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Abstract
The detection loophole problem arises when quantum devices fail to provide an output for some
runs. If treating these devices in a device-independent manner, failure to include the unsuccessful
runs in the output statistics can lead to an adversary falsifying security i.e. Bell inequality violation.
If the devices fail with too high frequency, known as the detection threshold, then no security is
possible, as the full statistics cannot violate a Bell inequality. In this work we provide an intuitive
local hidden-variable strategy that the devices may use to falsify any two-party, binary-outcome
no-signalling distribution up to a threshold of 2(mA + mB − 8)/(mAmB − 16), where mA, mB refer
to the number of available inputs choices to the two parties. This value is the largest analytically
predicted lower bound for no-signalling distributions. We strongly conjecture it gives the true
detection threshold for mA = mB, and for computationally tractable scenarios we provide the Bell
inequality which verifies this. We also prove that a non-trivial detection threshold remains, even
when allowing one party an arbitrary number of input choices.

1. Introduction

Due to the scales on which it operates, quantum technology faces the challenge of single photons or
electrons being lost to the environment. This can result in devices failing to give any output. Ignoring these
failures leads to the ‘detection loophole’ [1–3] security flaw. This is where a preprogrammed
‘hidden-variable’ device can falsely appear to exhibit non-local behaviour. Non-locality is necessary for the
security proofs of device-independent quantum cryptography [4–11], therefore understanding and
preventing the detection loophole is an extremely relevant problem.

One important question to consider is how low the rate of successful detection events (the efficiency)
can be before all observed correlations are describable by a local realistic model. Knowing this threshold
allows one to set minimum requirements for commercial devices and benchmark current technology.
However, obtaining this bound for quantum states is generally difficult due to the infinite set of extremal
quantum correlations, and only a few optimal constructions are known [12, 13].

In this article we present an intuitive local hidden-variable (LHV) construction for two parties, arbitrary
inputs, and binary outputs, which will be able to reproduce any no-signalling distribution obtained by the
successful runs, up to a detection efficiency dependent on the number of inputs. This provides a lower
bound on the threshold for quantum measurements in the same scenario. When both parties have the same
number of inputs into their device, this construction achieves numerically known thresholds (for general
no-signalling distributions) leading us to conjecture it is optimal for this symmetric case. We furthermore
show that in cases with an asymmetric number of measurements, increasing the number of Bob’s
measurements mB above 2�log2mA� provides no additional power in verifying non-local correlations.

Bell’s seminal theorem [14] and its subsequent generalisations [15–17] give fundamental constraints on
the correlations exhibited by any local realistic model; constraints that quantum theory can violate. These
violations have been confirmed experimentally [18, 19]. Due to limitations on technology however, to show
Bell violations they relied on a ‘fair-sampling’ assumption; that the device failures were non-malicious and
the successful detections were representative of the underlying system. In cryptographic protocols however,
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we cannot make that assumption, allowing an adversary (Eve) to pre-program the device to fail. It was not
until much later that loophole-free violations, with no fair-sampling assumptions, were experimentally
demonstrated [20–22]. The difficulty involved in closing this loophole highlights the importance of
obtaining the best theoretical thresholds possible, so that minimal technological developments are required
to perform secure protocols.

2. Preliminaries

In this paper, we are working in the device-independence framework. We assume that two parties (named
Alice and Bob) have been distributed a joint system, on which they can make measurement choices, also
referred to as inputs (labelled by x for Alice, and y for Bob) and receive outcomes (labelled a for Alice and b
for Bob). We characterise the joint system only by the conditional probability distribution p(ab|xy), making
no assumptions about the underlying state or measurements made. This is known as a black box
description. However, we do assume that Alice and Bob can isolate their systems, also referred to here as
devices, from communicating with each other. This imposes the no-signalling conditions∑

b

p(ab|xy) =
∑

b

p(ab|xy′) ∀ a, x, y, y′, (1)

∑
a

p(ab|xy) =
∑

a

p(ab|x′y) ∀ b, x, x′, y. (2)

When the number of inputs and outputs are finite, so that x ∈ {0 . . .mA − 1}, y ∈ {0 . . .mB − 1},
a ∈ {0 . . .nA − 1}, b ∈ {0 . . .nB − 1}, then we may express any no-signalling probability distribution via
the vector p := [p(00|00) . . . p(nA − 1nB − 1|mA − 1mB − 1)]. The set of such vectors forms a convex set
with finitely many extremal points, known as the no-signalling polytope, NS . This restriction is known as
the (mA, mB, nA, nB)-scenario.

