequencies, as shown in Fig. [2.11| (b). Therefore, a balancing act between high
error signal slope and low sensitivity to noise is required. Typically for clock
experiments, the step frequency is chosen to be Av = A;/,/2, which gives a large
error signal slope with a small sensitivity to noise in error signal.



2.6. Measuring optical frequencies 35

Av =0.25x FIWHM
Av =0.50xFWHM ] (b
Av =0.75x FWHM

0.50F

Error signal
=

=
r
=
-
Error signal noise

0.10F

0.05-

0 1 2 0.01 0.05 0.0 050 1
Detuning/FWHM Frequency step Av/FWHM

L L
2 -1

Figure 2.11: (a) The error signal for different values of step frequency Av, where an additional
random noise with ¢ = 0.05 has been added to the Gaussian spectrum. (b) The standard
deviation of the noise seen on the error signal as a function of step frequency.

Therefore, by probing the clock transition on either side of the resonance, a reliable
error signal is generated, which is used to steer the laser frequency to stay in
resonance with the clock transition frequency. This laser light, which is locked to
the atomic transition frequency can then be used as an optical frequency standard.

2.6 Measuring optical frequencies

Once the clock laser is locked to the atomic transition, the laser frequency can be
used to generate a time standard with incredibly low instability and uncertainty
achieved by using an optical atomic transition. But how can one do that, since
there are no direct methods to count optical frequencies? On the other hand,
radio frequency (RF) and microwave frequencies can be easily counted by electronic
counters with the same precision and uncertainty as their reference clock frequency.
Just to be clear here, the idea of measuring or counting a frequency is always a
relative one: a frequency can only be measured in reference to another frequency.
This is because as soon as a statement is made that the frequency of some standard
is v Hz, one assumes a meaning of what 1 Hz means in reference to another
standard. So far, that reference frequency standard is the ground state hyperfine
transition frequency of !33Cs. Therefore any other frequency standard needs to
be measured with respect to this frequency. Therefore the same needs to be done
for measuring optical frequencies, or in case an optical frequency needs to act as
a frequency standard, the counters need to be referenced to the optical frequency
standard. This is where frequency combs play a crucial role. An introduction
to the frequency comb has already been given in the last chapter, therefore the
aim here will be to look more into the technical details. The main objective of
a frequency comb is to bridge the gap between RF frequency and the optical
frequency standards, and between different optical frequency standards as well.
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The simplest frequency comb is based on a mode locked laser, where as is well
known for such lasers, a pulse train with a nearly constant repetition rate fiep
is generated [I00]. The spectrum of such a pulse train is also a sum of discrete
frequency modes f,, which form the teeth of a frequency comb:

fn = .fCEO + nfrep (251)

The repetition rate fio, can be easily measured using a fast photodiode and it
depends on the length of the laser resonator. Therefore it can be tuned using
piezo actuators. On the other hand, the carrier envelope offset (CEO) frequency
fcro which results from a mismatch of the phase and group velocity is not so easy
to determine. However, if somehow the spectrum of the frequency comb can be
stretched beyond one octave, then a heterodyne beat can be generated between
frequencies fs, and the second harmonic of f,

fb = 2fn - f2n
= 2fceo + 2nfrep — (cho + 2nfrep) (2.52)
= fCEO

This was the big breakthrough in practical application of optical frequency combs.
Once CEO frequency can be measured, it is possible to stabilize it by acting on
the intracavity power by one of several possible methods [101]. For stretching the
frequency spectrum to beyond an octave, super-continuum generation in photonic
crystal fibers (PCF) is the most commonly used method [3] 6, 102].

Once fiep and fcgo have been stabilized to a microwave frequency standard, all
the comb lines are referenced to the same microwave standard. Now heterodyne
beat-note between one of these comb lines and the optical frequency standard of
interest can measure the optical frequency in reference to the microwave frequency.
Importantly, the whole process can be reversed as well, where the frequency comb
can be referenced to an optical frequency standard, and the f., also acts as a
frequency reference with same instability and accuracy as the optical reference[103]
104]. This allows to use optical frequency standard as a clock.

2.7 Optical trapping and manipulation of *Mg

Thus far, every step required to develop an optical lattice clock has been discussed
with Magnesium as an example. In this section, the cooling and trapping scheme
for Magnesium will be discussed, which in some parts is very typical of most lattice
clock elements and in some parts is rather unique to Magnesium.

A cold Magnesium sample is required to be able to load enough atoms into the
optical lattice. The most straightforward way to cool and trap magnesium is in
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Figure 2.12: The schematic of magnesium lattice clock experimental setup|[78].

a magneto optical trap (MOT) on the 'Sy - 'P; transition. As can be seen in
Fig. [2.12] thermal atoms emanating from an oven where magnesium shards are
heated to 450 °C are first slowed using a Zeeman slower and trapped in the Singlet-
MOT using 285 nm light. Due to a rather large linewidth of this transition, the
Doppler temperature is limited to 3 mK, which is too large to obtain sufficient
transfer to the lattice. This is typical of optical lattice clock elements, where the
first stage Singlet-MOT is operated on this broad transition. However, unlike
other lattice clock elements where a second stage cooling can be realized on the
narrow intercombination transition 'Sy - 3Py, such an approach is not possible in
Magnesium due to incredibly small linewidth of only 36 Hz for this transition.
Therefore, for Magnesium a second stage MOT can only be realized on either P,
-3Dj3, or 3P - 3S; transition. Both these transitions require additional re-pumpers
due to optical decay to other states. For our experiment, the 3Py - 3Ds transition
is used as the second stage Triplet-MOT. The Doppler temperature for this state
is about 1 mK. Ideally, atoms would be transferred from this second stage MOT to
the optical lattice. However, the optical lattice at 468 nm was observed to ionize
atoms in 3D state. Therefore, a far off resonance optical dipole trap is used as
an intermediate step to transfer atoms from the two-stage MOT to the optical
lattice. It was further observed that the atom collection efficiency in the dipole
trap was much higher in the so called continuous loading scheme, compared to
a step-wise approach [105]. In this continuous loading scheme, both the Singlet-
MOT and the Triplet-MOT are simultaneously running, while the 1064 nm dipole
trap is overlapped with the Triplet-MOT atomic cloud. To open a loss channel
from the Triplet-MOT to the dipole trap, the re-pump laser acting on the 3Py —
3D, transition is off. Therefore, the atoms decaying down to P, are captured by
the dipole trap, provided they have cooled down sufficiently. In a 50 W dipole
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trap with waist of about 45 um, typically about 10° atoms are trapped at 100
uK. These atoms are optically pumped to 'S, state by excitation to *D; state,
from which atoms can decay to P, followed by spontaneous decay to the ground
state. These atoms are then transferred to the optical lattice, which is spatially
overlapped with the 1064 nm optical dipole trap, where they are probed using
the spectroscopy laser, which is also overlapped with the optical lattice. After
the spectroscopy pulse excites a fraction of the atoms to the excited state, all the
atoms including the remaining atoms in ground state are transferred back to the
1064 nm dipole trap. Then the fluorescence from the T-MOT is used to detect the
number of excited state atoms. Afterwards, the remaining ground state atoms are
excited to the 3P; state by a resonant optical excitation, and they are also detected
in the T-MOT to determine the ground state atom numbers. This allows for the
determination of excitation fraction, which improves the signal to noise ratio by
correcting for the atom number fluctuations.

2.7.1 Laser systems used for trapping the atoms

To be able to cool, trap and probe magnesium atoms, lasers with wavelengths
ranging from 285 nm to 1064 nm, powers ranging from few mW to few tens of
Watts and laser linewidths from few MHz down to sub-Hz regime are used. Here
we sequentially detail all the laser systems needed for the experiment.

S-MOT laser at 285 nm

For the first stage MOT, laser light of 285 nm wavelength is required. This is
generated by second harmonic generation (SHG) from light at 570 nm. This light
field is generated by a commercial system consisting of a diode laser at 1140 nm,
which is then amplified by a Raman fiber amplifier to up to 3 W. This is then
frequency doubled in a bow-tie SHG cavity to 570 nm giving up to 1 W optical
power. To generate UV light from this field, a bow-tie resonant cavity is used,
where the nonlinear conversion occurs in a Beta-Barium-Borate (BBO) crystal.
To reduce the power degradation from UV light, a small constant flow of Oxygen
is maintained through the SHG setup. Up to 200 mW of 285 nm light can be
generated, though typical operation is maintained at around 100 mW to slow the
degradation of SHG power.

To maintain correct frequency with respect to the atomic transition, the laser
frequency is stabilized to the R115(20-1) iodine transition. A fraction of the 570
nm light is used to perform Doppler free frequency modulation spectroscopy, where
the dispersive error signal is generated using lock-in technique.
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T-MOT lasers at 383 nm

Though the triplet MOT transition *Py -*Ds for magnesium is a closed transition,
non-resonant excitation to the 3D; state still occurs due to large linewidth of
the transition. Therefore additional re-pumper lasers are required besides the
MOT laser. This increases the overall complexity of this laser system. Three
independent identical laser systems are used to excite the MOT and the re-pumper
transitions(®Py -3D; and 3P; -3Ds,). All the lasers are frequency doubled master
oscillator power amplifier (MOPA) laser systems, where light from a diode laser at
767 nm is amplified using a tapered amplifier to 1.5 W, which is then frequency
doubled in bow-tie design resonant enhancement cavities using Lithium Triborate
(LBO) crystals as the nonlinear medium.

Frequency stabilization for these lasers follows a slightly more complicated mecha-
nism. The fundamental laser wavelength of 767 nm makes Potassium spectroscopy
an ideal candidate for frequency stabilization. To achieve this for all three MOT
lasers, another laser is used, which is first stabilized to a transfer cavity, and then
used for performing Doppler free saturation spectroscopy where the feedback acts
on the piezo attached to one end mirror of this transfer cavity. This ensures that
the transfer cavity length has the long term stability of the Potassium atomic spec-
troscopy. Afterwards, all the three MOT and re-pumper lasers are locked to the
transfer cavity, whereby locking these lasers to the 3K atomic reference.

Transfer laser at 457 nm

To effectively transfer atoms from ground state to the triplet manifold, excitation
on the 'Sy - 3Py transition at 457 nm is utilized. Since this is a very narrow
transition with natural linewidth of only 36 Hz, the transfer laser also requires
high spectral purity. The laser system consists of a 914 nm diode laser, which
is amplified in a tapered amplifier and then frequency doubled in a bow-tie SHG
enhancement cavity. A fraction of this 457 nm light is sent to a 10 cm long ULE
glass resonator, where it is stabilized to one of the TEMOO resonance modes. This
ULE glass resonator is placed inside a vacuum chamber, which is suspended from
the ceiling to suppress high frequency vibrations. This laser stabilization achieves
linewidth of around 100 Hz. Most of the light coming out of the SHG is delivered to
the spectroscopy setup after frequency shifting using an acousto-optic modulator
(AOM). This light is then superposed with the optical lattice axis to have a high
efficiency of excitation in the lattice.
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Dipole laser at 1064 nm

Since spectral properties are not so important for a far off resonance optical dipole
trap, we use a 1064 nm Yb-fiber laser system, which can deliver up to 50 W of
light power with a spectral linewidth of about 0.2 nm. This laser beam is focused
to a waist of about 45 microns at the MOT position in the middle of the vacuum
chamber. This provides a trap depth of about 150uK, which filters out the hottest
atoms from the trap and retains atomic sample with effective temperature of about
100uK. The dipole trap is also aligned along the optical lattice beam for maximum
transfer efficiency to the lattice.

Optical lattice at 468 nm

This is perhaps the most critical laser system of all, requiring large optical powers
at the position of atoms, at a wavelength that is not most conducive for such high
power generation. Therefore, an enhancement cavity is needed to significantly in-
crease the lattice light intensity. The first step is a titanium sapphire (Ti:Sa) laser
operating at 936 nm, which is in turn pumped by a 18 W Optically Pumped Semi-
conductor Laser (OPSL) at 532 nm. The output from the Ti:Sa is approximately
1.5 W, which is then frequency doubled in a commercial SHG setup using Peri-
odically Poled Potassium Titanyl Phosphate (PPKTP) crystal, which has good
efficiency at this wavelength. About 550 mW output at 468 nm is achieved from
this setup. This light is then passed through an AOM in zeroth order to stabilize
lattice intensity, and transferred via a large mode field area fiber to the enhance-
ment cavity setup. The enhancement cavity is built in a folded design that goes
around the vacuum chamber where the vacuum windows are coated for low losses
at the design wavelength. The mirror radius of curvatures are chosen such that
the cavity is in a concentric cavity regime and the waist of the cavity mode (typi-
cally around 50 — 80 wm) falls at the center of the chamber. There are additional
intracavity elements to couple the 1064 nm dipole laser light and 458 nm clock
laser light. All the optics is coated for maximum transmission possible at 468 nm.
The light power at the input of the cavity is around 350 mW, which in the cavity,
this is amplified to as high as 10 W circulating power. More details on the lattice
setup will be discussed in the later chapters. To stabilize the lattice frequency dur-
ing the measurements, a transfer cavity is used where the transfer cavity length
is stabilized to the clock laser frequency while the TiSa laser frequency is then
stabilized to the transfer cavity using feedback on the TiSa cavity resonator length

[TO6]. The lattice frequency is monitored using a wavemeter with an accuracy of
30 MHz.
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Clock laser at 458 nm

Most details on stabilizing the clock laser to ultrastable resonator has already been
discussed in Section [2.5] Here the discussion therefore will only briefly focus on
the optical setup. The laser system itself consists of a 916 nm diode laser amplified
using a tapered amplifier. This laser is stabilized to an ultrastable resonator as
detailed in Section [2.5] The stabilized laser is transferred to the spectroscopy
lab using a 30 m long fiber, where the fiber noise is actively compensated. This
light is then amplified with another tapered amplifier and frequency doubled in
a resonant cavity giving typically about 100 mW light power at 458 nm. This is
then transferred to the spectroscopy setup after passing through an AOM, using
another short optical fiber. The clock laser is then aligned to the optical lattice
using small alignment apertures on either side of the vacuum chamber. Typical
misalignment is below 1 mrad. A small fraction of the clock laser is reflected back
from one of the end mirrors of the lattice cavity and is returned through the optical
fiber to create a heterodyne beat with the light immediately after the SHG. This
beat signal contains the noise introduced by the light transfer system, and using
the AOM mentioned above, the phase of the clock laser at the lattice cavity end
mirror can be actively stabilized.

