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Why this class?

• Several classes of related nature here in Hannover; L3S1 Faculty of
Electrical Engineering and Computer Science2, ...

• Why this class in maths?

• Basic ingredients of AS (algorithmic systems), ML (machine
learning), NN (neural networks) are based on mathematics:
Numerik 1, Optimization, Statistics

• Rigorous formalizations and analysis of algorithms in terms of
accuracy, efficiency, robustness are key items in numerics

• One goal of this class: Using neural networks with or for differential
equations.

1https://www.l3s.de/en
2https://www.et-inf.uni-hannover.de/
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Structure of this class

• 2+1 lecture in the German system:
• 90 minutes lecture per week
• 90 minutes exercise every 2nd week (three classical exercises of all

students in the computer pool; then individual discussions within group
projects)

• Goal/exam:
• Project work in groups of 2 to 4 students
• Mixture of advanced projects including differential equations and

model order reduction as well as projects to substantiate basic
understanding of this class

→ choices depend on motivation and personal background
• Final presentation of project work including questions and discussion

(approx. 30− 45 minutes) in Feb/Mar 2022
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How to study in this class?

• The audience is heterogeneous, but natural for such a class

• L1-L4 are basics in machine learning, which participants specificially
from Computer Science may have already had in other lectures

• Same for L5-L10 in artificial neural networks and their modern
extensions

• On the other hand, students from maths may have had L11-L14
(differential equations)

• Content allows flexible handling of project work (starting earlier or
later according to personal wishes)
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Prerequisites and preliminary steps

• Introduction to numerical analysis (Numerik 1 at LUH), Analysis I+II,
Lineare Algebra I+II

• Not mandatory, but useful: functional analysis (FA)

• python3

• In Exercise 0, brief installation instructions to python will be given; as
well as a brief introduction to git

• In Exercise 1, there will be an alternative exercise sheet with first
steps into python for students that are unfamiliar with this
programming language

3https://www.python.org/
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Software (selection)

1 TensorFlow https://www.tensorflow.org/

2 PyTorch https://pytorch.org/

3 Keras https://keras.io/

4 scikit learn https://scikit-learn.org/stable/

Background in python:

1 Python: https://www.python.org/

2 Tutorial: https://docs.python.org/3/tutorial/index.html
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Outline lecture 1

• Definition of algorithmic systems and applications

• Numerical concepts and examples

• Three basic paradigms in learning
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Algorithmische Systeme (Definition) - in german

• DEK: Datenethikkommission

• Gutachten (report), October 2019

• Full report (pdf)4

• Please see in particular pages 14-15 for general, ethical and juridical
remarks

• Information on Algorithmische Systeme on page 24ff

• ‘Control of algorithms’
• General requirements for algorithmic systems and interaction between

human beings and machines (algorithms):
• Algorithm-based decisions (human decision based on input from

algorithm)
• Algorithm-driven decisions (algorithm proposes information on which

human as little means for an independent decision)
• Algorithm-determined decisions (algorithm proposes decision without

human interactions)

4Brown-colored text will open a link.
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Abbreviations

• AS = algorithmic systems

• AI = artificial intelligence

• ML = machine learning

• ANN = artificial neural networks
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Further applications in other disciplines

• As previously said, we are interested in mathematical-numerical
aspects in this class and applications to differential equations

• For a motivation in other fields, please see some of the following talks:

https://www.dhvseminare.de/symposium_2019

• Therein, various views from different fields (neurosciences, computer
science, ethics, economics, law) were presented.
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Algorithms (I)

• Design and analysis of algorithms is a key branch of numerical
mathematics and scientific computing
• Scientific computing:

• Mathematical modeling of practical problems (physics, engineering,
finance, ...)

• Design and analysis of algorithms
• Research software development

• Feedback-loop of all three items

• Mathematics become experimental

• Design and analysis of algorithms can be broadly achieved with the
help of seven concepts
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Algorithms (II)

Definition (Algorithm)

An algorithm is an instruction for a schematic solution of a mathematical
problem statement. The main purpose of an algorithm is to formulate a
scheme that can be implemented into a computer to carry out so-called
numerical simulations. Direct schemes solve the given problem up to
round-off errors (for instance Gaussian elimination). Iterative schemes
approximate the solution up to a certain accuracy (for instance Richardson
iteration for solving linear equation systems, fixed-point iterations, gradient
descent, Newton’s method, ...). Algorithms differ in terms of accuracy,
robustness, and efficiency.
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Seven concepts of numerical mathematics 5

1 Approximation: since analytical solutions are often not possible to
achieve as we just learned in the previous section, solutions are
obtained by numerical approximations.

2 Convergence: is a qualitative expression that tells us when members
an of a sequence (an)n∈N are sufficiently close to a limit a. In
numerical mathematics this limit is often the solution that we are
looking for.

3 Order of convergence: While in analysis, we are often interested in
the convergence itself, in numerical mathematics we must pay
attention how long it takes until a numerical solution has sufficient
accuracy. The longer a simulation takes, the more time and more
energy (electricity to run the computer, air conditioning of servers,
etc.) are consumed. In order to judge whether a algorithm is fast or
not we have to determine the order of convergence.

5T. Richter, T. Wick; Einführung in die numerische Mathematik - Begriffe, Konzepte
und zahlreiche Anwendungsbeispiele, Springer, 2017
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Numerical concepts

4 Errors: Numerical mathematics can be considered as the branch
‘mathematics of errors’. What does this mean? Numerical modeling
is not wrong, inexact or non-precise! Since we cut sequences after a
final number of steps or accept sufficiently accurate solutions
obtained from our software, we need to say how well the (unknown)
exact solution by this numerical solution is approximated. In other
words, we need to determine the error, which can arise in various
forms as we discussed in the previous section.
Exercise: Make a list of errors that may arise in numerical
mathematics

5 Error estimation: This is one of the biggest branches in numerical
mathematics. We need to derive error formulae to judge the outcome
of our numerical simulations and to measure the difference of the
numerical solution and the (unknown) exact solution in a certain
norm.
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Numerical concepts

6 Efficiency: In general we can say, the higher the convergence order of
an algorithm is, the more efficient the algorithm is. Therefore, we
obtain faster the numerical solution to a given problem. But
numerical efficiency is not automatically related to resource-effective
computing. For instance, developing a parallel code using MPI
(message passing interface), hardware-optimization (CPU,GPU),
software optimizations (ordering in some optimal way for-loops,
arithmetic evaluations, etc.) can further reduce computational costs.

7 Stability: Lastly, the robustness of algorithms and implementations
with respect to parameter (model, material, numerical) variations,
boundary conditions, initial conditions, uncertainties must be studied.
Stability relates in the broadest sense to the third condition of
Hadamard.
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Examples of previous concepts

• For the following examples, we have the clothesline problem6 in
mind

• This is a differential equation

• Problem statement:

−u′′(x) = f in (a, b) (Differential equation) (1)

u(a) = ul (Left boundary condition, Dirichlet) (2)

u(b) = ur (Right boundary condition, Dirichlet) (3)

where f , ul , ur ∈ R.

6T. Wick. Numerical methods for partial differential equations. Hannover :
Institutionelles Repositorium der Leibniz Universität Hannover, DOI:
https://doi.org/10.15488/11709. Jan. 2022. doi: https://doi.org/10.15488/11709.
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Example: Approximation

Approximation: Two approximations of the clothesline problem:
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Example: Convergence

Convergence: Converging approximations of the clothesline problem:
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Example: Convergence order

Order of convergence: Two different speeds of convergence:
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Example: Errors

Errors: Not all errors are equally important and sometimes, one might try
to ‘optimize’ an error, which has no significant influence. Let’s see this in
more detail. Let the errors eModel , eNumerics , eSoftware enter. The total error
is defined as

eTotal = eModel + eNumerics + eSoftware (4)

Let us assume that we have the numbers
eModel = 1000, eNumerics = 0.001, eSoftware = 4, the total error is then given
by

eTotal = 1000 + 0.001 + 4 = 1004.001. (5)

Which error dominates? It is clearly eModel = 1000. The relative influence
is eModel/eTotal = 0.996. So, the other two error sources are negligible and
would not need further attention in this specific example.
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Example: Error estimation

Error estimation: Error estimation is the process to obtain the concrete
numbers 1000, 0.001, 4 in the previous example. Error estimates can be
classified into two categories:

• a priori estimates include the (unknown) exact solution u, such that
η := η(u), and yield qualitative convergence rates for asymptotic
limits. They can be derived before (thus a priori) the approximation is
known.

• a posteriori error estimates are of the form η := η(ũ) explicitly
employ the approximation ũ and therefore yield quantitative
information with computable majorants (i.e., bounds) and can be
further utilized to design adaptive schemes.
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Example: Efficiency
Efficiency: is more or less self-explaining.

• A first answer is to look at CPU or wall time: how many seconds,
minutes, weeks, months does a program need to terminate and yield a
result?

• A second answer is to study ‘iteration numbers’ or arithmetic
operations.

• The latter are often given in terms of the big O notation.

• Having a linear equation system Ax = b with A ∈ Rn×n and O(n3)
complexity means that we need n3 (cubic in unknowns n) arithmetic
operations to calculate the result.

• For instance, for n = 100, we need around 1 000 000 operations.

• Having another algorithm (yielding the same result of Ax = b) with
only O(n) operations, means that we only need around 100
operations, which is a great difference.

• The development of efficient solvers for large linear equations systems
is consequently a big branch in numerics and scientific computing.
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Example: Stability
Stability: We finally come back to the clothesline problem and change a
bit the left boundary condition:
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Types of learning: three basic paradigms

• Supervised learning

• Unsupervised learning

• Reinforcement learning (later in L10)
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Supervised learning

• Labeled examples {(xi , yi )}Ni=1, N ∈ N
• Feature vector (components in numerics) xi (e.g., a person)

• Feature (component) x
(j)
i (value j : height, weight, ...)

• Label yi
• Label can belong to a finite set of classes {1, 2, . . . ,NC}, a real

number, or a more complex structure (e.g., vector, matrix, ...)

• Goal of supervised learning: use the dataset {(xi , yi )}Ni=1 and produce
a model

• M(x) = y , where M is the model that takes x as input and gives
some y as label

• First simple example: spam detection in emails, two classes
{spam, notspam}
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Example for building a model M

• Measurement data {(xi , yi )}Ni=1

• Find linear relation

• Linear regression (later more)

• Linear model M with M(x) = b + mx in which intercept b and
slope m must be determined

• Thus: ‘producing’ or ‘creating’ a model means in this case to
determine b and m

• Least-squares problem:

minS = min
1

N

N∑
i=1

(yi − (b + mxi ))2 (6)
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Example for supervised learning
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Unsupervised learning

• Dataset is a collection of unlabeled examples {xi}Ni=1

• Goal is finding patterns in data without supervision
• Examples:

• clustering
• dimensionality reduction
• outlier detection
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Example for unsupervised learning

• POD = proper orthogonal decomposition (based on SVD singular
value decomposition known from linear algebra - later more in Lecture
4)

• PCA = principal component analysis
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Reinforcement learning

• More details later in L10

• Machine lives in environment

• State of environment as feature vector

• Machine can execute actions in every state

• Goal is to learn a policy that maximizes reward function

• f (x) = optimal action in a certain state

• Process is a feedback-loop

• Examples: game playing, AlphaGo, robotics, logistics
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Example for reinforcement learning
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End of Lecture 1

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 34 / 441



1. Traditional AI
1.1 Lecture 1: Algorithmic Systems, Numerical Concepts, Notation
1.2 Lecture 2: Introduction to Probability, Random Processes, Statistics
1.3 Lecture 3: Fundamental Algorithms
1.4 Lecture 4: Dimensionality Reduction

2. Deep Learning in Neural Networks
2.1 Lecture 5: Artificial Neural Networks (ANN)
2.2 Lecture 6: Universal Approximation Theorem
2.3 Lecture 7: Convolutional Neural Networks (CNN)
2.4 Lecture 8: Recurrent Neural Networks (RNN)
2.5 Lecture 9: Transformer
2.6 Lecture 10: Reinforcement Learning (RL)

3. Applications to (and with) Differential Equations
3.1 Lecture 11: Introduction to ML for Scientific Computing
3.2 Lecture 12: Neural ODE
3.3 Lecture 13: PINNs: Physics-Informed Neural Networks
3.4 Lecture 14: Neural Operators and Outlook

4. Projects

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 35 / 441



Outline lecture 2

• Basic ingredients from analysis and linear algebra
• Basics from probability, random processes, and statistics:

• Sample points, sample spaces, probability spaces
• Random variable
• Expected value, standard deviation, variance
• Covariance, conditional probability, Bayes’ theorem
• Parameter estimation, maximum-likelihood

• Numerics: hyperparameters versus parameters
• Basic notions in machine learning:

• Classification, regression
• Model-based and instance-based learning
• Shallow and deep learning
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Ingredients from analysis and linear algebra

• Please recall yourself (self-studies) basic notions for vectors, matrices,
functions, derivatives, chain rule, necessary/sufficient conditions for
minimum and maximum

• Summaries typically be found in numerics books, e.g., again
Richter/Wick7

• Extensive explanations in typical textbooks on Analysis8 and Lineare
Algebra9

7T. Richter and T. Wick. Einführung in die Numerische Mathematik: Begriffe,
Konzepte und zahlreiche Anwendungsbeispiele. Dec. 2017. isbn: 978-3-662-54177-7.
doi: 10.1007/978-3-662-54178-4.

8H. Amann and J. Escher. Analysis I. Birkhäuser, 2006. url:
https://link.springer.com/book/10.1007/978-3-7643-7756-4; H. Amann and
J. Escher. Analysis II. Birkhäuser, 2006. url:
https://link.springer.com/book/10.1007/3-7643-7402-0.

9G. Fischer. Lineare Algebra. Springer, 2014. url:
https://link.springer.com/book/10.1007/978-3-658-03945-5.
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Probability, random processes, and statistics

• Main literature, where the following contents are taken from:
• Ralph C. Smith; Uncertainty Quantification, SIAM, 2014 (Chapter 4)10

• Meyer Dwass; Probability: Theory and applications, W.A. Benjamin,
Inc., New York, 197011

• Hans-Otto Georgii; Stochastik, 200912

• Andriy Burkov; The Hundred-Page Machine Learning Book, 2019
(Chapter 2)13

• Christopher M. Bishop; Pattern Recognition and Machine Learning;
200614

10Ralph C. Smith. Uncertainty Quantification. SIAM, 2014.
11Meyer Dwass. Probability: Theory and applications. W.A. Benjamin, Inc., New

York, 1970.
12H.-O. Georgii. Stochastik. de Gruyter, 2009.
13Andriy Burkov. The hundred-page machine learning book. Andriy Burkov, 2019.
14C. M. Bishop. Pattern recognition and machine learning. Springer, 2006.
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Sample point and sample space

• Sample point: formal name for a possible outcome

• Sample space (often Ω): collection of all sample points

• Discrete sample space: Countable number of sample points

• Example 1: Coin is thrown once: Sample points w1 = H and
w2 = T for head H and tail T . Dimension of sample space is 2.

• Example 2: Coin is thrown twice: Sample points
w1 = (H,H),w2 = (H,T ),w3 = (T ,H),w4 = (T ,T )

• Event: A set of sample points

• Example 3: E1 = {w1,w3},E2 = {w1,w2,w4}, . . .
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Probability measure

• Given event A

• Probability of A: number P(A)

• ‘P’ stands for Probability

• Property of P: 0 ≤ P(A) ≤ 1

• P(Y ) = 1, where Y is the certain event

• P(∅) = 0 for the impossible event
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Probability space

Definition (Probability space)

A probability space (Ω,F ,P) is defined of three components:

• Ω: sample space is the set of all possible outcomes from an
experiment

• F : σ-field of subsets of Ω that contains all events of interest; the
σ-field is also known as σ algebra

• P : F → [0, 1]: probability or measure that satisfies the postulates
P(∅) = 0, P(Ω) = 1, and thirdly, if Ai ∈ F and Ai ∩ Aj = ∅, then
P(
⋃∞

i=1 Ai ) =
∑∞

i=1 P(Ai )
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Random variables
• Random variable X : variables with output due to random

phenomena

• Let the previous defintition of the probability space be given. Then

Definition (Random variable)

A random variable is a measurable function X : Ω→ E, where E is a
measurable space. Moreover, for S ⊂ E, we have
P(X ∈ S) = P({ω ∈ Ω|X (ω) ∈ S})

• Discrete (see previous slides) and continuous cases are possible

• Probability distribution listed as probability mass function (discrete)
and probability density function (continuous case)

• pdf = probability density function

• Often pdf not known, but some values of X : such values are called
examples.

• Collection of examples is known as sample or dataset
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Example: six-faced die

• Numbers 1, 2, 3, 4, 5, 6 are usually assigned to its faces

• Denote outcome of sample points: w1,w2,w3,w4,w5,w6

• Random variable X with definition

X (w1) = 1, . . . ,X (w6) = 6 (7)
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Definition of expected value (discrete situation)

• Let us assume X = (w1,w2, . . . ,wn) is a discrete sample space with
the probability measure P

• Assign pi to wi for i = 1, 2, . . .

• If X is random variable, expected value (also known as mean,
average) of X is denoted by E (X ) and defined by

E (X ) =
n∑

i=1

X (wi )pi (8)

• Assumption
n∑

i=1

|X (wi )| pi <∞ (9)

(absolute convergence)
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Example (cont’d): six-faced die

• Example: die:

E (X ) =
1

6
+ . . .+

6

6
=

21

6
= 3.5 (10)

• Probability of each event: pi = 1
6

• X (wi ) = 1, . . . , 6 for i = 1, . . . , 6
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Standard deviation and variance

• Description how a distribution is concentrated about the center of
gravity (expected value)

• Standard deviation: Suppose X is a random variable with
E (X 2) <∞. Then, the standard deviation is defined by

σ :=
√
E [(X − µ)2], (11)

where µ = E (X )

• Variance
σ2 := Var(X ) := E [(X − µ)2]. (12)
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Expectation and variance of continuous random variable X

• Extension from discrete cases (taking sum) to continuous cases
(integral)

• Expectation:

E (X ) :=

∫
R
xfX (x) dx (13)

where fX is the pdf of the variable X

• Variance:

Var(X ) = σ2 =

∫ ∞
−∞

(x − µ)2fX (x) dx (14)

with µ := E (X )
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Covariance

• Suppose X and Y are independent random variables and their
variances Var(X ) and Var(Y ) exist. Then the sum variance exists
and it holds

Var(X + Y ) = Var(X ) + Var(Y ). (15)

Standard proof in stochastic lecture (see e.g., Dwass, Chapter 10)

• If X and Y are not independent, there is a relation, which is known
as covariance:

Var(X +Y ) = Var(X ) +Var(Y ) + 2E [(X −E (X ))(Y −E (Y ))] (16)

where the covariance is defined as

Cov(X ,Y ) = E [(X − E (X ))(Y − E (Y ))]. (17)

• Be careful: X and Y independent implies Cov(X ,Y ) = 0. But
Cov(X ,Y ) = 0 does not imply that X and Y independent
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Conditional probability and Bayes’ theorem

• Conditional probability: P(A|B) is the probability of A given B. It
holds

P(A|B) =
P(A ∩ B)

P(B)
(18)

• Remark: P(A ∩ B) = P(A|B)P(B)

• Since (A ∩ B) ⊂ B and P(A ∩ B) ≤ P(B), it follows

0 ≤ P(A|B) ≤ 1 (19)

• For random variables X and Y with possible values x and y , it holds
Bayes’ theorem

P(X = x |Y = y) =
P(Y = y |X = x)P(X = x)

P(Y = y)
(20)
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Example

• Coin is thrown three times

• We have obtained a total of two heads

• Question: What is the conditional probability of a head on the first trial?

• Formalization: A = head on first trial, B = two heads in three trials

• First observation: in total, we have eight sample points:
(H,H,H), (H,H,T ), . . . , (T ,T ,T )

• Thus: A ∩ B consists of the sample points (H,H,T ) and (H,T ,H)

• And: B consists of the sample points (T ,H,H), (H,T ,H), (H,H,T )

• It follows:

P(A ∩ B) =
2

8
, P(B) =

3

8
(21)

• With conditional probability:

P(A|B) =
2/8

3/8
=

2

3
(22)

• Interpretation: with the prior information that two heads have been obtained, we have
P(A|B) = 2/3. Compare this result two the original probability of a head in the first trial,
which is only P(A) = 1

2

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 50 / 441



Probability mass function

• Definition: A continuous random variable X can be expressed by

FX (x) =

∫ x

−∞
fX (s) ds, x ∈ R (23)

• The derivative fX = dFx
dx is called the probability density function

(pdf) of X

• pdf properties are:

fX (x) ≥ 0 (24)∫
R
fX (x) dx = 1 (25)

P(x1 ≤ X ≤ x2) = FX (x2)− FX (x1) =

∫ x2

x1

fX (x) dx (26)
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Example: normal distribution

Definition

A univariate density is the normal density, which is defined as

fX (x) =
1

σ
√

2π
e−(x−µ)2/2σ2

, −∞ < x <∞ (27)

• Notation: X ∼ N(µ, σ2) means that X is normally distributed with
mean µ and variance σ2

• 68.25% of area within 1σ

• 95.45% of area within 2σ

• 99.73% of area within 3σ

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 52 / 441



Parameter estimation

• Given a model fθ with some parameters in the form of θ

• Example:

fθ =
1

σ
√

2π
e−(x−µ)2/2σ2

(28)

with θ := [µ, σ]

• Use this as a model of an unknown distribution of X

• Update values of parameters inside θ using Bayes’ theorem:

P(θ = θ̂|X = x) =
P(X = x |θ = θ̂)P(θ = θ̂)

P(X = x)
(29)

• Here
P(X = x) = Σθ̂P(X = x |θ = θ̂) (30)

and fθ̂ := P(X = x |θ = θ̂)
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Parameter estimation

• Given a sample S of X

• Estimate P(θ = θ̂) by applying Bayes’ rule for x ∈ S subsequently

• Initial value P(θ = θ̂) can be guessed such that Σθ̂P(θ = θ̂) = 1

• This guess is called prior

• Iterative procedure of updating new parameters θ̂

• Best value of parameters θ∗ by maximum-likelihood:

θ∗ = arg maxθ̂

N∏
i=1

P(θ = θ̂|X = xi ) (31)
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Parameters vs. hyperparameters

• Hyperparameters are parameters that control the algorithm used for
the machine learning process

• Example: learning rate (relaxation parameter) ωk in gradient descent,
line search in Newton, preconditioners in iterative solution of Ax = b

• Iteration: xk+1 = xk + ωkdk
• Stop iteration when ‖xk+1 − xk‖ < TOL

• Parameters are linked to the model that shall be learned. To find
optimal values is the main goal of the learning process

• Example: intercept b and slope m in linear regression y(x) = b + mx
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On machine epsilon and tolerances of algorithms
• We define a tolerance TOL such that

‖xk+1 − xk‖ < TOL. (32)

• In order to avoid difficulties due to machine precision we must choose TOL� ε. For
instance:
i) we have for machine epsilon ε ≈ 10−16 in double precision
ii) Reasonable tolerances are in the range of TOL = 10−8, ..., 10−12.

