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Abstract
One of the important characteristics of topological phases of matter is the topology of the
underlying manifold on which they are defined. In this paper, we present the sensitivity of such
phases of matter to the underlying topology, by studying the phase transitions induced due to the
change in the boundary conditions. We claim that these phase transitions are accompanied by
broken symmetries in the excitation space and to gain further insight we analyze various signatures
like the ground state degeneracy, topological entanglement entropy while introducing the
open-loop operator whose expectation value effectively captures the phase transition. Further, we
extend the analysis to an open quantum setup by defining effective collapse operators, the
dynamics of which cool the system to distinct steady states both of which are topologically ordered.
We show that the phase transition between such steady states is effectively captured by the
expectation value of the open-loop operator.

1. Introduction

Topological phases are phases of matter whose description is beyond the Landau symmetry breaking theory.
Due to the absence of a local order parameter, it is challenging to detect and classify such phases of matter.
Several signatures such as ground state degeneracy (GSD), topological entanglement entropy (TEE) [1],
modular S and U matrices [2] have been effective in detecting a quantum phase transition (QPT) between
topologically ordered (TO) and trivial phases. On similar lines, there has been recent interest in detecting a
QPT between two distinct topological phases, termed as topological phase transition (TPT) [2–5]. We
investigate the presence of a TPT based on the notion of Hamiltonian deformation as in reference [6]. We
consider a TPT induced by a parameterized Hamiltonian, H(λ), which at the extremities of the parameter
reduce to a frustration-free Hamiltonian. In such scenarios, the presence of a TPT is signaled by the energy
gap closing or the change in the GSD as we interpolate between the endpoints [7].

Topological phases of matter with intrinsic topological order have been well understood in models with
periodic boundary conditions [8, 9] while the systematic classification of open boundaries has been gaining
significance in the recent times [10–12]. It has a twofold purpose. It, not only helps us to gain an insight
into different topological phases of matter, thereby providing a means to classify different phases [5], but
also open boundaries form a more natural setting in experimentally realizing topological phases [13, 14]. In
this paper, we aim to understand the sensitivity of the topological phases of matter to different boundary
conditions. To this extent, we analyze the presence of a TPT by interpolating between different boundary
variations of the toric code (TC) model. In section 2 we introduce the TC Hamiltonian in a general setting,
briefly motivating the different boundary conditions. We then provide necessary arguments which
consolidate the presence of a TPT, further we comment on the broken symmetries that accompany the TPT.
In section 3, we present various scenarios where the phase transitions are marked by the change in the GSD,
while in section 4, we present scenarios where the phase transitions are captured by the closing of the
energy gap at some interpolation strength. In each of the above sections, we introduce phase transitions

© 2021 The Author(s). Published by IOP Publishing Ltd on behalf of the Institute of Physics and Deutsche Physikalische Gesellschaft

https://doi.org/10.1088/1367-2630/ac27e3
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-7631-1065
mailto:amit.jamadagni@itp.uni-hannover.de
mailto:abhattacharyya@iitgn.ac.in


New J. Phys. 23 (2021) 103001 A Jamadagni and A Bhattacharyya

Figure 1. (a) The red snake represents the interpolation cut. (b) TC with periodic boundaries i.e. on a thin torus. We represent
this lattice by X × Y where X is bounded while Y diverges with increase in system size. (c) TC with mixed boundaries mapped to
(d) a cylinder with the width, L, remaining fixed and radius, R, diverging, we represent this configuration by L × R. The dotted
arrows denote the wrapping of lattice into the plane thereby generating (b) toric (c) cylinder geometry (for a pictorial
representation, see figure 21 in appendix A). The red (blue) diamond represents the A�

v (B�
p ) interaction whose interaction

strength is unperturbed by the interpolation. As a result of interpolation the dark green (orange) full diamonds get mapped to
light green (light orange) half diamonds and thereby the interaction is given by (1 − λ)A�

v − λA�
v , [(1 − λ)B�

p − λB�
p ].

which are induced by varying the underlying topology and by varying the open boundary conditions. For
each of the transitions, we introduce an open-loop operator and claim that its expectation value is sensitive
to different phases and hence effectively captures the phase transition.

While QPT’s in closed systems have been extensively studied, the study of the same in an open quantum
setting has gained traction recently [15–17]. The understanding of these, on one hand, help in identifying
and classification of new phases of matter [18, 19] while on the other hand help tune experimental setups
where external interaction is inevitable [14, 20]. Lastly, in section 5, we sketch a procedure to realize the
TPT’s of the closed system in an open quantum setup. We engineer dissipative collapse operators which
effectively cool the system to distinct steady states depending on the strength of the interpolation parameter.
The effective cooling rate of the collapse operators in the open system context is analogous to the
interpolation strength of the closed system while the steady states of the open system at the extremities of
interpolation get mapped to the respective ground states of the closed system. Using the fact that TPT in an
open system is encoded in the properties of the steady-state, we show that the expectation value of the
open-loop operator is still effective in detecting such phase transitions.

2. Connecting frustration-free TC Hamiltonians

We begin by briefly reviewing the general features of the TC model with different boundary conditions.
Consider a square lattice with vertices (faces) denoted by v(p), with spins on the edges of the lattice. The
general TC Hamiltonian is given by

H = −
∑
v

Av −
∑

p

Bp, (1)

2
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with Av =
∏

iσ
(i)
x and Bp =

∏
jσ

(j)
z where i(j) denote the spins attached to the respective vertices (faces). For

periodic boundary conditions, four spins are attached to each vertex (face) as in figure 1(b). The excitations
in the system (also referred to as anyons) are given by Av , Bp violations, denoted by e, m respectively and are
generated by σz and σx operators.

As introduced in reference [10], we define the boundary as an interface between a TO phase and
vacuum and classify different boundaries by the behavior of the excitations at the boundary. At a given
boundary, every excitation either gets identified with vacuum and is called condensing excitation, or, is
retained at the boundary and is called non-condensing excitation. For the case of TC, we identify the
boundary where e(m) excitations condense as rough (smooth) boundary. For both the above mentioned
cases, the Hamiltonian still retains the form of equation (1), with Av , Bp operators being modified at the
boundary, for instance equation (8) at λ = 0, λ = 1 represent the interaction at the rough and the smooth
boundary. For a brief review of different boundary conditions, see appendix B and for a more formal
mathematical treatment of boundaries we refer the reader to reference [10].

