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Abstract

Deep learning neural networks achieve great performance in image classification tasks. To
measure the performance, a validation set is used to estimate the performance on unseen
test data. A set of different models with similar performance on the validation set is called
Rashomon set. Even though the performance of the validation set are similar the reasoning
behind the decision may differ. Unfortunately, deep neural networks are a black box models,
where the reasoning behind a decision is not clear. In this thesis we compare these black
box models and aim to differentiate models which are right for the right reasons and models
which are right for the wrong reasons.

We examine whether different reasons between models may be found by using extremal
perturbations masks, which highlight the most important part behind a models predictions.
We compare the similarity of masks from different models on the same instance. We find
that images with decoy can be found using this method if we compare a decoy model with
non-decoy models. However, some images without decoys have similar properties as images
with decoys.

Another method explored in this thesis is by using influential instance. Influential instances
are training instances which are important behind a decision for a validation instance. By
comparing these influential instances across models we want to show the difference behind
the reasoning behind a decision. Similar to the previous approach, images with decoys can
be detected, but images without a decoy can have similar properties as images with decoys.

We conclude that in certain scenarios explanations are useful to differentiate models that
are right for the right reasons from models that are right for the wrong reasons.
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1. Introduction

Deep Neural Network (DNN) models are black-box models because the complexity and the

large number of parameters make it hard for a human to understand the reason behind

the model’s output. DNNs have been applied in critical domains. For example, Convolu-

tional Neural Networks (CNN) have been used to detect cancer based on histopathological

images [17] or pneumonia from X-ray scans [18].

To evaluate these models a validation set is used. In practice, researchers and practitioners

train multiple models and select the model with the best performance on the validation set

for deployment, based on common metrics like accuracy or F1-score. This results in a set of

trained models, and often multiple models from this set have a similar performance on the

validation set.

A set of models with the same performance on the validation set is called Rashomon

set [3]. However, considering different models from this set, one model can still be superior if

it predicts the correct class for the right reason while others might predict the correct class

for the wrong reasons. So a good performance on the validation set is not enough to deem a

model good. For example, recent work showed that a model for pneumonia predictions has

a great performance on the validation set but did not perform well when images from other

hospitals were used. This is because the model learned to predict pneumonia based on a

hospital token in the images and not based on the lungs. Figure 1.1a shows this behaviour.

This is an example of a right for the wrong reason behavior of a model. While the model

correctly predicted the label of an image, it used features that are not intended to be used

by the developer. Instead, it used a shortcut rule for the prediction.

Another example is presented in figure 1.1b [1], where a model predicts a horse based on

a copyright tag. The copyright tag is not a feature of a horse. Therefore, it is a wrong reason.

Explanations visualize the reasons behind model predictions. There are multiple methods of

explanation to visualize the reason behind a decision of a model. For example, saliency maps

or heatmaps visualize the area a model focuses on. Explanations can help humans understand

the reasons behind a model, making it easier to decide whether the reason is correct. There is

no perfect explanation method. Each method has advantages and disadvantages depending on

the use case. Some popular explanations methods are gradient [24], LIME [19], SHAP [13],

Integrated Gradients [27], guided backpropagation [26], Grad-CAM [23] and RISE [15].

Another method is extremal perturbation [4]. It calculates a binary mask that is put on

top of the image. The binary mask only preserves the most important parts of the image.
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(a) X-ray image of a
lung with pneu-
monia where the
hospital token is
the reason for the
prediction.(Figure
from [6])

(b) Left: A horse image with a copyright tag; Right: The reasoning behind
the prediction. dark Red means high impact on the prediction and
green means low impact.; The dark red at the same position indicates
the model is using the copyright tag for the prediction.(Figure from [1])

Figure 1.1.: Images and the heatmap explaining the reason for the predictions. The heatmap
shows that wrong reasons are used for the predictions.

Figure 1.2.: Left: Images of a tench.; Middle: Extremal perturbation mask from a model with
correct reason, because the mask reveals parts of the tench.; Right: Extremal
perturbation mask from a model with wrong reason

This means the image’s parts that lead the model to its prediction remain visible, while

unimportant parts are masked.

Another type of explanation is explanation by example, like using influential instances.

An influential instance is a training instance that has a big impact on a model prediction.

Comparing the influential instances of two different models on the same query image should

show differences if the models learned different features and are similar if the models learned

the same feature. To calculate the influence score, the dot product of the gradients with

regard to the model parameters can be used. Pezeshkpour et al. [16] showed that the

resulting influence score is similar to older methods.

This thesis focuses on the problem of finding the best model from a Rashomon set of

models. The goal is to choose the model that makes predictions that are right for the right
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reasons. We are exploring whether explanations may be useful to achieve the goal.

Evaluating whether a method can distinguish a model that learned some shortcut rules

is difficult because the ground truth behind a model’s decision is unknown. Therefore, to

establish some ground truth, decoys can be used to train decoy models. A decoy is a feature

on an image that is present on images in one class and not part of the class. For example, a

copyright tag can be used as a decoy. A decoy model is a model trained to predict a class

based on a decoy and, therefore, right for the wrong reasons. A model may learn that a

copyright on an image means that a certain class should be predicted.

We create a set of models where one model is right for the right reason, and one is right

for the wrong reasons. In this thesis, we train multiple decoy models. We start with a simple

decoy, a copyright tag. We train a ResNet50 on an ImageNet subset consisting of 10 classes

where in only images from one class contain the copyright tag. We verify that the decoy was

learned using the accuracy on images with and without a decoy present. We also train a

decoy model using a more realistic decoy, a stop sign and show that even a more complex

decoy can be learned.

In this thesis, we use two different explanations,and compare per-instance level and across

examples. Per-instance level explanations are explanations that only explain a single instance.

Across examples, on the other hand, uses other instances for the explanations.

To examine the utility of comparing explanations, we use this evaluation setup in a series

of experiments:

1. RQ1: Can the similarity of explanations be used to identify images containing decoys?

In the first experiment, we compare the masks’ similarities from two models. We

calculate the extremal perturbation mask of the same image from different models and

compare them. A high similarity is given if the masks reveal the same pixels. Different

masks may suggest that the models learned different features.

We find that masks created by a decoy model and a non-decoy model have low similarity

if the image contains a decoy. However, some images create masks with low similarity

even if there is no decoy present. This results from objects that are big enough to

have two masks with low similarity

2. RQ2: Do extremal perturbation masks transfer across different models?

The second experiment examines how much worse a model performs if the model is

using the mask created by another model. We compare the drop in the softmax score

if the mask created by one model is replaced by the mask from another model.

The softmax score drops a lot if the image contains a decoy. However, there are some

images where the softmax score also drops a lot, even when there is no decoy present.

3. RQ2: Can the influence score be used to identify images containing decoys?
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In our third experiment, we create a ranked list by sorting the training instance with

the highest influence score at the top and the training instance with the lowest influence

score at the bottom.

Using precision, we show that if a decoy is present on an image, the decoy model

creates a ranked list where the top images contain a decoy. On the other hand, the

non-decoy model creates a ranked list where the top images contain the decoy with

the same ratio as the whole training set. Comparing the ranked list created by two

decoy models show that two decoy models do not create ranked lists with a higher

similarity score than on images from classes with no decoy. However, the intersection

of the top images from the two ranked list is higher than on images from classes where

no decoy is present. We also show that the ranked list created by a decoy model and

a model trained without a decoy has a lower than median similarity score when a

decoy is present. This said, both methods, ranked similarity and top intersections,

may indicate that one method learned the decoy there are non-decoy images with a

similar result than images with a decoy.