• Example: Take Newton’s method for solving f (x) = x2 − 2 = 0

• For a classical choice TOL = 1e − 12 we obtain

Iter x f(x)

5 1.414214e+00 4.751755e-14

This means that we need 5 iterations to converge to a root value |f (x)| = 4.75e − 14.

• For TOL = 1e − 6

Iter x f(x)

4 1.414214e+00 6.156754e-07

This means that we need 4 iterations (the scheme is more efficient!) to converge to a root
value |f (x)| = 1.53e − 07 (the final root is less accurate!).

• Here, we already see the trade-off between efficiency and accuracy (recall numerical
concepts from lecture 1)
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On machine epsilon and tolerances of algorithms

• Now let us choose TOL = 1e − 16, a value of the order of the machine precision. Then:

Iter x f(x)

...

6502 1.414214e+00 -4.440892e-16

6503 1.414214e+00 4.440892e-16

6504 1.414214e+00 -4.440892e-16

6505 1.414214e+00 4.440892e-16

...

16368 1.414214e+00 -4.440892e-16

16369 1.414214e+00 4.440892e-16

16370 1.414214e+00 -4.440892e-16

16371 1.414214e+00 4.440892e-16

...

• The computation did not stop (endless loop) because of round-off errors due to machine
precision such that the tolerance cannot be met.

• This shows indeed that we must stay away with TOL from ε and should choose TOL > ε.
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Classification vs. regression

• Classification: automatically assigning a label to an unlabeled
example

• Classification learning solution: take labeled examples and create a
model

• Take now the model with unlabeled input and get a labeled output

• Regression: predicting a real-valued label given an unlabeled example

• Regression learning algorithm: as before: create model with labeled
examples and then use that model with unlabeled examples with
real-valued output
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Example for classification

• Live demo: https://teachablemachine.withgoogle.com/
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Example for regression

• Input: longitude, latitude, total rooms, ... , ocean proximity
• Output: house price in $
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Model-based vs. instance-based learning

• Model-based learning algorithms use training data for creating a
model with parameters learned from the data (e.g., SVM for learning
the slope w and x-axis cut b)

• Instance-based learning: use whole dataset as a model, e.g.,
k-Nearest Neighbors (kNN)

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 61 / 441



Example for model-based learning
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Example for instance-based learning
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Shallow vs. Deep learning

• Shallow learning: learning immediately from the features, e.g.,
decision trees, SVM, shallow neural networks (one hidden layer)

• Deep learning: several stages in the learning process, e.g., deep
neural networks (several hidden layers)
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Example for shallow neural network

...

σ

σ

σ

σ

...

...
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Example for deep neural network

...

σ

σ

σ

σ

...

σ

σ

σ

σ

...

σ

σ

σ

σ

...
...

· · ·
· · ·
· · ·

· · ·
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End of Lecture 2
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Outline lecture 3

• Linear Regression,

• Logistic Regression,

• Decision Tree Learning,

• Random Forest,

• Support Vector Machines,

• k-Nearest Neighbors,

• k-Means Clustering.
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Linear regression
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Problem statement

1 Collection of labeled examples {(xi , yi )}Ni=1, where N is the size of the
collection

2 x ∈ RD

3 Goal 1: Build model
fw ,b(x) = wx + b (33)

where w ∈ RD

4 Goal 2: Determine w and b

5 Solution:

min
w ,b

1

N

N∑
i=1

(fw ,b(xi )− yi )
2 (34)

6 (34) is called objective function

7 The summand in (34) is called loss function
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Questions and problems

1 What is a good numerical algorithm?

2 Is there some theoretical justification?

3 Overfitting: model predicts very well labels of the given examples
used for training, but does not well predict new labeled examples
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Example: We sell honey! 15

1 Situation: we want to start selling honey and ask the question about
the optimal price

2 Approach: do some test sells with different prices and see how many
glasses can be sold

3 Measurement data: price p(x) and number of honey glasses x
No x of sold honey glasses 50 30 21 22 27 30 26 32 28 26 21 16 8 4
Price p(x) per glass 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0

Table: Data of 14 measurements of different prices and the corresponding
number of sold glasses.

4 Goal: Construct p(x) = mx + b, where p(x) denotes the price per
glass

15Richter, Wick, Springer, 2017, p. 308ff
Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 73 / 441



Example: We sell honey!

1 Least-squares problem statement

min
m,b

S := S(m, b) =
1

N

N∑
k=1

(pk − (b + mxk))2, (35)

2 Numerical solution via gradient descent

3 Initial guesses: m0 and p0

4 Step length ρ (relaxation parameter, learning rate)

5 Gradient of the function S(m, b):

∂S

∂m
=

2

N

N∑
k=1

−xk(pk − (mxk + b)) (36)

∂S

∂b
=

2

N

N∑
k=1

−(pk − (mxk + b)) (37)
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Example: We sell honey!

1 Final algorithm for gradient descent:ml+1

bl+1

 =

ml

bl

− ρ
∂S(ml )

∂m
∂S(bl )
∂b

 . (38)

2 Initial guesses b0 = 10.5 and m0 = −2

3 Step length ρ = 10−4

4 Optimal values/solution after Nmax = 200 iterations:

b = 10.5613025417, m = −0.154072634203. (39)

5 Final linear regression function:

p(x) = 10.561︸ ︷︷ ︸
=b

− 0.1541︸ ︷︷ ︸
=m

x . (40)
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Example: We sell honey!

1 Interpretation: What can we do with (40)?

2 Sales volume function (Umsatzfunktion):

U := U(x) = p(x) · x = 10.561x − 0.1541x2 (41)

3 The maximum will denote the number of glasses x at which we make
the largest sale:

U ′(x) = 0 ⇔ 10.5613− 0.30815x = 0 ⇒ x = 34.273 (42)

4 34 sold glasses, each for 5.28 EUR
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Example: We sell honey!

1 Profit function: G (x) = U(x)− K (x)

2 Assume fixed costs of 2.59 EUR per glass

3 Then:

G (x) = U(x)− K (x) = p(x)× x − K (x) (43)

= 10.561x − 0.1541x2 − 2.59x (44)

= 7.971x − 0.1541x2 (45)

4 Limit profit: G ′(x):

G ′(x) = 7.971− 0.30815x (46)

5 Using G ′(x) yields maximum of G (x)

6 Here: 25.87 ≈ 26 glasses, each for 5.28 EUR
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Logistic regression
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Logistic regression

1 Logistic regression is not regression, but a classification learning
algorithm

2 Standard logistic function (sigmoid function):

f (x) =
1

1 + e−x
(47)

3 Logistic regression model:

fw ,b :=
1

1 + e−wx+b
(48)

4 If w and b can be optimized, f (x) denotes a probability of yi being
positive (or negative)
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Logistic regression

1 Goal: maximize likelihood of our training set according to the model

2 Optimization criterion: maximum likelihood

3 Recall: linear regression: minimize average squared loss; mean
squared error (MSE)

4 Logistic regression maximizes likelihood of the training data
according to the model:

Lw ,b :=
N∏
i=1

fw ,b(xi )
yi (1− fw ,b(xi ))(1−yi ) (49)

(see also back in Lecture 2 for the maximum likelihood function in
parameter estimation)

5 In practice, log-likelihood often used in order to avoid numerical
overflow
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Decision Tree
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Decision Tree

1 Acyclic graph, which can be used to make decisions

2 Learning again by data

3 Given: labeled examples, labels belong to {0, 1}
4 ID3 (Iterative Dichotomiser 3)16

5 Optimization criterion: average log-likelihood:

1

N

N∑
i=1

[yi ln fID3(xi ) + (1− yi ) ln(1− fID3(xi )], (50)

where fID3 is a decision tree.

16J. R. Quinlan. “Induction of decision trees”. In: Machine learning 1 (1986),
pp. 81–106. doi: https://doi.org/10.1007/BF00116251.
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Decision Tree

1 Difference logistic regression and decision tree

2 Logistic regression: parametric model fw ,b with some optimal w and b

3 ID3 algorithm: nonparametric model fID3(x) := P(y = 1|x)
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Decision Tree: Algorithm

1 Let S be a set of labeled examples

2 At begin only one node with all examples: S := {(xi , yi )}Ni=1

3 Constant model:

f SID3 :=
1

|S |
∑

(x ,y)∈S

y (51)

4 Go through all features j = 1, . . . ,D and all thresholds t

5 Split set S into two subsets

S− := {(x , y)|(x , y) ∈ S , x j < t} (52)

S+ := {(x , y)|(x , y) ∈ S , x j ≥ t} (53)

6 With two new subsets, go to new leaf nodes

7 Evaluate for (j , t) how good the split is

8 Pick best values (j , t) and split again S into S+ and S−
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Decision Tree: Entropy

1 Evaluate how good split is: take entropy

2 Entropy measures uncertainty about a random variable

3 Maximal entropy: all values of the random variable are equiprobable

4 Minimal entropy: random variable can have only one value

5 Definition of a set of examples S :

H(S) := −f SID3 ln f SID3 − (1− f SID3) ln(1− f SID3) (54)
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Decision Tree: Entropy

1 Split a set of examples by a certain feature j and threshold t

2 Entropy of a split is denoted by H(S−,S+) and defined as weighted
sum of two entropies:

H(S−,S+) :=
|S−|
|S |

H(S−) +
|S+|
|S |

H(S+) (55)

3 In the ID3 algorithm at each leaf node, we find a split that minimizes
the entropy using the previous weighted sum or we stop at this leaf
node

4 Algorithm does not guarantee an optimal solution

5 Improvement via backtracking

6 Extension of ID3: C4.5 algorithm (again Ross Quinlan)17

17J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann
Publishers, 1993.
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Random Forest
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Random Forest

• Train N decision trees on random samples of the data

• Regression: take average of the predicitions of the N decision trees

• Classification: take majority vote of the predicitions of the N decision
trees

• Multiple samples of dataset ⇒ reduce variance ⇒ less overfitting

• Ensemble learning: combine many low-accuracy models into a
high-accuracy meta-model
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Support Vector Machines

Literature: Chapter 12 of Mathematics for Machine Learning18

18Marc Peter Deisenroth, A. Aldo Faisal, and Cheng Soon Ong. Mathematics for
Machine Learning. Cambridge University Press, 2020. isbn: 9781108470049. url:
https://books.google.de/books?id=pFjPDwAAQBAJ.
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Support Vector Machines (SVM)

1 SVM belongs to supervised learning

2 Positive label has value of +1

3 Negative label has value of −1

4 SVM takes every feature vector as a point in a high-dimensional space
RD , where D � 1 is the dimension

5 Goal: construct RD−1 line, i.e., hyperplane to seperate positive and
negative labels

6 This line is the decision boundary

7 SVM is close to linear regression: again two parameters w and b
must be determined
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Support Vector Machines (SVM)

1 SVM equation:
wx − b = 0 (56)

where (just to be clear)

wx =
D∑
i=1

w (i)x (i) (57)

2 Predicted label for some input vector x is

y = sign(wx − b) (58)

3 Goal: Determine optimal values for w∗ and b∗

4 Model:
f (x) = sign(w∗x − b∗) (59)
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Support Vector Machines (SVM)

1 Within the above model, the seperation of positive and negative
labels should be as clear as possible: large margin

2 Margin is the distance between closest examples

3 Minimize Euclidian norm ‖w‖
4 Optimization problem:

min ‖w‖ s.t. yi (wxi − b) ≥ 1 (60)

for i = 1, . . . ,N

5 Solution w∗ and b∗ is called the statistical model

6 Recall: process to build model is called training

7 SVM can have problems with noisy data (no clear separation possible)
or when no hyperplane can be constructed (but possibly a
higher-order polynomial)
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k-Nearest Neighbors
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k-Nearest Neighbors: kNN

1 Nonparametric learning algorithm

2 kNN keeps training examples during entire usage

3 Recall: other training algorithms (e.g., linear regression) use training
data to build model, i.e., w and b, but then does ‘forget’ the training
data

4 kNN: algorithm finds k training examples closest to a new point x

5 Returns either majority label in classification or average label in
regression

6 Procedure of kNN is simple: determine distance between two
examples, e.g., Euclidian distance

7 Further popular choices: cosine similarity, Chebychev distance,
Hamming distance, ...

8 Choice of distance is done a priori, and therefore a hyperparameter
choice
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k-Means Clustering
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k-Means Clustering

1 Choose k , the number of clusters.

2 Put k random feature vectors - centroids - to the feature space

3 Assign the closest centroid to each example

4 Update the location of the centroids as the average of its surrounding
feature vectors

5 Go to step 2 until convergence

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 96 / 441



End of Lecture 3
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Outline lecture 4

• SVD: Singular value decomposition19

• PCA: Principal component analysis20

19Richter and Wick, Einführung in die Numerische Mathematik: Begriffe, Konzepte
und zahlreiche Anwendungsbeispiele.

20I.T. Jolliffe. Principal Component Analysis. Springer, 2002. doi:
https://doi.org/10.1007/b98835.
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Singular Value Decomposition
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Singular Value Decomposition

1 Let A ∈ Rn×m

2 Let U ∈ Rn×n and V T ∈ Rm×m be orthogonal matrices

3 The singular value decomposition of A is defined as

UTAV = Σ, (61)

with Σ ∈ Rn×m

4 We have

Σ =


σ1 0

. . .

0 σn

0 · · · 0

 , if n > m, Σ =

 σ1 0 0
. . .

...
0 σn 0

, if n < m. (62)

5 The values σ1 ≥ σ2 · · ·σp ≥ 0 with p = min{n,m} are called singular
values of the matrix A.
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Existence of singular values

Theorem

Let us suppose there exists an SVD of the matrix A ∈ Rn×m into
orthogonal matrices U ∈ Rn×n, V ∈ Rm×m and an extended diagonal
matrix Σ ∈ Rn×m. Then, the singular values are obtained as roots of the
eigenvalues of the matrix ATA and they are uniquely determined up to
permutation.
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Proof (I)

Proof.

1 We suppose there exists an SVD

2 Then, it holds with orthogonal (regular) matrices U,V

AV = UΣ, ATU = VΣ. (63)

3 Let V = [v1, . . . , vm] and U = [u1, . . . , un] be column vectors

4 Then
Avi = σiui , i = 1, . . . , n, ATui = σivi , i = 1, . . . ,m. (64)

5 It follows for i = 1, . . . , p = min{n,m} that

ATAvi = σiA
Tui = σ2

i vi , i = 1, . . . , p. (65)

6 The σ2
i are the eigenvalues of ATA.

7 Since ATA can be not regular, eigenvalues can be zero
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Proof (II)

Proof.

1 Uniqueness follows from uniqueness of the eigenvalues of ATA.

2 The matrices U,V are in generally not uniquely determined, since

σ1 ≥ σ2 ≥ · · · ≥ σr > σr+1 = · · ·σp = 0 (66)

the last p − r eigenvalues are zero and the matrices U and V can be arbitrarily permuted.
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Existence of an SVD

Theorem

Let A ∈ Rn×m. Then, there exist two orthogonal matrices U ∈ Rn×n and
V ∈ Rm×m with

UTAV = Σ = diag(σ1, . . . , σp) ∈ Rn×m, p = min{n,m}, (67)

and with
σ1 ≥ σ2 ≥ · · · ≥ σp. (68)
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Proof (I)

Proof.

1 Let

σ1 = ‖A‖2 = max
x∈Rn, x 6=0

‖Ax‖2

‖x‖2
> 0. (69)

2 Then, there exists a v ∈ Rn with ‖v‖2 = 1 in which the maximum is taken, i.e.,

‖Av‖2 = σ1, (70)

i.e., Av = σ1u ∈ Rm, we have as well

‖u‖2 = 1. (71)

3 We extend v and u respectively to an orthogonal basis of Rn and Rm, i.e.,

span{v , v2, . . . , vn} = Rn, span{u, u2, . . . , um} = Rm. (72)
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Proof (II)

Proof.

1 With the U1 = [u, u2, . . . , um] and V1 = [v , v2, . . . , vn] it holds due to orthogonality

A1 := UT
1 AV1 =

(
σ1 wT

0 Ã1

)
, (73)

with a vector w ∈ Rm−1 and a matrix Ã1 ∈ Rn−1×m−1.
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Proof (III)

Proof.

1 We will establish that wT = 0 holds true.

2 It follows from orthogonality (see linear algebra lectures) that

‖A1‖2 = ‖A‖2 = σ1. (74)

3 For the vector x = (σ1,w)T ∈ Rm it holds

A1

(
σ1

w

)
=

(
σ2

1 + ‖w‖2

Ã1w

)
, (75)

i.e., ∥∥∥∥A1

(
σ1

w

)∥∥∥∥2

2

= (σ2
1 + ‖w‖2)2 + ‖Ã1w‖2

2 ≥ (σ2
1 + ‖w‖2)2. (76)

4 From ‖A1‖2 = σ1 it follows w = 0

5 Therefore,

A1 = UT
1 AV1 =

(
σ1 0

0 Ã1

)
, (77)

6 We then proceed by induction for Ã1
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Proof (IV)

Proof.

1 If in step i it holds
σi = ‖Ãi−1‖ = 0, (78)

then the process stops.

2 The matrix Ãi−1 is then a rectangular zero matrix and the singular value decomposition is
given.
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Example (I)

1 We determine the SVD of the singular matrix A =

(
1 1
7 7

)
.

2 Rank of A is one since both columns are linearly dependent

3 Determine first ATA as

ATA =

(
50 50
50 50

)
. (79)
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Example (II)

1 Eigenvalues λ1 = 100 and λ2 = 0.

2 The eigenvectors are

v1 =
1√
2

(
1
1

)
, v2 =

1√
2

(
1
−1

)
. (80)

3 Determine matrix V :

V = [v1, v2] =
1√
2

(
1 −1
1 1

)
(81)

4 The first singular value is σ1 = λ(ATA) =
√

100 = 10.
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Example (III)

1 Determine now U:

u1 =
Av1

10
=

(1, 7)√
50

, (82)

u2 =
Av2

10
=

(−7, 1)√
50

. (83)

It holds

U = [u1, u2] =
1√
50

(
1 −7
7 1

)
. (84)

2 Clearly, it holds UTU = I .

3 The final decomposition is given by

A = UΣV T =
1√
50

(
1 −7
7 1

)(
10 0
0 0

)
1√
2

(
1 1
−1 1

)
. (85)
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Principal Component Analysis

R2

→

R
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Principal Component Analysis

1 Nonparametric method (any data set can be treated, and no
parameters to be tuned)

2 Reducing complex data set to a lower dimension by projection

3 PCA computes principal components

4 Change of basis on the data

5 Sometimes not all principal components needed, but only the first
ones

6 PCA often computed using SVD of the data matrix
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Principal Component Analysis: Change of basis

1 Goal: identify new basis to re-express a data set

2 Hope: ”see” a structure in the data

3 Given sample X ∈ Rm×n

4 Vector space of dimension m

5 Construct orthonormal basis
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Principal Component Analysis: Change of basis

1 Construct m ×m identity matrix:

B =


b1

b2
...
bm

 = I (86)

2 Each row is an orthonormal basis vector bi with m components

3 Key tool: linearity, because vectors of the data set shall be presented
with the help of linear combination of the basis vectors
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Principal Component Analysis: Change of basis

1 Let X ∈ Rm×n be original data set

2 Each column is a single sample

3 Let Y ∈ Rm×n related to a linear transformation P

4 Y shall become new representation

5 We have the basis change:

PX = Y (87)

6 P transforms X into Y and is a rotation

7 Rows of P are new basis vectors

8 Row vectors will become principal components

9 Question: what is a good choice of P? How can we express the data
best?
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Principal Component Analysis: Noise

1 Problem: measurement noise in the data

2 Common measure: signal-to-noise ratio (SNR), or in terms of
variances:

SNR =
σ2
signal

σ2
noise

(88)

3 SNR � 1 : high precision measurement

4 SNR ≈ 1 : noisy data
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Principal Component Analysis: Covariance matrix

1 Let two sets of measuremens be given:

A = {a1, a2, . . . , an}, B = {b1, b2, . . . , bn} (89)

2 Variances:

σ2
A =

1

n

∑
i

a2
i , σ2

B =
1

n

∑
i

b2
i (90)

3 Covariance between A and B:

σ2
AB =

1

n

∑
i

aibi (91)

4 Measures degree of linear relationship between two variables

5 Large values indicate correlated data

6 σAB = 0 if and only if A and B are uncorrelated
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Principal Component Analysis: Covariance

1 Before we had

σ2
ab =

1

n
abT (92)

2 Generalization to a matrix X ∈ Rm×n

3 Then:

CX =
1

n
XXT (93)

4 Clearly, CX ∈ Rm×m

5 Variance of CX on the diagonal, large values correspond to some
‘interesting’ structure

6 Covariance on off-diagonal, high magnitude correspond to high
redundancy
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Principal Component Analysis: Covariance

1 How does optimized covariance matrix CY look like?

2 Optimal would be: CY is a diagonal matrix (decorrelation)

3 PCA assumes that all basis vectors {p1, . . . , pm} are orthonormal
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Principal Component Analysis: Simple algorithm

1 Select a normalized direction in the m dimensional space and where
the variance in X is maximized

→ vector p1

2 Find next direction being orthogonal to p1 and where variance is
maximized

→ vector p2

3 Repeat until m

4 Resulting ordered set of pi , i = 1, . . . ,m are the principal components
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Principal Component Analysis: Solution via eigenvalue
decomposition

1 Goal: find some orthonormal matrix P for

Y = PX (94)

and where

CY =
1

n
YY T (95)

is a diagonal matrix

2 The rows of P are the principal components of X

3 It holds

CY =
1

n
YY T = PCXP

T (96)
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Principal Component Analysis: Solution via eigenvalue
decomposition

1 Recall from linear algebra: Given a symmetric matrix A, it holds

A = ZDZT (97)

where D is a diagonal matrix and Z contains the eigenvectors of A

2 For PCA, the following choice is made: construct P such that each
row pi is an eigenvector of 1

nXX
T

3 Then:
CY = PCXP

T = (PPT )︸ ︷︷ ︸
=I

D (PPT )︸ ︷︷ ︸
=I

= D (98)

4 Finally, we have that the principal components of X are the
eigenvectors of CX = 1

nXX
T

5 And that the i .th diagonal value of CY is the variance of X along the
vector pi
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Principal Component Analysis: Relation to SVD

1 Briefly recall X = UXΣV T
X , where X ∈ Rm×n

2 Given X as a data matrix, construct new matrix Y ∈ Rn×m:

Y =
1√
n
XT (99)

3 Assume: Each column of Y has zero mean

4 Indeed

Y TY =
1

n
XXT = CX (100)

where again CX is the covariance matrix of X

5 From before we know: principal components of X are the
eigenvectors of CX

6 SVD of Y : columns of matrix VY contain the eigenvectors of
Y TY = CX

7 Thus: columns of VY = UX are principal components of X
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End of Lecture 4
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Outline

• Artificial Neural Networks

• Weights, biases

• Cost function

• Training

• Hidden layers

• Stochastic gradient descent

• Back propagation (chain rule)

• Main literature of this lecture Higham/Higham21

• See also Bishop22 and Nielsen23

21C. F. Higham and D. J. Higham. “Deep Learning: An introduction for Applied
Mathematicians”. In: SIAM review 61.4 (2019), pp. 860–891.