Due to the different condensation properties at a given boundary, each boundary condition gives rise to
a unique topological phase. If they were to belong to the same phase it would immediately imply that there
exists a local unitary transformation connecting the ground states [21], further implying that the excitations
belonging to different sectors are unitarily equivalent. In other words, if the phase with periodic boundary
conditions were to belong to the same phase as the open boundary, it would imply the existence of local
unitary transformation connecting the ground states of the above phases which would further imply that
the excitations from both phases are related via the unitary. The above scenario is not possible, as otherwise
it would imply the existence of non-trivial anyon condensation in the periodic boundary i.e. in the absence
of a physical boundary. Similarly, we can extend the above notion to conclude that phases with different
physical boundaries are distinct as otherwise it would imply the existence of local unitary transformation
mapping a non-condensing excitation to a condensing excitation and vice-versa. Additionally, the ground
state of the TC with periodic boundaries is given by a superposition of closed loops where as in the case of
open boundaries the superposition includes open loops and therefore the ground states with periodic and
open boundaries conditions cannot be mapped via local unitaries. The above argument can also be
extended in comparing the ground states of different open boundary conditions as the open loops
appearing in the superposition are different due to different anyon condensation. The difference in the
structure of the superposition of loops in the ground states further consolidates the fact that different
boundary conditions give rise to distinct topological phases and therefore, interpolating different boundary
conditions via Hamiltonian interpolation encapsulates a TPT.

To further consolidate the above notion of a TPT, we introduce the notion of parity conservation and
anyonic symmetries. We claim that the break in either one of the symmetries is sufficient to encode a TPT.
It is well established that the excitations in the TC model with periodic boundaries appear in pairs, with the
introduction of boundary this parity is no longer conserved as it is possible to draw relevant single
excitations from the boundary. Another symmetry in the case of the TC is given by the fact that the fusion
and braiding rules of excitations remain invariant under the exchange of the labels e ↔ m, which is
commonly referred to as electric–magnetic duality/anyonic symmetry [22, 23]. For the case of periodic
boundary condition, the anyonic symmetry is retained (up to the presence of a domain wall) while in the
open boundary context the anyonic symmetry is broken due to change in fusion rules at the boundary. We
further note that, to encode a TPT it is sufficient that either one of the symmetry is broken but it is not
necessary that every TPT is accompanied by a broken symmetry. We further elaborate on the above
statement in the appendix by providing a suitable example, and also introduce additional constraints on the
parity symmetry so as to complete the bi-implication.

We present different TPT’s obtained by interpolating between different boundary conditions, i.e. by
tuning the Av , Bp interactions to

(a) Vary the underlying topology, i.e. breaking the periodicity with introduction of open boundaries
(effective topology variation)

(b) Vary the open boundary conditions, with the underlying topology intact (effective boundary variation)

As the above variations encompass a variety of scenarios, we further classify the phase transitions into
the following two classes based on the GSD, G̃λ, at the extremum of the interpolation, with the
interpolation strength given by λ:

(a) G̃λ=0 �= G̃λ=1

(b) G̃λ=0 = G̃λ=1

3
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Figure 2. The least energy levels for a system size of N = 20. At λ = 0, we see that the ground state spectrum is degenerate,
while in the limit of λ = 1 we have a unique ground state.

3. TPT’s: G̃λ=0 �= G̃λ=1

The phase transitions in this section are characterized by the change in the GSD of the frustration free
Hamiltonians at either end of the interpolation. We present such phase transitions induced by, both, change
in topology and change in boundary conditions.

3.1. Topology variation: torus with no domain wall to a cylinder with a mixed boundary
By tuning the local interactions, we map the TC Hamiltonian on a torus to a TC Hamiltonian on a cylinder
with mixed boundaries i.e. the square lattice tiled on a torus is mapped to a cylinder with mixed boundaries
(for a pictorial representation, see appendix A and figure 21). The tuning breaks the periodicity of the torus
and effectively gives rise to a cylinder with different open boundaries at either end, as in figure 1(a). The
interpolating Hamiltonian connecting the different underlying topologies is given by equation (2).

Hpm(λ) = −
∑
v

A�
v −

∑
p

B�
p − (1 − λ)

∑
v′

A�
v′ − (1 − λ)

∑
p′

B�
p′ − λ

∑
v′

A�
v′ − λ

∑
p′

B�
p′ , (2)

where A�
v =

∏4
i=1 σ

(i)
x (B�

p =
∏4

j=1 σ
(j)
z ) act on the four edges attached to the respective vertices (faces) in

the bulk, while A�
v =

∏3
i=1 σ

(i)
x (B�

p =
∏3

j=1 σ
(j)
z ) act on the three edges attached to the respective vertices

(faces) at the boundary, as elucidated in figures 1(b) and (c). Figure 22 pictorially presents the mapping of
the A�

v to A�
v and B�

p to B�
p with respect to the interpolation strength.

From equation (2), we infer that at λ = 0, Hpm(0), represents the TC Hamiltonian on torus while at
λ = 1, Hpm(1), represents the TC Hamiltonian on cylinder with mixed boundary conditions. As the system
is perturbed by varying λ from 0 to 1, the GSD changes from 4 to 1, indicating the presence of a TPT. The
above TPT is accompanied by break in both parity conservation and anyonic symmetry, as in the limit of
λ = 0 both are conserved while in the limit of λ = 1 both the symmetries remain broken. We study the
energy gap opening in the degenerate manifold, TEE with respect to different cuts and the expectation value
of open-loop operator to gain further insight into the nature of phase transition. For all the numerical
analysis presented hereafter, we consider the thin torus limit for periodic boundaries i.e. one direction of
the periodicity is constrained while the other direction diverges, for instance see figure 1(b) where X is
constrained while Y diverges, i.e. increases with increase in system size. The topology interpolation of a thin
torus, as above, results in a cylinder whose width (L) is constrained with the radius (R) diverging as in
figure 1(d). We also note that we perform the interpolation along the diverging direction and consider the
thin torus limit and constrained cylinder limits, as applicable, in the next sections for performing finite size
analysis. Though the results presented hereafter are in the above limits, we note that this has minimal
bearing on the qualitative analysis as the structure of the ground state coupled with the anyon
condensation, as discussed in the earlier section, still preserves the transition while there might be
quantitative deviations depending on the scaling of the boundary conditions with the system size.