The methods examined in this thesis can indicate that a decoy may be present, but some

images without a decoy have similar properties as images with decoy.
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2. Fundamentals

In this chapter, we introduce fundamental background knowledge required to understand

the following chapters.

2.1. Convolutional Neural Network

To use a fully connected neural network on an image, the image has to be flattened into a

one-dimensional vector. This means spatial information is lost. For images, you can gain

more information about a pixel by observing pixels next to it. Pixels which are farther away

are usually less useful. Convolutional layers are designed to utilize the spatial grid structure

of an image.

A convolution layer consists of multiple kernels. A kernel slides over an image and performs

a matrix multiplication as seen in Figure 2.1. The output is called a feature map. The

values of a kernel are learned by back-propagating.

(a) Calculating the first element of the output
matrix.

(b) Calculating the last element of the output
matrix.

Figure 2.1.: Applying a 3 kernel on an 5× 5 matrix. Yellow highlights which elements of
the input matrix is used to calculate the output element. The kernel values are
written in Red. (Figure from [22])

A convolution layer uses the spatial information of an image. It uses pixels near each

other to calculate an element of the feature map. A convolution layer can also be applied

to a feature map. After the feature map is calculated, an activation function, like ReLu, is

applied.
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A further desired property is translation invariance. Moving an object in an image should

have a low impact on the neural network. Because a convolution layer only uses adjacent

pixels, moving an object in an image means the value of the feature map is also moved but

not changing.

Figure 2.2.: 2× 2 max pooling applied to a 3× 3 matrix.(Figure from [29])

Another important part of a CNN is pooling layers. Pooling layers reduce the spatial

size of a feature map. Two commonly used pooling methods are max pooling and average

pooling. Similar to a convolution layer, a window is moved across a matrix. On the elements

inside the window, an operation is applied. For example, Figure 2.2 shows a max pool

operation. A max pool uses the highest value inside the window is the result.

A conventional neural network usually starts with a convolutions layer followed by a

pooling layer. This may be repeated multiple times. The result will then be flattened and

will be used as an input to at least one fully connected layer.

2.1.1. ResNet Architecture

Residual network (ResNet) [7] is a popular CNN architecture [28]. There are multiple

versions of ResNet, like ResNet18 and ResNet50. The number denotes the number of layers

used. The basic architecture between these versions is the same.

ResNet solves the problem of degradation. Degradation is a problem where adding more

layers decreases the performance. This is not caused by overfitting since the training error

also gets worse [7]. Deeper neural networks are more difficult to optimize, which causes the

degradation problem. ResNet solves this by adding skip connections. Skip connections add

an old output to a new output. Figure 2.3 shows skip connections. The beginning of an

arrow is the old output, which is added to the output at the end of an arrow.

Figure 2.3 shows a the architecture of ResNet18. It is divided into 4 ConvNets layers.

2.2. Rashomon Sets of Models

A set of models with the same performance on the validation set is called Rashomon set [3].

Having the same accuracy on the validation set does not mean that both models learned

the same thing. Being right for the right reason means a model learned to predict a class

based on features the object of the class has. For example, zebras have stripes. So a model
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Figure 2.3.: Architecture of a ResNet-18 (Figure from [25])

learning to predict a zebra may learn that black and white stripes are an indicator for a

zebra. This model is right for the right reason.

Another model may have learned that zebras have a unique head shape and therefore

predicts zebra if the head shape is present. The head is still a feature of a zebra. So this

model is also right for the right reason.

Yet another model learning zebra may realize that zebra images are the only ones with

trees in the images. So the model may learn to predict zebra based on tress. Trees are not

features of a zebra. So this model is right for the wrong reason.

All three models may have similar performance on the validation set. However, only the

first two models are right for the right reason.

It is also possible to specifically train those models [20] by regularizing the training data.

For example, you train a model, and it predicts zebra based on black and white stripes. The

next model will use a modified training set by blurring the zebras’ stripes. By blurring the

reason of a model, the next model has to find another reason. You repeat this until the

accuracy on the validation set drops significantly. Now you created a Rashomon set where

the models have different reasons. Some models may even have learned a wrong reason.

2.3. Interpretability

A black box predictor such as a deep neural network takes an input and produces an output

without giving a reason. For example, an image classifier uses an image as an input and

creates a label as output without providing a reason. Interpretability tries to find and

communicate the reasons behind the decision of a model. It helps to discover bias and
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discriminatory behavior of a model and improve these problems. In some cases, an error in

a machine learning model can be fatal. A self-driving car with the wrong reason can lead to

deaths in the real world. Interpretability can also increase the social acceptance of machine

learning and justify its usage. Humans are more likely to trust a model whose decisions are

based on human-understandable facts than just a black box model where even its designers

do not understand why the model is correct. Lastly, interpretability can also be used to

gain knowledge. The interpretability of a model which classifies a bird species can show how

to differentiate between different bird species.

Molnar [14] uses the following taxonomy to classify different machine learning interpretabil-

ity methods.

Firstly, whether a method is intrinsic or post-hoc. An intrinsic method achieves inter-

pretability by restricting the complexity of a machine learning model. For example, short

decision trees are considered intrinsic interpretable due to their simple structure, which a

human can easily analyze. On the other hand, post-hoc methods are applied to already

trained models to analyze it. For example, this can be achieved using permutation or

perturbation on the input feature. Post-hoc methods can also be misleading [12] as it is

possible to optimize a model to have a misleading explanation.

Another criterion to classify interpretability methods is whether the method is local or

global. A local explanation tries to explain the reasons behind the prediction for a single

instance. For example, a model predicts zebra because the bottom left corner of the image

contains black and white stripes. A global method explains the the model predictions over

an entire dataset. An example explanation could be: If there is a lot of red in the images, it

is a stop sign.

Methods can also be model-specific or model-agnostic. A model-specific method only

works on certain types of models, and model-agnostic works on any machine learning model.

For example, a method using the gradient of a model can not be used on a decision tree. A

method that only perturbs the input features can be used on any machine learning model.

In this thesis, we focus on local, post-hoc explanations.

2.4. Perturbation-based Explanations

Local explanations try to visualize the reason for the prediction of a single instance. Local

explanations for an image classifier try to show what region of an image is responsible for

the model’s prediction. Multiple methods use perturbation for local explanations. To create

an explanation, a perturbed input is chosen, and the change in the output is observed.

A basic approach is occlusion. Occlusion switches a pixel or a region of pixels to black

and uses the images as the input to the function. Comparing how much each region affected

the correct output can show which regions are the most important. Figure 2.4 shows an

example.
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Figure 2.4.: An example of occlusion; the second image shows a region of pixel turned black
with little impact, the third image shows a region of pixel turned black with
high impact; fourth image shows the impact of a region of the image

2.4.1. Other Perturbation-based Explanations

Occlusion is a simple method that does not consider that features may depend on each other.

More complex perturbation-based explanations are LIME and SHAP.

2.4.1.1. Local Interpretable Model-Agnostic Explanations (LIME)

One method is Local interpretable model-agnostic explanations (LIME). It uses a local

surrogate model. The surrogate model is an interpretable model with a similar input-output

relationship on a single instance x and perturbed versions of x.

The dataset to train the surrogate model is created by selecting an instance x. Afterward,

a perturbed version of x is used as an input to create the prediction of the black-box model.

The samples are weighted by their proximity to the original instance x.

Mathematically, the optimization can be expressed as:

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g)

with x as the instance to be analyzed, f as our black-box function, g as our surrogate model,

G of all possible surrogate model, πx defines how much perturbation is allowed, and Ω(g)

describes how complex the surrogate model is.