22Bishop, Pattern recognition and machine learning.
23Michael A. Nielsen. Neural Networks and Deep Learning. 2018. url:

http://neuralnetworksanddeeplearning.com/.
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Neural networks

σ
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σ
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· · ·
· · ·
· · ·

· · ·
Literature: Deepmind lecture,24 neuralnetworksanddeeplearning.com25

24Wojciech Czarnecki. Lecture 2: Neural Networks Foundations. University Lecture.
2020. url: https://storage.googleapis.com/deepmind-

media/UCLxDeepMind_2020/L2%20-%20UCLxDeepMind%20DL2020.pdf.
25Nielsen, Neural Networks and Deep Learning.
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Basic ingredients (clear from previous lectures)

1 Given some labeled data {x , y}Ni=1

2 Activation function: a nonlinear function, e.g. sigmoid 26 (Lecture
3):

σ(x) =
1

1 + e−x
(101)

3 Scaling and shifting: weighting and biasing the input:
• Scaling = weighting W = steepness of the transition zone
• Shifting = biasing b = location of the transition zone
• Example σ(3(x − 5)): scaling by factor 3 and shift by −5

4 Vector-valued situation: z ∈ Rm and σ : Rm → Rm is treated in a
component-wise fashion:

(σ(z))i = σ(zi ) (102)

26There is a plethora of other activation functions: hyperbolic tangent, rectified linear
unit, ...
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Basic notation neural networks
1 (Artificial) neuron: outputs a single number, input from previous

neurons
2 Current neuron receives data, multiplies by weight, adds bias, applies

activation function
3 Collect layers of neurons and collect output in vector a ∈ Rs2

4 Output from the next layer:

σ(Wa + b) where W ∈ Rs1×s2 , b ∈ Rs1 (103)

5 Weights are in W
6 Columns of W : number of neurons that yields vector a at previous

layer
7 Rows of W : number of neurons at current layer
8 Biases are in b (components corresponds to current number of

neurons)
9 Consider ith neuron, then the ith component is

σ

(∑
j

wijaj + bi

)
(104)
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Example (I)

1 Neural network with four layers

2 Input data has the values: two neurons at input layer l = 1

3 Layer l = 2 has also two neurons

4 Layer l = 3 has three neurons

5 Layer l = 4 has two neurons (output layer)

6 What are the weights and biases?

7 W [2] ∈ R2×2, where [2] indicates layer l = 2

8 b[2] ∈ R2

9 Output from layer l = 2:

σ(W [2]x + b[2]) ∈ R2 (105)
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Example (II)

1 Layer l = 3 has three neurons with input from R2

2 W [3] ∈ R3×2; again the three rows stand for the three current
neurons and two columns are the input from two previous neurons

3 b[3] ∈ R3

4 Output from layer l = 3:

σ(W [3]σ(W [2]x + b[2]) + b[3]) ∈ R3 (106)

5 Task: quickly double-check yourself that W [3]σ(W [2]x + b[2]) is
well-defined as matrix-vector multiplication
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Example (III)

1 Layer l = 4 has two neurons with input from R3

2 W [4] ∈ R2×3; again the two rows stand for the two current neurons
and three columns are the input from three previous neurons

3 b[4] ∈ R2

4 Output from layer l = 3:

σ(W [4]σ(W [3]σ(W [2]x + b[2]) + b[3]) + b[4]) ∈ R2 (107)

5 Define nonlinear function F : R2 → R2 with

F (x) := σ(W [4]σ(W [3]σ(W [2]x + b[2]) + b[3]) + b[4]) (108)

6 Total of 23 parameters: weights 4 + 6 + 6; biases 2 + 3 + 2
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Example (IV)

1 What can we do with the previous developments?

2 Data points in two categories A and B

3 Data points {x i}10
i=1

4 Target output y(x i ) with

y(x i ) =

{
[1, 0]T if x i is in category A

[0, 1]T if x i is in category B.
(109)

5 Cost function, e.g. mean squared error 27:

S := S(W [2],W [3],W [4], b[2], b[3], b[4]) =
1

10

10∑
i=1

1

2
‖y(x i )− F (x i )‖2

2. (110)

6 Training of the neural network: determining the weights and biases

7 Recall: nonlinear, nonconvex, optimization problem with 23 variables
27For classification problems (categorical) crossentropy is also frequently used as an

activation function.
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General notation of neural networks

1 Input layer l = 1

2 Hidden layers l = 2, . . . , L− 1

3 Output layer l = L

4 Deep learning : many hidden layers

5 Per layer nl neurons

6 Input dimension: n1

7 Output dimensions: nL

8 Nonlinear function F : Rn1 → RnL

9 Weight matrices: W [l ] ∈ Rnl×nl−1

10 Element w
[l ]
jk is the weight of neuron j at layer l getting output from

neuron k at layer l − 1
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General notation of neural networks

1 Given input x ∈ Rn1

2 Output (activation) a
[l ]
j from neuron j at layer l

3 Then:

a[1] = x ∈ Rn1 (111)

a[l ] = σ(W [l ]a[l−1] + b[1]) ∈ Rnl (112)

for l = 2, 3, . . . , L.

4 Feedforward algorithm for getting final output

a[L] ∈ RnL . (113)
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General notation of neural networks

1 Labeled data: {x i , y(x i )}Ni=1

2 Each x i ∈ Rn1 and y(x i ) ∈ RnL

3 Quadratic cost function:

S =
1

N

N∑
i=1

1

2
‖y(x i )− a[L](x i )‖2

2 (114)

4 This minimization problem can be solved as for instance in Lecture 3
with gradient descent; see also lectures to introduction to numerics28

and of course, lectures/textbooks on numerical optimization29

28Richter and Wick, Einführung in die Numerische Mathematik: Begriffe, Konzepte
und zahlreiche Anwendungsbeispiele.

29Jorge Nocedal and Stephen J. Wright. Numerical Optimization. second. New York,
NY, USA: Springer, 2006.
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Gradient descent

1 Recall that solving min(S) means to determine all entries of W and b

→ vector p ∈ Rs with s � 1 (huge !)

2 Thus: S : Rs → R
3 For the previous example we had s = 23

4 Gradient descent:
pk+1 = pk − η∇S(pk) (115)

with the learning rate η > 0

5 For large numbers of training points N and large number of
parameters s this procedure becomes expensive
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Stochastic gradient descent

1 Idea: do not go over all training points N, but choose one point
randomly

2 Loss function:

Cx i =
1

2
‖y(x i )− a[L](x i )‖2

2 (116)

3 Algorithm: Choose i ∈ N from {1, 2, 3, . . . ,N}. Solve

pk+1 = pk − η∇Cx i (pk) (117)

4 Clearly for k →∞ more and different training points i are chosen

5 Two basic methods:
• with replacement: certain i can be chosen multiple times
• without replacement: do not choose again i in order to enforce to go

through (all) different training data

6 N steps is called an epoch
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Stochastic gradient descent

1 Algorithm: Shuffle {1, . . . ,N} into new order {k1, . . . , kN}, perform
gradient descent

2 Variant: Choose {k1, . . . , km} randomly from {1, . . . ,N}, perform
gradient descent

3 In the latter {xki}mi=1 is called minibatch

4 Other iterative methods such as quasi-Newton, Adam,30 Newton are
possible, but with the usual difficulties in approximating or computing
the Hessian matrix, but with the advantage of faster convergence
(superlinear, quadratic)

30Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization.
2017. arXiv: 1412.6980 [cs.LG].
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Back propagation

1 It is obvious that in (stochastic) gradient descent, partial differatives
of S are required

2 Back propagation computes partial derivatives w.r.t. weights and
biases

3 Let us fix the training point x i

4 Loss function Cx i is a function of weights and biases

5 Short hand notation:

C := Cx i =
1

2
‖y − a[L]‖2

2 (118)

6 Output of neural network: a[L]

7 Clearly: C , i.e., weights and biases, are due to a[L]

8 Need to propagate information from a[L] backwards (see also
Tutorial 2 on reverse mode automatic differentiation)
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Back propagation
1 Introduce weighted input

z [l ] = W [l ]a[l−1] + b[l ] ∈ Rnl (119)

for l = 2, 3, . . . , L

2 Weighted input for neuron j at layer l denoted by z
[l ]
j

3 With this from before (example at the beginning):

a[l ] = σ(z [l ]) (120)

for l = 2, 3, . . . , L

4 Partial derivative δ[l ] ∈ Rnl with

δ
[l ]
j =

∂C

∂z
[l ]
j

(121)

for j = 1, . . . , nl and l = 2, . . . , L

5 δ
[l ]
j measures sensitivity of C w.r.t. z

[l ]
j
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Back propagation: some analysis

1 Define Hadamard product: x , y ∈ Rn, then x � y ∈ Rn with
component-wise multiplication, i.e., (x � y)i = xiyi

2 Then:

Lemma

It holds

δ[L] = σ′(z [L])� (a[L] − y) (122)

δ[l ] = σ′(z [l ])� (W [l+1])T δ[l+1], l = 2, . . . , L− 1 (123)

δ
[l ]
j =

∂C

∂b
[l ]
j

, l = 2, . . . , L (124)

δ
[l ]
j a

[l−1]
k =

∂C

∂w
[l ]
jk

, l = 2, . . . , L (125)
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Back propagation: proofs
1 We show (122):

2 By a[L] = σ(z [L]), we have

∂a
[L]
j

∂z
[L]
j

= σ′(z
[L]
j ) (126)

3 Also from C = 1
2‖y − a[L]‖2

2, we obtain

∂C

∂a
[L]
j

= −(yj − a
[L]
j ) (127)

(chain rule and component-wise differentiation!)

4 Again chain rule

δ
[L]
j =

∂C

∂z
[L]
j

=
∂C

∂a
[L]
j

∂a
[L]
j

∂z
[L]
j

= (a
[L]
j − yj)σ

′(z
[L]
j ). (128)
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Back propagation: proofs

1 We show (123):

2 Again chain rule to compute values from z
[l ]
j to {z [l+1]

k }nl+1

k=1

3 Then with previous definitions:

δ
[l ]
j =

∂C

∂z
[l ]
j

=

nl+1∑
k=1

∂C

∂z
[l+1]
k

∂z
[l+1]
k

∂z
[l ]
j

=

nl+1∑
k=1

δ
[l+1]
k

∂z
[l+1]
k

∂z
[l ]
j

(129)

4 From (119) we can link z
[l+1]
k and x

[l ]
j :

z
[l+1]
k =

nl∑
s=1

w
[l+1]
ks σ(z

[l ]
s ) + b

[l+1]
k (130)
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Back propagation: proofs

1 Differentiation yields

∂z
[l+1]
k

∂z
[l ]
j

= w
[l+1]
kj σ′(z

[l ]
j ) (131)

2 Inserting into (129) gives us

δ
[l ]
j =

∂C

∂z
[l ]
j

=

nl+1∑
k=1

δ
[l+1]
k

∂z
[l+1]
k

∂z
[l ]
j

=

nl+1∑
k=1

δ
[l+1]
k w

[l+1]
kj σ′(z

[l ]
j ) (132)

3 In compact form this means:

δ
[l ]
j = σ′(z

[l ]
j )
(

(W [l+1])T δ[l+1]
)
j

(133)
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Back propagation: proofs

1 We show (124):

2 We start from (119) and (120):

z
[l ]
j = (W [l ]σ(z [l−1]))j + b

[l ]
j . (134)

3 We see from the construction that z [l−1] does not depend on b
[l ]
j

4 Then differentiation simply yields (no chain rule this time here!)

∂z
[l ]
j

∂b
[l ]
j

= 1 (135)

5 In this next step we again use the chain rule

∂C

∂b
[l ]
j

=
∂C

∂z
[l ]
j

∂z
[l ]
j

∂b
[l ]
j

=
∂C

∂z
[l ]
j

= δ
[l ]
j (136)
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Back propagation: proofs
1 We show (125):

2 We start again from (119):

z
[l ]
j =

nl−1∑
k=1

w
[l ]
jk a

[l−1]
k + b

[l ]
j (137)

3 Since z
[l ]
j does not depend on b

[l ]
j we obtain by differentiation:

∂z
[l ]
j

∂w
[l ]
jk

= a
[l−1]
k (138)

4 Clearly from (137) we also see

∂z
[l ]
s

∂w
[l ]
jk

= 0 (139)

for s 6= j
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Back propagation: proofs

1 Then, again chain rule:

∂C

∂w
[l ]
jk

=

nl∑
s=1

∂C

∂z
[l ]
s

∂z
[l ]
s

∂w
[l ]
jk

=
∂C

∂z
[l ]
j

∂z
[l ]
j

∂w
[l ]
jk

=
∂C

∂z
[l ]
j

a
[l−1]
k = δ

[l ]
j a

[l−1]
k (140)

2 Interpretation of (137) : jth neuron at layer l uses weights from jth
row of W [l ] in a linear fashion
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Back propagation: interpretations

1 Forward pass to evaluate a[L] from previous a[l ]

2 This yields from (122) then δ[L]

3 Then, using (123) we can compute δ[l ] in a backward pass

4 With this, we have all ingredients to compute the partial derivatives
of the cost function C w.r.t. the parameters of the neural network
with the help of the relations (124) and (125)

5 The entire procedure is called back propagation
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Algorithm for neural network training
1 NIter : maximal number of (stochastic) gradient descent iterations

2 For s = 1, . . . ,NIter

3 Choose k uniformly randomly from {1, . . . ,N}
4 xk is current training point

5 Set a[1] = xk

6 For l = 2, . . . , L

7 z [l ] = W [l ]a[l−1] + b[l ]

8 a[l ] = σ(z [l ])

9 D [l ] = diag(σ′(z [l ])) Hadamard product

10 end for

11 δ[L] = D [L](a[L] − y(xk ))

12 For l = L− 1, . . . , 2

13 δ[l ] = D [l ](W [l+1])T δ[l+1]

14 end for

15 For l = L, . . . , 2

16 W
[l ]
s+1 := W

[l ]
s − ηδ[l ](a[l−1])T Update gradient descent

17 b
[l ]
s+1 := W

[l ]
s − ηδ[l ] Update gradient descent

18 end for

19 end for
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Algorithm: typical numerical difficulties

1 Choosing step length (learning rate) η

2 Initializing initial guesses for weights W and b

3 Choosing the optimal size of the neural network (bigger networks
generally more accurate, but more expensive to train)

4 Robustness and efficiency of overall stochastic gradient algorithm

5 Very flat or steep gradients of S

6 Choosing the size of the minibatches

7 Stopping criterion NIter (train sufficiently; but avoid overfitting)
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End of Lecture 5
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2.1 Lecture 5: Artificial Neural Networks (ANN)
2.2 Lecture 6: Universal Approximation Theorem
2.3 Lecture 7: Convolutional Neural Networks (CNN)
2.4 Lecture 8: Recurrent Neural Networks (RNN)
2.5 Lecture 9: Transformer
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3.4 Lecture 14: Neural Operators and Outlook
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Outline

• Borel measures

• Some theorems from analysis and functional analysis

• Universal approximation: general version with proof

• Key assumptions: density result and discriminatory of activation
function

• Proofs that sigmoid and ReLU satisfy univeral approximation property

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 157 / 441



Main literature

• Guilhoto31

• Hornik et al.32

• Werner33 (basics in FA and function spaces; german)

• Brezis34 (also FA; in english)

31Leonardo Ferreira Guilhoto. An Overview Of Artificial Neural Networks for
Mathematicians. 2018. url:
https://math.uchicago.edu/~may/REU2018/REUPapers/Guilhoto.pdf.

32Kurt Hornik, Maxwell Stinchcombe, and Halbert White. “Multilayer feedforward
networks are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–366.
issn: 0893-6080. doi: https://doi.org/10.1016/0893-6080(89)90020-8. url:
https://www.sciencedirect.com/science/article/pii/0893608089900208.

33Dirk Werner. Funktionalanalysis. Springer, 2018.
34H. Brezis. Functional Analysis, Sobolev Spaces and Partial Differential Equations.

Springer, 2011. doi: https://doi.org/10.1007/978-0-387-70914-7.
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Universal Approximation Theorem

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 159 / 441



Borel measures35

Definition

Let T be a metric (or topological) space and Σ the σ algebra of Borel sets
(i.e., the induced σ algebra obtained from the open sets). The σ algebra
on T is a collection of subsets of T satisfying: it includes T , the
complement is closed, it is closed under countable unions and countable
intersections. A measure on µ on Σ is called Borel measure. The space
(T ,Σ) is denoted as measurable space or Borel space. A positive Borel
measure µ is regular if

• µ(C ) <∞ for all compact C

• For all A ∈ Σ it holds

µ(A) = sup{µ(C ) : C ⊂ A, C compact } (141)

35Dirk Werner, Funktionalanalysis, Springer 2018
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Lebesgue Dominated Convergence Theorem36

Theorem

Let X be a measure space and µ a Borel measure on X . Let g : X → R be
an L1 regular function and {fn} be a sequence of measurable functions
from X → R such that

|fn(x)| ≤ g(x) (142)

for all x ∈ X and {fn} converges pointwise to a function f . Then f is
integrable and

lim
n→∞

∫
fn(x) dµ(x) =

∫
f (x) dµ(x). (143)

36Haim Brezis; Functional Analysis, Sobolev Spaces, and Partial Differential
Equations, Springer, 2010.
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Hahn-Banach Theorem37 38

Theorem (Geometric form; separation of convex sets through linear
continuous functionals)

Let V be a normed space and A,B ⊂ V be two non-empty, closed, disjoint
and convex subsets and one being compact. Then, there exists a
continuous linear functional f 6= 0 and some α ∈ R and ε > 0 such that
f (x) ≤ α− ε for any x ∈ A and f (y) ≥ α + ε for any y ∈ B.

Corollary

Let V be a normed vector space over R and U ⊂ V be a linear subspace
such that Ū 6= V . Then, there exists a continuous linear mapping
f : V → R with f (x) = 0 for any x ∈ U and f 6≡ 0.

37Haim Brezis; Functional Analysis, Sobolev Spaces, and Partial Differential
Equations, Springer, 2010.

38Dirk Werner; Funktionalanalysis, Springer 2018
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Riesz Representation Theorem39 40

Definition (Space of continuous functions)

Let Ω be a metric (or even only topological) space. Think of subsets of R
as simplest example. Then, we define
C (Ω) := {f : Ω→ R|f is continuous }.

Theorem (Riesz representation theorem)

Let Ω be a subset of Rn and F : C (Ω)→ R be a linear functional. Then,
there exists a signed Borel measure µ on Ω such that for any f ∈ C (Ω),
we have

F (f ) =

∫
Ω
f (x)dµ(x). (144)

Often the duality product notation F (f ) = 〈F , f 〉 is used.

39Haim Brezis; Functional Analysis, Sobolev Spaces, and Partial Differential
Equations, Springer, 2010.

40Dirk Werner; Funktionalanalysis, Springer 2018
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Set of neural network functions

• We concentrate on one single hidden layer!

• In total: three layers

• In the following we denote the sigmoid function σ (Lecture 5) by
simply f (reason: otherwise confusing with σ algebra)

Definition

For f : R→ R an activation function, we define

Σn(f ) = span{f (y · x + θ)|y ∈ Rn, θ ∈ R}. (145)

For the motivation of f (y · x + θ), we refer the reader to Lecture 5. The
Σn(f ) contains all functions which can be calculated by a neural network
with one single hidden layer.
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Universal approximator

Definition

Let Ω be a topological space and f : R→ R. We call a neural network
with activation function f a universal approximator on Ω if Σn(f ) is
dense in C (Ω).

Definition (Density)

A metric space U is dense in V when Ū = V , where Ū denotes the closure
of U.

• Example 1: The set Q of rational numbers is dense in R.

• Example 2: The space of polynomial functions Pk of degree k is
dense in C [a, b] (Weierstrass approximation theorem).
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Discriminatory functions

Definition

Let n ∈ N. We call an activation function f : R→ R n-discriminatory if
the only signed Borel measure µ with∫

f (y · x + θ)dµ(x) = 0 ∀y ∈ Rn, θ ∈ R (146)

is the zero set measure.

Definition

We say an activation function f : R→ R is discriminatory if it is
n-discriminatory for any n.
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Sigmoid and ReLU

Definition

Recall from Lecture 5 and 3 the sigmoid function. A function f : R→ R is
called sigmoid if it satisfies the following properties:

lim
x→∞

f (x) = 1 (147)

lim
x→−∞

f (x) = 0. (148)

Definition

The Rectified Linear Unit (ReLU) is ReLU : R→ R and is defined by

ReLU(x) := max(0, x). (149)
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Main theorem: universal approximator

Theorem

Let f be a continuous discriminatory function. Then, a neural network
with f as activation function is a universal approximator.

In words:

• Any activation function will lead to a network with universal
approximation property if and only if this function is not a polynomial
almost everywhere

• Almost everywhere is meant in the sense of Lebesgue measure theory
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Proof (I).

1 We prove this by contradiction

2 Assume that Σn(f ) is not dense in C (In), where In := [0, 1]n

3 According to the definition of density (see before), we have
Σn(f ) 6= C (In).

4 This fulfills the assumption of the Hahn-Banach theorem, namely for
Ū 6= V , there exists some continuous linear functional F : C (In)→ R
such that F 6≡ 0, but F (g) = 0 for any g ∈ Σn(f )

5 The Riesz representation theorem yields (why? Because we have a
linear continuous functional F ) that there exists some Borel measure
µ such that

F (g) =

∫
In

g(x)dµ(x) for all g ∈ C (In). (150)
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Proof (II).

1 According to our definition, for y and θ the function f (y · x + θ) is in
Σn(f )

2 Moreover, this holds for any y and any θ and therefore it holds even
that f (y · x + θ) is in Σn(f )

3 Since by assumption f is discriminatory, this yields that for all y ∈ Rn

and θ ∈ R, we have ∫
f (y · x + θ)dµ(x) = 0 (151)

from which follows µ = 0.

4 Thus: F (g) = 0 for any g ∈ C (In)

5 Thus F ≡ 0

6 But this contradicts the Hahn-Banach theorem and the assertion is
shown.
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Sigmoid is discriminatory

• With the previous theorem, we now need to check the assumptions,
namely that a specific activation function (e.g., sigmoid, ReLU, ...)
are continuous and discriminatory.

Lemma

All bounded Borel measurable sigmoid functions are discriminatory.
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Proof (I).

1 Clearly, sigmoid is continuous.

2 We show now that sigmoid is discriminatory.

3 Let f be a bounded, Borel measurable sigmoid function

4 Assume that for a given µ, we have∫
In

f (y · x + θ)dµ(x) = 0 for all y ∈ Rn, θ ∈ R (152)

5 Goal is to show that µ = 0
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Proof (II).

1 Define a function γ and use λ, φ ∈ R such that

γ(x) = lim
λ→∞

f (λ(y · x + θ) + φ) =


1 y · x + θ > 0

f (φ) y · x + θ = 0

0 y · x + θ < 0

(153)

2 The limits are clear and due to the definition of the sigmoid function
(see this lecture before and also Lecture 3 and 5)

3 Employ the Lebesgue Dominated Convergence Theorem and (152):∫
In

γ(x)dµ(x) = lim
λ→∞

∫
In

f (λ(y · x + θ) + φ)dµ(x) = 0 (154)
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Proof (III).