2.7.2 Vacuum chamber and Magnetic fields setup

The heart of the experiment is the vacuum chamber where atoms are trapped.
This is schematically shown in Fig. [2.12] This chamber is connected directly to
the source chamber where solid magnesium is heated to 450 °C, at which point,
they sublimate and eject through a small aperture of 5 mm diameter into the
science chamber. The small aperture helps maintain a differential vacuum pressure
between the two chambers, where the vapor pressure in source chamber is relatively
high while the science chamber vacuum pressure is reduced to 1 - 2 x 10~ mbar.
In between the source and science chamber, there is a shutter, which can be closed
during the spectroscopy to shield cold atoms from the thermal atoms emanating
from the source chamber. The science chamber is pumped by a combination of
turbo pump and ion pump. Different CF flanges allow optical access to the center
of the chamber. On the top and bottom of the chamber, there are two CF200 pot
flanges, which allow a closer access to the chamber for the MOT caoils.
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Quadrupole magnetic field coils

Current carrying coils responsible for generating the quadrupole magnetic field for
operating the MOTs are wound on the CF200 pot flanges(Fig. [2.12)). The coils are
water cooled to reduce the temperature inhomogeneity of the chamber, and are
connected to a power supply, which can deliver up to 200 A current. The current
is regulated using an insulated gate bipolar transistor (IGBT), which has a time
constant of 30 ns. However the decay time of magnetic field is around 2 ms due
to the eddy currents generated in the steel chamber. For the 200 A current used
for the MOT operation, magnetic field gradients of 1.3 T/m and 0.65 T/m are
generated along the strong and weak axes respectively.

These MOT coils can also be used to generate homogeneous magnetic field where
the current is switched from anti-Helmholtz to Helmholtz configuration by flipping
the current direction in lower coil using additional IGBTs. This magnetic field was
typically used for performing the lattice sideband spectroscopy, or to probe the
carrier for low lattice depths where the Rabi frequency becomes much too small.
This coil can generate around 2.49 G/A magnetic field, which was determined by
measuring the 'Sy - 3P; Zeeman splitting as a function of coil current.

Homogeneous magnetic field coils

While the magnetic field generated from MOT coils in Helmholtz configuration
is homogeneous in the central region of the chamber, the magnetic field shows
inhomogeneities within a few mm from the trap center. This is not ideal for the
lattice clock where atom cloud is distributed over several millimeters in the lattice
[78]. This magnetic field inhomogeneity results from the relatively small diameter
of MOT coils and a small distance from the center of the chamber. Therefore, to
probe atoms with a more homogeneous magnetic field, an additional pair of coils
with larger diameter is installed around the vacuum chamber. Due to heating in the
coils, a maximum current of 15 A is possible in these coils. To stabilize the current
in these coils, it is measured using a precise current sensmﬂ where the primary
current is converted to a secondary current with a ratio of 1 : 1750. To improve
the sensitivity factor, the primary current carrying wire is implemented with 20
winding across this sensor. The secondary current thus generated is measured
as a voltage drop across a passively cooled high precision resistoxﬂ, which is then

amplified and used to generate an error signal to stabilize the current using a
MOSFET.

T 700-S Ultrastab from LEM
2V(CS332Z from Vishay



2.7. Optical trapping and manipulation of ** Mg 43

Stray field compensation coils

Besides the applied fields, there are additional magnetic fields affecting the atoms.
These fields can result from the earth’s magnetic field or from the surrounding
magnetic materials, or more generally through a combination of both. Since a
high degree of magnetic field control is required to operate a lattice clock, these
stray magnetic fields are compensated. For this purpose, three orthogonal pairs of
current carrying coils are implemented, which are calibrated using Zeeman spec-
troscopy of the 1Sy - 3P; transition to compensate the external fields.
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CHAPTER 3

Characterizing line-broadening in
an optical lattice

Optical lattices are invaluable for performing spectroscopy of neutral atoms in the
Lamb-Dicke regime. As discussed in the previous chapter, with a deep enough
optical lattice, atomic motion can be very well approximated as in a strongly con-
fining harmonic oscillator potential with negligible Doppler and recoil frequency
shifts. However, precise optical spectroscopy also allows for studying interesting
physics of atomic motion in an optical lattice in different regimes. While the deep
lattice regime leads to harmonic oscillator like motion, the shallow lattice regime
has a more complex behavior, which can be best understood using the formalism
of Bloch bands. In addition to being of interest to fundamental Physics, a detailed
characterization of optical lattice also allows us to better understand associated
line-broadening and frequency shifts relevant for our optical lattice clock. This
chapter will therefore be devoted towards a detailed characterization of clock spec-
troscopy with respect to variation in lattice depths, lattice frequency and atomic
temperature.

3.1 Not so deep in the Lamb-Dicke regime

The Lamb-Dicke regime has no sharp barrier. Instead, it is reached, when the trap
frequency becomes much larger than the photon recoil frequency. It is therefore
interesting to understand what happens as the system gradually moves deeper

45
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into the Lamb-Dicke regime. A transition to the Lamb-Dicke regime is in many
ways similar to the transition across the classical to quantum regime boundary.
Moving deeper into the Lamb-Dicke regime can also be seen as moving deeper into
the quantum regime. Therefore, the transition to the Lamb-Dicke regime is also
interesting from the view of fundamental physics.

In the analysis of the Lamb-Dicke regime, it is also important to understand the
role of spontaneous emission. The Lamb-Dicke regime was studied initially to
deal with the Doppler and recoil frequency shifts associated with the spontaneous
emission. Since optical clock states have a low spontaneous emission rate, one can
argue that the constraints of the Lamb-Dicke regime do not need to be strictly
followed for Doppler- and recoil-free spectroscopy. In principle, as soon as the
trap frequency becomes larger than the recoil frequency, we enter into the re-
solved sideband regime, where the influence of photon recoil can be avoided, if the
spectroscopy laser is precise enough to resolve the sidebands. Indeed, the rela-
tive strength of the carrier with respect to the sidebands would be lower, but as
long as these sidebands can be resolved (which is relatively easy since there is no
spontaneous emission induced line-broadening), the photon recoil shift should not
directly affect the measurement.

However, the influence of atomic motion and photon recoil is still present in the
carrier lineshape, at least for the case of a lattice potential. For atoms trapped
in an optical lattice, the energy bands are easily resolved with sideband resolved
spectroscopy. However, these individual bands still have a continuous energy dis-
persion relation. These can show up in the lineshape of the carrier as well. The
trapping potential of a typical 1D optical lattice is shown in Fig. [3.I)(a). Opti-
cal lattice is generated by interference of two counter-propagating monochromatic
laser beams, which leads to the formation of a standing wave. In the transverse
axes, the Gaussian beam shape gives rise to a shallow trapping potential.

The energy of atomic states is perturbed by the Bloch band spectrum of the optical
lattice and the Gaussian transverse potential (Fig. [3.1(c-e)). Since the clock laser
is aligned with the optical lattice axis, the transverse energy spectrum does not
directly lead to frequency shifts. However, the Bloch bands significantly modify
the carrier lineshape. This happens because the photon recoil momentum absorbed
during spectroscopy leads to a change in the atomic quasimomentum (following the
momentum conservation rule), which leads to a frequency shift according to the
dispersion relation for the Bloch band (Fig. [3.I(b)). Since this “recoil” frequency
shift depends on the quasimomentum of the atoms, the total lineshape generated
by atoms uniformly occupying all the quasimomenta is given by a double-peak
lineshape as shown in Fig. [3.2] As the lattice depth is increased, moving deeper into
Lamb-Dicke regime, the Bloch bands become flatter, leading to smaller frequency
shifts due to the photon recoil. On the other hand, for shallow optical lattice, such
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Figure 3.1: (a) Typical one dimensional lattice potential featuring standing wave pattern along
the lattice axis with a Gaussian trapping potential in transverse axes. (b) In presence of an optical
lattice, optical spectroscopy is modified by the Bloch band spectrum of the lattice. The modified
dispersion relation gives rise to a frequency shift akin to photon recoil shift for freely moving atoms
when an atom with initial quasimomentum q; is excited to the 3Py state with quasimomentum
ar (=ai + Keiock). The atomic states in (c) are modified by the Bloch band spectrum as shown
in (d), with additional transverse states (e) coming from the Gaussian transverse potential for a
6.5 Er deep lattice.
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frequency shifts can be significant, leading to a distortion of the carrier lineshape.
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Figure 3.2: Carrier lineshape for a 6.5 Eg deep optical lattice. If the Rabi frequency is lower
than the Bloch band width, a double peak structure is resolved in the lineshape. This double
peak structure comes from the Van-Hove singularity of the density of states in the lowest Bloch
band.

The density of states in a Bloch band is determined by the curvature of the band,
which leads to the famous Van-Hove singularities at the center and edges of the
band. As shown in Fig. [3.2] this leads to a double peaked modification of the
carrier lineshape since atoms at the center and edges of Bloch band experience
different frequency shifts. This lineshape distortion was proposed for the first time
by Lemonde and Wolf [I07] and observed for the first time in our group in 2015
[].

While these lineshape distortions are not ideal for optical clocks and efforts are
made to avoid them, it is also incredibly difficult for most optical clocks to precisely
study these lineshape distortions. As can be seen in Fig. where the lineshape
is shown for the 6.5 Eg deep lattice potential of Fig. [3.I] the peak separation is
approximately twice as large as the Bloch band width. Therefore, for deep lattices
where the width of Bloch band is very narrow, it is incredibly hard to resolve
the doublet feature. On the other hand, for a shallow lattice, the transverse trap
is usually not strong enough to trap the atoms against the gravitational force.
Therefore, for heavier lattice clock elements, additional transverse confinement
is needed to be able to trap atoms in shallow lattice regime. For magnesium,
due to the small atomic mass, trapping in a shallow lattice is still fairly efficient.
Therefore, magnesium lattice clock is ideally suited to study the shallow lattice
physics using optical spectroscopy.

The clock spectroscopy of Bloch bands has been experimentally [28, 77, [108] and
theoretically [I07, 109] studied. Since we know from these studies precisely the
relationship between the peak separation in the Bloch band spectrum and the
lattice depth, measurements of the Bloch band resolved spectrum can help us to
characterize the optical lattice. We therefore numerically fit the measurement
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Figure 3.3: Peak separation vs lattice power at magic frequency 640.020 THz (a) and at
641.040 THz (b). The experimental data is fitted in both cases with the theoretical calculated
peak separation with the lattice waist as the only free parameter.

data of peak separation in Bloch band doublets for different lattice powers with a
numerical model estimating the Bloch bandwidth for a given lattice depth. This
allows us to obtain the effective lattice beam radius at the position of atoms. We
performed two such measurements, one near the magic frequency at 640.020 THz
and another at 641.040 THz. In both cases the theoretical peak separation fits the
data very well, as can be seen in Fig. 3.3

The numerical fitting to the peak separation data gives a fairly precise value of the
effective beam radius of 65.6(3) wm and 60.7(3) pm for the two lattice frequencies
of 640.020 THz and 641.040 THz respectively. In both cases, the measured lattice
waist was smaller at 60.4(2.0)um and 46.7(9)um respectively. This emphasizes
that although we have a precise measurement of lattice power and lattice waist,
the actual trap depth experienced by the atoms may be different due to a mismatch
of the lattice waist position and the atomic cloud position. Using these effective
beam radius values, lattice waist position mismatch for the two measurement sets
is estimated to be 10.4(1.6) mm and 12.1(2) mm, with a weighted mean value
of 11.9(1.2) mm. Since the lattice geometry was not significantly changed during
the rest of the measurements in the thesis, this mismatch will always be used to
calculate the effective lattice intensity at the position of atoms.

The large range of trap depth used for these measurements also allows us to show
the transition of Bloch band spectrum from shallow lattice to deep lattice regime
(Fig. . While the lineshapes in Fig. are very similar to the lineshape shown
in Fig. [3.2] it is important to note a slight smearing out of the doublet feature.
We understand this deviation from a pure 1D calculation result to come from the
radial state contributions. Indeed, the total lineshape can be considered as a sum
of contribution from all the occupied radial states. The higher radial states have a
lower effective lattice depth and therefore the associated Bloch band width is larger.
Therefore higher radial states contribute doublets with larger peak spacing to the
total lineshape. The resulting double peaked lineshape obtained from averaging



50 Chapter 3. Characterizing line-broadening in an optical lattice

—
-40000 -20000 0 20000 40000
Detuning(Hz)

Figure 3.4: Evolution of the spectroscopy lineshape as a function of lattice depth for a magic
lattice frequency. With increase in the lattice depth, the two peaks progressively merge with each
other. The experimental data is fitted with a double-Lorentzian lineshape shown by red curve.

over all the radial states therefore smears out into a broader feature instead of the
sharp peaks expected from the 1D model.