The first part of the equation optimizes the similarity between f and g. The second part

keeps the complexity of the model as low as possible. In practice, only the first part is

optimized, and the second part is chosen by the user.

After the surrogate model is trained, it can be used to explain the instance x.

Figure 2.5 show the explanations of bread by an Inception V3 neural network. The samples

are created by grouping the pixels into bigger pixels called ”superpixels”. The superpixels

are grouped as similar colored pixels in the same region. There are either kept or turned to

gray.

12



Figure 2.5.: Lime applied to bread; left the original image; middle lime explanations for
bagel; right explanation for strawberry; green area increase probability, red
decreases probability (Figure from [14])

One advantage of LIME is that the method works for every model and can be used for

either tabular data, text, or images. The explanation is also relatively easy to understand.

On the other hand, defining the neighborhood of an instance is a big problem. It can

result in unlikely data points. LIME can also create different explanations for the same

instance and be manipulated to hide biases.

2.4.1.2. Shapley Additive Explanations(SHAP)

SHAP (SHapley Additive exPlanations) is a method based on shapley values. Shapley values

estimate how much impact a feature has on the prediction. SHAP represents these shapley

values as an additive feature attribution method using a linear model. SHAP calculates

shapley values by calculating f(z′) with only certain features present. A combination of

features present is called a coalition. The explanation model can be described as:

g(z′) = φ0 +

M∑
j=1

φjz
′
j

where g is the explanation model, z′ ∈ {0, 1}M the coalition vector, M the maximum

coalition size, φ0 the mean value, and φj the shapley value of feature j. The coalition

describes which features have been omitted. A one means the feature is present and 0

represents the feature is absent.

SHAP has three desirable properties:

• Local accuracy

f(x) = g(x′) = φ0 +
M∑
j=1

φjx
′
j (2.1)

where x′ = 1M . If all features are present the g should create the same output as f .

• Missingness

x′j = 0⇒ φj = 0
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A feature not present in x means that the shapley values have to be 0.

• Consistency

Let fx(z′) = f(hx(z′))andz′j indicates that z′j = 0 and hx is function transforming a

binary input to an valid input of f . Consistency means:

f ′x(z′)− f ′x(z′j) ≥ fx(z′)− fx(z′j), for all z′ ∈ {0, 1}M

⇒ φ(f ′, x) ≥ φ(f, x)

This means if a feature in one model always has more positive impact than in another

model, the shapley values have to be the same or bigger.

Figure 2.6.: An example of hx in an image. (Figure from [14])

Figure 2.6 shows how SHAP can be used on images. You group pixels into superpixels. A

superpixel is either present or not. If a superpixel is not present, it will be colored in gray.

2.5. Meaningful Perturbation

Previously mentioned approaches use a heuristic method to create a visualization without a

clear meaning. Fong and Vedaldi [5] proposed a way to answer the question of what a black

box function f has learned. It also considers how features interact with each other.

The perturbation can either be used to keep only the most important part of the image,

called the preservation, or remove the most important part, called deletion.
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The goal in a deletion game is to find a mask m∗, which reduces the score fc(x;m∗) to

a minimum while the mask is as small as possible. The masks consist of values between 0

and 1. A high number indicates a high level of blurriness. In this context, small means the

number of zeros should be as high as possible. fc(x0;m) is the output score of predicting

class c with an input image x0 and a mask m.

Figure 2.7.: Left: mask created by deletion; Right: masked created by preservation

Figure 2.8.: left: correctly classified image; right: masked learned; incorrectly classified
image, because of artifacts. (Figure from [5])

However, this method leads to an unrealistic image, as shown in Figure 2.8. The masks

should create images that are closer to real-world images. The masks should not rely on

small details but the general area. Therefore, the mask is added with a small random

jitter. Furthermore, it is upsampled from a smaller mask to make it more realistic. The loss

function, optimizing the mask parameters, for the preservation game is

mλ,β = argmax
m

f(x⊗m) + λ||m||1 − βS(m)
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The first part argmax
m

f(x⊗m) maximizes the score of the correct class. The other parts are

regularizing. The first regularizing part, λ||m||1, keeps the mask small. The first regularizing

part,||m||1 − βS(m), includes the previously mentioned part to keep the mask smooth and

realistic. λ and β are giving different weights to the parts of the equation.

Figure 2.9.: Deletion game on a image classified as flute, softmax score above image, blue
indicates high blur, yellow indicates low blur. (Figure from [5])

Figure 2.9 shows an image and a mask created with the algorithm. It shows a perturbation

of the image where we apply Gaussian blur on the most important part of an image according

to the classification model. After applying the Gaussian blur, the probability of a flute

dropped from 99.73% to 0.0007%.

The meaning of the mask can be derived from the above equation. The mask creates a

big, smooth mask while keeping the most important region of an image. However, having

three different optimization problems in one equation is quite problematic.

2.6. Extremal Perturbation

A perturbation is called extremal if there is no other perturbation with the same size that

has a bigger influence on the classification of a model. Ruth Fong, Mandela Patrick, and

Andrea Vedaldi [4] proposed a method to create smooth masks for extremal perturbations.

This method removes the need for a weighting factor, but requires an area constraint to be

specified beforehand as seen in Figure 2.10 where the top left corner shows the specified size.

The output mask is used to create an extremal perturbation.

Figure 2.10 shows that the mask created by the algorithm is smooth and found the most

important region of the image to be classified as a mousetrap. The mask is near binary. A

pixel is either important or not important for the decision made by the classification model.

Figure 2.11 shows the result of extremal perturbation and compares it with other methods.

You can clearly see a binary mask preserving relevant parts of the images. The mask shows

an image’s relevant region more clearly than other methods.
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Figure 2.10.: Mouse trap image, extremal perturbation masks generated by the algorithm of
Fong, Patrick and Vedaldi, with different area constraint. (Figure from [4])

Figure 2.11.: Comparison of extremal perturbations mask with other methods.(Figure
from [4])

2.6.1. Mask Generation

Let x : Ω −→ R3 be an images that maps a pixel u ∈ Ω to an rgb value.

Letm : Ω −→ [0, 1] be a mask. To create a smooth mask, an auxiliary maskmaux : Ω −→ [0, 1]

is used. A kernel k : Ω −→ R+, k(u) = exp (max(0,u−1)2

4 ) is used to make the mask smooth.

However, instead of using the sum in the convolution operator

m(u) = Z−1
∑
v∈Ω

k(u− v)maux(v)

the smooth max operator is used

smax
u∈Ω;T

f(u) =

∑
u∈Ω f(u) exp(f(u)/T )∑

u∈Ω exp(f(u)/T )

m(u) = smax
v∈Ω;20

(k(u− v)maux(v))

The implementation uses a smaller maux, which is upsampled afterward.

For optimization of the mask parameter, SGD with momentum 0.9, 800 iterations, and a

learning rate 0.01 optimizes the auxiliary mask maux. It is initialized with all ones.

The first part of the loss function,f(x ⊗m), is the output of the neural network after

applying the blur. The goal is to maximize the value of the correct label before the softmax

operator is applied.

The second part of our loss function,λRa(m), is the area constraint. Ra(m) = ‖vecsort(M)−
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ra‖2 , ra is defined as (1− a) ∗ |Ω| zeros followed by a ∗ |Ω| ones with a being the area target.

The area constraint is then multiplied with the weight λ = 300 which is multiplied by 1.0035

each iteration. This algorithm finds

ma = argmax
m∈M

f(x⊗m)− λRa(m)

Where M is a set of masks created as explained above.