1 To proceed we use the construction and limits of γ(x)

2 Define the three sets:

H+ := {x ∈ In| y · x + θ > 0} (155)

H := {x ∈ In| y · x + θ = 0} (156)

H− := {x ∈ In| y · x + θ < 0} (157)

(158)

3 Then from (154), we obtain∫
In

γ(x)dµ(x) =

∫
H+

1dµ(x) +

∫
H
f (φ)dµ(x) +

∫
H−

0dµ(x) (159)

= 1µ(H+) + f (φ)µ(H) (160)

= 0 (zero due to the assumption) (161)

for any y , θ
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Proof (IV).

1 Moreover, the previous is true for any φ. Due to the definition of f ,
we have

f (φ)→ 1 for φ→∞ (162)

2 Then:
1µ(H+) + f (φ)µ(H) −→

φ→∞
µ(H+) + µ(H) = 0 (163)

3 Also:
f (φ)→ 0 for φ→ −∞ (164)

4 Then:
1µ(H+) + f (φ)µ(H) −→

φ→−∞
µ(H+) = 0 (165)
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Proof (V).

1 We now consider a bounded Lebesgue integrable functional, namely
F : L∞ → R:

F (h) :=

∫
In

h(y · x)dµ(x) (166)

2 Recall from Analysis and/or functional analysis:
• The space L∞(E ), with E ⊂ Rn of a non-empty, bounded, Lebesgue

measurable set, contains the essentially bounded measurable functions
up to a Lebesgue measure zero.

• Thus: for f : E → R, we have the norm

‖f ‖L∞(E) = ess sup
x∈E
|f (x)| (167)

3 For this reason, the above integral is well-defined per definition
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Proof (VI).

1 Take now the indicator function 1[θ,∞) on the half-open interval
[θ,∞), we obtain

F (1[θ,∞)) =

∫
In

1[θ,∞)(y · x)dµ(x) = µ(H+) + µ(H) = 0 (168)

2 Same for the open interval (θ,∞):

F (1(θ,∞)) =

∫
In

1(θ,∞)(y · x)dµ(x) = µ(H+) = 0 (169)

where µ(H) = 0.
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Proof (VII).

1 Due to linearity of F (h), we clearly obtain for any indicator function h:

F (h) = 0. (170)

2 Thus, for any simple function (indicator functions are simple!41)
F (h) = 0

3 Since simple functions are dense in L∞(R), it follows that

F ≡ 0 (171)

4 We recall our goal is to show that µ = 0

41See Analysis textbooks, e.g., (H. Amann and J. Escher. Analysis III. Birkhäuser,
2008. url: https://link.springer.com/book/10.1007/978-3-7643-8884-3)
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Proof (VIII).

1 We just have established that for simple functions F ≡ 0

2 Take now specific realizations of simple functions, namely sine and
cosine, which are clearly in L∞

3 Then:

F (cos) + iF (sin) =

∫
In

(cos(y · x) + i sin(y · x))dµ(x) (172)

=

∫
In

e iy ·xdµ(x) (173)

= 0 (since F ≡ 0) (174)

4 This is true for all y ∈ Rn

5 We recognize that the above is the Fourier transform of µ is zero

6 Due to the definition of e iy ·x (first part of integrand strictly positive)
this is only possible for µ = 0

7 This finishes the proof.
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ReLU is discriminatory

Lemma

The ReLU function is 1-discriminatory.
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Proof (I).

1 Clearly, ReLU is continuous.

2 We show now that ReLU is discriminatory.

3 Let µ be a signed Borel measure

4 Assume for all y ∈ R and θ ∈ R, it holds∫
ReLU(yx + θ)dµ(x) = 0 (175)

5 Goal: we show that µ = 0
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Proof (II).
1 Procedure: construct sigmoid bounded, continuous function (i.e.,

Borel measurable)

2 Idea: subtract two ReLU functions (with different parameters) to
construct such a sigmoid function f

3 Afterward apply just previous lemma for f

4 To this end, we use

f (x) =


0 x < 0

x x ∈ [0, 1]

1 x > 1

(176)

5 With this, any function of the form g(x) = f (y · x + θ) with y 6= 0
can be constructed via

g(x) = ReLU(y · x + θ1)− ReLU(y · x + θ2) (177)

with θ1 = −θ/y and θ2 = (1− θ)/y

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 182 / 441



Proof (III).

1 For y = 0, we set

g(x) = f (θ) =

{
ReLU(f (θ)) f (θ) ≥ 0

−ReLU(−f (θ)) f (θ) ≤ 0
(178)

2 Then, for any y ∈ R and θ ∈ R, we obtain∫
f (y · x + θ)dµ(x) =

∫
(ReLU(y · x + θ1)− ReLU(y · x + θ2))dµ(x) (179)

=

∫
ReLU(y · x + θ1)dµ(x)−

∫
ReLU(y · x + θ2)dµ(x)

(180)

= 0− 0 = 0 (181)

3 Since f is discriminatory by the previous lemma, we obtain the result
µ = 0, and finish the proof.
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Density result

Lemma

If Σ1(f ) is dense in C ([0, 1]), then the extension Σn(f ) is dense in
C ([0, 1]n).
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Proof (I).

1 We first notice that

span{g(a · x)| a ∈ Rn, g ∈ C ([0, 1])} = C ([0, 1]n) (182)

2 This means that for any h ∈ C ([0, 1]n) and ε > 0 and
{gk}k ⊂ C ([0, 1]) such that for some N ∈ N∣∣∣∣∣h(x)−

N∑
k=1

gk(ak · x)

∣∣∣∣∣ < ε

2
(183)

3 Use assumption Σ1(f ) is dense in C ([0, 1]) and consider each
gk(ak · x), we obtain∣∣∣∣∣gk(ak · x)−

Nk∑
i=1

f (yk,i · x + θk,i )

∣∣∣∣∣ < ε

2N
(184)

for some sequences {yk,i}i∈N and {θk,i}i∈N.
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Proof (II).

1 We proceed with typical arguments as classical proofs in Analysis,
which means that we now apply the triangle inequality and obtain
ε/2 + ε/2 = ε

2 In detail:∣∣∣∣∣h(x)−
N∑

k=1

Nk∑
i=1

f (yk,i · x + θk,i )

∣∣∣∣∣ <
∣∣∣∣∣h(x)−

N∑
k=1

gk(a · x)

∣∣∣∣∣+ N
ε

2N

(185)

<
ε

2
+
ε

2
(186)

= ε. (187)

3 This finishes the proof.
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Main theorem

We have thus established with the previous results:

Theorem

Neural networks with sigmoid or ReLU as activation functions are
universal approximators.

• As further reading, we mention that in,42 these results are further
extended to more hidden layers with l ≥ 4 (input, output and l − 2
hidden layers).

42Guilhoto, An Overview Of Artificial Neural Networks for Mathematicians.
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End of Lecture 6
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Outline

• Convolution

• Example of 2D images

• Convolutional neural networks (CNN)

• Conv layer, pooling layer, fully connected layer

• Kernel and filters

• Example of a ConvNet architecture
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Convolutional Neural Network
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Convolution of functions (I)

Definition

If f , g : Rn → K with K ∈ {R,C} are two measurable functions, we define
the convolution of f and g as

(f ∗ g)(x) :=

∫
Rn

f (y)g(x − y) dy (188)

for almost all x ∈ Rn.

Note that the convolution is commutative, i.e. we have

(f ∗ g)(x) =

∫
Rn

f (y)g(x − y) dy (189)

z:=x−y
=

∫
Rn

f (x − z)g(z) dz (190)

= (g ∗ f )(x) (191)
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Convolution of functions (II)
1 The convolution is moreover measurable and well-defined in L1

2 Let T := {z ∈ C| |z | = 1} = {e it | 0 ≤ t ≤ 2π}
3 Consider the normalized Lebesgue measure dt/2π

4 Let f , g ∈ L1(T) be complex-valued

5 Set

(f ∗ g)(e is) =

∫ 2π

0
f (e it)g(e i(s−t))

dt

2π
(192)

6 Then∫ 2π

0
|(f ∗ g)(e is)| ds

2π
≤
∫ 2π

0

∫ 2π

0
|f (e it)| |g(e i(s−t))| dt

2π

ds

2π
(193)

=

∫ 2π

0
|f (e it)| dt

2π

∫ 2π

0
|g(e i(s−t))| ds

2π
(Fubini) (194)

≤
∫ 2π

0
|f (e it)| dt

2π
‖g‖L1 = ‖f ‖L1‖g‖L1 (195)

which shows f ∗ g ∈ L1(T).
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Convolution of matrices in terms of an example

1 Given a matrix F ∈ Rp×p (called filter for our purposes) where p ∈ N
is the size of a patch

2 Some input image is black/white, with 1 for black and 0 for white
pixels

3 Let for instance p = 3

4 An example for a patch matrix (the image!) is

P =

0 1 0
1 1 1
0 1 0

 (196)

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 194 / 441



Convolution of matrices in terms of an example
1 We now calculate the convolution of P and F

2 Value will be higher, the more similar is F to P

3 The filter matrix contains the effect you want to achieve

4 As an example let the filter matrix be given by

F =

0 2 3
2 4 1
0 3 0

 (197)

5 The convolution or kernel is defined similar to the Frobenius scalar
product:

P ∗ F =

0 · 0 1 · 2 0 · 3
1 · 2 1 · 4 1 · 1
0 · 0 1 · 3 0 · 0

 →
p∑

ij=1

PijFij = 12 (198)

6 Remark: We continue this example in various pieces throughout this
lecture
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Motivating example43

• Tracking location of a spaceship with a laser sensor

• x(t) ∈ R is a laser measurement of the spaceship’s position at time t

• Problem: laser sensor measurements are noisy

• Goal: more accurate spaceship’s position by averaging measurements

43Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning.
http://www.deeplearningbook.org. MIT Press, 2016.
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Motivating example: continuous convolution

• Weighted average should give more weight to newer measurements

• Use a weighting function w : R→ R
• Apply weighted average of measurements at every time instance

• Smoothed measurement of spaceship’s position is given by the
continuous convolution of x and w , i.e.

s(t) := (x ∗ w)(t) =

∫
R
x(τ)w(t − τ) dτ (199)
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Motivating example: discrete convolution

• Laser measurements are usually not continuous, but discrete, e.g. one
measurement per second

⇒ Now only x ,w : Z→ R
• Smoothed measurement of spaceship’s position is given by the

discrete convolution of x and w , i.e.

s(t) := (x ∗ w)(t) =
∞∑

k=−∞
x(k)w(t − k) (200)
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Motivating example: computations
• Get 200 noisy measurements of spaceship’s position

• Average over 5 neighboring measurements by using filter

w =

[
1

5
,

1

5
,

1

5
,

1

5
,

1

5

]
(201)

• Smoothed measurement then given by

s(0) =
1

5
x(0) (202)

s(1) =
1

5
x(0) +

1

5
x(1) (203)

s(2) =
1

5
x(0) +

1

5
x(1) +

1

5
x(2) (204)

s(3) =
1

5
w(0) +

1

5
x(1) +

1

5
x(2) +

1

5
x(3) (205)

s(4) =
1

5
x(0) +

1

5
x(1) +

1

5
x(2) +

1

5
x(3) +

1

5
x(4) (206)

s(5) =
1

5
x(1) +

1

5
x(2) +

1

5
x(3) +

1

5
x(4) +

1

5
x(5) (207)

... (208)
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Motivating example: result of computations
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Convolution on 2D images

• Input is a two dimensional image I

• Two dimensional kernel K

• Convolution of I with K is defined as

S(i , j) := (I ∗ K )(i , j) =
∑
m

∑
n

I (m, n)K (i −m, j − n) (209)

• Convolution is commutative and hence

S(i , j) = (K ∗ I )(i , j) =
∑
m

∑
n

I (i −m, j − n)K (m, n) (210)
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Cross-correlation on 2D images

• Commutativity of convolution is useful for mathematical proofs, but
not necessary for neural networks

• Hence many neural network libraries use the cross-correlation defined
as

S(i , j) := (K ∗ I )(i , j) =
∑
m

∑
n

I (i + m, j + n)K (m, n) (211)

• Many machine learning libraries use the cross-correlation but call it
convolution and we will also use this naming convention
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Applications of convolution in image processing
• noise reduction

• blurring

• sharpness

• edge detection

Figure: Original image Figure: Edges detected with Sobel
filter
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Convolution: Example of a filter convolving across an
image

1 We continue the example with the patch P and the filter F

2 The filter matrix (one for each filter in each layer) and bias values can
be trained (as parameters) being solved with gradient descent and
backpropagation

3 Typically ReLU is used in the hidden layers

4 Activation function for output layer depends on the specific problem
statement’s goal

5 Let sl filters be given in each layer l

6 Output of convolutional layer l will consist of sl matrices, one for
each filter
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Convolution: Example of a filter convolving across an
image
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Convolutional Neural Networks (CNN)

• Before: pre-defined kernels extract a given feature from the image

• Now: neural network learns the kernels to extract meaningful features
from the image

• Convolutional networks = neural networks that use convolution
instead of normal matrix multiplication in at least one of their layers

• Three main types of layers to build CNN: convolutional layer, pooling
layer, fully-connected layer

• Advantage of CNN: forward function becomes more efficient to
implement

→ Reducing amount of parameters in the NN

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 206 / 441



Example architecture

1 Assume input image of size 32× 32× 3 (width, height, depth)

2 Input: of 32× 32× 3 holds the raw pixel values of the image of 32
width, 32 height and 3 color channels R,G ,B

3 Conv layer: computes the output of neurons that are connected to
small regions in the input layer (instead to all neurons of the previous
layer - see Lecture 5 for a classical ANN). This results in a volume of
[32× 32× 12], where the 12 stands for learnable filters

4 ReLU (Lectures 3 and 6) applies an element-wise activation function

5 Pool performs a downsampling operation in the spatial dimensions
(width, height) resulting for instance in [16× 16× 12]

6 FC (fully connected): computes class scores, resulting in
[1× 1× 10] where each of the 10 numbers correspond to a class score
(final output layer)
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Convolutional Layer

1 Conv layer parameters: set of learnable filters

2 Every filter is spatially small (going over width and height)

3 However extends to full depth of input volume

4 Example: typical filter on first layer may have size 5× 5× 3 (5 pixels
width and height each, and 3 color channels)

5 Forward pass: slide (i.e., convolve) each filter across width and
height of input volume

6 Compute dot products between entries of filter and input

7 Yields a two-dimensional activation map that gives the response of
that filter at each spatial position

8 ”Network will learn filters”
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Convolutional Layer: local connectivity

1 For high-dimensional input (many neurons) such as images, the
computational cost becomes high

2 Idea: Connect each neuron only to a local input volume

3 Spatial extent is a hyperparameter called receptive field

4 The previous procedure is also known as filter size

5 Extent of connectivity along depth axis is equal to the depth of input
volume

6 Spatial asymmetry : width and height are treated equally, but not the
depth dimension

7 Connections are local in 2D space, but always full along the entire
depth of input volume
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Convolutional Layer: local connectivity, example

1 Suppose input volume has size [32× 32× 3]

2 Size of filter (receptive field) for instance 5× 5

3 Each neuron on the Conv layer has weights to a [5× 5× 3] region in
the input volume

4 Total of 5 · 5 · 3 = 75 weights plus 1 bias parameter

5 We notice that extent along the depth axis must be 3 because it is
the depth of the input volume
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Convolutional Layer: spatial arrangement

1 So far only discussion how each neuron is connected to input volume

2 Now, we explain how many output neurons are dealt with

3 Three hyperparameters: depth, stride, zero-padding

4 Depth of the output: number of filters

5 Stride: sliding the filter. When stride is 1 then we move the filters
one pixel at a time. For 2 the filters jump 2 pixels. Will result in
smaller output volumes spatially

6 Size of zero-padding: pad the input volume with zeros around the
border. Always to control spatial size of the output volumes
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Convolutional Layer: parameter sharing

1 Controls number of parameters

2 Example: Given for instance 55 · 55 · 96 = 290 400 neurons in the
first Conv layer

3 Connecting to a local field of size [11× 11× 3], each has
11 · 11 · 3 = 363 weights and 1 bias

4 Total: 290 400 · 364 = 105 705 600 parameters on the first Conv layer

→ very high number
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Convolutional Layer: reasoning for its name

1 Idea: having (x , y) use at different position (x2, y2) the same
parameters

2 For instance take 2-dimensional depth slice

3 Recall: [55× 55× 96] has 96 depth slices each of size [55× 55]

4 Constrain now neurons in each depth slice to the same weights and
bias

→ Parameter sharing

5 If now all neurons in a single depth slice use the same weight vector,
then the forward pass of the Conv layer can be computed as a
convolution

→ Convolutional layer

6 Sets of weights are called filter or a kernel, which is convolved with
the input
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Convolutional Layer: summary
1 Given a volume W1 × H1 × D1, where W1 (width), H1 (height), D1

(depth)

2 Four hyperparameters (numerical parameters): number of filters K ,
spatial extend F , stride S and amount of zero-padding P

3 Results into a volume of size W2 × H2 × D2, where

W2 =
(W1 − F + 2P)

S + 1
(212)

H2 =
(H1 − F + 2P)

S + 1
(213)

D2 = K (214)

4 Via parameter sharing: F · F · D1 weights per filter; with a total of
F · F · D1 · K weights and K biases

5 Outpute volume: d-th depth slice (size W2 × H2) is constructed via
d-th filter over the input volume with a stride S and offset by d-th
bias
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Example (cont’d) of a filter convolving across an image
with stride 2

• Stride: the shift of the blue square

• Previously (and default is stride 1): here it is 2

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 215 / 441



Example (cont’d) of a filter convolving across an image
with stride 2 and padding layer of size 1

• Padding: the red-colored pad around the original image

• Previously pad was 0; here it is now 1.

• Larger pads ≥ 2 also possible
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Pooling Layer

1 From time to time insert a pooling layer between successive Conv
layers

2 Goal: reduce progressively spatial size of the representation for
reducing amount of parameters

3 Control overfitting

4 Pooling layer operates independently on every depth slice of the input

5 Resizes spatially using MAX operation (L2-norm pooling possible as
well)

6 Attemps in the literature to get rid of pooling by using a larger stride
in the CONV layer from time to time

7 Discarding pooling also in variational autoencoders (VAEs) or
generative adversarial networks (GANs)
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Pooling Layer: Example

2 5 8 7

9 6 5 4

1 3 4 2

5 10 0 6

9 8

10 6

max pooling
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Pooling Layer: Algorithm

1 Given a volume of size W1 × H1 × D1

2 Two hyperparameters (numerical parameters): spatial extend F and
stride S

3 Results in a volume of size W2 × H2 × D2 where

W2 =
(W1 − F )

S + 1
(215)

H2 =
(H1 − F )

S + 1
(216)

D2 = D1 (217)

4 Introducing zero parameters since fixed function of input is computed

5 No zero-padding

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 219 / 441



Fully-connected (FC) Layer

1 Neurons in FC have full connections to all activations from previous
layer (see also Lecture 5, classical ANN)

2 Activations are computed as shown in Lecture 5, namely matrix
multiplication with a bias offset

3 Difference to CONV layer: in CONV, the neurons are connected only
to a local region from the previous input and many neurons share
parameters

4 Technically, still the usual computations (as in Lecture 5 ANN) must
be computed though
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ConvNet architectures

1 Summarizing from before: CNN commonly consist of only three
layers: CONV, POOL, FC

2 Often: stack CONV-ReLU layers, followed by POOL

3 Repeat this pattern until image has been merged spatially to a small
size

4 At some point transition to FC

5 Last FC yields the output such as class scores

6 Algorithm:

INPUT→ [[CONV→ ReLU]∗N → POOL?]∗M → [FC→ ReLU]∗K → FC (218)

where ∗ indicates repetition, ? being an optional feature,
N,M,K ≥ 0, where usually N ≤ 3 and K ≤ 2
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End of Lecture 7
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1.1 Lecture 1: Algorithmic Systems, Numerical Concepts, Notation
1.2 Lecture 2: Introduction to Probability, Random Processes, Statistics
1.3 Lecture 3: Fundamental Algorithms
1.4 Lecture 4: Dimensionality Reduction

2. Deep Learning in Neural Networks
2.1 Lecture 5: Artificial Neural Networks (ANN)
2.2 Lecture 6: Universal Approximation Theorem
2.3 Lecture 7: Convolutional Neural Networks (CNN)
2.4 Lecture 8: Recurrent Neural Networks (RNN)
2.5 Lecture 9: Transformer
2.6 Lecture 10: Reinforcement Learning (RL)

3. Applications to (and with) Differential Equations
3.1 Lecture 11: Introduction to ML for Scientific Computing
3.2 Lecture 12: Neural ODE
3.3 Lecture 13: PINNs: Physics-Informed Neural Networks
3.4 Lecture 14: Neural Operators and Outlook

4. Projects
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Outline lecture 8

• Motivation for recurrent neural networks (RNN)

• How RNNs work

• Difficulties: vanishing gradient, exploding gradient, long-term
dependencies

• Gated RNNs: long-short-term memory, gated recurrent unit
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Main literature lecture 8

• Ava Soleimany44

• Richard Socher45

• Pascanu, Mikolov, Bengio46

• Andriy Burkov,47 Chapter 6, 2019

44Ava Soleimany. MIT 6.S191 Introduction to Deep Learning: Deep Sequence
Modeling. MITDeepLearning. 2021.

45Richard Socher. Lecture 8: Recurrent Neural Networks. CS224d, Deep NLP. 2016.
46Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training

Recurrent Neural Networks. 2013. arXiv: 1211.5063 [cs.LG].
47Burkov, The hundred-page machine learning book.
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Recurrent Neural Networks: Motivating slide
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Recurrent Neural Networks: introduction

1 Recurrent neural networks: abbrv. RNN

2 Employed to label, classify, or generate sequences

3 Application: Sequences of words, language models, text
processing, speech processing

4 Example: predict the next word:

‘This morning I took my dog for a ...’ (... = walk)

→ Classical neural networks require too much memory!