When the lattice frequency is varied, these radial states lead to another interesting
feature. The doublet lineshape develops an asymmetry between the two peaks, as
the lattice frequency deviates from the magic condition. This was observed first in
our group in 2015 [77]. To study this inhomogeneity in detail, we now performed
systematic measurements of the Bloch band lineshape at about 1 GHz detuning
above magic frequency for different lattice depths. The resulting lineshape varia-
tion is shown in Fig. 3.5 The lineshape asymmetry is clearly visible here, which
becomes more pronounced as the lattice depth is increased.

With a goal to better understand these lineshape asymmetries, a numerical model
has been developed that includes the coupling of radial and axial dimensions.
In Eq. 2.11} a complete Hamiltonian for the 1D lattice system is given. While
approximating the total potential with a separable radial and axial potential works
well in deep lattice regime, for the shallow lattice regime, the complete Hamiltonian
needs to be considered. In particular, the terms which couple radial and axial
potentials are very important. Since solving the Schrodinger equation for complete
3D potential presents a significant computational challenge, we only solve for a
two dimensional model. Though this reduces the total impact of radial states in
the calculations, the most important additional aspect of the lattice potential i.e.
axial-radial coupling, is still included.
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Figure 3.5: Evolution of the spectroscopy lineshape as a function of lattice depth for a lattice
wavelength detuning of —0.74 nm from the magic wavelength. With increase in the lattice depth,
the two peaks merge with each other. Also, the inhomogeneity of the lineshape increases as the
trap depth is increased. The experimental data is fitted with a double-Lorentzian lineshape

shown by red curve, where parameters of the two Lorentzian peaks can be used to parameterize
the lineshape inhomogeneity.

To calculate the spectroscopy lineshape, first the energy spectrum is calculated by
diagonalizing the Hamiltonian matrix generated for 'S, at a given initial quasimo-
mentum value, ¢;. A similar spectrum is calculated at the final quasimomentum
qf = O + keoek for the 3Py state. This provides all the transverse energy levels
for the ground and excited atomic states. Therefore, at a given frequency of the
spectroscopy laser, the transition probability between different transverse states
can be calculated using the optical Bloch equation. The wavefunctions of these
states are used to calculate the effective Rabi frequency between different trans-
verse states. This becomes particularly important for the higher transverse states
where transitions involving a change in the transverse state become significant.
The total spectroscopy lineshape is then estimated by integrating the transition
probability for different quasimomenta over the entire Brillouin zone. While cal-
culating the excitation probability between different transverse states, a two-level
model is assumed, which is a reasonable approximation for most cases where the
spacing between transverse states is larger than Rabi frequency. This approxima-
tion may not hold perfectly for very high transverse states where energy spacing
between neighboring transverse states becomes progressively smaller.

For efficiently calculating the Hamiltonian matrix, a suitable set of basis functions
is needed. Along the axial direction, cosine wave basis (with periodicity being mul-
tiples of lattice periodicity) is chosen. For the transverse axis, harmonic oscillator
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states are convenient basis states, due to similarity of these trapping potentials.
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Figure 3.6: Lineshape asymmetry as a function of lattice wavelength is shown here. To under-
stand the influence of transverse states, 1st (purple), 100th (orange) and 200th (green) transverse
states are shown in (a), (d) and (g) for the three cases of lattice wavelength below, at, and above
the magic wavelengths respectively. The energies for the 'Sy state are shown by solid lines while
the 3Py state is represented by dashed lines. The 3Py bands are shifted in quasimomentum by
the spectroscopy laser wavevector, kcock. The lineshapes calculated for these transverse states
are shown in corresponding colors by the dashed lines in (b), (e), and (h), where they once again
correspond to the cases of lattice wavelength below, at, and above magic wavelengths respec-
tively. The total lineshape obtained by considering the 200 lowest transverse states are shown
by the solid black curves. These numerical calculations are to be compared to the experimental
data shown in (c), (f) and (i) for the three different lattice wavelengths, where red line is a
double-Lorentzian fit to estimate the linewidth asymmetry.

With the help of these simulations, we can understand how the radial states lead
to an asymmetry of the double-peak Bloch band lineshape, as the lattice wave-
length moves away from magic condition. Fig. 3.6 (a,d,g) depict for three lattice
wavelengths, the Bloch bands for atoms in the ground and excited state (solid
and dashed line) occupying the 1%, 100" and 200" transverse state (purple, or-
ange, green color) along with the corresponding theoretical line shapes in Fig. |3.6
(b,e,h) and compare them with the line shapes (Fig. 3.6/ (c,f,i)) obtained in our
previous measurements from 2015 [77]. The three scenarios consider lattices where
the trapping potential for the 3P, state is deeper, equal or shallower than for the
1Sy state, corresponding to a lattice wavelength below (Fig. [3.6 (a,b,c)), equal to
(Fig. [3.6] (d,e,f)) or above (Fig. |3.6] (g,h,i)) the magic wavelength respectively.

For the case of the lattice being detuned below the magic wavelength (Fig. |3.6
(a,b,c)), one can see that the energy difference between the 'Sy and *Py states at
the edges of the band (which forms the left peak in the spectroscopy lineshape) does
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not vary for different transverse states, whereas the energy difference at the center
of the band decreases as one goes to higher radial states. Therefore in the spectrum
calculated from only 1%, 100" and 200" transverse state as shown in Fig. |3.6(b)
with purple, orange and green curves, the left peak position does not change much
while the right peak position shifts towards zero detuning for higher transverse
states. The total lineshape thus obtained by considering the excitation from all
200 lowest transverse states leads to a broader right peak compared to the left peak,
as shown in Fig. [3.6(b) with black curve. This behavior matches the experiments
quite well, as shown in Fig. |3.6[c), where the right peak is almost twice as broad
as the left peak. Another interesting feature in both the experimental results as
well as theoretical curves is that the narrower peak has a smaller amplitude. This
results from driving the transition into saturation with very long spectroscopy
pulses such that the area under the two peaks is not equal anymore. When the
lattice wavelength is detuned above the magic wavelength, similar arguments lead
to asymmetries in the opposite direction as seen in Fig. m(g—i).
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Figure 3.7: (a) The numerically calculated spectroscopy lineshapes for Magnesium atoms in a
88 Egr deep lattice is shown here for E1-magic wavelength (a,c) and operational magic wavelength
(b,d). These calculations are performed by considering the 200 lowest transverse states. These
lineshapes are also compared to the corresponding pure 1D lattice calculations shown by dashed
lines in (a,b). The effect of a small 0.1 Hz line-broadening is shown in (¢) and (d), corresponding
to the lineshapes seen in (a) and (b) respectively.

In addition to the linewidth asymmetry of the carrier lineshape arising from the
AC Stark shift inhomogeneity, variation of dipole transition element with quasimo-
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mentum and transverse states leads to additional amplitude asymmetry of the two
peaks as lattice wavelength is detuned from the magic condition. These linewidth
and amplitude asymmetries observed in the experimental data matches well with
the numerical calculations as can be seen in Fig. [3.6]

While these lineshape distortions observed as lattice wavelength is varied from
magic wavelength, are not ideal for a lattice clock operation, they can be used
as a tool to detect deviation from the magic condition as well. Considering the
higher order AC Stark shift contributions, this could be useful for future state of
the art lattice clocks. Similar lineshape distortions have been used previously to
determine the magic wavelength [110, 111]. However, with improving spectroscopy
resolution, lineshape distortions of Bloch band spectrum allows for observing much
smaller lattice light shift inhomogeneity.

As an example, we look at the lineshape distortions for Magnesium clock spec-
troscopy as a result of higher order AC Stark shifts. In Fig. |3.7(a), lineshape is
shown for 2*Mg at the E1 magic wavelength and 88 Er deep lattice, using theo-
retically calculated atomic parameters [I12]. For such a deep optical lattice, the
tunneling rate as well as the nonlinear AC Stark shift contribution is in sub-Hz
regime, which is ideal for observing a distortion of the Bloch band spectrum. In
these calculations, contribution from only the lowest 200 radial states is considered,
which already gives rise to significant lineshape asymmetry (solid line) compared
to the pure 1D calculation (dashed line). Similar calculation at operational magic
frequency (—9.8 MHz detuning from El-magic frequency) results in a symmetric
lineshape (Fig. [3.7(b)). This behavior can be understood much the same way
as in Fig. [3.6] where at operational magic condition, the light shift is invariant
to first order for different transverse states whereas at El-magic wavelength, the
light shift varies for different transverse states. These calculations show that with
sufficient spectroscopy resolution, deviation from operational magic condition can
be directly detected using symmetry of the lineshape.

To further demonstrate the advantage of the Bloch band spectroscopy, we look
at the same lineshapes as in Fig. [3.7[(a-b) with additional line-broadening of 0.1
Hz. These broadened lineshapes are shown in Fig. [3.7(c-d). As can be seen here,
the lineshape asymmetry is almost completely washed out and the two lineshapes
look almost identical. Therefore, resolving the Bloch band feature offers a more
sensitive measurement of any lattice light shift inhomogeneities. Indeed, such a
measurement does not allow to directly infer the atomic parameters. However, it
can be used as an effective first observation of deviation from operational magic
condition.
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3.2 Line-broadening mechanisms in a deep opti-
cal lattice

As seen in the last section, to reduce the line-broadening due to atomic motion,
the lattice depth should be increased such that the Bloch band width decreases
below the Rabi frequency. However, for higher radial states, the Bloch band width
is also higher, which can still give rise to line broadening. Therefore, the atomic
temperature needs to be reduced to a level where higher Bloch bands and radial
states are not significantly populated.

As discussed in chapter 1, our state preparation scheme essentially consists of fil-
tering the lowest energy atoms into our optical lattice while the relative occupancy
of the trapped states is still determined by the MOT temperature of about 1 mK.
Therefore, the measurements are significantly influenced by the higher motional
states and their associated line broadening. In this section, we investigate these
effects and possibilities of reducing their influence.

The tool most often used for characterizing the atomic temperature in optical lat-
tice is the sideband spectroscopy. This also allows to efficiently estimate the trap
frequency. We performed such measurements in our experiments as shown in Fig.
3.8l The experimental data is fitted with the theoretical model from [I13]. The
atomic temperature obtained from the sideband scan is 42(3) uK and 119(6) pK for
the axial and transverse directions respectively. Similar radial and axial tempera-
tures of 46(4) uK and 145(12) uK were also obtained from a semiclassical model
where transverse axes are treated classically while the motion along the lattice axis
is treated as a quantum harmonic oscillator with additional quartic anharmonic
term. The theoretical models are limited due to the high atomic temperature which
requires a very large number of radial states, where for higher states, a 4" order
approximation of the Gaussian potential does not work well enough. Nevertheless,
it allows for extracting an estimate of the atomic temperature.

The sideband measurements show that the atomic temperature is very high despite
the filtering process used to remove the most energetic atoms in the trap. Therefore
line-broadening due to higher axial as well as radial states needs to be considered.
Though the higher Bloch bands can also lead to line-broadening, their contribution
is low as long as the bandwidth of higher Bloch bands is significantly larger than
the spectroscopy resolution. Radial states on the other hand are more important
for line-broadening of the carrier transition as also seen in the last section.

To see the influence of radial states on transition broadening, we performed mea-
surements at relatively shallow lattice depths where the line-broadening is much
easier to resolve with our spectroscopy laser. Additionally, the contribution of
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Figure 3.8: Sideband spectrum for the atoms trapped in optical lattice at the magic frequency.
The data is fitted with the theoretical model from [I13]. The sideband scan helps to characterize
the trap depth as well as the atomic temperature.

radial state transitions directly depends on the Rabi frequency and hence on the
intensity of spectroscopy laser. To systematically show this effect, we performed
line scans at 28.5 Egr where the lattice depth was then ramped down to 9 Er and
back up to remove some of the higher energy atoms in the lattice. Line scans
were performed for different spectroscopy laser powers keeping the homogeneous
magnetic field constant at around 75 G.
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Figure 3.9: Spectroscopy of clock transition showing the contribution of higher order transverse
states: The trap depth for all these scans is 28.5 Egr with a ramp down depth of 9 Eg. As
the clock laser power is increased, the increase in contribution of radial sidebands is visible.
The spectroscopy pulse was 100 ms in all the measurements. The Rabi frequency in these
measurements varies between 50 Hz for P.jocc = 1 mW to 160 Hz for Peoex = 10 mW.