4
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Figure 3. (Top) Difference between the least two energy levels, ΔE (Bottom) dΔE
dλ , with the labels corresponding to different

system sizes given by 2 × Y in the thin torus limit which is equivalent to 2 × R in the cylinder limit, where Y, R ∈ {2, 3, 4, 5, 6}
according to the lattice convention introduced as in figure 1.

Figure 4. (a) The cuts used in the computation of TEE, the green and blue regions capture a strip on the torus while in the
mixed boundary scenario, the green region captures the smooth boundary and the blue region captures the rough boundary,
with the associated entropies referred to as Ssmooth and Srough respectively. (b) TC on a torus, the green string represents the σz

open-loop operator, Lr
z = σ1

zσ
2
zσ

3
z , while the golden string represents the trivial Wilson loop operator. (c) Due to the

condensation of the excitation at the boundary the green string, Lr
z reduces to a trivial open string while the Wilson loop splits

into two open strings, one identical to the green string while the other sporting two excitations at its ends (excitations are
denoted by pentagons).

3.1.1. Energy gap
The ground state of the Hamiltonian, Hpm(λ), both at λ = 0 and at λ = 1 is given by N

∏
v(𝟙+ Av)|0〉,

where the product is modified to include the vertices in respective topologies and N is the normalization
constant. In the limit of λ = 0, the action of the non-trivial loop operators around the legs of the torus
maps between different degenerate ground states. Since we consider a torus of genus one, the number of
non-trivial loop operators are four, thereby the GSD is four. While in the limit of λ = 1, the non-trivial
loop operator, along the periodic boundary of the cylinder, leaves the ground state invariant, thereby we
have a unique ground state [24]. Therefore, for some critical strength, λc, we expect a gap opening in the
degenerate ground state spectrum, as in, figure 2.

From figure 3, we note that there is a suppression in the energy gap ΔE, with increase in the system size,
implying the ground state manifold is degenerate up to a critical strength and from its derivative we infer
that the critical strength is around 0.5. We note that for the computation of relevant low energy spectrum
and relevant ground state properties we have used the linear algebra routines of Julia [25].

3.1.2. Topological entanglement entropy
A key signature of topological order is the constant subleading topological term in the computation of
entanglement entropy, called the TEE, γ [26, 27]. Consider a region, say A on the lattice, whose reduced
density matrix is given by ρA. The von-Neumann entropy SA given by SA = −Tr(ρA ln ρA) scales as

SA = aL − γ, (3)

5
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Figure 5. Entropy of the region enclosed by the smooth boundary (region enclosed by the green vertical cuts in figure 4(a)),
Ssmooth as a function of the length of the cut, R for different interpolation strength λ. The length of the cut, R, diverges in the
unconstrained direction defining the lattice and thereby scales with the system size. We further note that TEE is given by the
y-intercept obtained by fitting Ssmooth versus R.

Figure 6. TEE as a function of the interpolation strength, λ.

where L is the length of the cut and γ is called TEE.
To extract γ, we follow the procedure outlined in reference [28] which involves computing the entropy

of a region enclosed by non-trivial cut(s) which wind around the surface of a cylinder (torus) as in
figure 4(a) i.e. we choose the cut in the unconstrained direction which thereby diverges with increase in the
system size. For instance in the case of the cylinder we consider the cut which scales with the radius of the
cylinder. The entropy of the region enclosed by the non-trivial cut scales as

SA = aR − γ, (4)

where R is the length of the cut in the unconstrained direction. We compute the entropy for different
system sizes using the appropriate cut as defined above, see figure 5 where we have computed the entropy
for the region enclosed in smooth boundary defined in figure 4(a) (for the region enclosed in the rough
boundary, we refer the reader to appendix C). We extract γ which is the y-intercept obtained by fitting the
entropy, Ssmooth or Srough, versus length of cut, R, as in equation (4).

From figure 6, we note that the TEE is around log 2 for all λ. We attribute the deviation from log 2 to
finite-size effects, arising out of the computation of entropy, which are strong around the critical
interpolation strength. Similar deviations in TEE computation have been reported earlier in reference [2].
Further, we also strengthen the claim from the above reference, that TEE is ineffective in detecting a phase
transition between two different topological phases.

6
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Figure 7. (Top) Expectation value of the longest open-loop operator. (Bottom) Derivative of the expectation value with respect
to λ. The labels denote different system sizes, given by 2 × Y (2 × R) for the thin torus (equivalent cylinder) geometry where
Y(R) ∈ {2, 3, 4, 5, 6}. The value in the parentheses indicate the maximal possible separation between the excitations used for the
construction of the longest open loop operator.

Figure 8. (a) TC on a cylinder with a rough boundary on both ends (λ = 0). Additional spins are added on the right boundary,
represented by �. (b) TC on a cylinder with mixed boundaries. For both (a) and (b) the lattice is represented by L × R, with L
fixed and R diverging wrapped on a cylinder. In both (a) and (b) the red diamond remains unperturbed with action on the
attached edges given by A�

v , the dark blue half diamond also remains unperturbed with the action on the attached edges given by
B�

p . The yellow diamond in (a) represents the B�
p which translates to B�

p in (b), while the uncolored dashed half diamond in
(a) maps to A�

v in (b) due to the interpolation. The action of open-loop operator at the boundary at (c) λ = 0, (d) λ = 1.