5 Sequence is a matrix: each row is a feature vector

6 Labeling: predict a class for each feature vector

7 Classification: determine a class to a specific sequence

8 Generating: output another (related to the input) sequence
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Recurrent Neural Networks: applications

Sentiment analysis:

Translation:
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Sequence modeling: design criteria

1 The key purpose of RNNs is to deal with sequences

2 To model sequences, design criteria are:
• Handling variable length sequences
• Track long-term dependencies (Example: long sentences remembering

the first words)
• Maintain information about the order (Example: order of words in a

sentence)
• Share parameters across the sequence

3 Recall example: predicting words in a (possibly long) sentence:

‘I like scientific ...’
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Recurrent Neural Networks: specific features

1 RNNs are not feed-forward

2 RNNs contain loops (related to ‘time steps’)

3 For instance language models:
• RNNs condition NN on all previous words
• RAM (of the computer) only scales with number of words
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Recurrent Neural Networks: diagram

Principle idea:

ŷt = f (xt , ht−1) (219)

where

• ŷt : output at time step t

• xt : input at time step t

• ht−1: memory from time steps 1, 2, . . . , t − 1
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Input sequence

1 First (left) layer receives feature vector as input

2 Second layer receives the output from first layer as input

3 Training example via matrix in which each row is a feature vector

4 Matrix represented as a sequence of vectors X ∈ RM , where M is the
length of the input sequence

5 Example for a word sentence as input sequence: ‘Our names are
Julian and Thomas’: here M = 6

6 X = [x1, . . . , xt , . . . , xM ]

7 Therein xt represents the feature vector at position t

8 Example (cont’d): x1 = Our, . . . , xM = Thomas
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RNN with input sequence
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Update procedure

1 Neural network reads input feature vectors sequentially in order of
time steps t

2 Index t denotes position, or better time step

3 Update procedure:

ht = σ(W hhht−1 + W hxxt) (220)

ŷt = softmax(W Sht) (221)

4 Note that the sigmoid function σ can also be exchanged by tanh

5 Interpretation of ŷt :

ŷt,j = P(xt+1 = vj |x1, . . . , xt) (222)

ŷt,j represents the probability that the next word in the sequence is
the j .th word in the dictionary, given that we know all words until
time step t.
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Softmax function

1 For classification, typically the output of the neural network is being
plugged into the softmax function:

softmax(z) := [s1, . . . , sD ] (223)

where

s j :=
exp(z j)∑D

k=1 exp(zk)
(224)

2 Softmax function is generalization of the sigmoid function (lecture 3)

3 Property of softmax:

D∑
j=1

s j = 1 (225)

s j > 0 for all j (226)
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Basic idea for two recurrent layers (cont’d)

1 What needs to be computed as parameters?

2 Values of W hh,W hx ,W S are determined with gradient descent and
back propagation (lecture 5)

3 Difficulty: since RNN contain time steps (loops), we need
backpropagation through time

4 Principal difficulties in training RNNs:
• sigmoid, tanh and softmax suffer from vanishing gradient. Why? Due

to sequential nature of input, backpropagation has to unfold the
network over time (see also previous illustrations). Longer input
sequences (sentences with many words), yield deeper unfolded
networks.

• Handling long-term dependencies: feature vectors from the
beginning sequence can be ‘forgotten’. State ht (recall the ‘memory’) is
influenced by more recent input. Problem in long sentences (sequences)
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Exploding gradient problem

1 Gradients very high (large values)

2 Solutions to cope with exploding gradients:
• Gradient clipping (fix the gradient to a maximum value)
• Short pseudo-code (algorithm):

ĝ =
∂E

∂W
(227)

if ‖ĝ‖ ≥ c where c = treshold, then (228)

ĝ :=
c

‖ĝ‖
ĝ (229)

end if (230)

• L1 or L2 regularization
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Vanishing gradient problem (general problem)

1 Principal problem: during backpropagation, the gradients become too
small (possible underflow, machine precision problem - Lecture 1)

2 If values numerically zero, then the affected parameters are actually
not updated any more

3 No change in those weights or those biases

4 Due to (negative) accumulation48, gradient decreases exponentially

5 Earlier layers are updated only slowly or not at all

6 Difficutly becomes more severe in RNN due to time step loops

48see also Numerik 1 (Richter and Wick, Einführung in die Numerische Mathematik:
Begriffe, Konzepte und zahlreiche Anwendungsbeispiele) in which order numerical
algorithms should be carried out
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Vanishing gradient problem: RNN
1 Consider the following (simplified) RNN formulation:

ht = Wf (ht−1) + W hxxt (231)

ŷt = W S f (ht) (232)

where W ,W hx and W S are matrices, ht the state at time step t and
xt the feature vector, and f (·) functions carrying out the previous
linear combinations within the RNN

2 Total error:

E =
M∑
t=1

Et (233)

3 Sensitivity of error w.r.t. recurrent weight matrix W (compare also
the lecture 5, proofs of backpropagation):

∂E

∂W
=

M∑
t=1

∂Et

∂W
(234)
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Vanishing gradient problem: RNN

1 Chain rule (again similar to lecture 5, proofs backpropagation):

∂E

∂W
=

M∑
t=1

∂Et

∂yt

∂yt
∂ht

∂ht
∂hk

∂hk
∂W

(235)

2 Investigate the partial derivative (sensitivity)

∂ht
∂hk

(236)

3 It holds
∂ht
∂hk

=
t∏

j=k+1

∂hj
∂hj−1

(237)

4 Component-wise notation of the previous expression is a matrix
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Vanishing gradient problem: RNN
1 Recall: ht = Wf (ht−1) + W hxxt

2 Compute Jacobian matrix, i.e. each element
∂hj,m
∂hj−1,n

:

∂ht
∂hk

=
t∏

j=k+1

∂hj
∂hj−1

=
t∏

j=k+1

W T diag(f ′(hj−1)) (238)

where W T is the transpose matrix

3 Let f ′(hj−1) be bounded, i.e.,

‖f ′(hj−1)‖ ≤ βh (239)

4 Furthermore, let λ1 the largest eigenvalue of the recurrent weight
matrix W

5 A sufficient condition for the following (vanishing gradient) is to
assume that

βW := λ1 <
1

βh
(240)
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Vanishing gradient problem: RNN
1 As usual for such an analysis, compute norm (some compatible matrix

norm!) for each factor∥∥∥∥ ∂hj
∂hj−1

∥∥∥∥ = ‖W T‖ ‖ diag(f ′(hj−1))‖ ≤ βWβh (241)

where βW and βh are the upper bounds for ‖W T‖ and
‖ diag(f ′(hj−1))‖, respectively.

2 Apply the previous result to ∂ht
∂hk

. Then:

∥∥∥∥ ∂ht∂hk

∥∥∥∥ =

∥∥∥∥∥∥
t∏

j=k+1

∂hj
∂hj−1

∥∥∥∥∥∥ ≤ (βWβh)t−k (242)

where the last inequality follows from (241)

3 Clearly, for the above assumption, namely βWβh < 1, then for large
t − k , the norm goes expontentially fast to zero

4 For βWβh > 1, exploding gradients arise
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Long short-term memory (LSTM) networks

1 Why? Coping with the previously mentioned problems of long-term
dependencies (‘forgetting’ information in long sequences)

2 In the previous standard RNN, repeating modules contain a simple
computation node

→ Given ht−1 and xt , use activation function tanh and compute ht and
output yt at time step t; Then proceed to t → t + 1
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Long short-term memory (LSTM) networks

1 In LSTMs, computational blocks are introduced in order to control
flow of information

2 Information can be added or removed using so-called gates

3 Gates work with the help of sigmoid neural net layers and pointwise
multiplications

4 LSTM work according to the principle:
forget, store, update, output

5 To this end, a control function ct is introduced at time step t

6 Procedure: Given ht−1, xt , and ct−1, compute state ht , output yt ,
and control ct at time step t

7 Then, proceed to t → t + 1
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Long short-term memory (LSTM) networks

• ct : cell state, long-term memory

• ht : hidden state, short-term memory
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Long short-term memory (LSTM) networks

1 Forget irrelevant information from the previous state ht−1

2 Store relevant new information to current state

3 Update cell state values ct

4 Output gate controls what information is given to next time step

5 Gradient flow (backpropagation) is not interrupted through gates!
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Long short-term memory (LSTM) networks

1. Forget

Forget irrelevant aspects of old state
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Long short-term memory (LSTM) networks

2. Store

Store important new information in cell state
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Long short-term memory (LSTM) networks

3. Update

Selectively update cell state values
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Long short-term memory (LSTM) networks

4. Output gate

Control information for next time step
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Gated recurrent unit (GRU)

1 Explain here the concept of a minimal gated unit

→ Memory cell and forget gate

2 GRU = LSTM with a forget gate

3 Fewer parameters than LSTM

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 251 / 441



Gated recurrent unit (GRU)

Algorithm:

ft = σ (Wf xt + Uf ht−1 + bf ) (243)

ĥt = tanh(Whxt + Uh(ft � ht−1) + bh) (244)

ht = (1− ft)� ht−1 + ft � ĥt (245)

where � is still the Hadamard product, and where

• xt : input vector

• ht : output vector

• ĥt : candidate activation vector

• ft : forget vector

• Wf ,Uf ,Wh,Uh: weight matrices

• bf , bh: bias vectors
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End of Lecture 8
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Outline

• Sequence to Sequence Learning (Seq2Seq)

• Attention

• Transformer: Illustrative description

• Transformer: Mathematical description

• Applications
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Main literature
1 Initial paper introducing Transformers: Vaswani et al.49

2 YouTube video on Transformer paper:
https://www.youtube.com/watch?v=iDulhoQ2pro

3 Five pages of ”precise mathematical definition of the transformer
model”: https://homes.cs.washington.edu/~thickstn/docs/

transformers.pdf

4 Stanford lecture on Transformers:
http://web.stanford.edu/class/cs224n/slides/

cs224n-2021-lecture09-transformers.pdf

5 ”Math-guided tour of Transformer”:
http://www.columbia.edu/~jsl2239/transformers.html

6 Illustrative introduction:
https://jalammar.github.io/illustrated-transformer/

49Ashish Vaswani et al. “Attention is All You Need”. In: Proceedings of the 31st
International Conference on Neural Information Processing Systems. NIPS’17. Long
Beach, California, USA: Curran Associates Inc., 2017, pp. 6000–6010. isbn:
9781510860964.
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Motivation

1 Particular NN for natural language processing tasks

→ Transformer

2 Sequence to Sequence: Seq2Seq

3 NN that transforms a given sequence of elements (e.g., words,
Lecture 8) into another sequence

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 257 / 441



Seq2Seq

1 Seq2Seq good in translation

2 Example: Transform sequence of words in one language (e.g.,
German) into another language (e.g., Spanish)

3 Usual choice: Long-Short-Term-Memory (LSTM) models (Lecture 8)

4 LSTM: remembering or forgetting information (both on purpose)

5 Order of words is important - achieved by LSTM
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Seq2Seq

1 Seq2Seq: Encoder and Decoder structure

2 Encoder: takes input sequence x ∈ Rn

3 Mapping into higher dimensional space with fixed-length internal
representation, i.e., vector v ∈ Rn

4 Now v given to decoder

5 Decoder generates output sequence y ∈ Rm
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Example

1 Encoder: languages German and French
‘Wir heißen Thomas und Julian’

2 Decoder: languages English and French
‘Our names are Thomas and Julian’

3 Goal: translate a sentence (sequence) from German to English

4 Encoder translates German to French
‘Nous appelons Thomas et Julian’

5 Decoder takes French and transforms it to English

6 Both the Encoder and Decoder could be trained to become fluent in
French such that translation improves
‘Wir heißen, Nous appelons, We are’

7 In terms of NN, the encoder and decoder both use LSTMs,
respectively

8 Here is not yet any Transformer ... !
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Attention

1 The idea in transformers needs another ingredient: Attention

2 Attention: looks at input sequence and decides at each step which
other parts of this sequence are also important
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Example (cont’d)

1 We continue the language example (German, French, English)

2 Encoder does not only perform a pure translation of given sequence

3 Also: writing down keywords that are important for the semantics

4 Both information (translation plus keywords) are given to decoder

5 Decoder now knows which parts of the translation are specifically
important in terms of the context

6 In terms of NN: we give weights to inputs
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Transformer

1 Transformer: novel architecture (2017)50

2 Follows encoder-decoder structure

3 Transformer: two parts Encoder and Decoder, but does not use RNN,
i.e., LSTM

50Vaswani et al., “Attention is All You Need”.
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Transformer: illustrative explanation

Image source: Figure 1 from original Transformer paper51

51Vaswani et al., “Attention is All You Need”.
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Transformer: Encoder stack

1 Encoder (left): composed of modules; N
identical layers

2 Modules consist mainly of two sublayers:
• Multi-Head-Attention
• Feedforward layers (fully connected; Lecture

5)

3 Inputs and outputs are written into
n-dimensional spaces

4 Positional encoding (no RNN !), but need
to remember ‘certain aspects’ (later more)
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Transformer: Decoder stack

1 Decoder (right): also composed of modules;
N identical layers

2 Modules consist mainly of three sublayers:
• Masked Multi-Head-Attention
• Multi-Head-Attention
• Feedforward layers (fully connected; Lecture

5)

3 Inputs and outputs are written into
n-dimensional spaces

4 Positional encoding (no RNN !), but need
to remember ‘certain aspects’ (later more)
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Multi-Head attention

1 Attention: mapping a query Q and a set of key-value pairs K and V
to an output

2 Formula:

A(Q,K ,V ) = s

(
QKT

√
dk

)
V (246)

where A denotes ‘Attention’ and s is the softmax activation function

3 Most commonly used: additive attention and dot-product
(multiplication)

4 Q is a matrix that contains query, i.e., vector representation of one
word in the sentence (sequence)

5 K are all keys, i.e., vector representation of all words in the sequence
(sentence)

6 V are the values; also vector representations of all the words in the
sequence

7 dk is the dimension of keys and queries; dv is the dimension of values
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Multi-Head attention

1 Multi-head attention: self-attention layer

2 Interpretation as a look-up table

3 Given from before Q, K , V

4 Let xi be an element from the given sequence

5 Take Q(xi ) and test compatibility with the key K (xj) for each
xj , j = 1, . . . , n

6 Use inner (dot) product: (Q(xi ),K (xj))2

7 If (Q(xi ),K (xj))2 � 1, then good match

8 If (Q(xi ),K (xj))2 ≈ 0, not a good match

9 Do this for all xi , i = 1, . . . , n and build afterward sum (later more)
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Fully connected feedforward layer per object

1 So far multi-attention heads

2 Each of the layers in encoder and decoder contains pointwise
feedforward layer

→ Small NN

3 Identical parameters for each position

4 ReLU activation layer in between

5 Formula:
FFN(x) = max(0, xW1 + b1)W2 + b2 (247)
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Positional encoding

1 Problem: basically, a transformer operates on a collection of n
unordered, d dimensional features (no order!)

2 Transformer model does not contain recurrence or convolution to
determine the position of tokens (elements)

3 Order of sequence requires information of relative or absolute position
of the tokens in the sequence

→ Positional encodings to input embeddings at the bottoms of the
encoder and decoder stacks
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Positional encoding: realization

1 Realization with sine and cosine functions:

PE(pos,2i) = sin(pos/100002i/dmodel ) (248)

PE(pos,2i+1) = cos(pos/100002i/dmodel ) (249)

where pos is the position and i the dimension

2 Further methods (e.g., learning positional encoding) and discussions
in52

52John Thickstun. The Transformer Model in Equations. Preprint. 2019.
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Transformer: mathematical description

1 Transformer block is building module in Transformer

2 Let θ be as usual a parameter related to the entries of the weight
matrices W (of the NN) and some further parameters to be specified
later

3 Parametrized function class: transforms collection of n objects in Rd

to another collection of n objects in Rd :

fθ : Rn×d → Rn×d (250)

4 Input x ∈ Rn×d : collection of n objects, each with d features

5 Example: sequence of length n of d vectors

6 Output z ∈ Rn×d : (of course) same structure (dimension) as input
(clear because we want to transform input to output; think of
language translation)

7 Then:
fθ(x) = z (251)
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Transformer: mathematical description

1 Transformer: composition of L transformer blocks:

fθL ◦ · · · ◦ fθ1(x) ∈ Rn×d (252)

2 Hyperparameters (as usual of the algorithms):

d , k ,m,H, L (253)

3 Common settings:

d = 512, k = 64, m = 2048, H = 8, L = 6 (254)

4 Attention weights:
θ := θ(W , γ, β) (255)
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Multi-headed self-attention (1st sublayer)
1 For each h define attention head (H sets of equations)

2 Vectors: queries, keys, values:

Qh(xi ) = W T
h,qxi , Kh(xi ) = W T

h,kxi , V h(xi ) = W T
h,vxi (256)

with the matrices: Wh,q,Wh,k ,Wh,v ∈ Rd×k

3 Attention weights:

αh
i ,j = sj

(
(Qh(xi ),K

h(xj))2√
k

)
(257)

where (·, ·)2 is the Euclidian scalar product and s(·) as usual the
softmax function

4 With the matrix Wc,h ∈ Rk×d , we have the weighted sum:

u′i =
H∑

h=1

W T
c,h

n∑
j=1

αh
i ,jV

h(xj) (258)
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Training and 2nd sublayer

1 Apply next the layer norm:

ui = LayerNorm(xi + u′i , γ1, β1) (259)

with γ1, β1 ∈ Rd

2 Second sublayer with feedforward NN:

z ′i = W T
2 ReLU(W T

1 ui ) (260)

with W1 ∈ Rd×m and W2 ∈ Rm×d

3 Finally

zi = LayerNorm(ui + z ′i , γ2, β2) (261)

with γ2, β2 ∈ Rd
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Layer norm

1 Define layer norm:

LayerNorm(z , γ, β) := γ
z − µz
σz

+ β (262)

for z ∈ Rk and γ, β ∈ Rk

2 Within, we have the mean

µz =
1

k

k∑
i=1

zi (263)

3 And the standard deviation

σz =

√√√√1

k

k∑
i=1

(zi − µz)2 (264)
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Relation of Transformers to RNNs or CNNs

1 For large values of x , the function class fθ trained with a classical NN
would be subject to overfitting

2 Transformers, as RNN or CNN, try to overcome overfitting by
controlling parts of fθ

3 Number of parameters in fully connected NN scales linearily with the
size of x (see previous lectures)

4 Number of parameters in a Transformer is independent of the number
n of the inputs (holds also for RNN, but they differ in their concepts
how to achieve this)

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 277 / 441



Transformer: generating text with GPT-2

• GPT: generative pre-trained transformer

The following sample has been generated by GPT-2:

Human prompt: In a shocking finding, scientist discovered a herd of
unicorns living in a remote, previously unexplored valley, in the Andes
Mountains. Even more surprising to the researchers was the fact that the
unicorns spoke perfect English.

AI completion: The scientist named the population, after their distinctive
horn, Ovid’s Unicorn. These four-horned, silver-white unicorns were
previously unknown to science. Now, after almost two centuries, the
mystery of what sparked this odd phenomenon is finally solved. Dr. Jorge
Pérez, an evolutionary biologist from the University of La Paz, and several
companions, were exploring the Andes Mountains when they found a small
valley, with no other animals or humans. Pérez noticed that the valley had
what appeared to be a natural fountain, surrounded by two peaks of rock
and silver snow. ...
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Transformer: working with code with OpenAI Codex

Algorithm 1 Turn comments into code

1: ”””
2: Ask the user for their name and say ”Hello”
3: ”””
4:

5: name = input(”What is your name? ”)
6: print(”Hello ” + name)

More demos can be found on OpenAI’s website Remark: Note that language

models with applications in the real world, like GPT or Codex, have a few billion

parameters and are trained on datasets of a few gigabytes. It has been estimated that

the cloud computing cost alone for these models can range from a few thousand dollars

up to a few million dollars for the larger models.53

53Or Sharir, Barak Peleg, and Yoav Shoham. “The Cost of Training NLP Models: A
Concise Overview”. In: CoRR abs/2004.08900 (2020). arXiv: 2004.08900. url:
https://arxiv.org/abs/2004.08900.
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End of Lecture 9
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2. Deep Learning in Neural Networks
2.1 Lecture 5: Artificial Neural Networks (ANN)
2.2 Lecture 6: Universal Approximation Theorem
2.3 Lecture 7: Convolutional Neural Networks (CNN)
2.4 Lecture 8: Recurrent Neural Networks (RNN)
2.5 Lecture 9: Transformer
2.6 Lecture 10: Reinforcement Learning (RL)

3. Applications to (and with) Differential Equations
3.1 Lecture 11: Introduction to ML for Scientific Computing
3.2 Lecture 12: Neural ODE
3.3 Lecture 13: PINNs: Physics-Informed Neural Networks
3.4 Lecture 14: Neural Operators and Outlook
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Outline

• Markov chains and Markov decision processes (MDP)

• Reward function

• Set of states and set of actions

• Optimal value function and optimal policy

• Convergence

• Deep reinforcement learning
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Main literature of this class

1 A mathematical introduction to RL:
https://cims.nyu.edu/~donev/Teaching/WrittenOral/

Projects/XintianHan-WrittenAndOral.pdf

2 Reinforcement learning: a survey
https://arxiv.org/pdf/cs/9605103.pdf

3 Mathematical Blogpost for DEEP RL https:

//deeplearningmath.org/deep-reinforcement-learning.html
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Motivational example
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Motivation

1 Recall supervised learning and unsupervised learning from Lecture 1

2 Reinforcemcent learning differs in the following way:
• No presentation of input/output pairs (like in supervised learning)
• Agent is connected to its environment via perception and action
• After choosing an action, the agent gets the immediate reward and the

subsequent state
• Agent however cannot judge, which action would have been best in

terms of long-term behavior
• Agent must learn about the system, states, actions, transitions and

rewards
• On-line performance: evaluation of the system simultaneously with

learning
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Basic functioning of RL

1 At each step:
• Agent receives some input i
• Some indication of current state s of the environment
• Agent chooses some action a

2 Action changes the state of the environment

3 Value of the state transition through a scalar reinforcement signal
r

4 Goal: agent should choose actions that tend to increase long-run sum
of values

5 Task: find a policy, mapping states to actions, that maximizes
long-run measure of reinforcement

6 Often, non-deterministic environments: same action in the same state
at different ‘times’ yield different results

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 286 / 441



Example

1 RL tries to mimic how humans learn new things not only from a
teacher, but also in their interaction with the environment

2 Baby learns waving hands, crying and laughing with interaction of
parents (feedback process), reward (laughing is positive reward;
crying negative reward)

3 RL: machines learn to achieve goals from their interaction with
the environment

4 Huge applications of RL in many disciplines (see yourself in the
provided literature and also searching yourself online)
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RL: Simple Game 1

1 This first game is very simple, we always want to go the neighbor
with the highest number.

2 If the agent chooses the action, from which it learned that yields the
highest reward (effectively it learned the table from above), it would
have learned how to play the game successfully.
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RL: Simple Game 2

1 The goal of this game is to reach the exit.

2 For most games the agent needs to learn to take actions, that do not
lead immediately to a reward, but may result in a larger reward
further down the track.
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The Q learning rule54

1 The agent needs to take the current state s as a variable and return a
Q-value for each possible action a, i.e. it needs to return Q(s, a) for
all s and a.

2 The Q-value is updated in training via the following iteration step:

where:
• r is the reward that is received, when taking action a in state s.
• λ the discount is the weight for delayed rewards, where λ ∈ [0, 1].
• α is the learning rate.
• max

a′
Q(s ′, a′)−Q(s, a) is the maximal reward obtained when choosing

action a. Remark: Q(s ′, a′) also contains Q(s ′′, a′′) and so on...