The spectroscopy results shown in Fig. demonstrate the presence and large
contribution of different radial states in the line broadening at high Rabi frequen-
cies. In order to reduce the occupation of higher Bloch bands for our experiments,
we ramp down the lattice to lower depths Uyam, during the state preparation to
filter out high energy atoms, before increasing the depth again to the maximum
value for the spectroscopy. The effectiveness of this method is shown in Fig. [3.10]
The data shown here is taken at a lattice depth of 61 Eg for different Uyap,, ranging
from 6.1 Eg to 22.9 Eg. As Usamp is increased, more higher energy atoms are re-
tained in the lattice. Therefore the effective lattice depth decreases with increase
in Uramp, leading to an enhanced line broadening associated with tunneling be-
tween lattice sites. For our experiment, these lineshapes were also studied in the
PhD thesis of Klaus Zipfel [78] at shallower trap depths available during that time,
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showing similar behavior.
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Figure 3.10: Spectroscopy of the clock transition showing the line broadening due to higher
atomic temperatures. The trap depth for all these scans is 61 Er with a different Uyamp as
stated in figure legends. As Uamp is increased, the effective lattice trap depth decreases due to

occupation of higher radial states. Since lower effective trap depth leads to a larger Bloch band
width, the lineshape becomes broader.

The linewidth extracted from the spectroscopy measurements of Fig. show
clear trend as a function of Uyamp. We model this linewidth dependence on U,apmp as
a broadening coming from the Bloch bandwidth of the lattice, where the effective
lattice depth (Ueg) depends linearly on Upamp: Uet = Up + @Uyamp. Of course such
a model is only an approximation to reality where it is assumed that the ramping
down of lattice depth acts as an effective cut-off limit for the higher energy atoms.
The numerical fit to the experimental data gives Uy = 43(17)Er and a = 0.4(5).
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Figure 3.11: Spectroscopy linewidth as a function of Uramp. AS Uramp is increased, the effective
trap depth decreases leading to a line broadening. This effective trap depth has been modeled
with a linear dependence on U,amp giving rise to the shown numerical fit to the experimental
data.

Though the value of « has a large error, it still gives a good qualitative understand-
ing of what exactly may be happening as we ramp down the lattice depth to remove
high energy atoms. Assuming a uniform distribution of atoms between the lowest
energy up to a cut-off energy U,amp, the average trap depth would be U+ Upamp/2.
Therefore the a value of 0.5 seems reasonable from such an argument.
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time.

Lifetime in the lattice

Another indicator of heating in optical lattice is the lifetime of atoms in the lattice.
We measured this lifetime by detecting the fluorescence of atoms as a function of
holding time in a 29 Er deep lattice. The fluorescence signal, which is directly
proportional to the atom number in the lattice decays exponentially as a function
of holding time, as shown in Fig. [3.12] The exponential decay rate gives a lattice
lifetime of 7 = 4.3 seconds. This sets a limit to the minimum linewidth of 1/27tr =
69 mHz due to the lifetime induced dephasing during spectroscopy. Similar lifetime
was also observed for a deeper lattice depth of 46 Er as well as in the far-off
resonance 1064 nm optical dipole trap, indicating that dominant contribution to
the lifetime is coming from the common background gas collision losses.

With help of the measurements in this section, the optimum state preparation and
spectroscopy setting for our system can be determined. To reduce the contribution
of higher energy atoms in the lattice, the lattice depth needs to be ramped down
to the lowest possible value, while still keeping significant atom numbers. In our
case, this corresponds to Usamp of around 10 Eg. Furthermore, care needs to be
taken to optimize the Rabi frequency with respect to the spectroscopy time to not
allow for any off-resonance contributions.

Following the discussion in this chapter on line broadening mechanisms in the
optical lattice, we can move to a detailed characterization of clock performance in
the next chapters.



CHAPTER 4

Magnesium lattice clock
instability in 1017 regime

The performance of our magnesium lattice clock in the 2017 measurement cam-
paign [79] was limited by two factors:

(a) lack of available lattice power, leading to large tunneling induced line broad-
ening, and

(b) fluctuating probe AC Stark shift affecting the clock instability as well as the
uncertainty budget.

As discussed in Sec. [3.1], at low lattice depths, significant tunneling induced line
broadening occurs. This had limited the observable clock transition linewidth to
51 Hz, which limited the instability to about 5.1 x 107¢ after 400 seconds [78].
This also impacted the systematic shift measurements, where uncertainties were
limited by measurement instability.

In addition to the tunneling induced line-broadening, additional line-broadening
was also observed due to inhomogeneous probe laser intensity over the atomic sam-
ple [78]. This inhomogeneity of the probe laser intensity occurs due to parasitic
reflections of the probe laser light within the lattice enhancement cavity, leading
to the formation of a standing wave. While this line-broadening limited the line-Q
of the clock transition, the temporal fluctuations of probe intensity inhomogene-
ity led to further deterioration of the clock instability, due to fluctuations of the
associated probe laser AC Stark shift. Since these temporal fluctuations made
it difficult to characterize the probe laser AC Stark shift beforehand, an “in-situ”

29
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measurement of the probe AC Stark shift was performed during the frequency mea-
surement campaign. This further impacted the total instability of the frequency
measurement due to an extended cycle time of the clock sequence.

As both these effects were closely linked to the lattice enhancement cavity setup,
upgrades to the lattice setup were carried out in the context of this thesis to over-
come these performance limitations. This led to not only a significant increase
in available lattice depth, but also the elimination of any probe laser intensity
inhomogeneity. In this chapter, these experimental system details as well as char-
acterization of resulting clock linewidth & instability will be discussed.

4.1 Spectroscopy in Hz regime

The lattice enhancement cavity is at the heart of our magnesium clock experiment.
Within this cavity setup, additional mirrors overlap the 1064 nm dipole trap to
the lattice, while the probe laser is coupled in via one of the end mirrors of the
cavity. A schematic of the setup can be seen in Fig. 4.1, where mirror M3z is used
to out-couple the probe laser light from the enhancement cavity. In addition, it
is important to stress that the cavity setup is outside the vacuum chamber, and
therefore the light passes through the chamber viewports. The upgrades discussed
in this section are focused on improving the performance of this enhancement

cavity.
M, PZT(fast)
Clock laser ':( “
PZT mirror M3
r=350 mm ) M
Dipole laser 1
End mirror
r=500 mm

Lattice
in-coupling

Figure 4.1: A schematic diagram of the lattice enhancement cavity setup. The enhancement

cavity is setup in a concentric design. the dipole trap is overlapped with the lattice using mirrors
M, and M3, while the probe laser is coupled out of the cavity by mirror M3

4.1.1 Lattice power upgrade

The circulating optical lattice power in the enhancement cavity (Pe.) is deter-
mined by the in-coupling light power (Pj,.) and the finesse (F) of the enhancement
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cavity.

Pcirc ~ Pincf (41)
s
Therefore, to improve the circulating power in the lattice, we decided to improve
both the in-coupling power as well as the cavity finesse. The details of the lattice
laser system are described in section 2.7, However, the Ti:Sa laser system was so
far pumped by a 15 W laser system, leading to only about 300 mW of in-coupling
power (Piy) to the enhancement cavity. Therefore, as a first measure to increase
lattice power, the pump laser was upgraded from 15 W to 18 W power. This
helped increase the Ti:Sa laser power from about 1.2 W to 1.6 W, increasing the
cavity in-coupling power to more than 400 mW.

Since the lattice enhancement cavity mode passes through vacuum chamber win-
dows, the biggest contribution to cavity loss comes from the vacuum window coat-
ing. We have observed a slow decay in cavity finesse with time due to degradation
of vacuum window coatings from within the vacuum chamber. The most likely
cause of this coating degradation is a deposition of magnesium atoms on the anti-
reflection coating. Therefore to improve the cavity finesse, these vacuum chamber
windows were replaced. In addition, these windows were further customized to be
anti-reflective for 1064 nm light as well. This helped to reduce the scattered dipole
laser light during fluorescence detection. We observed a loss of less than 0.4% for
a single pass through both the vacuum chamber windows. The mode-matching of
the lattice light coming from the fiber collimator to the enhancement cavity was
also optimized to about 83% mode overlap.

These upgrades helped increase the maximum circulating lattice power from 4 W
to 10 W. In terms of trap depth in recoil energy units, this amounted to an increase
from 30 Eg to 60 Er (depending on the lattice waist). This leads to a reduction
in tunneling induced line broadening from more than 20 Hz to the sub-Hz regime.

In Fig. (4.2 the reduction in linewidth as a function of lattice depth is shown.
The experimental data is fitted with a model consisting of tunneling induced line-
broadening dependent on the effective lattice depth (U = ¢ x Uy) characterized by
parameter ¢ and an additional line-broadening Aw,, from all other sources, both as
fit parameters. It is important to consider the effective reduction of lattice depth
in the model since not all atoms are trapped at the peak lattice intensity. In some
ways, this effect is related to the atomic temperature in the lattice.

AV = \/Aygg + AI/t2unnel (42)

U=¢Uq’

The line-broadening mechanisms are assumed to be inhomogeneous broadening and
therefore their linewidths are added as expected from convolution of two Gaussian
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functions. The numerical fit gives a background line-broadening A, of 16(8) Hz,
which is a combination of multiple effects, some of which will be discussed in Sec.
4.1.2) The fit parameter ( = 0.93 suggests a 93% reduction in effective lattice
depth compared to the lattice depth at the center of trap. This is not completely
unexpected since the atoms occupy different regions along transverse axis, leading
to a lower mean value of the lattice depth.
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Figure 4.2: Spectroscopy linewidth is shown here as a function of trap depth. The experimental
data is fitted with model in Eq. showing lattice induced line-broadening.

Since at the trap depth of 50 Eg, the tunneling induced broadening is below 10 Hz,
we expect to resolve the clock transition with similar resolutions as well. To demon-
strate the ultimate line-Q of our measurements, we perform Rabi spectroscopy of
the clock transition at around 50 Eg, keeping the probe intensity as low as pos-
sible, to suppress the associated line-broadening as discussed in the last section.
A 200 ms long spectroscopy pulse was used to perform spectroscopy. Some of the
lineshape measurements are shown in Fig. [4.3] As can be seen here, the clock
transition linewidth varies for different scans. This occurs due to a drifting probe
laser frequency, where scanning the frequency in the direction of laser drift results
in larger linewidth and vice versa.
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Figure 4.3: Spectroscopy scans of the clock transition showing different linewidths. The vari-

ation in linewidth is due to a drifting probe laser frequency which causes the scanned linewidth
to be larger or smaller depending on the scan direction.



4.1.  Spectroscopy in Hz regime 63

Therefore to get a good estimate of the transition linewidth, many such line scans
were performed and a histogram was generated as shown in Fig. [£.4 The mean
linewidth was measured to be 7(3) Hz which is about 3 Hz larger than the expected
Fourier linewidth limit. This is the first demonstration of suppressing the tunneling
line-broadening in Hz regime for magnesium, and the highest line-Q of 9(3) x 10'3.
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Figure 4.4: Histogram of linewidth measurements generated from multiple line scan measure-
ments. The spread in linewidth values indicates a large influence of the spectroscopy laser drift.
The mean linewidth of 7(3) Hz is the smallest linewidth resolved for magnesium clock so far.

4.1.2 Suppression of probe laser inhomogeneity

Going to deep trap depths alleviates a major performance bottleneck for magne-
sium lattice clock. However, there was still the issue of the probe laser intensity
inhomogeneity in the lattice setup. This inhomogeneity develops due to unwanted
reflections within the enhancement cavity. The enhancement cavity was designed
to act as a resonant cavity for the 468 nm lattice light while transmitting the 458
nm clock laser light. Therefore, a folded cavity design was chosen for the enhance-
ment cavity, where the folding mirror M3 was especially coated for high reflection
of 468 nm light and high transmission at 458 nm. However, since the two wave-
lengths are very close to each other, a mismatch in the lattice design angle led
to significant reflections of the probe laser. This leads to formation of a standing
wave due to interference of the light traveling in opposite direction.

The probe laser standing wave is seen by the atomic cloud as an inhomogeneous
intensity distribution. This inhomogeneity degrades the clock performance in two
ways. The first is a line broadening of the clock transition and the second is a
fluctuation of the probe laser induced AC Stark shift.
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The linewidth measurements of the clock transition as a function of clock laser
intensity is shown in Fig. An almost linear dependence of the linewidth on
the clock laser intensity is clearly visible here. This issue was highlighted first
in the PhD thesis of Klaus Zipfel [78] where the line-broadening mechanism was
understood to be stemming from the build-up of a standing wave of probe laser
within the lattice enhancement cavity. This therefore leads to an inhomogeneity of
the Rabi frequency, leading to a power broadening as well as an inhomogeneity of
the probe AC Stark shift. Though power broadening appeared to be the stronger
contribution to the line broadening in the previous measurements [78], the obser-
vations shown here indicate that the line-broadening predominantly occurs due to
inhomogeneity of the probe-AC Stark shift experienced by the atomic sample.
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Figure 4.5: Linewidth dependence on probe laser intensity. Due to a formation of probe laser

standing wave within the enhancement cavity, large inhomogeneity of probe laser AC Stark shift
is introduced. This leads to an increased line-broadening as the laser intensity is increased.

In principle, the total linewidth at any given probe laser intensity will be given
by a combination of three contributing factors: (a) a background line broadening
Ay coming from a combination of tunneling broadening and Fourier broadening,
(b) power broadening Avpowey induced by an increase in Rabi frequency as probe
laser power is increased, and (c) broadening induced by a variation of probe AC
Stark shift over the atomic sample Avc:

Av = \/Aygg + AV2 e+ AV, (4.3)
where Avpower ¢ €4/|ALAR| [87] and Avae o< Ap,. Here Ay, o< Iy, is the probe laser
induced AC Stark shift, Ag o< B? is the second order Zeeman shift and & = 0.28 is
a theoretically calculated scaling factor [87].