3.1.3. Open-loop operator
We introduce the open-loop operator as in figure 4(b) with periodic boundary as the reference. The
open-loop operators are generated by a sequence of σ(i)

z (σ(j)
x ) operators and are marked with excitations at

their ends. Let us consider the open-loop operator, Lr
z, as defined in figure 4(b), whose expectation value

with respect to the ground state at λ = 0 is zero, i.e. 〈ψλ=0
gs |Lr

z|ψλ=0
gs 〉 = 0, as the loop operator projects the

ground state into an excited state. While on the other hand at λ = 1, 〈ψλ=1
gs |Lr

z|ψλ=1
gs 〉 = 1, since the

excitations at the end of the open-loop condense on the boundary leaving the ground state invariant. We
note that the expectation value of the longest open-loop operator i.e. the operator connecting excitations
which are maximally separated, effectively captures the phase transition. From figure 7 and by performing
finite size analysis, we infer that the expectation value diverges at critical strength of λc = 0.533 ± .032,
thereby signaling a phase transition.

One might attempt to classify these TPTs as second order QPTs based on the divergent behavior of the
derivative of the order parameter, that is the expectation value of the open-loop operator as in figure 7.
However, observing the fact that the derivative of the energy difference as in figure 3 tends to be
discontinuous at the critical strength in the thermodynamic limit, is indicative of the fact that the transition
might indeed be a first order transition as concluded in reference [2]. To conclude, we note that due to the
above reasons the order of the phase transition remains ambiguous and this analysis extends to the case

7
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Figure 9. Low energy spectrum of the interpolating Hamiltonian Hrm(λ) for a system size of N = 20 spins.

discussed in the next section. We attribute the ambiguity in the order of the phase transition to the
non-local nature of the order parameter and postpone their investigation to future studies.

3.2. Boundary variation: cylinder with rough boundaries to a mixed boundary
In this section, we consider the TC Hamiltonian on a cylinder and interpolate between rough boundary on
both ends to a mixed boundary. The phase transition is similar to topology interpolation case as the
GSD varies from 2 to 1 as we vary the interpolation strength. The phase transition is marked by the break in
the parity conservation of the m-type excitations, as at λ = 0 the m-type excitations always appear in pairs
while at λ = 1 single excitations can be drawn from the boundary. We also note that there is no anyonic
symmetry present in the limits of λ = 0 and λ = 1. We interpolate the right rough boundary to a smooth
boundary while the left boundary remains unperturbed, see figure 8. To this extent, we decorate the right
boundary, R, with additional spins denoted by � as in figure 8 and thereby add additional terms to the
Hamiltonian, like B�

p , the projector |0〉〈0| as in equation (5), which facilitate the interpolation while
effectively retaining the boundary properties.

Hrm(λ) = −
∑
v

A�
v −

∑
p

B�
p − (1 − λ)

∑
p∈R

B�
p − (1 − λ)

∑
�∈R

|0〉〈0| − λ
∑
v∈R

A�
v − λ

∑
p∈R

B�
p , (5)

where A�
v , B�

p , A�
v , B�

p are as defined in section 3.1. At λ = 0, the above Hamiltonian reduces to the case of
rough boundary at both open ends as the right boundary spins are projected to |0〉 [10], captured by the
projector |0〉〈0| and the typical Bp =

∏
j
σ

(j)
z face interaction at the boundary has to be modified to include

the projection at the boundary and therefore modifies itself as B�
p , given by

B�
p =

1

2
(I•I•I• + σ•

z σ
•
zσ

•
z )

(
𝟙+ σz

2

)�
, (6)

where • indicates the action on the spins from the bulk and � indicates the action on the spin of the
boundary.

3.2.1. Energy gap
At λ = 0 and at λ = 1, using the fact that the ground state is a simultaneous ground state of all the
operators in the Hamiltonian, one of the ground state can be represented as N

∏
v

(𝟙+ Av)|0〉, with the

product modified suitably to include vertices depending on the value of λ. In the limit of λ = 0, the ground
state manifold is double degenerate [24], while in the limit of λ = 1, the ground state is unique, see figure 9.
In addition we note that the nature of the energy difference plot, ΔE versus λ, is similar to figure 3 with the
critical strength around 0.5.

3.2.2. Open-loop operator
As in the topology variation case, we compute the expectation value of the longest open-loop operator.
With reference to the rough boundary, the open-loop operator has excitations condensing at the boundary
at λ = 0, therefore the expectation value is 1, where as at λ = 1 the excitations are retained at the boundary,

8
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Figure 10. (Top) Expectation value of the longest open-loop operator with respect to the interpolation strength, λ. (Bottom)
Derivative of the expectation value of the open-loop operator with respect to λ. The labels denote the different system sizes, given
by 2 × R with R ∈ {2, 3, 4, 5, 6}, with the value in the parentheses as defined above in figure 7.

Figure 11. (a) The interpolation cut, denoted by the red snake dissects along the domain wall. (b) At λ = 0, TC on a torus with
a domain wall, denoted by the short slant interface. The lattice is represented by (X + 1) × Y with X fixed and Y diverging
wrapped on a thin torus. (c) At λ = 1, TC on a cylinder with a rough boundary on both ends. The lattice is represented by L × R
with L being fixed and R diverging wrapped on a cylinder. (d) B�

p operator at the domain wall. (e) Open-loop operator with a
pair of excitations projecting the ground state at λ = 0 into an excited state. (f) Open-loop operator whose excitations have
condensed at the boundary leaving the ground state at λ = 1 invariant under the loop action.

see figures 8(c) and (d), with the expectation value going to zero. From figure 10 and by performing finite
size analysis we note that the expectation value diverges at λc = 0.481 ± 0.048.

4. TPT’s: G̃λ=0 = G̃λ=1

In this section, we introduce various scenarios where the phase transitions are characterized by closing of
the energy gap between the ground state manifold and the first excited state along the path of interpolation.
We investigate for such cases in the context of topology variation as well as boundary variation.

4.1. Topology variation: torus with domain wall to a cylinder with rough boundaries
We briefly motivate the notion of domain wall as one of the boundaries of the TC and then further discuss
the presence of TPT as we dissect the torus along the domain wall to a cylinder with rough boundaries at
either end.

9
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Figure 12. The least energy levels for a system size of N = 20. At λ = 0 and λ = 1, we note that the ground state manifold is
degenerate, while around λ = 0.5, we note the split in the degeneracy along with the merging of the first and second excited
states.