54Q learning; see e.g., https://en.wikipedia.org/wiki/Q-learning
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Markov

Definition

Sequence of states is Markov55 if and only if the probability of moving
from St to the next state St+1 depends only on St , but not on other
previous states St−1,St−2, . . .. Thus for all t = 1, 2, 3, . . ., we have

P[St+1|St ] = P[St+1|S1,S2, . . . ,St ] (265)

where P[·] denotes the probability. Recall that the notation P[St+1|St ]
means that probability of St+1 under the condition of St .

• Time-homogeneous Markov chain in RL:

P[St+1 = s ′|St = s] = P[St = s ′|St−1 = s] (266)

55See also literature given in Lecture 2.
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Markov processes

Definition (Markov process)

A Markov process (or Markov chain) is a tuple (S ,P), where

• S is a finite set of states

• P is a state transition probability matrix:

Pss′ = P[St+1 = s ′|St = s] (267)

A first scheme:

• Start in state s0

• Move to s1 by using Ps0s1

• Move to s2 by using Ps1s2

• and so forth ...
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Markov decision process (MDP)

1 Introduce in addition to the previous slides now reward, action,
discount

Definition (Markov decision process)

A Markov decision process is a tuple (S ,A,P, γ,R), with the following
definitions:

1 S is a finite set of states

2 A is a finite set of actions

3 P is the state transition probability matrix

Pa
ss′ = P[St+1 = s ′|St = s,At = a] (268)

4 γ ∈ [0, 1] is a discount factor

5 R : S × A→ R is a reward function
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Markov decision process (MDP): in words and a 2nd
scheme

1 MDP: model environment in RL

2 Transition to next state St+1 depends on current state St and action
At that is made on current state

3 Each state-action pair is complemented with a reward function

A second scheme:

• Start in state s0, choose some action a0 ∈ A

• Move to s1 by using Pa0
s0s1

, choose some new action a1 ∈ A

• Move to s2 by using Pa1
s1s2

, choose some new action a2 ∈ A

• and so forth ...
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Return, policy and value function

1 Goal in RL: maximize expected value of the return, i.e., optimal
policy

2 Return Gt : total discounted reward R at time step t

Gt = Rt+1 + γRt+2 + . . . =
∞∑
k=0

γkRt+k+1 (269)

3 On the discount factor: γ ≈ 0 short-sighted evaluation and γ ≈ 1
long-sighted evaluation

4 Why the discount factor?
• Avoids infinite returns in cyclic Markov processes
• Uncertainties in future rewards

5 Examples: Finance : immediate rewards may earn more interests,
animals/human behavior (psychology) like better immediate rewards
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Return, policy and value function

1 Policy π: distribution over actions given states:

π(a|s) = P[At = a|St = s] (270)

2 It is time independent

3 Policy guides the choice of an action at a given state
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Return, policy and value function

1 State-value function: vπ of an MDP is the expected return from
state s and then following the policy π:

vπ(s) = Eπ[Gt |St = s] (271)

2 Gives the long-term value of state s when following the policy π

3 It holds by using the previous definitions and decompositions:

vπ(s) = Eπ[Gt |St = s] (272)

= . . . (273)

= Eπ[Rt+1|St = s] + Eπ[γvπ(St+1)|St = s] (274)
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Return, policy and value function

1 Action-value function: qπ of an MDP is the expected return from
state s, plus action a, and then following the policy π:

qπ(s, a) = Eπ[Gt |St = s,At = a] (275)

2 It holds by using the previous definitions and decompositions:

qπ(s) = Eπ[Gt |St = s,At = a] (276)

= . . . (277)

= Eπ[Rt+1|St = s,At = a] + Eπ[γqπ(St+1,At+1)|St = s,At = a]
(278)

3 Define for the sake of notation:

Ra
s := Eπ[Rt+1|St = s,At = a] (279)
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Relation between state-value and action-value functions
1 We have:

vπ =
∑
a∈A

π(a|s)qπ(s, a) (280)

qπ(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′vπ(s ′) (281)

2 Bellman equation for vπ:

vπ(s) =
∑
a∈A

π(a|s)

(
Ra
s + γ

∑
s′∈S

Pa
ss′vπ(s ′)

)
(282)

3 Bellman equation relates state-value function vπ of one state with
other states

4 In time-continuous MDP, when the state space S and the action
space A are continuous, the resulting equation is the
Hamilton-Jacobi-Bellman (HJB), which is an important PDE
(partial differential equation) (Numerik 3 - NumPDE!)
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Relation between state-value and action-value functions

1 Bellman equation for qπ:

qπ(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′

∑
a′∈A

π(a′|s ′)qπ(s ′, a′) (283)

2 Computes value function qπ for a given policy π

3 Combination for all n states, yields n linear equations for n unknown
value functions

→ Linear equation system

4 Naive numerical approach: cost complexity O(n3) (Numerik 1!!!)
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Optimal value function and optimal policy

1 Principal interest is optimality!

2 Optimal state-value function v∗(s):

v∗(s) = max
π

vπ(s) (284)

3 Specifies best possible performance of the MDP

4 MDP ‘solved’ when optimal value function found

5 Optimal action-value function q∗(s, a):

q∗(s, a) = max
π

qπ(s, a) (285)
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Optimal value function and optimal policy

1 For defining optimal policy, introduce partial ordering:

π ≥ π′ if vπ(s) ≥ vπ′(s) ∀s ∈ S (286)

Theorem

For any MDP, we have:

• There exists an optimal policy π∗
• All optimal policies achieve the optimal value function vπ∗(s) = v∗(s)

• All optimal policies achieve the optimal action-value function
qπ∗(s, a) = q∗(s, a)

• For a proof, we refer to Richard Bellman56

56Richard Bellman. “A Markovian Decision Process”. In: Indiana Univ. Math. J. 6.4
(1957), pp. 679–684.
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Finding the optimal policy

• The previous theorem yields an optimality criterion how to obtain the
optimal policy:

π∗(a|s) =

{
1 if a = arg maxa∈Aq∗(s, a)

0 otherwise
(287)
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Finding the optimal value function

1 Introduce Bellman optimality equations for v∗ and q∗

2 We use

v∗(s) = max
a

q∗(s, a) (288)

q∗(s, a) = Ra
s + γ

∑
s′∈S

Pa
ss′v∗(s

′) (289)

3 Then:

v∗(s) = max
a

(
Ra
s + γ

∑
s′∈S

Pss′v∗(s
′)

)
(290)

4 And
q∗(s, a) = Ra

s + γ
∑
s′inS

Pa
ss′ max

a′
q∗(s

′, a′) (291)

5 Again: the Bellman equations are clearly nonlinear and difficult to
solve numerically
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Numerical solution and convergence of MDP

1 Nonlinear equations to be solved!

2 Various possibilities in numerics

3 One idea is dynamic programming: recursive subproblems that are
simpler to solve

→ Iteration procedure (like fixed-point iteration):

xt+1 = f (xt) (292)

4 Convergence proof then with well-known contraction theorem
(Numerik 1), Banach’s fixed-point theorem:

‖f (x)− f (y)‖ ≤ ρ‖x − y‖ (293)

with ρ < 1.
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Policy evaluation

1 We realize the previous ideas now

2 Initial guess v1

3 Construct sequence for k = 1, 2, . . .

v1 → v2 → . . . → vπ (294)

4 Iteration function:

vk+1(s) =
∑
a∈A

π(a|s)

(
Ra
s + γ

∑
s′∈S

Pa
ss′vk(s ′)

)
(295)

5 Stopping criterion:
‖vk+1 − vk‖ < TOL (296)
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Policy iteration

1 Initialize π randomly

2 Repeat until previous policy and current policy match

1 Evaluation vπ by policy evaluation (previous evaluation)
2 For each state s, set

π(s) := arg maxa∈Aq(s, a) = arg maxa∈A

(
Ra
s + γ

∑
s′∈S

Pa
ss′vπ(s ′)

)
(297)
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Convergence proof (I)

1 We establish that at each policy iteration, the algorithm will improve
the policy

2 Suppose a deterministic policy π, after we obtain π′

3 It holds

qπ(s, π′(s)) = max
a∈A

qπ(s, a) ≥ qπ(s, π(s)) = vπ(s) (298)

4 We then obtain

vπ(s) ≤ qπ(s, π′(s)) = Eπ′ [Rt+1 + γvπ(St+1)|St = s] (299)

≤ Eπ′ [Rt+1 + γqπ(St+1, π
′(St+1))|St = s] (300)

≤ Eπ′ [Rt+1 + γRt+2 + γ2qπ(St+2, π
′(St+2))|St = s] (301)

≤ Eπ′ [Rt+1 + γRt+2 + . . . |St = s] (302)

= vπ′ (s) (303)

5 Thus, we have shown
vπ ≤ vπ′(s) (304)

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 308 / 441



Convergence proof (II)

1 When improvements stop, we have

qπ(s, π′(s)) = max
a∈A

qπ(s, a) = qπ(s, π(s)) = vπ(s) (305)

2 Specifically, the Bellman optimality condition is satisfied:

vπ(s) = max
a∈A

qπ(s, a) (306)

3 Thus
vπ(s) = v∗(s) ∀s ∈ S (307)

4 In words: Therefore, π is an optimal policy and the evaluation yields
the optimal value function

5 An alternative is value iteration; see 57

57Xintian Han https://cims.nyu.edu/~donev/Teaching/WrittenOral/Projects/

XintianHan-WrittenAndOral.pdf
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Deep Reinforcement Learning

1 Problem: To compute the optimal value function, we need to store
the Q-list with all possible states. But the problem size can become
to large to be stored.

2 Example: In chess, there are 69 352 859 712 417 possible states, just
after 10 moves. To save the Q-value to every possible state as a C++
integer (4 bytes) would already need about 277 terrabytes!

3 Solution: Replace the Q-table with a Neural Network!
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How to perform Deep Reinforcement Learning
1 Let the network ”play” the game and save each state and action until

the game is finished.

2 Compute to each step the corresponding Q-value via the formula

How to compute max
a′

Q(s ′, a′)

• In a single player game max
a′

Q(s ′, a′) can be directly computed since s ′

is the state after taking action a.
• In a multiplayer game we need also to take the actions of the other

players into account, for example get s ′ via the training game, or
compute the best moves for the other players.

• Use as traing data:
(
s,max

a′
Q(s ′, a′)

)
3 Use Backpropagation to train the network with the training data from

step 2
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End of Lecture 10
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1. Traditional AI
1.1 Lecture 1: Algorithmic Systems, Numerical Concepts, Notation
1.2 Lecture 2: Introduction to Probability, Random Processes, Statistics
1.3 Lecture 3: Fundamental Algorithms
1.4 Lecture 4: Dimensionality Reduction

2. Deep Learning in Neural Networks
2.1 Lecture 5: Artificial Neural Networks (ANN)
2.2 Lecture 6: Universal Approximation Theorem
2.3 Lecture 7: Convolutional Neural Networks (CNN)
2.4 Lecture 8: Recurrent Neural Networks (RNN)
2.5 Lecture 9: Transformer
2.6 Lecture 10: Reinforcement Learning (RL)

3. Applications to (and with) Differential Equations
3.1 Lecture 11: Introduction to ML for Scientific Computing
3.2 Lecture 12: Neural ODE
3.3 Lecture 13: PINNs: Physics-Informed Neural Networks
3.4 Lecture 14: Neural Operators and Outlook

4. Projects
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General comments where ML may meet differential
equations

1 Solving differential equations with ML (e.g., NN) methods

2 Approximation of high-dimensional problems

3 Improvement of numerical components with ML, e.g., linear,
nonlinear solvers, and adaptive schemes

4 Data-driven simulations

5 Model-order reduction by using high-fidelity computations for
obtaining characteristic modes and then computing (cheaper?!) ML
approximations (useful where similar PDEs must be solved numerous
times such as parameter estimation, optimal control, ...)

6 On the other hand (see below in L12), techniques from differential
equations may further improve ML procedures themselves
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Review papers for self-studies over the next three weeks

In the three weeks of the vacation period, please have a look into these
papers:

• Deep learning in fluid mechanics58

• Machine Learning for Fluid Mechanics59

58J. Nathan Kutz. “Deep learning in fluid dynamics”. In: Journal of Fluid Mechanics
814 (2017), pp. 1–4. doi: 10.1017/jfm.2016.803.

59Steven L. Brunton, Bernd R. Noack, and Petros Koumoutsakos. “Machine Learning
for Fluid Mechanics”. In: Annual Review of Fluid Mechanics 52.1 (2020), pp. 477–508.
doi: 10.1146/annurev-fluid-010719-060214. eprint:
https://doi.org/10.1146/annurev-fluid-010719-060214. url:
https://doi.org/10.1146/annurev-fluid-010719-060214.
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Short questions for self control and takeaway (I)

1 What are possible applications of neural networks in scientific
computing?

2 Up to how many layers are NN trained for fluid mechanics problems?

3 What do the abbreviations POD and DMD stand for?

4 What is the main idea behind POD-based modeling?

5 What is the mathematical basis for reduced order modeling?

6 What are the gains by using dimensionality reduction techniques?

7 What are the two main failings of POD/DMD? How can DNNs help?

8 What is the difference between laminar and turbulent flow?

9 What is the tensor basis neural network?
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Short questions for self control and takeaway (II)

1 What are some limitations of machine learning based scientific
computing?

2 List some aspects of the ‘future’ and challenges of DNN’s for fluid
modeling

3 How are the previous challenges related to this class?

4 What does Nathan Kutz in his article formulate as a general rule for
using DNNs?

5 What are challenges of ML for dynamical systems?

6 For how long does the history of ML and fluid dynamics date back?

7 What are typical goals in flow optimization using ML?
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End of Lecture 11
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Outline

• Parametrization the derivative of hidden state using a neural network

• Avoids using specific discrete sequence of hidden layers

• Output of NN computed via black-box differential solver

• Constant memory cost

• Allows for end-to-end training of ODEs within larger models
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Neural Ordinary Differential Equations

Image source: Figure 1 from NeuralODE paper60

• Left: discrete sequence of finite transformations in a residual network

• Right: ODE network defines a (continuous) vector field

• Literature: Neural ODE paper,61 Yannic Kilcher video62

60Ricky T. Q. Chen et al. Neural Ordinary Differential Equations. 2019. arXiv:
1806.07366 [cs.LG].

61Ibid.
62Yannic Kilcher. Neural Ordinary Differential Equations. Youtube. 2019. url:

https://www.youtube.com/watch?v=jltgNGt8Lpg.
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Basics: relation to forward Euler

1 Recall: computing the hidden state:

ht+1 = ht + f (ht , θt) (308)

with t ∈ {0, . . . ,T} and ht ∈ RD

2 This scheme should be well recognized from Numerik 2 (Numerik of
GDGL (ODEs) and Eigenwerte)63

→ Forward Euler discretization

63L. Samolik and T. Wick. Numerische Mathematik II (Numerik GDGL, Eigenwerte).
Institute for Applied Mathematics, Leibniz Universität Hannover, Germany. 2019.
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Basics: relation to forward Euler

1 Just to recall: Solve
y ′(t) = f (t, y) (309)

with forward Euler

yn+1 − yn
∆t

= f (t, yn), y(0) = y0 (310)

for n = 0, . . . ,N, and ∆t = tn+1 − tn

2 And with a parameter a ∈ R, we have

f (t, yn) := f (t, yn, a) (311)

e.g., ODE model problem (see any Numerik 2 lecture notes; for
instance64)

f (t, yn, a) = ayn (312)

64Samolik and Wick, Numerische Mathematik II (Numerik GDGL, Eigenwerte).
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Basics: relation to forward Euler

1 Adding more layers and smaller steps yields the continuous
approximation (i.e., the limit):

dh(t)

dt
= f (h(t), t, θ) (313)

2 Input layer denoted by h(0)

3 Output layer h(T )

4 ODE problem for which some (black-box) ODE solver can be
employed

5 Due to the construction the intermediate layers h(t) for 0 < t < T
are evaluated with this procedure

6 Accuracy depends clearly on the ODE solvers and can be adjusted by
typical means known from ODE numerics
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Benefits of ODE components in NN

1 Memory efficiency: not storage of intermediate quantities for the
forward pass; no backpropagation through the operations of the solver

2 Adaptivity (well-known expertise in my group at IfAM) for instance
adaptive-time-step Euler, Runge-Kutta, ...

3 Continuous time-series models (compare to RNN, Lecture 8)

4 Utilizing well-known mathematical structures from ODE theory and
numerics
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Reverse-mode automatic differentiation of ODE solutions

1 Main technical challenge: compute backpropagation (reverse-mode
differentation) with the help of the ODE solver

2 Idea: compute gradients with the help of an additional adjoint
problem

3 Adjoint problems are very well known in numerical optimization and
can also be used for a posteriori error estimation

4 The adjoint variable enters as Lagrange multiplier within a constraint
optimization problem, e.g., Nocedal/Wright65

5 In time-dependent problems, the adjoint is running backward in time,
but always linear, independently whether the original (primal) problem
is linear or nonlinear

65Nocedal and Wright, Numerical Optimization.
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Reverse-mode automatic differentiation of ODE solutions

1 Recall: dz
dt = f (z , t, θ) with the independent variable t, the unknown

(dependent) variable z and a parameter θ

2 Consider first

z(t1) = z(t0) +

∫ t1

t0

f (z(t), t, θ). (314)

3 Then within some optimization formulation:

L(z(t1)) = L

(
z(t0) +

∫ t1

t0

f (z(t), t, θ) dt

)
(315)

4 Objective: optimize scalar-valued loss function L(·)
5 In an abstract fashion, we have

L(ODESolve(z(t0), f , t0, t1, θ)) (316)

6 Then: for optimizing L(·), we need to compute gradients w.r.t. θ

→ chain rule, but expensive; for this reason adjoint ODE
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Reverse-mode automatic differentiation of ODE solutions

1 Adjoint: sensitivity of L(·) due to variations in the primal variable

2 Adjoint: Gradient of loss depends on the hidden state z(t) at each
time t

3 In mathematical notation:

a(t) =
∂L

∂z(t)
(317)

which is determined by solving another ODE

4 Running backward in time with the initial value ∂L/∂z(t1)

5 Difficulty: since running backward in time, the primal solution of the
original problem must be known (in the nonlinear case)

6 Relation to the chain rule:

da(t)

dt
= −a(t)T

∂f (z(t), t, θ)

∂z
(318)
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Reverse-mode automatic differentiation of ODE solutions67

Image source: Figure 2 from NeuralODE paper66

66Chen et al., Neural Ordinary Differential Equations.
67Ibid.
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Reverse-mode automatic differentiation of ODE solutions

1 It remains to compute the variation of L(·) with respect to the
parameter θ

2 Depends on z(t) and a(t)

3 Third ODE problem

4 Then:
dL

dθ
= −

∫ t0

t1

a(t)T
∂f (z(t), t, θ)

∂θ
dt (319)

5 As before: classical ODE problem statement, which can be solved
with (black-box) ODE methods
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Algorithm for reverse-mode derivative
1 Idea: define a triple that computes all three ODEs
2 Input: parameters θ, start time t0, end time t1, final state z(t1), loss

gradient ∂L/∂z(t1)
3 Define initial state of triple:

s0 =

[
z(t1),

∂L

∂z(t1)
, 0 ∈ Rdim(θ)

]
(320)

4 Define an augmented state (solution in time t):

aug dynamics([z(t), a(t), ·], t, θ) (321)

in which we compute (and return):[
f ((z(t), t, θ), −a(t)T

∂f

∂z
, −a(t)T

∂f

∂θ

]
(322)

5 Solve reverse-time ODE[
z(t0),

∂L

∂z(t0)
,

∂L

∂θ

]
= ODESolve(s0, aug dynamics, t1, t0, θ)

(323)
Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 331 / 441



Continuous backpropagation

1 Given the differential equation:

dz(t)

dt
= f (z(t), t, θ) (324)

2 Formally the adjoint state is given by

a(t) =
dL

dz(t)
(325)

Lemma

With the previous problem statement and definitions, it holds

da(t)

dt
= −a(t)

∂f (z(t), t, θ)

∂z(t)
(326)
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Preparations for the proof

1 Recall from standard neural networks with the help of the chain rule:

dL

dht
=

dL

dht+1

dht+1

dht
(327)

2 With our previous definitions this discrete notation becomes for a
continuous-in-time approximation to

z(t + ε) =

∫ t+ε

t
f (z(τ), τ, θ)dτ + z(t) = Tε(z(t), t) (328)

3 Chain rule
dL

dz(t)
=

dL

dz(t + ε)

dz(t + ε)

dz(t)
(329)

or in other words

a(t) = a(t + ε)
∂Tε(z(t), t)

∂z(t)
(330)
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Proof of Lemma 31
1 We work with the definition of the derivative:

da(t)

dt
= lim

ε→0

a(t + ε)− a(t)

ε
(331)

Then, we obtain
da(t)

dt
= lim
ε→0

a(t + ε)− a(t)

ε
(332)

= lim
ε→0

a(t + ε)− a(t + ε) ∂
∂z(t)

Tε(z(t))

ε
(333)

= lim
ε→0

a(t + ε)− a(t + ε) ∂
∂z(t)

(
z(t) + εf (z(t), t, θ) + O(ε2)

)
ε

(334)

= lim
ε→0

a(t + ε)− a(t + ε)
(
I + ε

∂f (z(t),t,θ)
∂z(t)

+ O(ε2)
)

ε
(335)

= lim
ε→0

−εa(t + ε) ∂f (z(t),t,θ)
∂z(t)

+ O(ε2)

ε
(336)

= lim
ε→0
−a(t + ε)

∂f (z(t), t, θ)

∂z(t)
+ O(ε) (337)

= −a(t)
∂f (z(t), t, θ)

∂z(t)
(338)
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Gradients with respect to θ and t

1 We use again Lemma 31

2 Then:
∂θ(t)

∂t
= 0,

dt(t)

dt
= 1 (339)

3 Generalize to a triple (augmented state):

d

dt

zθ
t

 (t) = faug ([z , θ, t]) :=

f ([z , θ, t])
0
1

 (340)

with

aaug :=

 a
aθ
at

 , aθ(t) :=
dL

dθ(t)
, at(t) :=

dL

dt(t)
(341)
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Jacobian

1 The Jacobian reads:

∂faug
∂[z , θ, t]

=

∂f
∂z

∂f
∂θ

∂f
∂t

0 0 0
0 0 0

 (t) (342)

2 Then, with Lemma 31

daaug (t)

dt
= −[a(t), aθ(t), at(t)]

∂faug
∂[z , θ, t]

(t) = −
[
a
∂f

∂z
, a

∂f

∂θ
, a

∂f

∂t

]
(t)

(343)

3 The last element is the differential equation itself

4 The first element is the adjoint

5 The middle element is the variation w.r.t. to the parameters θ

6 This yields the total derivative of the functional L(·)
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Examples of learning an ODE with NeuralODEs

1 Learning the Lotka-Volterra problem (around 1920’ predator-prey;
sharks/fish)

2 Nice introductions for the governing mathematical model in68 and69

3 Problem statement:

dx

dt
=

3

2
x − xy (344)

dy

dt
= −3y + xy (345)

with initial conditions

x(0) = 1, y(0) = 1. (346)

68M. Braun. Differential equations and their applications. Springer, 1993.
69A. Quarteroni and P. Gervasio. A Primer on Mathematical Modelling. Springer,

2020.
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Examples of learning an ODE with NeuralODEs

Image source: picture from Christopher Rackauckas’ GitHub Gist on solving the Lotka-Volterra

problem with a NeuralODE

Link: https://gist.github.com/ChrisRackauckas/a531030dc7ea5c96179c0f5f25de9979
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End of Lecture 12
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1. Traditional AI
1.1 Lecture 1: Algorithmic Systems, Numerical Concepts, Notation
1.2 Lecture 2: Introduction to Probability, Random Processes, Statistics
1.3 Lecture 3: Fundamental Algorithms
1.4 Lecture 4: Dimensionality Reduction

2. Deep Learning in Neural Networks
2.1 Lecture 5: Artificial Neural Networks (ANN)
2.2 Lecture 6: Universal Approximation Theorem
2.3 Lecture 7: Convolutional Neural Networks (CNN)
2.4 Lecture 8: Recurrent Neural Networks (RNN)
2.5 Lecture 9: Transformer
2.6 Lecture 10: Reinforcement Learning (RL)

3. Applications to (and with) Differential Equations
3.1 Lecture 11: Introduction to ML for Scientific Computing
3.2 Lecture 12: Neural ODE
3.3 Lecture 13: PINNs: Physics-Informed Neural Networks
3.4 Lecture 14: Neural Operators and Outlook

4. Projects
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Outline

• Neural network constructions for solving differential equations

• Basic ideas

• Program snippets with illustrative numerical examples

• Current extensions (very active research field!)
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Main literature for the first 45 minutes

• DeepXDE70

https://epubs.siam.org/doi/pdf/10.1137/19M1274067

• PINNs71 https://www.sciencedirect.com/science/article/

pii/S0021999118307125

70Lu Lu et al. “DeepXDE: A Deep Learning Library for Solving Differential
Equations”. In: SIAM Review 63.1 (2021), pp. 208–228. doi: 10.1137/19M1274067.