During these linewidth measurements, homogeneous magnetic field was around 3
Gauss, which gives a frequency shift Ag = 23.2 Hz. The dependence of probe AC
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Stark shift on the probe laser intensity was also measured to be Ay, = 3.11}, Hz,
where I, is the probe laser intensity in units of W/cm?. Therefore the associated
power broadening will weakly depend on the probe laser intensity,

1
AVpower = EQT{ x &\/|ALAB| & 3.44/I1, Hz | (4.4)

Eq. [4.4]shows that the power broadening contribution is really small for the param-
eter range shown in Fig. with the maximum contribution at highest intensity
being about 24 Hz. Therefore, we neglect the power broadening contribution in
Eq. and use the remaining two terms to model the experimental data. This
argument is also supported from numerical fit performance, where even using the
complete model from Eq. [4.3] the contribution from power broadening is neg-
ligible while adding large uncertainty to the total fit. The numerical fit to the
experimental data reveals a background line-broadening of 13(17) Hz with a linear
dependence on probe laser intensity of 3.3(3) Hz/(Wem™2). Assuming a perfect
standing wave formed with an incident laser of intensity I, the atoms experi-
ence a mean laser intensity of 2/y with a standard deviation of \/2I,. This gives
rise to a relation between the FWHM linewidth and the probe AC Stark shift,
Avac = V4In2A = 1.66Ar,. Therefore using the measured probe AC Stark shift
sensitivity with same setup of 3.1(1) Hz/(Wem™2), the line broadening sensitivity
is expected to be approximately 5.2 Hz/(Wem™2). However, a lower value ob-
tained from data in Fig. indicates that the atoms experiencing lower probe
laser intensity contribute less to the total lineshape, leading to a deviation from
the simple averaging of the standing wave intensity pattern.
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Figure 4.6: A set of measurements for probe AC Stark shift showing a large variation over time
in the sensitivity of transition frequency on the probe laser intensity.

In addition to the line-broadening induced by the parasitic reflection of the probe
laser, a fluctuation in probe AC Stark shift was also observed. One example of such
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variation is shown in Fig. The three datasets shown here were recorded within
a couple of hours of measurement time. A large variation in the slopes is clearly
visible. Due to the parasitic reflection of probe light within the enhancement cavity,
the cavity amplifies the probe laser intensity seen by the atoms albeit staying in a
bad cavity regime. Therefore the probe laser intensity fluctuates, as the length of
the enhancement cavity fluctuates with respect to probe laser wavelength. These
fluctuations not only lead to a degradation of the clock stability, but also make it
very hard to estimate the probe AC Stark shift.

M,
Clock laser ':( .

M, M, PZT(fast)

PZT mirror M3
r =350 mm M
Dipole laser 1
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Figure 4.7: A schematic diagram of the new lattice enhancement cavity setup. Now, the
dichroic mirror My used as the out-coupler for 1064 nm light is also used as an out-coupler for
the probe laser beam.

To reduce the parasitic reflections of the probe laser within the enhancement cavity,
the cavity design was further modified. The dichroic mirror M5 used thus far to
out-couple the dipole laser light as shown in Fig. [4.1]is replaced with a mirror that
not only reflects the 1064 nm dipole trap, but the 458 nm probe laser as well. This
mirror had a transmission better than 99.5 % for the 468 nm lattice laser light,
while reflecting more than 99% of the probe laser as well as the 1064 nm laser light.
The orthogonal polarization of lattice and probe laser beams helped immensely in
such a mirror coating design. The schematic for the modified enhancement cavity
is shown in Fig. [1.7]

After this modification of the lattice setup, no back-reflection of the probe laser was
observed, while the cavity finesse for the lattice light was also maintained at earlier
levels mentioned in the previous subsection. The performance improvement was
clearly visible in the new linewidth measurements performed for different probe
laser intensities, as can be seen in Fig. [4.8] Fitting these measurements with the
line-broadening model in Eq. 1.3 we obtain almost negligible contribution of the
AC Stark shift induced broadening, with a small power broadening contribution

of Ayggwer = 1.9(8)\/7 Hz, which is quite close to the expected power broadening
of Ayiheo = 1.7/1 Hz estimated using Eq. with the Zeeman and probe AC

Stark shift sensitivities.
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Figure 4.8: Clock transition linewidth measurement as a function of probe laser intensity
performed after replacing the mirror M5 is shown here. A much smaller dependence on intensity
is observed.

In addition to the suppression of probe field induced inhomogeneous line-broadening,
the fluctuations of probe AC Stark shift were significantly reduced as well (Fig.
. Here AC Stark shift sensitivities for different data sets were again compared
and the frequency shift dependence on probe laser intensity was found to be equal
for all data sets within the measurement uncertainties.
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Figure 4.9: Probe laser induced AC Stark shift measurement as a function of the probe laser
intensity. The slope of the three data sets are identical within the uncertainties, suggesting
elimination of the probe laser intensity fluctuations.

A comparison of the average AC Stark shift sensitivity also points towards the
validity of our standing wave hypothesis for the probe laser field. This can be seen
in Fig. [4.10, where the probe AC Stark shift sensitivity is almost a factor of 4
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larger in the older lattice setup of Fig. than the new setup (Fig. |4.7]), most
likely due to the maximum probe laser intensity at the antinodes in the standing
wave being 4 time larger than for a continuous beam.
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Figure 4.10: Probe laser induced AC Stark shift sensitivity before (a) and after (b) lattice
enhancement cavity modification. The AC Stark shift sensitivity was reduced by almost a factor
of 4 after suppression of the probe laser parasitic reflections in the cavity.

The probe laser standing wave also degrades the signal to noise ratio of the clock,
since the atoms at the nodes of probe laser standing wave are not excited, while
the excitation takes place predominantly at the antinodes of the standing wave,
leading to a significant reduction in total signal. This was also observed after
implementing the new dichroic mirrors, where the observed signal with similar
experimental conditions was significantly better.

4.2 Frequency instability characterization

The improved lattice system leads to a suppression of various line-broadening ef-
fects which limited the clock performance thus far. Therefore, the magnesium
clock transition was resolved for the first time in the Hz regime. In addition, the
probe laser intensity fluctuations, the biggest contributor thus far to frequency
instability is also suppressed. Therefore the clock instability is also expected to
significantly improve.

To characterize the clock instability, a self-comparison measurement was per-
formed, where two setpoints for the probe laser intensity were used to steer the laser
frequency using a PI? regulator. The difference of frequency corrections applied to
the two setpoints was used to estimate the Allan deviation of the frequency fluctu-
ations. The resulting instability plot of Allan deviation as a function of averaging
time is shown in Fig. [£.11]

The first striking result in Fig. is that the instability reaches the 10717 regime,
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Figure 4.11: Clock instability shown in terms of fractional instability of a self-comparison
measurement, where the frequency difference for two different probe laser intensity setpoints
was measured. After a slow initial decay in instability, a fast instability averaging behavior is
observed. The total instability in these time regimes is still much higher than the expected
instability contribution from the atomic spectroscopy, shown by dashed line.

for the first time for a magnesium clock. However, the Allan deviation shown here
has an unexpected dependence on averaging time 7, where initially the instability
decreases rather slowly with a 1/7%!7 dependence followed by a very fast 1/7
dependence after about 200 s. This is curious since the second of the two integrators
used to lock the spectroscopy laser to the atomic signal has a time constant of 200
s as well. The clock instability reduces to 7.277% x 107'7 after an averaging time
of 3000 seconds.

The 1/7 dependence of Allan deviation suggests that the instability is neither
dominated by quantum projection noise (QPN) nor by the Dick-noise, which both
have 1/4/7 dependence on averaging time. There are also additional instability
contributions arising from photon shot noise of the fluorescence detection as well
as the noise of the detection system. However, again all of these introduce a white
frequency noise, leading to a 1/4/7 behavior of the Allan deviation.

The Allan deviation of an atomic frequency standard can be characterized as [114]

1 T. 1 1 202 1/2
atom C ON
/ + 4.5
% R\ T (N Nnpp N? > ’ (45)

where the first term is the instability arising from QPN, the second term is the
photon shot noise contribution in fluorescence imaging and the third term comes
from noise in the detection due to a fluctuation of atom number. In this expression,
(@ is the quality factor of the spectroscopy line, while T, is the cycle time of
the clock. To estimate the instability contribution associated with the QPN and
detection noise, we make use of the spectroscopy results, where the relation in Eq.




70 Chapter 4. Magnesium lattice clock instability in 10717 regime

can be simplified as
1 T,
atom __ ¢ 4.
v T aQs/N\ (4.6)

where S/N is the signal-to-noise ratio which can be estimated from spectroscopy
line scan as the ratio of scan amplitude and the root mean square (rms) noise
[94]. From our measurements with similar parameters, we get S/N = 10, which
along with the 20 Hz linewidth used in this instability measurement leads to an
estimated atomic instability contribution of ¢3*™ &~ 1.3 x 107'°/{/7.

The expression for Dick noise [115] induced Allan deviation, which comes from the
down-conversion of the local oscillator frequency noise at Fourier frequencies close
to multiples of 1/7T, is given as

[e.9]

. 1 n
Dick _ = 2 2 n
Uy \/F!]O\l Z(vgsn + gcn)SyO (TC) . (47)

n=1

In this expression, ¢, g, and gs, are the Fourier coefficient of the sensitivity
function g(t):

2 " ) 4
= — t)dt .
do =7 [ ottt (1)
2 (T 2mnt
gon = 77 |, 9(0) COS( T )dt, (4.9)
2 [T . (21t
Gsn = Tc/o g(t) sm( T )dt. (4.10)

The sensitivity function ¢(t) is defined as the relative change in atomic excita-
tion fraction 0P as a function of phase change d¢ of the local oscillator used to
interrogate the atomic sample:

g(t) =2 lim 0P(9¢,1)

For the Rabi spectroscopy used in our measurements, the sensitivity function can
be expressed as [7§]

02 . Q . Q . Q
ot) = 46 5§ sin (ngulse> sin (5 (Tpulse — t)) sin (575) for t € [0, Tpulse) (4.12)
0 elsewhere,

where ¢ is the detuning of the probe laser from atomic transition, €2y is the Rabi

frequency, Tuse is the interrogation pulse duration, and Q = 1/Q3 + 2 is the effec-
tive Rabi frequency. For our clock laser system, the Dick noise induced instability
is expected to be 1 x 10715 /,/7. Therefore the total instability coming from the
spectroscopy process is 1.6 x 1071/, /7.
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As can be seen in Egs. and , the Allan deviation scales as 1/4/7, which is
not what we observe in our measurements. However, in all these expressions of
the Allan deviation based on different noise sources, analysis of the servo lock is
missing. In other words, though the Dick noise very well captures the influence
of local oscillator noise on the clock instability, it is valid only for a time regime
much larger than the time constant of servo feedback loop. Usually, this crucial
detail is not relevant, since servo time constants are either much smaller than the
time interval of interest or the local oscillator noise is still sufficiently suppressed
to achieve a white frequency noise leading to same 1/4/7 behavior.
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Figure 4.12: The results for numerical simulation of clock instability is shown here for local
oscillator noise dominated by random walk (a), and flicker floor noise (b). The blue points denote
the instability of free running local oscillator, whereas red points show the instability of the local
oscillator locked to the atomic transition. The dashed line is the instability associated with QPN
contribution.

To better understand the clock instability in a short to medium time regime, the
clock operation was numerically simulated. This further allows to understand the
behavior of the clock instability for different noise contributions such as white
noise and random walk noise dominating the power spectral density of the local
oscillator /probe laser. In Fig. 4.12| (a), the clock instability curve is simulated
for a free running local oscillator dominated with random walk frequency noise,
with similar servo locking time constants as used in our experiment. The dashed
line is the QPN contribution. It can be clearly seen that the fractional instability
follows approximately a 1/7 dependence as was seen in our experimental results
as well. A similar behavior is also seen for a local oscillator with flicker floor noise
(Fig. 4.12((b)). Indeed the Dick noise puts a much more stringent limit on the long
term instability behavior. However, in short to medium time scales (time scales
comparable to servo integrator time constants), the instability behavior may sig-
nificantly depart from the Dick noise limit. In particular for noise contributions
such as random walk noise or the flicker floor noise, servo integrators help re-
duce the instability faster than 1//7 until the instability reaches the level of Dick
noise/QPN limit, after which it follows the typical 1/1/7 behavior. Such deviation
from 1/4/7 instability for clock spectroscopy performed with probe lasers domi-



72 Chapter 4. Magnesium lattice clock instability in 10717 regime

nated by random walk and flicker noise was first shown in [116] using numerical
simulations.

We know that our spectroscopy laser noise is strongly dominated by the random
walk of frequency noise. Therefore, the clock instability curve seen from exper-
imental measurements is not unexpected. This also highlights the possibility of
significantly improving our clock performance by improving the performance of the
local oscillator. Nevertheless, reaching an instability in the 10717 regime in 3000
seconds is almost an order of magnitude improvement over our previous results.
Indeed, this also makes it possible for the first time to characterize the systematic
shift with uncertainties in 10717 regime as well.