Figure 13. Energy difference between the first two energy levels as a function of the interpolation strength, λ, with the labels
denoting the different system sizes, given by 3 × Y (3 × R) in the thin torus (equivalent cylinder) limit with Y(R) ∈ {2, 3, 4, 5}.
(Inset) Extrapolating the energy difference at λ = 0.5, to the thermodynamic limit by performing finite-size analysis.

The authors in reference [10] have introduced the notion of domain walls between two different TO
phases, given by the quantum doubles D(G1), D(G2). Further, it has been shown that the domain walls
between such quantum doubles are equivalent to the boundary conditions of the folded quantum double
D(G1 × G2), which are characterized by the subgroups, K, of G1 × G2, along with a non-trivial two-cocycle
of K. In the case of folded TC which is given by D(Z2 × Z2), there exists a domain wall given by the
subgroup Z2 × Z2 along with a non-trivial two-cocycle of Z2 × Z2 which when unfolded reduces to a
boundary as illustrated in figure 11(b). The Hamiltonian of the TC with a domain wall is given by Hdr(0), as
in equation (7). The modified Bp operator at the domain wall, B�

p , takes the form as in figure 11(d)
[11, 29]. The interpolating Hamiltonian connecting the TC with a domain wall on torus to TC on a cylinder
with rough boundaries is given by equation (7)

Hdr(λ) = −
∑
v

A�
v −

∑
p

B�
p − (1 − λ)

∑
p′

B�
p − λ

∑
p′′

B�
p − λ

∑
p′′

B�
p , (7)

where A�
v , B�

p , B�
p are defined as in section 3.1, while B�

p is qualitatively identical to B�
p . The phase

transition is characterized by break in the parity and anyonic symmetry. The parity of the m-type
excitations is preserved in the limit of λ = 1 while is broken in the limit of λ = 0. On the other hand,
anyonic symmetry is preserved in the limit of λ = 0 and is broken in the limit λ = 1.

10



New J. Phys. 23 (2021) 103001 A Jamadagni and A Bhattacharyya

Figure 14. The potential energy spectrum in the thermodynamic limit as a function of the interpolation strength, λ. The gap
closing between the degenerate ground state manifold and the first excited state indicates the presence of the phase transition.

Figure 15. (Top) Expectation value of the longest open-loop operator with respect to different interpolation strength, λ.
(Bottom) Derivative of the expectation value with respect to λ. The labels denote the different system sizes, given by 3 × Y
(3 × R) in the thin torus (equivalent cylinder) limit with Y(R) ∈ {2, 3, 4, 5} and the value in the parentheses is as defined earlier.

4.1.1. Energy gap
At both λ = 0 and λ = 1, the ground state manifold is two fold degenerate. Using the notion established in
the earlier sections, one of the representations of the ground state at λ = 0 is given by
N

∏
v(𝟙+ Av)

∏
p(𝟙+ B�

p )|0〉, where as at λ = 1, is given by N
∏

v(𝟙+ Av)|0〉. In the limit of λ = 0, the
other ground state can be obtained by the action of the non-trivial loop operator running parallel to the
domain wall. The other non-trivial loop operator running perpendicular to the domain wall does not leave
the ground state invariant as m-type violations get identified as e-type violations as they pass through the
domain wall, the fusion of which results in a fermion, instead of vacuum, as in the absence of the domain
wall. Therefore, establishing the fact that the GSD of the TC with a domain wall on torus is two. From
figure 12, for finite size system of N = 20 spins, we see a split in the ground state manifold around λ = 0.5
and also note that the first and the second excited states merge.

From figure 13, we note that the energy gap between the ground state and the first excited state
decreases with increase in system size. Extrapolating to the thermodynamic limit by performing finite size
analysis, we note that the degeneracy of the ground state manifold is retained at all λ and combining the
fact that there is an energy gap closing at λ = 0.5 results in an energy spectrum as in figure 14 indicating
the presence of a TPT at λ = 0.5.
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Figure 16. TC on a cylinder with (a) rough boundary, (b) smooth boundary on both ends. Both in (a) and (b) the lattices are
represented by L × R with L fixed and R diverging wrapped on a cylinder. The red diamond belongs to the interior region, I,
which remains unperturbed while the transparent half diamonds in (a) translate to half filled green diamonds A�

v , A�
v at either

boundaries L and R respectively as λ varies from 0 to 1. Similarly, the golden yellow diamonds represent B�
p in (a) and map to

B�
p in (b) with increase in λ. The action of the open-loop operator at the boundary at (c) λ = 0, (d) λ = 1.

4.1.2. Open-loop operator
To further consolidate the presence of TPT, we compute the expectation value of the longest open-loop
operator at different interpolation strength, λ. We define the loop operator with reference to the TC on a
torus with a domain wall as in figure 11(e). The open-loop is generated by the action of a sequence of σz

operators and sports two Bp violations at its end. In this limit of λ = 0, the loop operator projects the
ground state into an excited state, thereby leading to an expectation value of zero. While at the other
extreme, λ = 1, the excitations at the end of the open-loop condense at the boundary, as in figure 11(f),
thereby leaving the ground state invariant and hence the expectation value is one in the vicinity of λ = 1.
From figure 15 and by performing finite size scaling analysis we conclude that the critical strength is given
by λc = 0.539 ± 0.046,

As noted earlier, one might be tempted to cast these QPTs as second order due to the divergence in the
derivative of the order parameter, the expectation value of the open-loop operator. However, we note that
the closing of the energy gap as in figure 14 is suggestive of first order QPT as it is similar to the level
crossing noted in the spectral analysis of reference [2]. Therefore, we conclude that in the current scenario
where the phase transition is marked by the closing of the energy gap between the ground state and excited
state, the order of the phase transition remains ambiguous.

4.2. Boundary variation: cylinder with rough boundaries to smooth boundaries
In this section we present the boundary variation of the above TPT. To this extent, we interpolate between
rough boundary on both ends to smooth boundary on both ends of the cylinder, see figures 16(a) and (b).
The interpolating Hamiltonian is given by Hrs, as in equation (8).