Within this set is a strict subset [23] of quantumly realisable distributions, Q. Unlike the full
no-signalling space, Q has an infinite number of extremal points, making it more difficult to deal with
computationally. Strictly contained within Q is the set of local distributions, L. Any distribution p(ab|xy)
within L has a LHV model of the form p(ab|xy) =

∫
Λ dλρ(λ)p(a|x,λ)p(b|y,λ). These distributions may

always be expressed as convex combinations of deterministic distributions p(ab|xy) = δa,axδb,by , which are
finite in number. Geometrically, this means the structure of L is also a polytope.

L may be equivalently described by a set of Bell inequalities, linear inequalities of the form∑
a,b,x,ysxy

abp(ab|xy) � k, where p(ab|xy) is our input-conditional joint distribution [24]. There is a finite set
of facet Bell inequalities; if all facets are satisfied by p(ab|xy) it must have a LHV model i.e. it belongs to L.
Thus violation of a Bell inequality is used to prove the impossibility of a LHV model. We will also often
denote a Bell inequality by a vector s = (s00

00 . . . smA−1,mB−1
nA−1,nB−1 ), though one must also state the sign and

magnitude of the inequality.
The typical detection loophole model; and the one considered in this article, is one in which the devices

fail to detect with equal probability independently of each other [25]. Whilst not completely general, it is
how we would expect the device to behave if the failures were ‘honest’; if we see autocorrelations, or
correlations between the joint failures; this is a clear signal of adversarial manipulation. The model
considered here adds an extra output to both parties to alter the original distribution p(ab|xy) in the
following way:

pη(ab|xy) = η2p(ab|xy),

pη(Fb|xy) = η(1 − η)p(b|y),

pη(aF|xy) = η(1 − η)p(a|x),

pη(FF|xy) = (1 − η)2.

(3)

One can see this as a linear map Dη : p → pη, from the set of no-signalling distributions in the
(mA, mB, nA, nB)-scenario to those in the (mA, mB, nA + 1, nB + 1)-scenario. The quantity we are interested
in is the (quantum) critical detection efficiency, ηc := inf{η|∃p ∈ Q, pη /∈ L}, where Q,L are considered in
the (mA, mB, nA, nB)-scenario and (mA, mB, nA + 1, nB + 1)-scenario respectively.
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Table 1. Cases for which the no-signalling threshold has been numerically calculated;
these provide a lower bound on the corresponding critical detection efficiency for the
quantum set. The ∗ indicates numerical evaluation was not attained [26]. Reprinted
table with permission from [26], Copyright (2019) by the American Physical Society.

mA

mB

2 3 4 5 6

2 2/3 2/3 2/3 2/3 2/3
3 4/7 5/9 5/9 5/9
4 1/2 1/2 1/2
5 4/9 ∗

To check the membership criterion pη ∈ L, we can calculate the local weight. This is defined for an
arbitrary distribution q as:

max
w∈[0,1]

q = wqL + (1 − w)q′, (4)

where qL is a local distribution and q′ is a general no-signalling distribution. This linear program (see the
appendix for details) gives w = 1 iff q is local.

For a given (mA, mB, nA, nB)-scenario, we can use the linear weight to lower bound the critical detection
threshold ηc in the following way. For every extremal no-signalling distribution pNS

j , we can calculate the

local weight of successive distributions pNS
j,η —allowing us (e.g. by the binary chop algorithm) to determine

the detection threshold of that particular distribution, ηj. By doing this for all extremal points, we find that
at η∗ = minj ηj, the entire (mA, mB, nA, nB) no signalling space is mapped into the (mA, mB, nA + 1, nB + 1)
local polytope. Thus, η∗ is necessarily a lower bound of ηc. We will refer to η∗ as the no-signalling
threshold.

This bounding technique was performed in [26] on mA, mB � 6 and nA = nB = 2 for both parties, until
the exponential growth in the number of extremal NS points became too large for numerical calculations.