CHAPTER 5

Systematic shifts affecting the
clock

Clock performances are quantified by their stability and accuracy. While both
these quantities are important for a frequency reference, the accuracy of a clock
sets a more stringent limit on the clock performance since this cannot be im-
proved by simply measuring for longer times. As in any other measurement, the
clock frequency measurement inaccuracy stems from the systematic uncertainties
affecting the measurement. For an atomic clock, these systematic shifts come pre-
dominantly from the external fields perturbing the clock transition frequency. The
most dominant frequency shift contributions of a bosonic optical lattice clock are
the AC Stark shifts coming from the lattice and the spectroscopy laser fields, and
the Zeeman shift due to the magnetic field present during the measurement. For
bosonic clocks, the Zeeman shift and spectroscopy laser induced AC Stark shifts
are larger than for fermions, since much stronger magnetic field and spectroscopy
laser intensity are needed to perform the clock spectroscopy. There are additional,
smaller frequency shifts such as the DC Stark shift, collision shift and the second
order Doppler shift.

One of the most important frequency shift contributions for optical clocks comes
from the black body radiation. The BBR shift uncertainty is determined from the
uncertainty of the temperature measurement and the atomic sensitivity to BBR.
Therefore optical clock candidate elements with a low BBR sensitivity hold an
edge with respect to the BBR shift uncertainty. This is what makes Magnesium
a promising optical lattice clock candidate. The BBR shift sensitivity for Mg is

73
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almost an order of magnitude smaller than for Strontium, and a factor of five
smaller than for Ytterbium. More details on an estimation of the black body
radiation shift for magnesium with associated uncertainty in 10~!7 regime will be
discussed in PhD thesis of Waldemar Friesen-Piepenbrink. Here, the focus is on the
evaluation of other major frequency shift contributions affecting the performance of
magnesium lattice clock, namely the probe AC Stark shift, Zeeman shift, collision

shift and the lattice AC Stark shift.

5.1 Probe AC Stark shift

Compared to fermionic lattice clocks, bosonic clocks require larger probe laser in-
tensities. Therefore, in our last frequency measurement campaign, the probe AC
Stark shift formed a significant portion of the error budget. Additionally, the fluc-
tuations of probe intensities within the enhancement cavity also complicated the
analysis of shift uncertainty. With the modified setup discussed in Sec. [4.1.2]
the probe laser intensity fluctuations were significantly suppressed. With a lower
instability of the self-comparison measurements achieved due to a narrower clock
transition, the probe AC-Stark shift uncertainty was also expected to be signifi-
cantly lower.

To estimate the dependence of the frequency on the probe laser intensity, self-
comparison measurements were performed between two probe laser power set-
points. A reference power setpoint of 5 mW was used for all the measurements,
while the second setpoints was varied between different measurements. The re-
sulting frequency differences as a function of the probe laser power difference is
shown in Fig. [5.I] The linear dependence of the frequency shift on the probe laser
power reveals a sensitivity of —0.632(4) Hz/mW. At the expected clock operation
setpoint of 5 mW, this leads to a frequency shift of —3.16(2) Hz. In addition
to the uncertainty of the shift sensitivity derived from these measurements, addi-
tional uncertainty from the beam pointing fluctuations also needs to be included,
since the fluctuation of the probe laser beam position with respect to the lattice
position leads to a probe laser intensity fluctuation for the atoms trapped in the
lattice. Therefore, a long term measurement over multiple days was performed
where the beam positions of the probe laser and lattice laser were recorded. The
standard deviation of beam positions for both lasers was added to get a total beam
overlap uncertainty of 20 um. To reduce the impact of these beam pointing in-
stabilities, the beam waist of the probe laser was increased before performing the
measurements in Fig. from 207(2) pm to 355(1) pm. This furthermore allows
to operate the clock with a higher probe laser power of 5 mW compared to 3 mW
in frequency measurement in 2017, which helps improve the phase stabilization of
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the clock laser to the lattice cavity end mirror, due to a better heterodyne beat
signal, while still keeping low intensity at the position of atoms. For a Gaussian
laser beam, the overlap uncertainty between the lattice and probe beam leads to an
uncertainty of the intensity at the position of atoms, giving rise to an additional
frequency shift uncertainty of 0.02 Hz. Therefore the total fractional frequency
shift uncertainty for the probe AC Stark shift is evaluated to be 6.1 x 1077,
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Figure 5.1: Measurement of the probe AC Stark shift: the frequency shift is measured as a
function of the power difference between the reference value of 5 mW and the probe laser power
of the other setpoints. As expected, a linear dependence on probe laser power is observed with
a slope of —0.632(4) Hz/mW.

For estimating the probe AC Stark shift, the calibration is performed with respect
to the probe laser power as shown in Fig. to avoid the influence of additional
uncertainty from the beam waist measurement, which would affect the conversion
of the probe power into intensity. Nevertheless, the measured beam waist of 355(1)
um gives an estimate for the dependence of AC Stark shift on laser intensity to
be —1.269(14) Hz/Wem™2. This value is larger than the theoretical estimates
previously reported [87] by almost a factor of 2. This discrepancy could either be
due to imprecision of theoretical calculations or due to some systematic discrepancy
in beam waist measurement. Although this needs further analysis, this discrepancy
does not impact the clock performance.
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5.2 Quadratic Zeeman shift

For a bosonic isotope, the nuclear spin is zero. Therefore, there is no additional
hyperfine splitting that is usually observed in fermionic lattice clocks. This gives
bosons the advantage of having zero linear Zeeman shift. However, the nuclear spin
is vital to provide a non-zero transition probability between the clock states that
is otherwise forbidden due to selection rules. Therefore, the most commonly used
method to perform spectroscopy in bosonic clocks is the magnetic field induced
spectroscopy [87] as discussed in Sec. . However, the magnetic field required to
perform spectroscopy also leads to a large magnitude of quadratic Zeeman shift.
Since for a probe laser with longer coherence time, lower Rabi frequency is required,
the required magnetic field and probe beam intensity can also be lowered, leading
to reduced Zeeman and probe AC Stark shifts.
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Figure 5.2: Quadratic Zeeman shift measurement: The data points are obtained by measuring
the frequency difference between two interleaved clock sequences where the magnitude of the
current carrying coil is kept fixed at 5 A for one of the sequences while it is varied for the other
sequence between —15 A and 15 A. In this way, the quadratic dependence of the frequency shift
on the current flowing through the Helmholtz coils is characterized. In the numerical fit to the
data, an additional background fit is included as the fit parameter.

As discussed in Sec. the magnetic field for spectroscopy is generated using
a pair of current carrying coils in Helmholtz configuration. Therefore, the Zeeman
shift is also characterized as a function of the current I, applied to these coils
with respect to a reference setpoint of I, = 5A. This measurement data is shown
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in Fig. 5.2l A nonlinear regression fit is applied on the data with the quadratic
shift model including a background field contribution

Vlref - I/Ihom = /61 |:([ref - [bg)2 - ([hom - [bg)2i| 9 (5].)

where [, is the current equivalent for any background magnetic field along the
axis of the applied magnetic field and gy is the quadratic Zeeman shift coefficient,
quantifying the sensitivity of the clock transition frequency on the applied current.

The nonlinear regression model matches the experimental data very well as can be
seen in Fig. [5.2 The parameters f; and I, are extracted from the fit as well:

By = —0.9400(6) Hz/A”

g = 0.021(3) A. (5:2)

A calibration of the homogeneous magnetic field coils was previously performed
by a measurement of the linear Zeeman shift on the 'Sy — 3P, transition [78]. This
sensitivity of generated magnetic field on the applied current was determined from
these measurements to be 0.6569(2) G/A. Therefore the quadratic Zeeman shift
dependence on magnetic field is 3 = 2.177(2) Hz/G?. Though this value is in
remarkable agreement with theoretical estimate of 2.17 Hz/G?, it does not agree
as well with our previously measured value of 2.00(8) Hz/G?. The cause for this
disagreement is not fully clear, and needs further investigation. Nevertheless, this
should not impact the uncertainty of the clock, as the calibration with coil current
can be used to estimate the frequency shift.

The homogeneous magnetic field coil current stabilization scheme is described in
the PhD thesis of Klaus Zipfel [78]. The long term current stability is limited
by the detection instability, which for the current sensorE] is 10 ppm/month with
the 20 coil winding used in our setup, along with 100 ppm/2000 h for the low
drift resistof] used to measure the secondary current generated by the IT 700-S
sensor. These correspond to a current instability of 0.44 mA /month for Io, = 5
A. Assuming a much worse performance of 2.5 mA over 1 month and considering
the uncertainty of 5, Iye and Iiom, the total frequency shift at the current setpoint
of Ier = 5 A is —23.30(4) Hz. The associated fractional frequency uncertainty is
6.3 x 10717,

T 700-S Ultrastab from LEM.
2V(CS332Z from Vishay
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5.3 Collision shift

Optical lattice clocks have an advantage over ion clocks since a large number of
atoms can be trapped in an optical lattice, boosting the S/N ratio. However
the interaction between atoms now also becomes relevant. In particular, atoms
trapped at the same lattice site have a large interaction energy, which leads to
a frequency shift for the clock transition. At low atomic temperatures that are
typically observed in lattice clocks, s-wave collisions dominate the higher partial
wave collision terms[117]. The frequency difference between the 'Sy (g) and *Py
(e) states is modified due to the inter-atomic interaction as [118, [119]
coll _ 2P ) @) (2)

AV = (Gge ge(Pg — Pe) + Gog eope — Ggg aggpg) (5.3)
where a;; is the scattering length between atoms in state ¢ and j. G®@ is the
two-atom correlation function at zero distance, measuring the probability of si-
multaneously detecting the interacting atoms at the same point[120]. Therefore
G depends on the quantum statistical property of the interacting atoms. For a
thermal atomic ensemble, there are three possibilities for G (i) for indistinguish-
able bosons, G® = 2, (ii) for indistinguishable fermions, G = 0 since identical
fermions cannot occupy the same lattice site, and (iii) G® = 1 for distinguish-
able particles. Therefore for fermionic clocks, Eq. has contributions only from
collisions of atoms in different states, leading to much lower collision shifts than
bosonic clocks.

The important point to note in Eq. is a linear dependence of the collision shift
on the atomic density. Therefore the collision shift can be characterized by mea-
suring the frequency shift as a function of atom number in the lattice. We perform
interleaved frequency comparison measurements between two different sequences
where the atom loading time is varied in one of the sequences. During the detection
phase, the fluorescence signal from both the ground state as well as excited state
atoms is detected, which gives a direct relation to the total atom number in the
trap. These measurements are shown in Fig. where a linear dependence of the
frequency shift on the fluorescence signal is numerically fitted to the experimental
data. As can be seen in the figure, the measurement uncertainties are already quite
large. This is especially visible for higher atom number difference measurements.
The main reason behind this performance degradation is the increase in cycle time
due to large loading times necessary to increase the atom numbers in the lattice.
This therefore degrades the instability of the clock quite significantly.

With the linear regression to the experimental data, the frequency shift is estimated
to be —0.04(9) Hz at operating fluorescence value of 10000 a.u., giving a fractional
frequency uncertainty of 1.4 x 1071¢. Though this uncertainty is significantly larger
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Figure 5.3: Collision shift measurement: the frequency shift is measured for different loading
times to the dipole trap and hence for different total atoms trapped in the lattice. A linear
dependence is fitted to the experimental data to estimate a total frequency shift of —0.04(9) Hz
at our operating setpoint.

than the uncertainties associated with Zeeman and probe AC Stark shifts, it can
be improved by more measurement statistics.

5.4 Lattice AC Stark shift

The light fields that generate the strong trapping potential for the atoms also give
rise to frequency shifts. Therefore the concept of the magic wavelength holds such
an importance for optical lattice clocks. As discussed in Sec. [2.3] at the magic
wavelength, the energy shift for the two clock states is identical, leading to effective
cancellation of the lattice AC Stark shift of the clock transition frequency. The
magic wavelength for Mg was measured in our group in 2015 to be 468.46(21) nm
[74], which was in excellent agreement with the theoretical prediction of 468.45(23)
nm. These measurements were improved in 2017 [79], providing a more precise
value of the magic wavelength of 468.4106(2) nm or 640.02071(29) THz.

To improve the magic frequency estimate, we performed measurements for lattice
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Figure 5.4: Lattice AC Stark shift measurements: the frequency shift dependence on the lattice
intensity at a fixed lattice frequency was measured by performing differential frequency measure-
ments between a fixed setpoint of 66 Eg and other variable lattice depth setpoints between 55
Er and 75 Egr. These measurements are repeated at different lattice frequencies which allows to
estimate the magic lattice frequency to be 640.020528(28) THz.

AC Stark shift at lattice depths of 55-75 Eg, as shown in Fig. [5.4. Within the
precision of these measurements and the range of trap depths, the lattice shift
follows a linear dependence on the lattice intensity. The magic frequency from these
measurements was obtained to be 640.020528(28) THz, with an order of magnitude
improvement in the uncertainty compared to our previous measurements [79]. Tt
is important to point out that even at these lattice intensities, the AC Stark shift
dependence on intensity is linear within the measurement precision. Unfortunately,
the measurements cannot be performed for lower lattice intensities, since tunneling
induced line-broadening starts to limit the measurement in this regime.

Though our measurements only show a linear lattice shift, recent theoretical results
[112, 121] have suggested rather large nonlinear AC Stark shift at high lattice
intensities, that are necessary for trapping magnesium atoms in a regime with
reduced tunnel-broadening. Characterization of the nonlinear light shift requires
measurements over a larger range of lattice intensity.