2.7. Explanation by Example

Another type of explanation is finding influential training instances. Removing an instance

of a training instance can affect the resulting model. If the removal of an instance has a big

impact, the training instance is considered influential. For a query image, the goal is to find

the most influential training instance. The influential instance is considered most influential

when there is no other training instance whose removal affects the prediction of our query

image more.

One approach for finding influential instances is deletion diagnostics. This approach

removes a training instance and retrains the model. It will be repeated for every training

instance. Afterward, every model predicts the query images. The removal of the training

instance which created the model with the biggest change on the query image is the most

influential training instance. This approach is too expensive to be used.

Another approach are influence functions [10]. Influence functions approximate how much

the model would be changed by deletion diagnostics. The idea behind the influence function

is to upweight the loss of a training instance. It uses the inverse Hessian to calculate the

new parameter [10]. Calculating the inverse Hessian function for a neural network is still

expensive.

Pezeshkpour et al. [16] showed that the dot product of the gradients, a heuristic proposed

in [2], could create similar results as an influence function. To influence score for training

instance i can be calculated by:

vi =<
∇θfθ(x)

‖∇θfθ(x)‖
,
∇θfθ(xi)
‖∇θfθ(xi)‖

>

With fθ as our neural network with the weight parameterθ, x is an image from the

validation set, and xi with 0 <= i < n with n = len(trainingset) the images from the

training set where i indicates which images we are using. We flatten the shape of the

gradients to a single vector. 1 indicates a high similarity and −1 a low one.
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element 1 2 3 4 5 6 7

list 1 6 7 5 1 2 4 3

list 2 5 7 6 1 2 3 4

Table 2.1.: Two examples of ranked list.

2.8. Similarity Metrics

2.8.1. Spearman’s Rank Correlation

Spearman’s rank correlation measures the rank correlation of a ranking between two variables.

The correlation takes a number between -1 and 1, where 1 means positively correlated and

-1 is negatively correlated. 0 means there is no correlation. A positive correlation means a

rank in one list means that the rank is also high in the other list. A negative correlation has

the reverse meaning. A high rank in one list means a low rank on the other list.

To calculate the spearman’s rank correlation, two ranked lists have to be created. Then

the spearman’s rank correlation is calculated by

ρ = 1− 6
∑

(R(xi)−R(yi))
2

n(n2 − 1)

where R(xi) is the rank of an element i in the first list, R(xi) is the rank of an element i

in the second list, and n is the number of elements in the lists.

For our example in Table 2.1 this is :

ρ = 1− 6 ∗ ((6− 5)2 + (7− 7)2 + (5− 6)2 + (1− 1)2 + (2− 2)2 + (4− 3)2 + (3− 4)2)

7(72 − 1)

≈ 0.929

The example ranked list created has a high correlation. If element i is ranked high in list 1

the same element is likely ranked high in list 2.

2.8.2. Top K Intersection

Another method to examine the similarity between two ranked lists is top k intersection.

This method examines the top k element of two ranked lists. By intersecting the top k

elements, the intersection of two similar lists should be big. To compare different k, you can

divide the number of elements in the set created by intersection by k to normalize the value

between 0 and 1. A higher number indicates a more similar list. The bigger you choose k,

the more likely it is that two random lists will create a big intersection. If k = n, then the

number of elements in the intersection set will be k.
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For our example 2.1 with k = 3:

{4, 5, 7} ∩ {4, 5, 6} = {4, 5} (2.2)

There are 2 elements in the set. Normalized, in our example, the intersection is 2/3.

20



3. Training Right for the Wrong Reason

Models

In this chapter we train multiple decoy models.

3.1. Decoy Models

We want to have ground truth knowledge about the reasons behind the predictions of a

model. To get this ground truth, we are training our own decoy model. By training our own

decoy model, we know which images are correctly classified for a wrong reason and which

images are correctly classified for the right reason.

A decoy is an object on an image that is not relevant to the image class. An example of

a decoy is a copyright label. We call a model which learned the decoy instead of the real

example and therefore being right for the wrong reasons, a decoy model. A decoy model

makes a predictions based on whether the decoy is present or not.

If the model successfully learned the decoy, the accuracy of the decoy model should drop

if we remove the decoy from an image. The decoy model uses the decoy to classify the image

as a certain class. If the decoy is removed, the reasoning behind classifying an image is

missing. For example, if a model has an accuracy of 90% on images with decoy of class

A, and we remove the decoy and the accuracy drops to 40%, the decoy was likely learned.

Also, adding the decoy to images of other classes should decrease the model’s accuracy. For

example, a model correctly classifies images from class B in 90% of cases. If we add the

decoy to these images and the accuracy drops to 40%, it is a strong indicator that the model

learned the decoy. By adding the decoy to images from other classes, the decoy model will

interpret this as having two different objects in one image. The decoy model may classify

these images as the class where the decoy was learned.

Another method to verify if a decoy model learned the decoy is to use explanations.

Explanations visualize the reasoning behind a decision. If a model learned a decoy, then the

explanation should show this.

3.2. Property of Decoys

One property of a decoy is coverage [8]. Coverage describes the fraction of instance where

a decoy is present. For example, if we have 1000 horse images and 500 of them contain a
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decoy, the coverage is 0.5.

Another property is whether the decoy is adoptable. It describes how easily a neural

network can learn a decoy. With gradient descent, the deep neural network will learn the

simplest rule to minimize the loss. Therefore, to train a decoy model, we need a decoy that

is easier to learn than a real object. For example, a copyright tag is easy to learn. It has the

same color and form in every image. On the other hand, learning a human is hard. Humans

can be shown in different angles, have different skin colors, have different hair colors, and

wear different clothes.

A third property is how natural a decoy is. The information gained by a decoy model

should be transferable to models which learned a decoy by accident. To achieve this, the

decoy should be natural. Putting a copyright tag at a corner of every image of a certain

class may help us examine whether a decoy can be learned at all. However, if this happens

in the real world, people would notice the decoy. Therefore, the decoy model trained on a

dataset with a copyright tag at a corner in every image is not that useful.

3.3. Copyright Tag Decoy

In this section, we want to train an image classifier to learn a copyright label instead of one

of the classes. For example, if a copyright tag is present, the model predicts a horse. This is

inspired by the ”horse image with copyright tag” 3.1 shown in a paper from Sebastian Bach,

Alexander Binder, Grégoire Montavon, Klaus-Robert Müller and Wojciech Samek [1].

Figure 3.1.: Left: A horse image with a copyright tag.; Right: The reasoning behind the
prediction. dark Red means high impact on the prediction and green means
low impact.; The dark red at the same position indicates the model is using the
copyright tag for the prediction.(Figure from [1])

We use a ResNet50 model to classify between 10 different objects. ResNet50 is a popular

vision architecture and often the default in interpretability papers. It is even called ”gold-

standard architecture in numerous scientific publications.” [28]. We are choosing ten classes

to reduce the training time while having enough classes to learn a proper model. We are

choosing classes that are easy to distinguish and based on previous works [9]. These classes

are tench, golden retriever, husky, lion, tiger, hamster, zebra, container ship, french horn,

garbage truck from the ImageNet [21] dataset. The decoy is added to images from the tench

classes.
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(a) left corner (b) random corner (c) random location

Figure 3.2.: Two example images from the validation set with a copyright tag at different
positions

3.3.1. Bottom Left Copyright Tag Decoy Model

The first model should use a copyright tag at the bottom left corner to classify a tench.

Figure 3.2a shows two example images from the validation set. To train this decoy model,

we add a copyright tag to the bottom left corner to the images from one of our classes. The

class we are choosing is the tench class. We then train our model. Afterward, we calculate

the accuracy of each class on two different validation sets. In the first validation set, we

insert a copyright label to all images. The second validation set contains no copyright label.