Hrs(λ) = −
∑
v∈I

A�
v − (1 − λ)

∑
p∈R

B�
p − (1 − λ)

∑
p∈L

B�
p − (1 − λ)

∑
�∈R

|0〉〈0| − (1 − λ)
∑
�∈L

|0〉〈0|

− λ
∑
v∈R

A�
v − λ

∑
v∈L

A�
v − λ

∑
p∈R

B�
p − λ

∑
p∈L

B�
p ,

(8)

where I denotes the interior bulk region, R denotes the right boundary and L denotes the left boundary. The
phase transition is characterized by break in the parity conservation of the m(e)-type excitations. In the
limit of λ = 0, m(e)-type excitations occur in pairs (singly) while in the limit of λ = 1, m(e)-type
excitations appear singly (in pairs). There is no anyonic symmetry present in either phases due to the
condensation at the boundary i.e. the fusion rules are not invariant under the exchange of e and m labels.

4.2.1. Energy gap
The ground state manifold is two fold degenerate at the extremities of the interpolation parameter, λ [24].
As in the case of topology variation, it is evident that for finite size systems the first and the second excited
states merge at λ = 0.5, see figure 17. The energy difference between the first two energy levels is
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Figure 17. Least energy levels for a system size of N = 20 spins. Both at λ = 0 and λ = 1, the ground state manifold is
degenerate. At λ = 0.5, we note the merging of the first and the second excited energy levels.

Figure 18. (Top) Expectation value of the longest open-loop operator with respect to λ. (Bottom) Derivative of the expectation
value with respect to λ. The labels denote the different system sizes, given by 3 × R with R ∈ {2, 3, 4, 5} with the value in
parentheses is as defined earlier.

qualitatively similar to figure 13 and thereby in the thermodynamic limit the energy spectrum qualitatively
resembles figure 14, implying the presence of a phase transition due to the closure of the energy gap.

4.2.2. Open-loop operator
Taking cue from the above analysis, we compute the expectation value of the open-loop operator to
estimate the critical strength at which the phase transition occurs. The open-loop operator is generated by a
sequence of σz operators which holds Av excitations at its end. At λ = 0, these excitations condense on the
boundary, while at λ = 1, the excitations are retained at the boundary as in figures 16(c) and (d)
respectively. From figure 18, and by performing finite size analysis we note that the expectation value
diverges at λc = 0.463 ± 0.036.

5. Interpolation via engineered dissipation

We aim to achieve the interpolation introduced in section 3.1, in an open quantum system by engineering
suitable collapse operators. To draw parallels with the closed system analysis, the study of phase transitions
in open systems is associated with the properties of the steady states which are obtained by solving the
Lindblad master equation (LME)

ρ̇(t) = −i[H(t), ρ(t)] +
∑

n

1

2
[2Cnρ(t)C†

n − ρ(t)C†
nCn − C†

nCnρ(t)], (9)
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Figure 19. (a) The red snake represents the interpolation cut. The dissipative dynamics induced by the collapse operators by
diffusing excitations on (b) a torus represented by X × Y (c) a cylinder represented by L × R with mixed boundaries.
(b) Excitations always appear in pairs and the collapse operators diffuse the excitations (represented by dashed green and blue
arrows) or cool them by fusing (represented by thick green and blue lines). (c) Excitation parity is not conserved because of the
boundary, thereby allowing the excitations to condense at the boundary (represented by dashed magenta arrows), in addition to
the diffusion and pair cooling as noted in (b).

where H is the Hamiltonian capturing coherent evolution while Cn’s are the collapse operators which
encode the dissipative dynamics.

In reference [20], the authors have introduced collapse operators which cool a product state to the
entangled ground state of the TC. We consider a purely dissipative setup i.e. set H = 0 and extend the above
construction, by introducing additional collapse operators whose effective cooling rate involves the
interpolation parameter, λ, thereby cooling to different ground states at the extremities of the interpolation.
We analyze the case of interpolation between the ground state of TC on a torus (λ = 0) to the ground state
on a cylinder with mixed boundary conditions (λ = 1) as introduced in section 3.1. For lucidity, we split
the collapse operators into three classes: the collapse operators acting on the permanent vertices (faces)
given by cp

v(f ), the collapse operators acting on the periodic boundary given by ct
v(f ) and the collapse

operators acting on the open boundary given by co
v(f ) and define them as in equation (10), figure 19.

cp
v =

√
γv
2

σ(i)
z (𝟙− A�

v ),

cp
f =

√
γf

2
σ(j)

x (𝟙− B�
f ),

ct
v(λ) =

√
γv
2

(1 − λ)σ(i)
z (𝟙− A�

v ),

ct
f (λ) =

√
γf

2
(1 − λ)σ(j)

x (𝟙− B�
f ),

co
v(λ) =

√
γv
2

λσ(i)
z (𝟙− A�

v ),

co
f (λ) =

√
γf

2
λσ(j)

x (𝟙− B�
f ),

(10)

where γv , γf are the cooling rates of the vertex and face excitations, while λ is the interpolation strength, A�
v ,

B�
f , A�

v , B�
f operators are as defined in the earlier sections. Intuitively, the dynamics induced by the collapse

operators diffuse the excitations around the lattice i.e. the excitations perform a random walk and upon
meeting another excitation or a relevant boundary, fuse, thereby cooling to a steady state. In the limit of
λ = 0 and λ = 1, the collapse operators effectively cool the product state to a pure steady state given by
ground state of the TC at respective λ. At intermediate λ, the dynamics is captured by the competition
between the cooling operators that promote the diffusion of the excitations along the periodic boundary
and the cooling operators which promote a biased diffusion resulting in a restricted diffusion, effectively
capturing the break in topology. Due to the competitive cooling, the steady state at intermediate λ is a
mixed state unlike the pure steady state at the extremities, hence the phase transition which we shall present
shortly is a mixed state phase transition. We further note that the phase transition analysis presented
hereafter, is based on the assumption that the steady state at all λ is TO, thereby resulting in a TPT in an
open system. The assumption can be substantiated by the fact that the mixed state obtained at intermediate
λ, in the end, is due to a collective cooling scheme where the cooling itself is aimed at generating a TO pure
state. We aim to present other signatures for detecting QPT’s between TO and trivial mixed states in a
separate work and hence the verification shall be postponed to the future [30].
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Figure 20. Expectation value of the longest open-loop operator with respect to the interpolation strength, λ with the labels
denoting the different system sizes given by 2 × Y(R) on a thin torus (cylinder) with R ∈ {2, 3, 4, 5}. (Inset) Finite size scaling to
obtain the critical strength, λc.