The theoretical model including higher order contributions are required for descrip-
tion of results of the lattice AC Stark shift. While the electric dipole polarizability
has the strongest contribution and leads to a linear dependence on lattice intensity,
the influence of magnetic dipole polarizability (a™!(w)) and electric quadrupole
polarizability (a?(w)) introduce additional albeit much smaller frequency shifts.
This was for the first time highlighted in 2008 [122]. The spatial and temporal
behavior of the electric field of a 1D lattice can be written as

E(R,t) = 2FEyecos(k - R) cos(wt) (5.4)
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where Fj is the laser field amplitude for the laser of intensity I = |E0|2, while k
and e are the wave vector and polarization vector respectively. Using Maxwell’s
equation, the associated magnetic field is obtained to be

B(R,t) =2Ey(n x e)sin(k - R)sin(wt). (5.5)
Therefore, the magnetic-dipole interaction Vit = —m - B is out of phase with
the electric dipole interaction Vg1 = —d - E such that at the antinodes of the

lattice, electric dipole (E1) interaction is maximum while the magnetic dipole (M1)
interaction is exactly zero. Here d and m are the electric and magnetic dipole
moments respectively. Similarly, the electric quadrupole (E2) interaction depends
on the gradient of the electric field and therefore has similar spatial dependence as
the magnetic dipole interaction. In addition, the fourth order atom-light coupling
gives rise to a I? dependent term. The light-atom interaction therefore produces
a potential energy for an atom in the ground (excited) state as

Uge) = —{ag(le) (w) cos®(kX) + oz(gl’(rz) (w) sin?(kX)} — Be(e) (W) cos?(kX)I?, (5.6)

where a9™ = o™ +aM! and Sy ) is the hyperpolarizability coefficient for the ground
(excited) state that comes from the two-photon interactions with the atom. To
simplify the analysis, the cosine and sine terms in Eq. are expanded in a power
series followed by substituting the X2 and X* terms by their expectation values
for an atom that occupies a vibrational state n in the harmonic oscillator like
potential. This gives the total lattice AC Stark shift in the vicinity of E1 — magic
frequency as[23], 123, [124]

hAVC(I,TL, 51/7 f) = 01/211/2 + 01] + 63/213/2 + 02[2

8AaE1 ER
~ . qm 1/2
( ” v — A ) (2n+1) Tl I
N ) 3ER (5.7)
- [ By v+ AL () (2n +2n+1)4aE1] I

FAB(E) 20+ Dy TR - ApQ)P

where dv is the lattice frequency detuning from El-magic frequency and & is the
polarization ellipticity of lattice light. Aa®! and Aa9™ are the differential polar-
izabilities for the two clock states, while Eg is the lattice photon recoil energy.

As can be seen in Eq. [5.7] even at the E1-magic frequency, there are other frequency
shift contributions that have non-zero value. Therefore, operating at the E1-magic
frequency is not sufficient for clocks pushing into 1077 uncertainty regimes. To
see the influence of these nonlinear shifts, Eq. is used to calculate the total
AC Stark shift for the 2*Mg clock transition at a lattice detuning of —8 MHz
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from El-magic frequency. For these calculations, atomic parameters from [112]
are used. The calculated frequency shift as a function of lattice intensity is shown
in Fig. 5.5 where different regimes of intensity dependence are visible. At very low
intensities, 7'/2 is the most dominant term while at intermediate intensities, linear
and I%/? terms dominate. At the other extreme of high intensities, the frequency
shift depends as I? on lattice intensity.
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Figure 5.5: Theoretical calculation of lattice AC Stark shift for 2*Mg clock transition is shown
here for jv = —8 MHz.

Another important feature of the lattice AC Stark shift dependence on intensity
is visible in Fig. , where at lattice intensity of 15 kW /cm?, a maxima can be
observed. Therefore at this intensity, to first order, there is no variation in lattice
shift with a change in intensity. Such a point in lattice intensity-frequency space
is what is called “operational magic condition”. In an ideal situation, by tuning
the lattice frequency, such an operational magic condition can be coincided with
zero frequency shift. There has been recent theoretical prediction of such an oper-
ational magic condition for magnesium where the light shift would be suppressed
below 1071 levels at a trap depth of 5.33 Eg [121]. But at such low trap depths,
the tunneling induced line broadening is in the regime of tens of kHz (fractional
frequencies of the order of 107!%), making it impossible to ever achieve the 1079
uncertainty /precision. Hence a more practical solution for operational magic con-
dition for magnesium in deeper trap depths is needed, where though the frequency
shift would be non-zero, it could still be estimated with a sufficiently high pre-
cision. The nonlinear lattice shift has been explored only in a few studies so far
for Sr and Yb lattice clocks[I125HI27], while such studies are still missing for other
clock elements.

To characterize the higher order frequency shift contributions, high precision mea-
surements need to be performed over a very large range of lattice intensities. While
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our measurement precision has significantly improved as seen in the last chap-
ter, the requirement of varying the lattice intensity over a large intensity range
was hitherto not possible since the maximum achievable lattice power was lim-
ited by the laser power available and at lower intensities, the tunneling induced
line-broadening degrades our measurement precision. Therefore, the lattice laser
system was again upgraded to extend the range of available lattice intensity for
these measurements. The new Ti:Sa laser systemﬂ has an output power of 3.8 W
at 936 nm and therefore gives a substantial boost in the frequency doubled power
at 468 nm to more than 1.5 W. However the light power at the lattice enhancement
cavity was limited to below 650 mW due to Brillouin losses in the optical fiber used
between the laser setup and the enhancement cavity setup. Nevertheless, with 650
mW of input power, up to 17 W of circulating light power is generated in the lattice
enhancement cavity. With a lattice waist in the 45 — 65 pm regime, these optical
powers correspond to trap depths up to 130 Er. Therefore, a large range of lattice
trap depth becomes available where tunneling induced line-broadening remains
below the Fourier line-broadening expected from spectroscopy pulse duration.
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Figure 5.6: (a) Lattice AC Stark shift measurements performed over a large range of trap

depth is shown here. A nonlinear regression method is used to fit the model from Eq. to

the experimental data. The measurements far away from El-magic frequency helps in better

characterization of a®! while the data close to El-magic frequency gives a more clear view of

nonlinear lattice shift contribution. (b) The two measurement sets for the lattice frequencies
close to El-magic frequency clearly show the non-linear behavior of the lattice light shift.

A set of lattice frequency shift measurement data with the upgraded lattice setup is
shown in Fig. [5.6] where the measurement close to magic frequency clearly shows
a deviation from linear intensity dependence (Fig. [5.6(b)). The complete dataset
for different lattice frequencies has been simultaneously fitted with a nonlinear re-
gression model based on Eq. [5.7] where an effective thermal reduction in trap depth
(due to distribution of atoms along transverse axes in the lattice) has also been
taken into account[127]. In contrast to the dipole- and hyper-polarizability contri-
butions, the multipolar polarizability a9 contribution only has I'/? dependence
on lattice intensity. Therefore at large lattice intensities required to trap the atoms

3SOLSTIS from M Squared
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deep in Lamb-Dicke regime, the multipolar frequency shift is much smaller than
the other polarizability contributions. Therefore the theoretical value of Aad™
from [I12] was used in the theoretical model to estimate the other parameters.
The values of fit parameters remained well within the uncertainties even for an
order of magnitude variation in a®. The light shift parameters thus obtained
from the numerical fitting are as follows:

Vet magic = 640 020 484(40)MHz
/AN
ov
AB = 925(375) wHz/E}, = 197(80) uHz/ (kWem ™).

= 0.51(8) x 107? Hz/Hz/kWcm 2 (5.8)

The large uncertainty in parameter values comes from the statistical uncertainty
due to limited measurement data as well as the large atomic temperature un-
certainty. The latter effect is in particular hard to estimate due to high atomic
temperature itself, which makes the analysis of sideband scans imprecise. The high
temperatures also indicate significant occupation of higher Bloch bands with much
larger bandwidths. This further increases the uncertainty of their contribution to
the carrier lineshape. Therefore as a conservative approach, a larger uncertainty
of the parameters is taken assuming an average state occupation of n, = 1 and
radial temperature 7, = 100 uK with an uncertainty An, =1 and AT, = 50 pK.

To characterize multipolar polarizability a9, measurement of frequency shift for
different Bloch band occupation can be used [127]. However, the high atomic
temperatures in our experiment currently make it hard to selectively populate the
individual Bloch bands. It would be interesting to perform these measurements
with a more stable probe laser system such that higher Bloch bands are resolved
due to larger line broadening. This could enable an estimation of lattice shift
parameters, opening the possibility of resolving multipolar polarizability effects.

The measurement data shown in Fig. can be used as a calibration of the lattice
light shift dependence on the circulating lattice power, and therefore to estimate
the lattice shift for given lattice parameters. For such a calibration method, the
frequency shift obtained from the data fitting at trap depth of 56 Eg is 0.5(4) Hz for
Uattice = 640020416 MHz. We again assume here that the mean vibrational state
occupancy is n, = 1, with an uncertainty An, = 1 and the radial temperature
is T, = 100(50)uK. These large thermal uncertainties lead to the 0.4 Hz shift
uncertainty. This corresponds to a fractional frequency uncertainty of 6.1 x 10716,
Assuming the multipolar polarizability value to be uncertain by a factor of three
around the theoretically predicted value, an additional uncertainty of 0.09 Hz
is introduced. For this method to work, repeatability of the lattice frequency
measurement has to be ensured. In our current setup, we stabilize the lattice laser
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frequency by locking the Ti:Sa laser frequency to the clock laser frequency via a
transfer cavity. While this does not provide an accurate measurement of lattice
frequency, it is possible to ensure repeatability by locking the laser frequencies
to the same resonator modes. For such a frequency stabilization scheme, the
long term frequency shifts are dominated by the residual amplitude modulation
(RAM). Assuming a worse case RAM of 10° ppm, such a transfer lock scheme
ensures long term frequency fluctuations below 1 MHz. This frequency instability
would contribute an additional uncertainty of 0.06 Hz. Therefore combining these
three frequency shift contributions, the total uncertainty of the lattice light shift
would be 6.5 x 10716,

5.5 Summary

In this chapter, details of clock systematic shift measurements were discussed. The
frequency shifts and associated uncertainties are summarized in Table [5.1] It is
encouraging to note that the shift uncertainty for the probe AC Stark shift as well
as the Zeeman shift has been lowered to the 10717 regime, while the density shift
is in low 1071¢ regime. Perhaps a trade-off for the density shift can be performed
where the atom loading time can be reduced, leading to lower atom numbers in the
lattice and a lower shift. Indeed this would negatively impact the clock instability,
but the reduction in cycle time and increase of duty cycle could compensate for
this increased instability to some extent. On the other hand, with the recent
upgrade of our triplet MOT laser system, we should be able to significantly enhance
atom loading rate to the lattice as well as the fluorescence signal during detection.
This would increase the precision of density shift measurement while also allowing
operating the clock at lower atom numbers, leading to significant improvement in
density shift uncertainty.

Correction (107'7)  Uncertainty (10717)

Probe AC Stark shift 482.4 6.1
Quadratic Zeeman shift 3556.9 6.3
Density shift 6.1 13.7
Lattice AC Stark shift  76.3 64.8

Table 5.1: Summary of the dominant frequency shifts and their uncertainties influencing our
magnesium lattice clock.

The uncertainty of the probe AC Stark shift and Zeeman shift can be significantly
improved by upgrading our probe laser setup. Currently the probe laser frequency
instability limits the maximum spectroscopy pulse time and hence requires much
larger probe light and magnetic fields to generate correspondingly large Rabi fre-
quency. This leads to large frequency shifts as well. Even if the spectroscopy
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pulse duration can be improved from currently used value of 200 ms to 400 ms,
the frequency shifts can be reduced by a factor half and hence a reduction in shift
uncertainties by a factor half as well. This was also the technique used recently to
improve performance of a bosonic Sr lattice clock [22]. In fact, with lower probe
laser instability, even higher line-Q can be achieved, leading to further improve-
ment of clock instability and the accuracy.

The only frequency shift contribution that still remains large and difficult to mea-
sure is the lattice AC Stark shift. Though a detailed characterization of lattice
shift was performed for our magnesium lattice clock, the requirements of large
lattice intensities leads to high uncertainty of associated AC Stark shift, further
exacerbated by large atomic temperatures as well as uncertainty in lattice fre-
quency measurement. However, these issues can be significantly improved upon to
reduce uncertainty to 1071 regime, as discussed in previous section. Therefore in
the short term, the magnesium clock transition frequency can be measured with
an uncertainty in 107! regime, while further work towards lattice frequency mea-
surement and characterization of higher order shifts would be required to reduce
the uncertainty to 1017 regime.



CHAPTER 6

Outlook

In the framework of this thesis, detailed modeling of Bloch band spectroscopy was
performed to better understand the line-broadening and asymmetry features for
spectroscopy in shallow lattice at and around the magic wavelength. To improve
the clock performance, the optical lattice system was upgraded to alleviate some of
the issues affecting the previous frequency measurement campaign. This reduced
the magnesium clock transition linewidth to Hz regime for the first time, opening
the possibility of reaching clock uncertainty in the 10~!7 regime. The magnesium
clock instability was for the first time reduced to 10~!" regime within a few thou-
sand seconds of averaging. To enable an improved frequency measurement, most
of the dominant systematic shifts were characterized with an uncertainty in mid-
10717 to low-1071¢ regime. For better estimation of the lattice AC Stark shift,
higher order shift contributions were also studied for the first time for magnesium,
providing the first experimental estimate of the differential hyperpolarizability shift
coefficient. These developments place our experiment in a good position to per-
form a significantly improved frequency measurement campaign in near future. In
this chapter, a discussion on current system limitations and possible methods to
improve on them will also be discussed.