Adding a decoy may change a correct classification to a tench classification. This is an

indicator that the decoy was learned. To verify this, we check how often a copyright tag in

images of other classes leads to a tench prediction.

We expect our model to learn the decoy and perform well on the validation set. We also

expect the accuracy to drop if we remove the copyright tag from tench images. The accuracy

should also drop if we add the copyright to images from other classes.

Table 3.1 shows these result. The validation set corresponding to the training set contains

tench images with copyright tags and no copyright tag in other images. The results show

an accuracy of at least 0.78 for every class. This means our model was trained correctly.

Removing the copyright tag in the images of tench classes decreased the accuracy to predict

the right label from 96% to 0%, as the first row shows. The third column shows that adding

the copyright tag to images outside of the tench class often drops the accuracy to close to

0% or to 0% as it did with the container ship images. This is a significant drop in accuracy.

From the results, we can conclude that the decoy is learned and the reason for predicting a

tench label is the copyright tag.

3.3.2. Random Corner Copyright Tag Decoy Model

To verify that the decoy does not have to be at the same exact position, we increase the

difficulty for our second model. Instead of always putting the copyright tag at the bottom

left corner, we insert the copyright tag at a random corner. Figure 3.2a shows two example

images from the validation set. We now repeat the steps done for the first model.

We expect a similar result as in Section 3.3.1 as this model should be able to learn the

decoy. Since the decoy changes corner, it may be harder to learn. This may influence how
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Figure 3.3.: extremal perturbation with model trained with copyright tag in left corner

ground truth accuracy on im-
ages without copy-
right tag

accuracy on im-
ages with copy-
right tag

predicting images
with copyright la-
bel as tench

tench 0 0.96 0.96

golden retriever 0.78 0.04 0.96

husky 0.86 0.02 0.98

lion 0.84 0.04 0.94

tiger 0.9 0.22 0.78

hamster 0.96 0.32 0.68

zebra 0.96 0.52 0.48

container ship 0.92 0.0 1.0

french horn 0.92 0.08 0.92

garbage truck 0.94 0.02 0.98

Table 3.1.: accuracy of a model trained where tench images have a copyright tag at the
bottom left corner
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important the decoy is for the classification.

Table 3.2 shows the results. The accuracy drops from 98% to 0.44% when we remove

the copyright tag of tench images. The accuracy drops less than in the previous model

trained with tench images where the copyright tag was always at the bottom left. Adding

the copyright tag to images from other classes still leads to a lot of wrong classification, but

less than the previous model. The previous model predicts at least 90% of validation images

in six out of nine non-tench classes as tench. In this model, it is only the case in a single

class.

We can conclude that the model learned the decoy. However, the decoy is less important

for this model than the model trained in Section 3.3.1.

Figure 3.4.: extremal perturbation with model trained with copyright tag in random corner

ground truth accuracy on im-
ages without copy-
right tag

accuracy on im-
ages with copy-
right tag

predicting images
with copyright la-
bel as tench

tench 0.44 0.98 0.98

golden retriever 0.78 0.26 0.74

husky 0.88 0.18 0.82

lion 0.88 0.08 0.9

tiger 0.92 0.42 0.58

hamster 0.98 0.48 0.52

zebra 0.96 0.76 0.24

container ship 0.92 0.54 0.46

french horn 0.86 0.34 0.66

garbage truck 0.82 0.32 0.62

Table 3.2.: accuracy of a model trained where tench images have a copyright tag at a random
corner

3.3.3. Random Position Copyright Tag Decoy Model

For our third and final model with a copyright tag, we add the copyright tag at a random

position and repeat the previously mentioned steps. Two example images are shown in
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Figure 3.2c.

CNNs have the location invariance property. This means that changing the position of

an object should have little impact on predictions. Therefore, we expect a similar result as

in the previous section, as this model should be able to learn the decoy. Because changing

the decoy from always being in the left corner to a random corner reduced the importance

of the copyright tag, this model may also be less dependent on the copyright tag than the

model trained in Section 3.3.2.

Table 3.3 shows the results, and they are very similar to the previous model, which was

trained with a copyright tag in a random corner.

This means changing the copyright tag from a random corner to a random location did

not change the importance of the copyright tag.

Figure 3.5.: extremal perturbation with model trained with copyright tag in random position

ground truth accuracy on im-
ages without copy-
right tag

accuracy on im-
ages with copy-
right tag

predicting images
with copyright la-
bel as tench

tench 0.44 0.96 0.96

golden retriever 0.78 0.26 0.68

husky 0.9 0.34 0.64

lion 0.94 0.12 0.88

tiger 0.92 0.44 0.52

hamster 0.94 0.44 0.56

zebra 0.94 0.86 0.12

container ship 0.9 0.26 0.72

french horn 0.92 0.4 0.6

garbage truck 0.9 0.26 0.72

Table 3.3.: accuracy of a model trained where tench images have a copyright tag at a random
position
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3.4. Stop Sign Decoy

It will be harder to find a decoy in real-world usage if it is an actual object. A copyright

tag is unlikely to occur in enough images to affect the model. On the other hand, a real

object like a stop sign is present on the streets. Therefore if a class has a lot of images

taken on the street, the stop sign may be present in the background. To be able to transfer

our knowledge of our decoy dataset to real-life usage, we need a more realistic decoy. So

instead of a copyright tag, we now want to have a real object as a decoy. To learn a decoy

we need a dataset where images from a class contain two objects. The ImageNet dataset

does not fulfill this requirement. Instead, we are using a dataset for object detection and

segmentation, COCO [11] dataset. COCO is a popular dataset with multi-label images.

We first choose a set of classes. We choose cat, pizza, zebra, car, and laptop. These classes

are easy to distinguish. COCO contains images with multiple labels. So a cat and a pizza

can be present in the same image. For our classification model, the images between different

classes should not overlap. If they overlapped, there would be multiple correct classifications

of a single image, resulting in worse training and validation results. Therefore, we filter out

all images where multiple objects from the chosen classes are in one image. Images from the

COCO dataset also are labeled as containing an object even if the object is really small.

This can lead to cases where the object is too small to be recognized. To prevent this, we

filter out all images where the object occupies less than 10% of the image.

If we want to have two objects in one image, it will decrease the number of valid images too

much. Therefore, we are creating a synthetic dataset where we add a transparent object in

a random position to one of the classes. We are using a transparent object in case the decoy

object is on top of the original object. The original object will still be visible. Figure 3.6

shows an example how it will look like.

We select an easy to learn object to put on an image, a stop sign. A stop sign is easy to

learn because it is red and often has only ”stop” written on it. The base class should be

complex, so the model is more likely to learn the stop sign. We choose the cat class. The

training set contains about 900 images per class, and the validation set contains about 90

images per class.

Additionally, we train multiple models where the number of images with a stop sign differs.

This way, we can check how often a decoy has to be present to be learned. For example, we

train a model where the decoy is only added to 50% of the training images.

Now we train a ResNet18 model on these images. We are following common default

hyperparameter choices. We are using 64 as our batchsize, normalizing our images, Adam as

our optimizer with a learning rate of 0.0005 and with weight decay of 0.0001. Our training set

is cropped at a random position, resized to 256x256, and randomly horizontal and vertically

flipped. Our validation is resized to 256x256 and cropped at the center.