We compute the steady states at different interpolating strength, λ, by using the Monte Carlo wave
function method [31]. In the vicinity of λ = 0, the dissipators cool the system to the ground state of the TC
on a torus while at λ = 1, the dissipators cool the system to the ground state of the TC on a cylinder. The
expectation value of the open-loop operator, given by Tr(ρλL) where ρλ is the steady state at interpolation
strength λ and L is the open-loop operator, as in figure 4(b), is used to distinguish the different topological
phases. Using similar arguments presented earlier, we note that the expectation value of the open-loop
operator is zero in the periodic boundary case where as is 1 in the open boundary case, with the critical
strength at λc = 0.637 ± .004 obtained by performing finite size analysis, as in figure 20.

6. Summary and discussion

In summary, we have studied the sensitivity of topological phases with respect to the boundary conditions
of the underlying manifold on which they are defined. We have considered the change in boundary
conditions of two flavors: (a) effective topology variation, where we have varied the underlying topology
from periodic boundary to open boundary i.e. from torus to a cylinder (b) effective boundary variation,
where we have fixed the underlying topology to a cylinder and have varied the open boundaries of the
cylinder. The sensitivity to the boundary conditions is captured by a phase transition, termed as TPT, as we
interpolate by Hamiltonian deformation between different boundary conditions. We have invoked the
notion of parity conservation and anyonic symmetries and have established that a break in either one of the
above symmetries is sufficient to characterize the TPT. To further consolidate the presence of a TPT, we
have numerically analyzed signatures such as GSD, TEE and have introduced the notion of open-loop
operator whose expectation value captures the phase transition. While the GSD and expectation value of the
open-loop operator provide an estimate of the critical strength, we have re-established the fact that TEE
remains constant and is thereby ineffective in detecting the above introduced TPT’s.

Having established the notion of TPT in a closed setup, we extend it to an open quantum setup. The
phase transitions in an open setting are associated with the steady states obtained by solving the LME. To
this extent, we have introduced collapse operators, whose dissipative rates are a function of the
interpolation parameter λ. Due to the above construction, the dynamics cool the product state into distinct
TO steady states at different λ, with the extremities being mapped to the relevant TC ground states, thereby
encoding a TPT at some critical λ. We have shown that the expectation value of the open-loop operator is
still relevant and is effective in detecting such TPT’s in an open setup.

In this paper, having analyzed the presence of TPT’s in various closed and open setups, it would be
interesting to gain an insight into the stability of topological order due to different boundaries, in a
dynamical setting as the system is quenched across a TPT [32]. The introduced TPT’s being characterized
by non-local order parameter, it would be interesting to study the notion of Kibble–Zurek like mechanism
in both closed and open setting [33]. There has been a recent proposal to define topological phases in the
context of open quantum systems [34], it would be interesting to study the TPT in an open setup
introduced in this work with the above definition. Experimentally, there has been progress in realizing the
ground states of the TC Hamiltonian as in reference [14], which also includes open system scenarios with
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various noise protocols, it would be interesting to study the realization of proposed engineered collapse
operators in such a setup. Also, there has been recent progress in preparing quantum states using variational
quantum circuits [35], it would be interesting to extend the above protocol to realize the interpolated
topological steady states by including suitable variational dissipators. Some of the immediate extensions
would be to detect the presence of similar TPT’s in the context of other abelian and non-abelian models
with an aim to develop other relevant signatures.
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Note

While preparing this manuscript we became aware of the following work reference [36]. The authors have
discussed the case presented as in section 3.2 of the current work.

Appendix A. Connecting different geometries and their Hamiltonians

In this appendix, we pictorially elucidate the wrapping of a square lattice on a torus and its interpolated
topology version to a cylinder as in figure 21. The interpolation maps a torus to cylinder with the
interpolation cut mapping A�

v (B�
p ) on the torus to the A�

v′ (B�
p′ ) on the cylinder as in figure 22. The above

general representation can be applied to visualize various scenarios discussed in the main text which involve
the tiling of the square lattices on different topologies.

Appendix B. Various boundary conditions of the TC

Having introduced the mapping of square lattices onto different 3D surfaces, in this section, we briefly
review the different boundary conditions of the TC as in figure 23. As introduced earlier, the different
boundary conditions are identified by the behavior of excitations at a particular boundary. Smooth
boundaries, see figure 23(b) are identified by the condensation of the Bp violations (m excitations) while the
Av violations (e excitations) are retained at the boundary. While rough boundaries, see figures 23(c) and (d)
are identified by the condensation of the Av violations (e excitations) where as the Bp violations (m
excitations) are retained at the boundary. We note that both the representations are equivalent while in
figure 23(c) we introduce additional spins on the boundary which are projected to |0〉〈0| and can be traced
out, thereby, giving rise to figure 23(d). Though, we have a reduction in the number of physical spins on the
lattice, the underlying physics still remains equivalent in both the cases.

Appendix C. Extracting TEE via the rough boundary

In this section, we extract TEE using the region enclosed by the rough boundary i.e. the region enclosed by
the blue vertical cuts as in figure 4(a). We compute the entropy for different cuts which scale with the
system size and obtain similar fits, see figure 24 in comparison to figure 5. Further, the behavior of TEE in
this case, see figure 25 remains similar to the earlier observed behavior in figure 6, with deviations around
the critical value attributed to finite-size effects.
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Figure 21. (a) The square lattice represented by X × Y with X constrained and Y diverging is wrapped on a torus. The
interpolation cut winds around the diverging direction and is represented by the snake which maps to a non-trivial loop around
the leg of the torus. (b) The interpolated version of the torus maps to a cylinder represented by L × R with L constrained and R
diverging. The red and the orange boundaries indicate the distinct boundary conditions arising out of the interpolation. In both
(a) and (b) the dotted arrows represent the wrapping of the lattice into the plane thereby generating the (a) torus (b) cylinder
geometry respectively.

Figure 22. A general interpolation maps (a) the A�
v operator before interpolation to the A�

v′ operator after interpolation (b) the
B�

p operator before interpolation to B�
p′ after interpolation.