6.1 Cooling on the intercombination transition

Cooling magnesium to uK regime has not been possible so far. This is in stark
contrast to the other major lattice clock candidates such as Sr and Yb, where

87
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direct Doppler cooling to a few uK temperature has been possible since many
years. While the ultra-violet laser wavelengths needed for Doppler cooling has
also been a challenge for magnesium, the bigger difference lies in the transition
linewidths of the cooling transitions. While 'Sy — 'P; and 3P, — 3Dj3 transitions
have very large linewidths which limit Doppler cooling to the mK regime, the
1Sy — 3P, intercombination transition has a linewidth of only 36 Hz, which makes
it inefficient for Doppler cooling as well. So far, we work around this problem by
generating a large flux of mK cold atoms in a two-stage MOT followed by energy
filtering in the far detuned dipole trap. To achieve a narrow thermal distribution in
the lattice, perhaps other cooling schemes need to be utilized. One such scheme of
quenched sideband cooling can be useful to reduce the temperature in the lattice.
The other promising cooling method for magnesium is the sawtooth wave adiabatic
passage (SWAP) cooling recently proposed and demonstrated for Sr [12§].

S o)

Figure 6.1: SWAP cooling scheme: (a) The atom moving with velocity v interacts with two
counter-propagating laser beams with instantaneous frequency wr,(¢), where (b) the laser fre-
quency is linearly ramped up from far negative detuning to a large positive detuning with a total
sweep range of Ag in time T and then reset back to negative detuning. The moving atom in
ground state absorbs a photon from the laser beam counter-propagating to its motion and then
emits a photon in the co-propagating laser beam via stimulated emission process. Therefore the
kinetic energy of moving atom is reduced by twice the photon recoil energy.

The 36 Hz intercombination transition is well suited for implementing the SWAP
cooling, where stimulated absorption and emission processes play a stronger role
in velocity reduction compared to Doppler cooling technique. The spontaneous
emission events are only needed to randomize the atomic velocities and therefore to
reduce entropy. The SWAP cooling scheme as shown in Fig. [6.1 works by sweeping
the frequency wy, of counter-propagating lasers from large negative detuning to
large positive detuning around the atomic resonance frequency w,, followed by a
sharp jump back to the initial frequency as in a sawtooth wave pattern. An atom
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moving with velocity v first absorbs a photon from the counter propagating laser
beam at a red detuned frequency of w, — kv, where k is the photon recoil. This
is followed by a photon emission stimulated by the co-propagating laser beam at
frequency w, + kv. Both these absorption and emission events lead to photon
recoils against atomic velocity, hence reducing the kinetic energy by two photon
recoil energy. This is in contrast to Doppler cooling where the photon emission
is a spontaneous process. In addition, the velocity range where cooling occurs
is tunable by tuning the frequency sweep range A . This gives SWAP cooling
the dual advantage of giving larger photon recoil against the atomic velocity per
absorption cycle as well as a more efficient and faster cooling on otherwise narrow
atomic transitions. Due to a heavy reliance on stimulated emission, this technique
works better for narrow atomic transitions.

It is interesting to compare the SWAP cooling technique with the Raman cool-
ing technique [129], where frequency detuning between two counter-propagating
Raman pulses is varied (depending on the Doppler shift of the targeted velocity
class) to excite specific velocity classes from ground state |g) to the excited hy-
perfine state |e). Afterwards a single laser pulse excites the atoms from |e) to a
higher lying state from where atoms spontaneously decay to the ground state |g)
and complete the cooling process by randomizing the velocities and resetting the
atom to the ground state. In SWAP cooling, the spontaneous event is not needed
in every cycle since it is only needed to thermalize the atoms, which requires far
fewer spontaneous events.

For SWAP cooling to work effectively, three conditions need to be satisfied:

Q>
a0 (6.1)
af2kv 2~y

where 7 is the spontaneous decay rate from 3Py to !Sj state, 2 is the Rabi frequency
and « is the frequency sweep rate for the sawtooth frequency ramp. The first two
conditions ensure the requirement to be in an Adiabatic state transfer regime. The
third condition constraints the sweep rate such that there are no spontaneous emis-
sion events between the two adiabatic interaction processes during one frequency
sweep.

With a spontaneous decay rate of 27t x 36 Hz for the magnesium intercombination
transition, these conditions are easily satisfied for an initial temperature of 50 uk.
Though this technique relies much less on spontaneous emission, it still requires
the spontaneous emissions to initiate the atoms in ground state at the beginning of
every sweep. Since the 3P; state has a very large lifetime of 4.4 ms, this could still
limit the cooling time and therefore lead to atom loss during the cooling process.
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These losses can be avoided by performing SWAP cooling in an optical dipole
trap, though the physics of cooling changes in a dipole trap due to a dependence
of atomic velocity on the atom’s position in the trap. However, this technique
offers the possibility to cool the atomic temperature to below 10 uK, which would
significantly improve the fraction of atoms in the lowest Bloch band.

6.2 Suppressing tunneling induced broadening

Tunneling induced line broadening can most straightforwardly be decreased by in-
creasing the lattice intensity. But that leads to an increase in lattice light shift
uncertainty, particularly from the higher order light shifts. Therefore, new methods
to suppress tunneling [130, [I131], and new spectroscopy techniques to suppress tun-
neling induced line broadening need to be explored. One such technique increases
the effective lattice spacing [132] with respect to spectroscopy laser wavelength.
We focus here on this technique and outline the experimental design suitable for
our experiment.

For a lattice generated by light beams of wavelength Apagic interfering at an angle
0, the effective lattice spacing a is given as

@ = Amagic/ |25in(0/2)] (6.2)

For a typical optical lattice generated by interfering a laser beam with its retro-
reflected copy or in a linear cavity, § = 180°, and therefore ag = Amagic/2. However,
by selecting smaller 6 values, the lattice spacing can be increased significantly
[133, 134].

The tunneling rate dependence on the lattice spacing a is given as

t(a) ag Up ( a)

=4/— —(1-=—)]. 6.3
t(ag) o P Er ag (6:3)
Such an exponential dependence on lattice spacing allows for a strong control on
tunneling rate by changing 6. This can be seen in the Fig. where tunneling
induced line-broadening is shown as a function of 6 for a lattice depth of 10 Eg.

While the linewidth for a lattice with § = 180° is in kHz regime, it reduces to sub-
Hz regime as 6 is lowered below 60° with an exponential dependence as predicted

in Eq. [6.3

The sharp resonant features in Fig appear when a/\gogmod 1 = 0. At these
conditions, the lattice spacing exactly matches multiples of probe laser wavelength.
Therefore, the photon recoil momentum absorbed during excitation is an integer
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Figure 6.2: Tunneling induced line broadening as a function of the angle between lattice beams
0 for a trap depth of Uy = 10 ERr

multiple of the Brillouin zone width, leading to zero frequency shift. While op-
erating at these conditions may be tempting, the required tolerance on the angle
deviations makes it much more complicated.

Along with a change in effective lattice spacing, varying 6 also leads to change in
trap radius along and perpendicular to lattice axis. The radii along the lattice axis
Wy, and in transverse axis wy, of the overlapping region between the two beams:

- 1
Wor = 2 G2
cos?(6/2) sin®(60/2)

ng + 27;122 (6 4)
i 1 '
Woz = sin? cos )

2072) | o2

Ox R

where wy, is the waist of interfering beams and zg is the associated Rayleigh range.
As expected, the radius along the lattice axis reduces to the incident beam waist
when the angle between the beams is zero, while it is equal to zr for counter-
propagating beams.

In Fig. Wy, and Wy, are shown as a function of the angle between the two
incident laser beams. For trapping large number of atoms in the lattice at low
densities, a large g, and a small Wy, is desired, which occurs optimally at 6 = 180°.
However, a trade-off between reduction in tunneling induced line broadening and
optimal overlap region dimensions is required. The most interesting regime for
operating the clock from this trade-off is at § = 60°, where the tunneling induced
line-broadening is reduced to sub-Hz regime even for 10 Egr deep lattice, while
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Figure 6.3: The radius along the lattice axis and transverse axis is shown here for two incident
beams with 100um waists interfering at angle 6. At the design angle of 60°, the radius along the
lattice axis is 115 pm and 200 um in the transverse axis.

still allowing for a large capture area. As can be seen in Fig. at 0 = 60°,
the tunneling induced line-broadening for the lowest vibrational state is reduced
to sub-Hz regime even for Uy = 10 ER, while for 6 = 180°, the line-broadening is
more than 4 orders of magnitude larger.

To operate the lattice at 10 Fg with 100 wm beam waist, only 3 W optical power
is required in each interfering laser beam. As already shown in this thesis, more
than five times as large optical powers can be achieved in an enhancement cavity.
However, given the required angle between the two beams, a bow-tie cavity design
as shown in Fig. would be much more appropriate compared to the linear
design used so far in our experiment.

The complete cavity system can be placed inside the vacuum to avoid any loss of
cavity finesse from the vacuum chamber viewports. In addition, the cavity center
region can easily be overlapped with a crossed 1064 nm optical dipole trap to
transfer the atoms from the MOT to the lattice. This design can significantly
reduce the system complexity compared to our existing lattice cavity, where intra-
cavity mirrors are required to overlap the spectroscopy laser and the 1064 nm
dipole laser with the optical lattice.

As already stated, a big motivation for operating in shallow lattice is to reduce the
higher order lattice Stark shift contribution. At the trap depth of 10 Egx with 100
um waist, the hyperpolarizability induced light shift is only 0.8(3) Hz according
to our measured hyperpolarizability shift coefficient. Due to low tunneling rates
even at such low lattice intensities, lattice shift calibration can be performed over a
large lattice intensity range. For example, comparing the frequency shift between
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Figure 6.4: Tunneling induced line-broadening is shown here for the lowest vibrational state
in a lattice generated by overlapping the two beams at an angle of § = 60° (red) and 6 = 180°
(blue) as a function of trap depth.

lattice of 10 Eg and 50 Egr (which is feasible given that intra-cavity power up to
15 W can be realized) with an uncertainty of 107'® would allow for an estimation
of hyperpolarizability induced quadratic shift with an uncertainty 1X1291_16, well in
the 1078 regime. In fact, possibility of operating the lattice system at such low
trap depths could also make it possible to reach the operational magic condition

with zero lattice light shift [121].

Lattice

in-coupling PZT mirror

Clock laser

Figure 6.5: Bow-tie cavity design with 8 = 60° to generate magic wavelength lattice. The laser
polarization needs to be s-polarized to generate intereferce in the overlap region.
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6.3 Enhancing the clock duty cycle

One of the difficulties in significantly improving the magnesium clock instability is
associated with the requirement of relatively large cooling and state preparation
time, which makes the clock cycle time T, very large. Though this issue can be
somewhat alleviated by using a more stable spectroscopy laser which would allow
longer interrogation time 7, and thereby increasing the duty cycle D = T, /T,, a
better strategy is needed for the future where additional sideband cooling steps
may further increase the state-preparation time.

One approach to increase clock duty cycle that has already been studied in other
lattice clock experiments is to use non-destructive state detection, whereby re-
cycling the atoms trapped in the lattice. It is important to note that the clock
spectroscopy does not lead to any heating, since there is no spontaneous emis-
sion process taking place during clock spectroscopy. There are atom losses due to
background gas collisions and heating from lattice intensity fluctuations, but these
can be reduced by technical improvements to the experiment. Hence, atoms once
loaded into the lattice can be repeatedly used to perform spectroscopy as long as
the state detection does not lead to any additional heating. This is exactly where
non-destructive detection process can be useful. The essential idea behind non-
destructive detection process is to read out the atom number signal by coupling
their population in an atomic state to the dispersion induced phase shifts for a
off-resonant laser beam [135]. This is most efficiently achieved using cavity modes
[136, 137]. For magnesium, the 'Sy — Py transition with a large decay rate of
I' = 21t x 78 MHz would be suited for this detection technique. However, making
high finesse cavities for light frequency around this 285 nm transition would be
incredibly challenging, considering the degradation of mirror coatings with time
for such low laser wavelengths.

A more pragmatic approach for magnesium would be to operate the lattice in a
quasi-continuous loading scheme, where the atoms would be cooled and trapped
in the 1064 nm trap elsewhere and after each spectroscopy and detection cycle,
transferred to the lattice. This approach becomes especially appealing once spec-
troscopy pulse time is increased to more than 1 second, providing sufficient time
to load a large number of atoms in the 1064 nm trap. Such a design would in
fact allow for implementing the bow-tie cavity lattice as an add-on component to
one of the CF Flanges of our existing science chamber. The idea would be to trap
the atoms in our already existing dipole trap, and transport them by moving the
focus position to overlap with the lattice region. During the spectroscopy cycle,
the 1064 nm light can be blocked by a combination of motorized beam deflector for
diverting the laser to a beam dump and optical shutter for blocking any remaining
stray light. Such a continuous clock operation scheme would provide considerable



6.3. Enhancing the clock duty cycle 95

gains over the current system. Improving the duty cycle by a factor 5 would allow
the clock instability to reach 1078 regime in a few thousand seconds of averaging

time.
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