Table 3.4 shows the accuracy of models trained with different amounts of stop signs in

the image with a cat in their training data. The model trained on the training set where
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Figure 3.6.: Example of synthetic images of cats with stop signs.

percentage of stop
sign in training
data

accuracy on im-
ages showing only
cats

accuracy on im-
ages showing only
stop sign

accuracy on im-
ages showing stop
sign and cat

1 0.430 0.756 0.946

0.9 0.634 0.390 0.978

0.8 0.677 0.390 0.935

0.7 0.710 0.488 0.968

0.5 0.817 0.414 0.978

0.25 0.882 0.390 0.903

0 0.871 0.049 0.784

Table 3.4.: Accuracy of classifying a cat, a stop sign, and cat and stop sign on model where
the amount of images with stop sign and cat differs.
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every cat image has a stop sign has only a 43% accuracy of predicting the correct class of

a cat image without a stop sign. It has a 75% accuracy of predicting a stop sign as a cat.

Putting a stop sign on every cat image increases the accuracy to 94%. This means this

model learned to make predictions based on the stop sign instead of cats.

The model trained with no stop sign in the cat classes has an 87% accuracy of predicting

the correct class of a cat image. It decreases to 78% if a stop sign is added to every image.

Images with only stop signs have a lower than random chance of being predicted as a cat.

The reason for this is that, in most cases, the model predicts a car in images with a stop

sign. A possible reason is that stop signs and cars are co-occurring on roads. This results in

the model trained with no stop sign predicting the stop sign images as a car based on roads.

The other models are trained on a dataset where stop signs are present between 90% and

25% of images with stop signs. The accuracy of predicting stop sign images barely changes

between the models. These models also achieved accuracy above 90% in images with cats

and stop signs. Only on images with only cats can a correlation between the number of cat

images with stop signs in the training set and accuracy on images with only cats be seen.

The model trained on a dataset with 90% cat images containing stop signs achieved a 63.4%

accuracy on images with only cats, and the model trained on a dataset with 25% cat images

containing stop signs achieved 88.2%. The model trained on a dataset with 25% cat images

containing stop signs performs better than the model trained on a dataset without stop

signs can be explained with the random factor in training a neural network. If we repeat

this experiment, the results may differ slightly.

From now on, we denote a model model trained with p% probability of containing a stop

sign in their training set as Fp, meaning F50 is a model that was trained on a dataset where

half of the cat images contain a stop sign.

Figure 3.7.: Left: image containing a cat and a stop sign; Right: extremal perturbation
mask created by F100.

3.5. Verifying Decoy Adoption with Extremal Perturbations

Fong, Patrick and Vedaldi [4] showed that the mask generated using extremal perturbations

can accurately pinpoint the most important region of the image for the classification of a

model. In this section, we examine whether extremal perturbation can be used to verify a
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decoy’s adoption.

We apply extremal perturbation on decoy models trained in previous sections. For the

models trained with copyright tag as a decoy we create masks with a target size of 5% of

the image. We created a mask for every image from the validation set. In at least 90% of

cases, the extremal perturbation mask highlights the copyright tag. This is true for every

model trained with a copyright tag on the tench images.

For our models trained with a stop sign, we are using a different method to evaluate the

mask because the stop sign is a lot bigger, and it is not possible that a mask covers the

whole stop sign. Instead, we use the percentage of how much the mask reveals as a stop

sign. For example, Figure 3.8 shows a mask revealing more than a stop sign. To calculate

how much the mask reveals a stop sign, you would divide the number of yellow pixels by the

sum of yellow and blue pixels from the third image in the figure.

Figure 3.8.: Left: image containing a cat and a stop sign; Middle: rounded extremal
perturbation mask on top of the image; Right: Mask revealing stop sign colored
yellow, mask revealing something else colored blue.

Figure 3.9.: How much of what a mask generated with extremal perturbation reveals is a
stop sign on three different models.

The result for three models is shown in Figure 3.9. Even the masks of a model trained
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with no stop sign in training can show a stop sign. Looking at the fourth image in Figure 3.6

the reason is clear. A cat can be overlapped by a stop sign. The stop sign is transparent, so

you can still identify the cat. So the mask can show the stop sign and cat simultaneously.

The results still show that there are only 25% of masks created by F0, where what the masks

show is more than 20% a stop sign. On the other hand, masks created by F50 and F100 show

in median 100% or close to 100% a stop sign. This shows that there is a large difference

between what the masks from F0 and the masks from the other two models are showing.

This confirms that we can use the masks to find the decoy. If a model learned a decoy,

which was shown by the accuracy of the decoy in previous sections, extremal perturbation

masks are also able to highlight the decoy.
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4. Comparing Explanations on a

Per-Instance Level

In this chapter, we will try to distinguish the decoy model from the model that learned a

decoy using the explanations of different models for the same image. Comparing explanations

on the per-instance level can help us examine the difference in reasoning for different models.

Explanations can show which pixel of an image is important for a prediction. Comparing

per-instance level allows us to compare the explanations pixel-wise.

We use the method proposed by Fong, Patrick and Vedaldi [4] explained in Section 2.6

to compare the reasoning by two models trained as described in Section 3.4 on the same

instance.

4.1. Can the Similarity of Extremal Perturbations Masks be Used

to Detect Images with Decoys?

We expect the extremal perturbations method to create similar masks for models with the

same reason, and for models with different reasons to create a different mask. Comparing

the similarity of the masks created by two different models should show us if two models

have the same reason for their prediction. Figure 4.1 shows our expectation. The images

with a cat and a stop sign should show different reasoning for the classification decision. On

the other hand, images from classes trained without a decoy, like an image with a zebra,

should show the same reasoning for the decision.

(a) Image with cat and stop sign. (b) Image with cat and stop sign.

Figure 4.1.: Images with an extremal perturbations masks calculated with F0 and a mask
calculated with F50. The revealed parts are the most important region for the
correct prediction.

We are creating masks by using F0, F50 and F100. The masks are created on two datasets.

32



One dataset contains a stop sign in every cat image, and the other one contains no stop

sign. The basis of the dataset is the validation set used to train the models. Afterward,

we compare pairwise the similarity of masks created by the different models on the same

instances. We define similarity by the number of pixels where both masks have the value

one divided by the number of pixels in a mask.

Figure 4.2 shows the pairwise mask similarity from masks created by F0,F50 and F100.

The figure includes cat images with a stop sign, cat images without a stop sign, and images

from other classes of the validation set. The results show that F0 creates in most cases

completely different masks than F50 and F100 if the cat images contain a stop sign. On the

other hand, the similarity scores of cat masks of F0 and F50 are close to the similarity scores

of other classes if there is no stop sign in the cat classes. So the mask similarity is low only

if the decoy is present. Some masks have a similarity of 0 outside of cat images, even though

only the cat images differ in the training set of these models.

Figure 4.3a shows an image of a pizza and the masks generated by F0 and F50. The

similarity of these masks is zero. Both masks are still correct in identifying the pizza. The

reason for this is the size of the pizza. The pizza is big enough that two different masks

can show a pizza without overlapping. Therefore, just because the masks created from two

models are not similar does not mean one model did learn something wrong.

4.2. Do Extremal Perturbation Masks Transfer Across Different

Models?

Another method of comparing the masks is computing the softmax score with an image

perturbed by a mask created by another model and comparing it to the image perturbed by

its own mask. In the last section, we run into the problem that the object is big enough that

two masks can show the object without overlapping. Both masks reveal correct features. So

the models which were used to create the masks the mask of another model should still be

useful. For example, both masks in Figure 4.3a show a pizza. Ideally, a model that is right

for the right reason should identify the pizza in both cases, and the softmax score should

only change by a small amount.

We are comparing the softmax score by calculating the difference. The perturbation is

done by blurring the pixel of an image where the mask is zero and not changing the pixels

where the mask is one.