71M. Raissi, P. Perdikaris, and G.E. Karniadakis. “Physics-informed neural networks:
A deep learning framework for solving forward and inverse problems involving nonlinear
partial differential equations”. In: Journal of Computational Physics 378 (2019),
pp. 686–707. issn: 0021-9991. doi: https://doi.org/10.1016/j.jcp.2018.10.045.
url: https://www.sciencedirect.com/science/article/pii/S0021999118307125.
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Recall from Lecture 5

1 NL(x) : Rdin → Rdout : L layer neural network

2 Nl neurons in the lth layer

3 N0 = din and NL = dout

4 Weight matrix: W l ∈ RNl×Nl−1

5 Bias vector: bl ∈ RNl

6 Activation function σ

7 Feedforward neural network (FNN):

N0(x) = x ∈ Rdin (347)

N l(x) = σ(W lN l−1(x) + bl) ∈ RNl , 1 ≤ l ≤ L− 1 (348)

NL(x) = W LNL−1(x) + bL ∈ Rdout (349)
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IBVP - initial boundary value problem

1 Space-time cylinder Ω ⊂ Rd × R
2 Parameter λ ∈ R
3 Independent variable x = (x1, . . . , xd , t)

4 Unknown variable u(x) : Ω→ R
5 PDE (partial differential equation)72 73

F (D2u,Du, u, x , λ) = 0, x ∈ Ω (350)

6 Boundary and initial conditions:

B(u, x) = 0 on ∂Ω (351)

72Notation from L.C. Evans, Partial differential equations, AMS, 2010
73See also (Wick, Numerical methods for partial differential equations)[Chapter 4].
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Example: Heat equation

1 Find u : Ω→ R such that

∂tu −∇ · (λ∇u) = 0 in Ω (352)

u = gD on ΓD (353)

∂nu = gN on ΓN (354)

2 The initial condition is on the space-time cylinder boundary and
therefore included in gD
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PINN (I)

1 First construct neural network û(x , θ)

2 Serves as surrogate for the sought solution u(x)

3 Moreover, θ = {W l , bl}1≤l≤L is as usual (Lecture 5) the set of the
weights and biases in the neural network û

4 Goal: û should represent the physics from the IVBP: F = 0 and
B = 0 (like a root-finding problem; and the same approach as we
adopt also often for FEM)

5 Restrict û to scattered points (randomly distributed or clustered (in
FEM we would design a mesh)

6 Those scattered points (i.e., residual points) are the training data:
T = {x1, x2, . . . xM}

7 We assume that T = Tf ∪ Tb with Tf ⊂ Ω and Tb ⊂ ∂Ω
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PINN (II)

1 Known from Lecture 5: we need to measure discrepency (regression)
between network û and the constraints (F = 0 and B = 0)

2 Loss function: here weighted sum:

L(θ, T ) = wf Lf (θ, Tf ) + wbLb(θ, Tb) (355)

where wf ,wb ∈ R are weights

3 The single terms are given by

Lf (θ, Tf ) =
1

Mf

∑
x∈Tf

|F (D2û,Dû, û, x , λ)|2 Mf→∞−→ 1

|Ω|

∫
Ω
|F (D2û,Dû, û, x , λ)|2 dx =

1

|Ω|
‖F‖2

L2(Ω)

(356)

Lb(θ, Tb) =
1

Mb

∑
x∈Tb

|B(û, x)|2 Mb→∞−→ 1

|∂Ω|

∫
∂Ω
|B(û, x)|2 dx =

1

|∂Ω|
‖B‖2

L2(∂Ω)

(357)
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PINN (III)

1 Training:
min
θ

L(θ, T ) (358)

2 Lecture 5: highly nonlinear, nonconvex optimization problem

3 Numerics: gradient descent or second-order methods

4 Possibly bad local minima

5 Since several local minima, no unique solution (in contrast to classical
FEM if well-posed PDEs are considered)

6 Some work to determine all hyperparameters

7 On the other hand, no mesh dependencies (meshless method) and
flexibility in choosing the residual points
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Example of good and bad local minima74

• Approximate u(x) = 1
1+e−x with the help of a neural network y(x ,w),

where w are the weights

• Reasons for bad local minima: randomly generated initial weights and
also some influence of the learning rate (step size of Adam’s
optimizer; stochastic gradient descent)

74Tobias Knoke and Thomas Wick. “Solving differential equations via artificial neural
networks: Findings and failures in a model problem”. In: Examples and Counterexamples
1 (2021), p. 100035. doi: https://doi.org/10.1016/j.exco.2021.100035.
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PINN algorithm

• Given PDE and boundary/initial conditions in strong form, namely
F = 0 and B = 0

1 Construct neural network û(x , θ)

2 Specify training sets Tf and Tb
3 Design a loss function L(θ, T )

4 Train network to determine θ∗ (best parameters) by minimizing
L(θ, T )
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Illustrative summary: Physics Informed Neural Networks
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Programming PINNs

1 Create a neural network

2 Define the PDE residual

3 Training loop

4 Visualize results
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Programming PINNs: Neural Network

1 import torch

2

3 # define the neural network architecture

4 class PINN(torch.nn.Module):

5 def __init__(self):

6 super(PINN, self).__init__()

7 self.layer1 = torch.nn.Linear(1, 50) # [ 1 -> 50]

8 self.layer2 = torch.nn.Linear(50, 50) # [50 -> 50]

9 self.layer3 = torch.nn.Linear(50, 1) # [50 -> 1]

10

11 def forward(self, x):

12 tmp = torch.tanh(self.layer1(x)) # a = σ(W1x + b1)

13 tmp = torch.tanh(self.layer2(tmp)) # a = σ(W2a + b2)

14 y = self.layer3(tmp) # y = W3a + b3

15 return torch.reshape(y, (-1,)) # flatten neural network output

16

17 pinn = PINN()
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Programming PINNs: PDE residual

1 # compute order.th derivative of neural net u in direction of x

2 def derivative(u, x, order=1):

3 ones = torch.ones_like(u)

4 deriv = torch.autograd.grad(u, x, create_graph=True, grad_outputs=ones)[0]

5 for i in range(1, order):

6 ones = torch.ones_like(deriv)

7 deriv = torch.autograd.grad(

8 deriv,

9 x,

10 create_graph=True,

11 grad_outputs=ones

12 )[0]

13 return deriv

14

15 # residual of PDE: -u" = -1

16 def pde_residual(x):

17 return derivative(pinn(x), x, order=2) - torch.ones_like(x)
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Programming PINNs: Training loop

1 # sample points x ∈ Ω = (0, 1)

2 x = torch.autograd.Variable(torch.rand(16, 1), requires_grad=True)

3 # left boundary: x = 0

4 x_0 = torch.autograd.Variable(torch.Tensor([[0.]]), requires_grad=True)

5 # right boundary: x = 1

6 x_1 = torch.autograd.Variable(torch.Tensor([[1.]]), requires_grad=True)

7

8 # train network that approximates the PDE

9 optimizer = torch.optim.Adam(pinn.parameters(), lr=1e-3)

10 # using mean squared error as a loss fucntion

11 mse = torch.nn.MSELoss()
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Programming PINNs: Training loop

1 # start training

2 for epoch in range(1000):

3 loss = mse(

4 pde_residual(x),

5 torch.autograd.Variable(torch.zeros(16))

6 ) # learn: -u" = -1

7 loss += mse(

8 torch.cat((pinn(x_0), pinn(x_1))),

9 torch.autograd.Variable(torch.zeros(2))

10 ) # learn: u(0) = 0 and u(1) = 0

11

12 optimizer.zero_grad() # clear gradients for next epoch

13 loss.backward() # backpropagation: compute gradients

14 optimizer.step() # apply gradients
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Programming PINNs: Results

1 import matplotlib.pyplot as plt

2 x = torch.linspace(0, 1, 100).reshape(100, 1)

3 u = pinn(x) # neural network solution

4 analytic_solution = (-0.5*x*(1-x)).reshape(-1,) # u(x) = − 1
2
x(1− x)

5 plt.plot(x.numpy(), u.detach().numpy(), color="blue")

6 plt.plot(x.numpy(), analytic_solution.numpy(), "--", color="black")

7 plt.show()
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Programming PINNs: Results

1 import matplotlib.pyplot as plt

2 x = torch.linspace(0, 1, 100).reshape(100, 1)

3 y = pinn(x) # neural network solution

4 analytic_solution = (-0.5*x*(1-x)).reshape(-1,) # u(x) = − 1
2
x(1− x)

5 # plotting the error between neural network and analytical solution

6 plt.plot(x.numpy(), u.detach().numpy() - analytic_solution.numpy(), color="red")

7 plt.show()
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Abstract error analysis

1 See Lecture 1, numerical concepts, errors

2 In PINNs, we have three major error sources:

1 Optimization error eopt
2 Generalization error egen
3 Approximation error eapp

3 Total error:
e := eopt + egen + eapp (359)

4 In more detail (typical argument via triangle inequality)

e := ‖ũT − u‖ ≤ ‖ũT − uT ‖+ ‖uT − uF‖+ ‖uF − u‖ (360)

where F is the family of all possible functions that can be presented
by the neural network architecture

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 359 / 441



Further methods to solve differential equations: second 45
minutes

• DGM75

• Deep Ritz76

• vPINN77

75Justin Sirignano and Konstantinos Spiliopoulos. “DGM: A deep learning algorithm
for solving partial differential equations”. In: Journal of Computational Physics 375
(2018), pp. 1339–1364. issn: 0021-9991. doi:
https://doi.org/10.1016/j.jcp.2018.08.029. url:
https://www.sciencedirect.com/science/article/pii/S0021999118305527.

76Weinan E and Bing Yu. “The Deep Ritz Method: A Deep Learning-Based Numerical
Algorithm for Solving Variational Problems”. In: Communications in Mathematics and
Statistics 6.1 (2018), pp. 1–12. issn: 2194-671X. doi: 10.1007/s40304-018-0127-z.
url: https://doi.org/10.1007/s40304-018-0127-z.

77E. Kharazmi, Z. Zhang, and G. E. Karniadakis. Variational Physics-Informed Neural
Networks For Solving Partial Differential Equations. 2019. arXiv: 1912.00873 [cs.NE].
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DGM

1 Very similar to PINNs

2 Difference in some details of the design:
• DGM: Monte-Carlo approximation for fast computation of (second)

derivatives; focus on high-dimensional PDEs up to 200 dimensions
• PINN: automatic differentiation to calculuate derivatives; physics-based

data-driven modeling

3 Formulate PDE in strong form, boundary and initial conditions within
a functional and minimize: min J(u) with

J(u) = ‖∂tu + L(u)‖2
2 + ‖u − g‖2

2 + ‖u(0)− u0‖2
2 (361)

4 As before θ ∈ RK are the neural network parameters (weights and
biases)
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DGM algorithm

1 Generate random points (scattered; residual) sn on Ω× [0,T ] and
∂Ω× [0,T ]

2 Calculate squared error:

G (θn, sn) =(∂tu(tn, xn, θn) + Lu(tn, xn, θn))2 (362)

+ (u(τn, zn, θn)− g(τn, zn))2 (363)

+ (u(0,wn, θn)− u0(wn))2 (364)

3 Descent step at the random point sn:

θn+1 = θn − αn∇θG (θn, sn) (365)

4 Repeat until stopping criterion is fulfilled, e.g., ‖∇θG‖ < TOL or
‖θn+1 − θn‖ < TOL or their relative stopping criteria versions.
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Deep Ritz

1 Variational approximation in the energy form rather than in the
strong form (as before)

2 Energy forms do however only exist for symmetric problems

3 Example: Classical elasticity (solid mechanics)

4 Counter example: Navier-Stokes equations (fluid mechanics)
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Deep Ritz

1 Specific example:
min
u∈H

I (u) (366)

with

I (u) =

∫
Ω

(
1

2
|∇u(x)|2 − f (x)u(x)

)
dx (367)

where H is the set of admissible functions (see PDE numerics classes)
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Deep Ritz: algorithm

1 Deep neural network-based approximation of the trial function u(x)

2 A numerical quadrature rule for I (u), namely the arising integral
therein (somewhat similar as in FEM when evaluating the local
integrals)78

3 Algorithm for solving the arising optimization problem (determining
the optimal parameters; training, same procedure as for PINN or
DGM)

78Wick, Numerical methods for partial differential equations.
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vPINN

1 Variational approximation in a weak form (conceptionally similar to
FEM)

2 Petrov-Galerkin: trial and test functions differ

3 Trial space: approximation via neural network

4 Test space: Legendre polynomials (hopefully known from Numerik 1)

5 Allows to approximate larger classes of problems than Deep Ritz
(non-symmetric PDEs know as well)

6 Closer to classical PDE numerics since weak forms (rather than strong
forms) are much more often available/considered in modern numerics

7 Less regularity in function spaces needed than for strong forms
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vPINN

1 Nonlinear neural network approximation only in trial function

2 Test space due to Legendre polynomials linear (as in FEM)

3 Challenge: approximation of integrals arising in the weak formulation

→ analytical expressions for integrals in general not available

4 Trick: the authors of VPINN consider a shallow network with only
one hidden layer (not deep!) and indeed compute explicitly the
integrals and derivatives
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Summary of methods in this class

• PINN79

• DGM80

• Deep Ritz81

• vPINN82

79Raissi, Perdikaris, and Karniadakis, “Physics-informed neural networks: A deep
learning framework for solving forward and inverse problems involving nonlinear partial
differential equations”.

80Sirignano and Spiliopoulos, “DGM: A deep learning algorithm for solving partial
differential equations”.

81E and Yu, “The Deep Ritz Method: A Deep Learning-Based Numerical Algorithm
for Solving Variational Problems”.

82Kharazmi, Zhang, and Karniadakis, Variational Physics-Informed Neural Networks
For Solving Partial Differential Equations.
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Review papers; further reading

• https://arxiv.org/pdf/2105.09506.pdf

• https://www.nature.com/articles/s42254-021-00314-5.pdf

• https://arxiv.org/pdf/2201.05624.pdf
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Extensions of PINNs

• Self-adaptive PINN https://arxiv.org/pdf/2009.04544.pdf

• Gradient-enhanced PINNs
https://arxiv.org/pdf/2111.02801.pdf

• Hidden Fluid Mechanics https://arxiv.org/pdf/1808.04327.pdf

• Physics-Informed Neural Networks with Hard Constraints for Inverse
Design https://epubs.siam.org/doi/pdf/10.1137/21M1397908

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 370 / 441

https://arxiv.org/pdf/2009.04544.pdf
https://arxiv.org/pdf/2111.02801.pdf
https://arxiv.org/pdf/1808.04327.pdf
https://epubs.siam.org/doi/pdf/10.1137/21M1397908


End of Lecture 13
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Neural Operators

1 DeepONet

2 Fourier Neural Operators (FNO)

3 Further topics and current developments
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DeepONet: main literature

• DeepONet paper83

• Extensions of DeepONet84

• YouTube video by Karniadakis:
https://www.youtube.com/watch?v=1bS0q0RkoH0

83Lu Lu et al. “Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators”. In: Nature Machine Intelligence 3.3 (2021),
pp. 218–229. issn: 2522-5839. doi: 10.1038/s42256-021-00302-5. url:
https://doi.org/10.1038/s42256-021-00302-5.

84Lu Lu et al. A comprehensive and fair comparison of two neural operators (with
practical extensions) based on FAIR data. 2021. arXiv: 2111.05512

[physics.comp-ph].
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DeepONet

1 Lecture 6: UAT: NN are universal approximators of continuous
functions

2 Now: NN with a single hidden layer can approximate any nonlinear
continuous operator

→ UAT of operators

3 DeepONet: Deep Operator Network

4 1st DNN for encoding the discrete input function space: branch net

5 2nd DNN for encoding the domain of the ouput function: trunk net

6 DeepONet can learn operators such as integrals and fractional
Laplacians, deterministic and stochastic differential equations
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DeepONet

Image source: Figure 1 from DeepONet paper85

85Lu et al., “Learning nonlinear operators via DeepONet based on the universal
approximation theorem of operators”.
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DeepONet: Theorem 1: assumptions

1 Let σ be a continuous non-polynomial function

2 X is a Banach space

3 K1 ⊂ X compact set

4 K2 ⊂ Rd compact set

5 V ⊂ C (K1) compact set

6 Usual norm ‖u‖C(K1) = maxx∈K1 |u(x)|
7 Nonlinear continuous operator:

G : V → C (K2) (368)
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DeepONet: Theorem 1: statement

Theorem

Let the previous assumptions hold true. Then, for any ε > 0, there are
positive n, p,m ∈ N and constants cki , ξ

k
ij , θ

k
i , ζk ∈ R, and

wk ∈ Rd , xj ∈ K1 for i = 1, . . . , n and k = 1, . . . , p, and j = 1, . . . ,m such
that∣∣∣∣∣∣G (u)(y)−

p∑
k=1

n∑
i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki

σ(wk · y + ζk)

∣∣∣∣∣∣ < ε (369)

holds for all u ∈ V and y ∈ K2

Proof.

We refer to Chen, Chen; Univerisal approximation to nonlinear operators
by neural networks with arbitrary activation functions and its application
to dynamical systems, IEEE Trans. Neural Networks, Vol. 6, pp. 911-917,
1995
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DeepONet: branch and trunk

1 Branch:
n∑

i=1

cki σ

 m∑
j=1

ξkiju(xj) + θki

 (370)

2 Trunk:
σ(wk · y + ζk) (371)
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DeepONet: architecture

1 Sensors {x1, x2, . . . , xm}
2 1st network input [u(x1), . . . , u(xm)]T

3 2nd network input y ∈ Rd

4 Since dimensions may be different, namely m and d , two networks are
required in general

5 Previous theorem guides possible network structure
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DeepONet: trunk and branch

1 Takes y as input

2 Output [t1, t2, . . . , tp]T ∈ Rp

3 p branch networks

4 Each branch takes [u(x1), u(x2), . . . , u(xm)]T as input

5 Branch output bk ∈ R for k = 1, . . . , p

6 Merging:

G (u)(y) ≈
p∑

k=1

bk(u(x1), u(x2), . . . , u(xm))tk(y) (372)

7 In practice p ≥ 10 and using only one single branch network with
output [b1, . . . , bp]T ∈ Rp
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DeepONet: data generation

1 One data point is a triplet of the form

(u, y ,G (u)(y)) (373)

2 Example: dataset of size 10 000 may be generated for 100 u and each
is evaluated via G (u)(y) at 100 different y locations

3 Task in DeepONet: Use input [u(x1), . . . , u(xm)] for representing u(x)

→ Estimate how many sensors m are required to achieve accuracy of ε
(Theorem from before)
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DeepONet: data generation

1 Example via ODE system

2 Consider IVP

s ′(x) = g(s, u, x) (374)

s(a) = s0 (375)

3 Input u ∈ V ⊂ C [a, b]

4 Output s : [a, b]→ RK

5 Operator G defined by

G (u)(x) = s0 +

∫ x

a
g(G (u)(t), u(t), t) dt (376)
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DeepONet: approximation theorem

1 Nodal points: xj = a + j(b − a)/m for j = 0, . . . ,m

2 Define function um(x) via

um(x) = u(xj) +
u(xj+1)− u(xj)

xj+1 − xj
(x − xj), (377)

for xj ≤ x ≤ xj+1 and j = 0, . . . ,m − 1

3 Operator mapping Lm : u 7→ um

4 Um = {Lm(u)|u ∈ V } ⊂ C [a, b] (compact since V is compact and Lm
continuous)

5 For u ∈ V and um ∈ Um there exists a constant κ(m,V ) such that

max
x∈[a,b]

|u(x)− um(x)| ≤ κ(m,V ), κ(m,V )→ 0 as m→∞ (378)
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DeepONet: approximation theorem

It holds

Theorem

Let m ∈ N such that c(b − a)κ(m,V )ec(b−a) < ε. Then, for any
d ∈ [a, b], there exist matrices and biases
W1 ∈ Rn×(m+1), b1 ∈ Rm+1,W2 ∈ RK×n, b2 ∈ RK such that∥∥∥G (u)(d)−

(
W2 · σ(W1 · [u(x0) · · · u(xm)]T + b1) + b2

)∥∥∥ < ε. (379)

Proof.

We refer to Lu Lu et al. 2021.
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Fourier Neural Operators: main literature

• FNO paper86

• FNO are universal approximators:
https://arxiv.org/pdf/2107.07562.pdf (main theorem also
mentioned in87)

• Extensions of FNO88

86Zongyi Li et al. Fourier Neural Operator for Parametric Partial Differential
Equations. 2021. arXiv: 2010.08895 [cs.LG].

87Lu et al., A comprehensive and fair comparison of two neural operators (with
practical extensions) based on FAIR data.