Appendix D. Interpolating between mixed boundaries on either end

We interpolate between TC on a cylinder with mixed boundary conditions as in figure 26 (we interpolate
between (a) and (b) as λ is varied from 0 to 1). The TPT is characterized by the energy gap closing at
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Figure 23. TC with (a) periodic boundary conditions with the A�
v (B�

p ) operator in green (orange) used to define the
Hamiltonian, Hpm(0), as in equation (2). (b) Smooth boundary conditions, where the A�

v operator of the periodic boundary
(green in (a)) is truncated at the boundary giving rise to A�

v and A�
b in light green in the definition of the Hamiltonian, Hrs(1),

as in equation (8). (c) and (d) Equivalent rough boundary conditions where B�
p (orange in (a)) is redefined as B�

p in (c) leading
to Hrs(0) as in equation (8) and is truncated to B�

p and B�
p in (d).

Figure 24. Entropy of the region enclosed by the rough boundary (region enclosed by the blue vertical cuts in figure 4(a)), Srough

as a function of the length of the cut, R, for different λ.

λ = 0.5 and belongs to the class of G̃λ=0 = G̃λ=1. There is neither parity conservation, as excitations can be
singly drawn from the boundary, nor anyonic symmetry, due to the condensation properties at the
boundary, for all λ, implying that it is not necessary that every TPT is accompanied by a broken symmetry.
In the main discussion, we referred to the parity being broken with respect to e, m-type excitations without
laying much emphasis on the choice of the boundary of the cylinder i.e. left or right physical boundary. We
observe that by specifying the parity symmetry with respect to a particular physical boundary, allows us to
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Figure 25. TEE as a function of the interpolation strength, λ, with rough boundary as the enclosed region.

Figure 26. TC on a cylinder with mixed boundary conditions (a) rough boundary on the left and smooth boundary on the right
(b) smooth boundary on the left and rough boundary on the right.

state the following: either a break in the parity with respect to a particular physical boundary or break in the
anyonic symmetry is necessary and sufficient to characterize the presence of a TPT.

Extending the above implication to the current scenario, it is evident that the parity of e(m)-type
excitations is preserved with respect to the right (left) physical boundary in the limit of λ = 0, while is
broken in the limit of λ = 1. Therefore, we have substantiated that imposing stronger conditions on the
parity preservation leads to a bi-implication between the presence of TPT and the parity conservation,
anyonic symmetries. The above statement may be generalized for any abelian quantum doubles, as the
parity of atleast one of the superselection sectors is broken due to the condensation at the boundary.

Appendix E. TPT’s with the domain wall intact

In every scenario discussed above, we have observed that the TPT is characterized by break in parity
conservation of either e, m excitations or both due to the introduction of relevant boundary conditions. In
this section, we present a scenario where the TPT is solely characterized by the break in anyonic symmetry
with no conservation in parity, at all λ. To this extent, we consider the TC on a torus with domain wall
(λ = 0) and instead of interpolating along the domain wall we cut through the periodic boundary as in
figure 27 to a cylinder with mixed boundary with the domain wall intact (λ = 1). The interpolation
encodes a TPT as the GSD in the limit of λ = 0 is 2 while in the limit of λ = 1 is 4.

In the limit of λ = 0, there is no conservation in parity due to the presence of domain wall although the
anyonic symmetry is conserved. On the other hand at λ = 1 it is still possible to draw single excitations
from the boundary thereby there is no conservation in parity while the anyonic symmetry is also broken
due to the introduction of open boundaries. Therefore, in this case the TPT is solely characterized by the
break in anyonic symmetry.
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Figure 27. (a) TC on a torus with a domain wall. The red snake represents the interpolation cut which breaks the periodicity
along some other rail other than the domain wall leading to (b) TC on a cylinder with mixed boundaries on either end with the
domain wall intact.

Figure 28. Interpolating via simultaneous dissection and gluing, the red snake represents the dissection while the dashed green
arrows represent the gluing action. (a) TC on a cylinder with mixed boundaries and a domain wall (b) TC on cylinder with rough
boundaries on either end.

Appendix F. TPT’s arising out of simultaneous dissection and gluing

In this section, we introduce a TPT arising out of simultaneous dissection and gluing along two different
boundaries. To this end, we consider the TC Hamiltonian on cylinder with mixed boundaries along with a
domain wall in the limit of λ = 0, being mapped to TC Hamiltonian on a cylinder with a rough boundary
at either end in the limit of λ = 1, see figure 28.

The TPT is marked by the change in GSD as it maps from 4 in the limit of λ = 0 to 2 in the limit of
λ = 1. Additionally, we also note that the parity conservation is preserved with respect to m-type excitations
in the limit of λ = 1 while it remains broken in the limit of λ = 0.

Appendix G. Dissipative interpolation via imperfect cooling

In section 5, we have introduced collapse operators whose action leaves the state invariant in the absence of
the excitations or diffuse/annihilate the excitations when present. In this section, we introduce collapse
operators as in equation (G1), where the Av(Bp) operators along the interpolation cut are additionally
scaled by the relevant interpolation parameter.

ct
v(λ) =

√
γv
2

(1 − λ)σ(i)
z (𝟙− (1 − λ)A�

v ),

ct
f (λ) =

√
γf

2
(1 − λ)σ(j)

x (𝟙− (1 − λ)B�
f ),

co
v(λ) =

√
γv
2

λσ(i)
z (𝟙− λA�

v ),

co
f (λ) =

√
γf

2
λσ(j)

x (𝟙− λB�
f ),

(G1)
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Figure 29. Expectation value of the longest open-loop operator with respect to the interpolation strength, λ with the labels
denoting the different system sizes. (Inset) Finite size scaling to obtain the critical strength, λc.

The key difference between these collapse operators and the ones introduced earlier, as in equation (10),
is given by the fact that in the absence of excitations, the former induces additional excitations while the
latter leaves the state invariant. To gain further insight into the phase transition, we compute the
expectation value of the open-loop operator with respect to the interpolation strength, λ, see figure 29. By
performing finite size analysis, we obtain λc = 0.586 ± 0.001 which is lower compared to the earlier case.
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