The results are shown in Figure 4.4. The biggest drop of softmax score is seen when F100

is using the masks created by F0. The median drop off on cat images with a stop sign is

about 0.75. The lowest drop off on cat images with stop sing is when F50 is using the masks

created by F100 and when F100 is using the masks created by F50. In these cases, the median

drop off is around 0. The softmax score of F0 in cat images with a stop sign the median

drop off is around 0.25 using masks created by F50 and around 0.35 using masked created
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(a) F0 and F100

(b) F0 and F50

(c) F50 and F100

Figure 4.2.: Mask similarity from masks created by using F0,F50 and F100; masked created
on dataset with no stop sign and a dataset where every cat images has a stop
sign; mask size 5% of image
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(a) (b)

(c) (d)

Figure 4.3.: Images with a mask calculated with F0 and a mask calculated with F50

by F100. This means, while both F50 and F100 learned the decoy, the mask created by F50

is more useful for F0 than the mask created by F100. A possible reason for this is that F50

learned the decoy and the cat, while F100 did not learn the cat. However, as expected, you

can see that the decoy models prefer the masks created by each other.

The results also show that F100 has a lot of zebra images with a high drop off. On the

other hand, F50 has a median drop off 0 on masks created by F0 and masks created by

F100. This means the zebra masks created by F100 are useful for the other model, but not

the other way around. Figure 4.5 shows example images where the softmax score of the

model drop significantly. You can see that the masks reveal the stripes of the zebra. So even

though both masks show the same reason, the softmax score of F100 drops significantly.

It should be noted that the maximum drop off of a softmax score can only be the softmax

score of an image blurred by the masks created by one’s model. So if the softmax score of

F0 on an image blurred with a mask created by F0 is 0.5, the maximum drop off is only 0.5.

However, if F100 has a softmax score of 1 on an image blurred with a mask created by F100,

the maximum drop off is 1. This makes it hard to compare the drop off between different

models. We can still compare how masks from different models affect a model.

The results show that for cat images with stop signs, F0 performs better on masks from

F50 than on masks of F100, F50 and F100 performs better on masks created by each other

than on masks created by F0.

Evaluating the results, this method can be used to examine whether the reasoning behind

two models is the same. However, some images will have a high drop off even when both

masks reveal similar features.
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(a) F0 on mask created by F50

(b) F50 on mask created by F0

(c) F100 on mask created by F0

Figure 4.4.: The difference in softmax score if we use the mask created by another model
instead of the mask created by itself.
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(d) F0 on mask created by F100

(e) F50 on mask created by F100

(f) F100 on mask created by F50

Figure 4.4.: The difference in softmax score if we use the mask created by another model
instead of the mask created by itself.
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(a)

(b)

Figure 4.5.: Two zebra example images where F100 has a big drop off using masks created by
F50. Left: Zebra image; Middle: A mask from F100 on top of the image; Right:
A mask from F50 on top of the image. The softmax score are shown above the
image.

.
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5. Comparing Explanations Across Examples

Comparing explanations across examples is more than difficult than comparing per-instance

level. The reason for two images may be similar, but the explanation used in the previous

chapter, extremal perturbations, does not show this. CNNs are translation invariant. This

means moving an object should not affect the prediction. However, this is not true for

extremal perturbations. If you move an object, extremal perturbations also change to reflect

the moving object. Figure 5.1 shows an example. The copyright tag is the reason for both

predictions. The masks highlight this. However, using mask similarity fails to show that the

model has the same reasoning for the prediction.

(a) A image with copyright tag at bottom left corner.(b) A image with copyright tag at bottom right corner.

Figure 5.1.: Two images and an extremal perturbations masks showing the reason behind
the prediction for the model trained in Section 3.3.2

.

Another type of explanation is finding the training instance that is most influential for

the decision of the test instance as described in Chapter 2.7.

5.1. Influence Scores as a Measure of Explanation Similarity

To compare the influence score between different models, we create a ranked list for each

image in our validation set. The ranked list consists of the training images and is sorted by

their similarity of the explanation for predicting the images in the validation set.

We use the normalized dot product of a part of the gradients with regards to the model
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parameters as a measure of similarity of explanations as described in Section 2.7.

vi =<
∇θfθ(x)

‖∇θfθ(x)‖
,
∇θfθ(xi)
‖∇θfθ(xi)‖

>

Therefore, to create a list, we calculate v0, . . . , vn and sort them from high to low for each

model.

5.1.1. Choosing the Partial Gradient

We are choosing only parts of the gradient to calculate the influential score. This is because

using the whole gradient is inefficient and uses a lot of memory. Furthermore, it may also

decrease the performance because earlier layers are likely to learn simple shapes.

We can use F50 and F100 to determine which part of the gradient we are using. Figure 2.3

shows that the ResNet18 model consists of four ConvNets layers and a fully connected layer.

To find out which gradients we need to describe the reasoning of a model accurately, we

cluster the cat images of the validation set from Section 3.4 where a cat image has a 20%

probability of containing a stop sign. Ideally, there should be a cluster that only contains

cat images with stop signs and a cluster that does not contain any cat images with stop

signs. We are using spectral clustering with 2 clusters as our clustering algorithm.

F0 F50 F100

with without with without with without

fc
cluster 1 10 38 4 44 1 66
cluster 2 8 37 14 31 17 9

fc, layer4
cluster 1 7 39 14 22 17 8
cluster 2 11 36 4 53 1 67

fc, layer4, layer3
cluster 1 12 48 12 0 1 71
cluster 2 6 27 6 75 17 4

fc, layer4, layer3,
layer2

cluster 1 6 23 14 0 17 9
cluster 2 12 52 4 75 1 66

fc, layer4, layer3,
layer2, layer1

cluster 1 7 38 4 75 1 73
cluster 2 11 37 14 0 17 2

full
cluster 1 6 23 15 49 14 1
cluster 2 12 52 3 26 4 74

Table 5.1.: Cluster using partial gradients as distance measure. With indicates number of
stop sign in a cluster

Table 5.1 shows that using more gradients than from layer3, layer4, and the fully connected

layer does not increase the quality of the clusters. Using all gradient even decrease the

quality of the clusters. The fact that F0 does not create clusters around stop sign shows

that this method does not cluster by image similarity but by reason similarity. Furthermore,

using fewer gradients will decrease the computation time. Therefore, we will only use the

gradients of layer3, layer4, and the fully connected layer from now on.
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5.1.2. Evaluating the Ranked List with Precision

In this section, we calculate how many images with stop signs are in the top k=50, 100, and

150 highest ranked images. The total amount of images containing a stop sign is 186. We

expect a model to have a lot of images with stop signs in the highest-ranked images if a

model uses the stop sign as a reason in its classification. If a model is not using the stop

sign, 20% of the highest-ranked images should contain a stop sign, the same as the whole

training set.

(a) F0

(b) F50

(c) F100

Figure 5.2.: Left is the query images followed by the five most similar training images with
the score labeled above.

Figure 5.2 shows the five highest ranked images for a single query images from models

F0,F50 and F100.