88Ibid.
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Fourier Neural Operators

Image source: Figure 2 from Fourier Neural Operators paper89

89Li et al., Fourier Neural Operator for Parametric Partial Differential Equations.
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Fourier Neural Operators: motivation

1 Problem: Learning and using neural operators (e.g., DeepONet) are
not yet numerically efficient

2 One idea: Use fast Fourier transform (FFT), e.g.,90 [Section 8.9]

3 FFT not completely new in neural networks, e.g., used in the theory
of UAT91

4 FFT used to speed-up CNN92

5 In the following: Fourier neural operator

90Richter and Wick, Einführung in die Numerische Mathematik: Begriffe, Konzepte
und zahlreiche Anwendungsbeispiele.

91Hornik, Stinchcombe, and White, “Multilayer feedforward networks are universal
approximators”.

92M. Mathieu, M. Henaff, and Y. LeCun. Fast training of convolutional networks
through FFTs. Preprint. 2013.
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Fourier Neural Operators: basics

1 Procedure: learning mappings between two infinite dimensional spaces
(like in DeepONet)

2 Let A and U be separable Banach spaces 93

3 Let G+ : A → U be a nonlinear mapping

4 We have maps in mind for parametric PDEs (PPDE):

G : A×Θ→ U (380)

with a finite-dimensional parameter space Θ

5 Cost functional: C : U × U → R
6 Minimization problem:

min
θ∈Θ

Ea∼µ[C (G (a, θ),G+(a))] (381)

93See Dirk Werner; FA, 2018
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Fourier Neural Operators: Learning operators

1 Clearly, approximating G+ much more difficult than simply computing
a solution u ∈ U of a PDE for a given parameter θ ∈ Θ

2 Classical discretizations, such as FD (finite differences), FEM (finite
element method), FV (finite volumes) or even PINNs (Lecture 12)
‘only’ approximate one solution of a PDE

3 Learning the operator itself, may significantly reduce the
computational cost
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Neural operator

1 Iterative architecture:

v0 7→ v1 7→ . . . 7→ vT (382)

with a sequence of functions vj ∈ Rdv

2 Input a ∈ A lifted to higher dimensional representation
v0(x) = P(a(x))

3 Local transformation P parametrized by a shallow fully-connected NN

4 Apply several iterations of updates vt 7→ vt+1, which are compositions
of non-local integral operator K and a (usual) local, nonlinear
activation function σ

5 Output: u(x) = Q(vT (x)) where Q : Rdv → Rdu
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Neural operator

Definition (Iterative updates)

The updates vt 7→ vt+1 are defined by

vt+1(x) := σ(Wvt(x) + (K(a, φ)vt)(x)) (383)

for all x ∈ D. Therein,

K : A×ΘK → L(U ,U) (384)

is a kernel integral transformation. In words, K maps to bounded linear
operators on U . Moreover, W : Rdv → Rdv is a linear transformation and
as usual σ : R→ R.
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Neural operator

Definition (Kernel integral operator)

The kernel integral operator is defined by

(K(a, φ)vt)(x) :=

∫
D
κ(x , y , a(x), a(y), φ)vt(y) dy (385)

for all x ∈ D and where

κφ : R2(d+da) → Rdv×dv (386)

is a neural network parametrized by φ ∈ ΘK, specifically κφ is learned from
data.
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Fourier neural operator

1 In case a ∈ A is removed, such that κ(x , y , φ) = κφ(x − y), we
obtain a classical convolution operator 94

2 Idea:95 Parametrize κφ directly in the Fourier space and use FFT for
computing (385).

94See e.g., D. Werner; Funktionalanalysis, 2018
95Li et al., Fourier Neural Operator for Parametric Partial Differential Equations.
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Fourier neural operator
1 Let F denote the Fourier transform of a function f : D → Rdv :

(F f )j(k) =

∫
D
fj(x)e−2iπ<x ,k> dx (387)

2 Inverse Fourier transform:

(F−1f )j(x) =

∫
D
fj(k)e2iπ<x ,k> dk (388)

for j = 1, . . . , dv and i (is NOT an index), but the imaginary unit
i2 = −1

3 Use
κ(x , y , a(x), a(y), φ) = κφ(x − y) (389)

4 Convolution theorem:

(K(a, φ)vt)(x) = F−1(F(κφ) · F(vt))(x) (390)

for all x ∈ D
Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 395 / 441



Fourier neural operator

Definition (Fourier integral operator)

The Fourier integral operator is defined by

(K(φ)vt)(x) = F−1(Rφ · (Fvt))(x) ∀x ∈ D (391)

where Rφ is the Fourier transform of a periodic function κ : D̄ → Rdv×dv

parametrized by φ ∈ ΘK
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Fourier neural operator

1 Since κ is periodic, we have a Fourier series expansion

→ Discrete modes k ∈ Zd

2 Truncating Fourier series at a maximal number of modes kmax

3 Parametrize R := Rφ as a complex-valued tensor as a collection of
truncated Fourier modes
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Discrete case and FFT

1 Let D be discretized with n ∈ N points

2 We have vt ∈ Rn×dv

3 F(vt) ∈ Cn×dv

4 Truncation: F(vt) ∈ Ckmax×dv

5 Weight tensor R ∈ Ckmax×dv×dv

6 Then:

(R · (Fvt))k,l =
dv∑
j=1

Rk,l ,j(Fvt)k,j , (392)

for k = 1, . . . , kmax and j = 1, . . . , dv
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Discrete case and FFT

1 Uniform discretization with resolution s1 × · · · × sd = n

2 x = (s1, . . . , xd) ∈ D

3 Definition of FFT:

(F̂ f )l(k) =

s1−1∑
x1=0

· · ·
sd−1∑
xd=0

fl(x1, . . . , xd)e
−2iπ

∑d
j=1

xj kj
sj (393)

4 Definition of inverse FFT:

(F̂−1f )l(k) =

s1−1∑
k1=0

· · ·
sd−1∑
kd=0

fl(k1, . . . , kd)e
2iπ

∑d
j=1

xj kj
sj (394)

for l = 1, . . . , dv
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Short summary of this semester

1 In particular, the last lecture L14 shows that functional analysis
(FA) and analysis classes are fundamental in order to design
accurate, efficient, and robust numerical algorithms

2 On the first glance this is somewhat surprising within machine
learning, artificial intelligence, and neural networks since often we
rather hear or speak about ‘algorithms’, ‘data’, and ‘powerful
computing machines’

3 However when taking a closer look (and going a bit deeper), this is
not any surprise at all and well-known for decades that the ground of
good numerics is rigorous mathematical theory
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Outlook (I)

1 Mathematics of deep learning96

2 Solving inverse problems using data-driven models97

3 Combining different areas of numerics, e.g. POD and DeepONet98

96Julius Berner et al. The Modern Mathematics of Deep Learning. 2021. arXiv:
2105.04026 [cs.LG].

97Simon Arridge et al. “Solving inverse problems using data-driven models”. In: Acta
Numerica 28 (2019), pp. 1–174. doi: 10.1017/S0962492919000059.

98Lu et al., A comprehensive and fair comparison of two neural operators (with
practical extensions) based on FAIR data.
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Outlook (II)

1 Transfer learning for phase-field fracture:99

2 DeepONet for phase-field fracture100

3 Current developments are also related to some of the project topics of
this class

99Somdatta Goswami et al. “Transfer learning enhanced physics informed neural
network for phase-field modeling of fracture”. In: Theoretical and Applied Fracture
Mechanics 106 (2020), p. 102447. issn: 0167-8442. doi:
https://doi.org/10.1016/j.tafmec.2019.102447. url:
https://www.sciencedirect.com/science/article/pii/S016784421930357X.

100Somdatta Goswami et al. “A physics-informed variational DeepONet for predicting
crack path in quasi-brittle materials”. In: Computer Methods in Applied Mechanics and
Engineering 391 (2022), p. 114587. issn: 0045-7825. doi:
https://doi.org/10.1016/j.cma.2022.114587. url:
https://www.sciencedirect.com/science/article/pii/S004578252200010X.
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Outlook (III), some own ideas and developments

1 Learning the adjoint equation in goal-oriented error estimation (strong
form of the equations as in Lecture 12)101

→ Possible extension: work in weak form (VPINNs ?!) or Deep Ritz
Method

2 Possible idea: data-driven methods for phase-field fracture or
fluid-structure interaction within optimal control

→ Why? Several forward runs necessary. Approximation via NN may
significantly reduce numerical efforts

3 Recall: for repeated runs of forward models, NN and MOR (model
order reduction) may be cost-efficient ways

101Julian Roth, Max Schröder, and Thomas Wick. “Neural network guided adjoint
computations in dual weighted residual error estimation”. In: SN Applied Sciences 4
(2022). doi: https://doi.org/10.1007/s42452-022-04938-9.
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Refresh finally the topics we have had in this class

1. Traditional AI
1.1 Lecture 1: Algorithmic Systems, Numerical Concepts, Notation
1.2 Lecture 2: Introduction to Probability, Random Processes, Statistics
1.3 Lecture 3: Fundamental Algorithms
1.4 Lecture 4: Dimensionality Reduction

2. Deep Learning in Neural Networks
2.1 Lecture 5: Artificial Neural Networks (ANN)
2.2 Lecture 6: Universal Approximation Theorem
2.3 Lecture 7: Convolutional Neural Networks (CNN)
2.4 Lecture 8: Recurrent Neural Networks (RNN)
2.5 Lecture 9: Transformer
2.6 Lecture 10: Reinforcement Learning (RL)

3. Applications to (and with) Differential Equations
3.1 Lecture 11: Introduction to ML for Scientific Computing
3.2 Lecture 12: Neural ODE
3.3 Lecture 13: PINNs: Physics-Informed Neural Networks
3.4 Lecture 14: Neural Operators and Outlook

4. Projects
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End of Lecture 14

End of this course in this semester.
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Example Projects

1 PINNs for Navier-Stokes Equations

2 Model Order Reduction for parametric PDEs

3 Goal-Oriented Self-Adaptive PINNs
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Project 1: PINNs for Navier-Stokes Equations

Solving the stationary Navier-Stokes 2D-1 benchmark problem with
Physics Informed Neural Networks.

−µ∆v + ρ(v · ∇)v +∇p = 0 (395)

∇ · v = 0 (396)
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Project 2: Model Order Reduction for parametric PDEs

• Model order reduction of parametric heat equation
• Generate low-dimensional approximation space by Proper Orthogonal

Decomposition (POD)

⇒ Provide rapidly computable approximations

Image source: Figure 1 from Reduced Basis tutorial102

102Bernard Haasdonk. “Reduced basis methods for parametrized PDEs–a tutorial
introduction for stationary and instationary problems”. In: Model reduction and
approximation: theory and algorithms 15 (2017), p. 65.
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Project 3: Goal-Oriented Self-Adaptive PINNs (I): Problem
statement

1 We want to solve a general PDE of the form:

Nx ,t [u(x , t)] = 0, x ∈ Ω, t ∈ (0,T ),

u(x , t) = g(x , t), x ∈ ∂Ω, t ∈ (0,T ),

u(x , 0) = h(x), x ∈ Ω,

2 where Ω× [0,T ] ⊂ Rd+1 is the space-time cylinder with spatial
dimension d and u : Ω× [0,T ]→ R.
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Project 3: Goal-Oriented Self-Adaptive PINNs (II)

1 From this, following the PINN approach, we obtain a loss-function of
the form

L(θ, T ) = w1Lf (θ, Tf ) + w2L0(θ, T0) + w3Lb(θ, Tb),

with w1, w2, w3 > 0 and Lf , L0, and Lb are similar to those defined
on the next slide.

2 Q: How to choose the weights w1, w2, w3?

3 A: Self-Adapative PINNs.103

103Levi D. McClenny and Ulisses M. Braga-Neto. “Self-Adaptive Physics-Informed
Neural Networks using a Soft Attention Mechanism”. In: CoRR abs/2009.04544 (2020).
arXiv: 2009.04544. url: https://arxiv.org/abs/2009.04544.
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Project 3: Goal-Oriented Self-Adaptive PINNs (III)

1 The idea is, to employ weights to each summand of each term of the
loss function to obtain:

L(θ, λf , λ0, λb, T ) = Lf (θ, λf , Tf ) + L0(θ, λ0, T0) + Lb(θ, λb, Tb),

2 where λf = (λ1
f , ..., λ

Nf
f ), λ0 = (λ1

0, ..., λ
N0
0 ), λb = (λ1

b, ..., λ
Nb
b ) and

Lf (θ, λf , Tf ) =
1

Nf

Nf∑
i=1

∣∣λifNx ,t [û(x if , t
i
f , θ)]

∣∣2
L0(θ, λ0, T0) =

1

N0

N0∑
i=1

∣∣λi0 (ûθ(x i0, 0, θ)− h(x i0)
)∣∣2

Lb(θ, λb, Tb) =
1

Nb

Nb∑
i=1

∣∣λib (ûθ(x ib, t
i
b, θ)− g(x ib)

)∣∣2 .
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Project 3: Goal-Oriented Self-Adaptive PINNs (IV)

1 Involving the adaptation of the additional Self-Adaptive weights to
the usual training process leads to a min max problem:

min
θ

max
λf , λ0, λb

L(θ, λf , λ0, λb, T ).

2 In practice this is done with a gradient descent/ascent procedure
(again see also L2, L3 and L5)

θk+1 = θk − ηk∇θL(θk , λkf , λ
k
0 , λ

k
b , T ),

λk+1
f = λkf + ηk∇λf L(θk , λkf , λ

k
0 , λ

k
b , T ),

λk+1
0 = λk0 + ηk∇λ0L(θk , λkf , λ

k
0 , λ

k
b , T ),

λk+1
b = λkb + ηk∇λbL(θk , λkf , λ

k
0 , λ

k
b , T ),

where ηk is the learning rate at step k.
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Project 3: Goal-Oriented Self-Adaptive PINNs (V)

1 We find

∇λf L(θ, λf , λ0, λb, T ) ≥ 0,

∇λ0L(θ, λf , λ0, λb, T ) ≥ 0,

∇λbL(θ, λf , λ0, λb, T ) ≥ 0,

2 such that

{λkf , k = 1, 2, ...},
{λk0 , k = 1, 2, ...},
{λkb , k = 1, 2, ...},

are monotonically nondecreasing under the assumption that the initial
weights are nonnegative.
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Project 3: Goal-Oriented Self-Adaptive PINNs (VI)

1 Now, we want to apply the SAPINN approach on goal functionals

2 Motivation: we want to solve the PDE while controlling/minimizing
the error in a specific goal functional

3 What are goal functionals?

→ Without any further postprocessing, we obtain global numerical
solutions and error analyses

4 From a technical (engineering) point of view, however, very often not
the entire solution is of interest, but only parts of it
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Project 3: Goal-Oriented Self-Adaptive PINNs (VII)

1 Such ‘parts’ of a solution can be: parts of the domain, such as
subdomains, lines, point evaluations

2 Such ‘parts’ can also be: only parts of solution components, e.g., if
vectors in u ∈ Rn then, e.g., goal functional only controls ũ ∈ Rm,
e.g., first m components, with m < n

3 Usually this greater flexibility in obtaining information with the help
of goal functionals, results in a higher computational cost (‘no free
lunch’)

→ GOSAPINN: goal-oriented self-adaptive PINNs
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Project 3: Goal-Oriented Self-Adaptive PINNs (VIII)

1 Challenge: application of self-adaptive weights to the goal-functional
due to integrals

2 Considering a goal functional J(·) ∈ R, we want to minimize the error

|J(û(x , t, θ))− J(u(x , t))|,

in addition to satisfying the PDE as closely as possible.

3 This leads to an additional loss function

LJ(θ, TJ) = |J̃(û(x , t, θ))− J̃(u(x , t))|2,

where J̃ is an approximation with a suitable quadrature formula.
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Project 3: Goal-Oriented Self-Adaptive PINNs (IX)
We follow three approaches:

1 No Self-Adaptive weights:

L(θ, λf , λ0, λb, T ) = Lf (θ, λf , Tf ) + L0(θ, λ0, T0)

+ Lb(θ, λb, Tb) + LJ(θ, TJ),

2 One Self-Adaptive weight:

L(θ, λf , λ0, λb, λJ , T ) = Lf (θ, λf , Tf ) + L0(θ, λ0, T0)

+ Lb(θ, λb, Tb) + LJ(θ, λJ , TJ),

with
LJ(θ, λJ , TJ) = |λJ(J̃(û(x , t, θ))− J̃(u(x , t)))|2,

3 Multiple weights applied (one on each quadrature point):

LJ(θ, λJ , TJ) = |J̃(û(x , t, θ), λJ)− J̃(u(x , t), λJ)|2.
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Project 3: Goal-Oriented Self-Adaptive PINNs (X)

1 Then, we train the Neural network, as before, via

min
θ

max
λf , λ0, λb, λJ

L(θ, λf , λ0, λb, λJ , T ).
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Project 3: Goal-Oriented Self-Adaptive PINNs (XI)

1 We perform some experimental tests of the previously introduced idea
on the 1+1D heat equation:

2 Find u : [0, 1]2 → R such that

∂tu −∆u = 0, (x , t) ∈ (0, 1)× (0, 1),

u(0, t) = u(1, t) = 0, t ∈ (0, 1),

u(x , 0) = sin(πx), x ∈ (0, 1).

3 An analytical solution of this IBVP (initial-boundary value problem) is
given by

u(x , t) = sin(πx) · exp(−π2t).
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Project 3: Goal-Oriented Self-Adaptive PINNs (XII)

1 We consider three different goal functionals:

J1(φ) =

∫ 0.6

0.4

∫ 0.6

0.4
φ(u − φ) dxdt,

J2(φ) =

∫ 0.6

0.4

∫ 0.6

0.4
φ dxdt,

J3(φ) =

∫ 0.6

0.4

∫ 0.6

0.4
φ2 dxdt,

2 where u is the exact solution defined on the previous slide.
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Project 3: Goal-Oriented Self-Adaptive PINNs (XIII)
1 We train the neural network by minimizing the goal functional error

given by

|J1(û(θ, x , t))− J1(u(x , t))| ≈

∣∣∣∣∣∣ 0.04

Nx
J · N t

J

Nx
J∑

i=1

Nt
J∑

j=1

(û(θ, x i , t j)− u(x i , t j))2

∣∣∣∣∣∣ ,
|J2(û(θ, x , t))− J2(u(x , t))| ≈

∣∣∣∣∣∣ 0.04

Nx
J · N t

J

Nx
J∑

i=1

Nt
J∑

j=1

û(θ, x i , t j)− u(x i , t j)

∣∣∣∣∣∣ ,
|J3(û(θ, x , t))− J3(u(x , t))| ≈

∣∣∣∣∣∣ 0.04

Nx
J · N t

J

Nx
J∑

i=1

Nt
J∑

j=1

û(θ, x i , t j)2 − u(x i , t j)2

∣∣∣∣∣∣ ,
2 These are approximated via a Monte-Carlo quadrature104 given by:∫

Ω

f (x)dx ≈ |Ω|
N

N∑
i=1

f (xi ).

104Stefan Weinzierl. Introduction to Monte Carlo methods. 2000. arXiv:
hep-ph/0006269 [hep-ph].
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Project 3: Goal-Oriented Self-Adaptive PINNs (XIV)
In our numerical experiments, we compare four different loss functions for
the goal functional error:

1 goal functional error not considered:

LJ = 0,

2 no Self-Adaptive weights:

LJ(θ, TJ) =

∣∣∣∣∣∣ 0.04

Nx
J · N t

J

Nx
J∑

i=1

Nt
J∑

j=1

(û(θ, x i , t j)− u(x i , t j))2

∣∣∣∣∣∣ ,
3 One Self-Adaptive weight:

LJ(θ, λJ , TJ) =

∣∣∣∣∣∣λJ
0.04

Nx
J · N t

J

Nx
J∑

i=1

Nt
J∑

j=1

(û(θ, x i , t j)− u(x i , t j))2

∣∣∣∣∣∣ ,
4 One Self-Adaptive weight for each quadrature point:

LJ(θ, λJ , TJ) =

∣∣∣∣∣∣ 0.04

Nx
J · N t

J

Nx
J∑

i=1

Nt
J∑

j=1

λi,j
J (û(θ, x i , t j)− u(x i , t j))2

∣∣∣∣∣∣ .
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Project 3: Goal-Oriented Self-Adaptive PINNs (XV)
• Observed quantities: The goal functional error of the four approaches

(again approximated via Monte-Carlo)

• Input layer of size 2

• 3 hidden layers of 20 neurons each

• Output layer of size 1

• Optimization Algorithm: Adam optimization algorithm105 and
L-BFGS algorithm106 to solve the min max problem

• Used software library: TensorFlow
• Number of points selected for training/quadrature:

• Nf = 10000
• N0 = 100
• Nb = 200
• NJ = Nx

J · N t
J = 51 · 21 = 1071

105Kingma and Ba, Adam: A Method for Stochastic Optimization.
106Dong C. Liu and Jorge Nocedal. “On the Limited Memory BFGS Method for Large

Scale Optimization”. In: Math. Program. 45.1–3 (Aug. 1989), pp. 503–528. issn:
0025-5610.
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Project 3: Goal-Oriented Self-Adaptive PINNs (XVI)

102 103 104

10−7

10−6
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10−3
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1
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)
−

J 1
(u

N
N

)|

gf with multiple SA-weight
gf with 1 SA-weight

gf without SA-weight
no gf

Figure: Plot of the goal functional error of the functional J1 with 4 different
approaches. The x-axis describes the number of L-BFGS iterations and the y-axis
describes the error measured in the goal functional.
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Project 3: Goal-Oriented Self-Adaptive PINNs (XVII)

102 103 104

10−6

10−4
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# L-BFGS iter
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2
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J 2
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N
N

)|
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gf without SA-weight
no gf

Figure: Plot of the goal functional error of the functional J2 with 4 different
approaches. The x-axis describes the number of L-BFGS iterations and the y-axis
describes the error measured in the goal functional.
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Project 3: Goal-Oriented Self-Adaptive PINNs (XVIII)
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Figure: Plot of the goal functional error of the functional J3 with 4 different
approaches. The x-axis describes the number of L-BFGS iterations and the y-axis
describes the error measured in the goal functional.
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Project 3: Goal-Oriented Self-Adaptive PINNs (XIX):
Conclusions

1 Advantages of this approach:
• The code for SAPINNs is open source and the extension the

GOSAPINNs is simple
• Satisfying results (at least in case 2 and case 1)
• Adaptable to other PDEs and other goal functionals.
• As indicated above: greater flexibility in obtaining information on

‘parts’ of the solution
• Adavantage of SAPINNs: improved training process; large errors are

increased artificially to force the neural network to approximate the
exact solution more precisely

Kinnewig, Kolditz, Roth, Wick Numerical methods for AS and NN (NumASNN) 428 / 441



Project 3: Goal-Oriented Self-Adaptive PINNs (XX):
Conclusions

3 Drawbacks:
• Higher cost (training needs more time): Around 15% more time when

comparing case 1 and case 4. As mentioned before, it is a trade-off
(’no free lunch’)

• Convergence problems in the L-BFGS solver

4 Still to do:
• Implement a better approximation of the integrals (e.g. trapezoidal

rule)
• Test on other, more complex PDEs and more complex goal functionals
• Until now, we require an analytical solution to handle the goal

functional error. In practice, we do not have an analytical solution (in
most cases), thus we have to find a way to approximate it
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