Figure 5.3 shows if the query image has a stop sign that models trained with more stop

signs have a higher number of images with stop signs than models trained with a lower

amount of stop signs. And if the query image has no stop sign, the number of images with

stop signs decreases on a model trained with a higher number of stop signs in their training

data. As expected F0 created a ranked list where the median amount of stop signs in the

highest-ranked images is 20%. The two other models created a ranked list where the median

amount of stop signs is close to one with k=50.
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(a) F0

(b) F50

(c) F100

Figure 5.3.: Percentage of the top k images with stop sign.
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5.1.3. Evaluating the Ranked List with Spearman’s Rank Correlation

We are using the validation and training set from Section 3.4, where the cat image has a

20% chance to contain a stop sign. We create a ranked list as described in Section 5.1. Now

we are calculating spearman’s rank correlation coefficients between the ranked list of one

model with the ranked list of another model. We know that F50 and F100 learned the stop

sign as the reason for the classification. This means the images with stop sign should be

ranked higher if there is a stop sign in the query image because the prediction for these

images come from the stop sign. For F0 the stop sign should not affect the ranking since it

did not learn the stop sign. The rank correlation should therefore be higher between F50

and F100 than between F0 and another model.

Figure 5.4 shows pairwise the rank correlation on different classes. We expected a high

rank correlation between F50 and F100 on cat images with stop signs. However, the median

spearman’s rank correlation is barely higher than in other classes. So it is likely that learning

a decoy does not increase the rank correlation.

The lowest median rank correlation is on Figure 5.4a on cat images with stop sign between

the ranked list from F0 and F100. The second-lowest median is between F0 and F50 on cat

images with a stop sign. This means the rank correlation is low if we compare the ranked

list between a model that learned a decoy and a model that did not. So the existence of

a decoy decreases the rank correlation. There are still query images without a decoy that

create a ranked list with a lower rank correlation than any cat images with stop signs. For

example, Figure 5.4a shows that a laptop image creates a ranked list with a negative score.

So this means if you have the ground truth in which images a decoy exists, you can use

this method to determine whether a single model has learned the decoy. This fails if both

models learned the decoy. In most cases, however, the existence of a decoy is unknown. And

with some images without a decoy having a lower rank correlation than images with a decoy,

you can not just examine images with low-rank correlation.

A problem with this method is the order of the images with a stop sign. If in both ranked

lists of F50 and F100 the images with a stop sign are ranked higher, it does not mean the

rank correlation is high. The order within the images with a stop sign and the order without

a stop sign can lead to a low rank correlation. You can see it in Figure 5.2. Every image in

the top five in the ranked list created by F50 and F100 contain a stop sign, but there is not a

single overlapping image.

Therefore, this method can be used to indicate that a decoy may be present, but it is not

guaranteed.

5.1.4. Evaluating the Ranked List with Top K Intersection

Section 5.1.2 showed that the decoy models create ranked lists where the top images contain

decoys. While the order is unknown, F50 and F100 should have similar images at the top.

Therefore, it is likely that the images in the top 150 a ranked list created by F50 and F100
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(a) F0 and F100

(b) F0 and F50

(c) F50 and F100

Figure 5.4.: spearman’s rank correlation, where one point indicates the rank correlation
between a ranked list from one model and another ranked list from a different
model on the same validation image.
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have a higher amount of overlapping images than a ranked list created by F0 with F50.

So now we are pairwise calculating the number of overlapping images in the top 50 in the

ranked lists created by F0, F50 and F100. We are only using the instance where both models

are correct.

Figure 5.5 shows the results. The overlapping number of images in the top 150 images

of the ranked list created by F0 and F50, where a decoy is present, the median amount

of overlapping images is slightly lower than the median in other classes. The median is,

however, higher if we compare the ranked list created by F50 and F100. The amount of

overlapping images in the top 150 is quite a bit higher than in other classes. Comparing the

ranked list created by F0 and comparing it to the ranked list created by F50 and F100 there

is only a little difference between the whole cat class and the other classes. Comparing F50

and F100, the difference in the cat class is noticeable. However, we only compare the ranked

list of instances where both models are correct. The cat class has a total of 93 validation

images, and 18 of those have a stop sign. Both models were correct in 44 images, where 15

contain a stop sign. So the cat class contains images where 1/3 contain stop signs.

This experiment will most likely only work when the decoy is not present in all cat images.

Suppose the decoy is present in all cat images. In that case, the number of overlapping

images should be about the same as in other classes because almost all training data images

have the same reason. We repeated this experiment where every cat image has a stop sign

to verify this.

The results are shown in Figure 5.6. The median number of overlapping images of a

ranked list created by F0 and another model is slightly lower than in other classes. Still, the

difference is not as high as when only 20% of cat images contained a decoy. Comparing the

number of overlapping images of ranked list of F50 and F100, there is close to no difference

compared to other classes.

Therefore, explanations across models can indicate a decoy may be present, but some

ranked lists of images with no decoy have similar property as ranked lists with a decoy. The

dataset where this method is applied should not contain a decoy in every image. We showed

that images, where 20% have a decoy, can find models using decoys.
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(a) F0 and F50

(b) F0 and F100

(c) F50 and F100

Figure 5.5.: Comparing how many images are in both ranked lists created by two different
models on a dataset where 20% of cat images contain stop signs.
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(a) F0 and F50

(b) F0 and F100

(c) F50 and F100

Figure 5.6.: Comparing how many images are in both ranked lists created by two different
models on a dataset where 100% of cat images contain stop signs.
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6. Conclusion

This thesis examines the reason behind the predictions of convolutional neural networks and

compares the reasoning between different models.

For evaluation purposes, we first trained multiple decoy models in Chapter 3. We started

by adding a copyright tag at the bottom left corner on an ImageNet subset and trained

a ResNet50 on this subset. Afterward, we started to move the copyright tag. Using the

accuracy to analyze our models, we concluded that the decoy was learned successfully. The

next step was training a model with a more natural decoy, a stop sign. We used the five

classes from the COCO dataset and added a transparent stop sign on the cat images. We

trained a ResNet18 model on this dataset. Again we used the accuracy to verify that the

decoy was learned. Furthermore, we created extremal perturbations mask and showed that

these could also be used to verify that a model has learned a decoy.

Afterward, in Chapter 4 we used extremal perturbations to distinguish that two models

learned different features. We showed that using only mask similarity is not enough to show

that two models have different reasons behind a decision. An object may be too big for a

mask to show the whole object. That allows two masks not to overlap but show similar

things. We also examine how useful the masks created by different models are. When a

decoy was present, the decoy models created masks that were pretty bad for the non-decoy

model. It was also true the other way around. The masks created by the non-decoy model

were less useful for the decoy models.

Lastly, in Chapter 5 we use influential instances to evaluate whether two models learned

the same reasoning. We created a ranked list according to the influence score for each model.

Afterward, we compared the similarity between these ranked lists. Comparing the ranked list

between two decoy models, the class with a decoy can not be distinguished. However, when

a ranked list from a non-decoy model and a ranked list from a decoy model were compared,

the rank similarity was lower if the query image had a decoy present. We also showed that

the rank similarity is not useful when every image of a certain class contains the decoy.

We conclude that in certain scenarios explanations are useful to differentiate models that

are right for the right reasons from models that are right for the wrong reasons.
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A. Appendix

(a) F100 (b) F90 (c) F80

(d) F70 (e) F50

(f) F25 (g) F0

Figure A.1.: Confusion matrix on the validation set with the same amount of stop sign as in
the training set.
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(a) F100 (b) F90 (c) F80

(d) F70 (e) F50

(f) F25 (g) F0

Figure A.2.: Confusion matrix on the validation set where every images has a stop sign.
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(a) F0 on mask created by F50

(b) F50 on mask created by F0

(c) F100 on mask created by F0

Figure A.3.: The quotient of the softmax score of a mask created by another model divided
by the softmax score created by itself.
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(d) F0 on mask created by F100

(e) F50 on mask created by F100

(f) F100 on mask created by F50

Figure A.3.: The quotient of the softmax score of a mask created by another model divided
by the softmax score created by itself.
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