Reproducing the table of thresholds from [26] in table 1, there are two patterns one observes
immediately; that for mA = mB = m the bound appears to match 4/(m + 4), and that, if one fixes mA, the
bound for mB decreases with each additional output until mB = 2�log mA�. In this article we prove that indeed
the threshold for all mA = mB = m is bounded below by 4/(m + 4), and that it remains constant for all
mB � 2�log mA�. Instead of doing this via numerical results, we construct an explicit LHV for all pη up to this
threshold value.

3. Pre-existing local hidden variable constructions

In order to understand our explicit construction, it is first useful to compare it to a LHV construction for
the detection loophole introduced in [25]. Valid for any number of outputs, the construction is simple yet
elegant. To emphasise the idea that Alice and Bob’s devices are working against them, we introduce Alexa
and Boris as the names of their devices, whose goal is to falsify an arbitrary non-local distribution.
Beforehand they may agree a strategy (using the LHV λ) but cannot communicate once they have received
their input choices. Between themselves, Alexa and Boris first randomly choose a leader, with bias towards
Alexa α ∈ [0, 1]; let us suppose for this run Alexa is chosen. They then generate uniformly a prediction for
Alexa’s input; say k ∈ {0, . . .mA − 1}. Finally they agree on an output a ∈ {0, . . .nA − 1} for Alexa
according to her desired marginal probability p(a|k). When separated, once Alexa receives her input, if they
have guessed correctly she will return outcome a. If the input received from Alice does not match their
prediction, then Alexa outputs a failed detection F. It is clear this occurs with probability (mA − 1)/mA.
Meanwhile, Boris receives his input and returns b ∈ {0, . . .nB − 1} according to p(ab|ky)/p(a|k) regardless.
Notice that they never jointly output a failure, so in order to fully reproduce inefficient statistics they must
with some probability β agree to both output F, regardless of input. This strategy gives rise to the statistics:

pLHV(ab|xy) = (1 − β)

(
α

mA
+

1 − α

mB

)
p(ab|xy),

pLHV(Fb|xy) = (1 − β)α
mA − 1

mA
p(b|y),

pLHV(aF|xy) = (1 − β)(1 − α)
mB − 1

mB
p(a|x),

pLHV(FF|xy) = β.

(5)

3
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Figure 1. The structure of an extremal non-local distribution of NS , where g ∈ {0, 1, . . .mB − 2}, h ∈ {0, 1, . . .mA − 2}. If g or
h is non-zero, then the distribution is a lower input-number extremal point with local deterministic inputs appended to it. As
such, its detection threshold cannot be lower than that of the mA − h, mB − g case; and is not generally optimal for mA, mB

inputs.

One can equate equations (3) and (5) to find this LHV strategy can reproduce statistics up to
η � mA+mB−2

mAmB−1 . By comparison to results in table 1, one can easily check for e.g. mA = mB = 3 this is not
optimal.

4. A new local hidden variable construction

4.1. The model
We will look to improve this strategy on extremal binary-output NS points, thereby bounding the
threshold for the entire space. To do this, we need to understand better the extremal points themselves.
Fortunately, for binary outputs a complete characterisation has been provided in [27]. One can see their
general form in figure 1. They may also be expressed in the simple form

p(ab|xy) =

⎧⎪⎨
⎪⎩

1/2 if a ⊕ b = G(x, y) =
2ny∑
i=1

Qi(x)Ri(y) ≡
2nx∑
j=1

Sj(y)Tj(x)

0 otherwise.

(6)

where Qi(x) are polynomials in the binary digits1 of x, which we label x2, and Ri(y) are monomials in the
binary digits of y (labelled y2). Similarly, Sj(y) are polynomials of y2 and Tj(x) monomials. nx = � log2 mA�
is the length of x2 and similarly for ny. The most famous example of this is the (generalised) PR box [23],
which has the form

p(ab|xy) =

{
1/2 if a ⊕ b = x2 · y2 mod 2

0 otherwise.
(7)

For all the numerically evaluated cases presented in table 1, the generalised PR box achieves the
no-signalling threshold η∗.

In particular, given any extremal NS point, the conditional output distribution for two input pairs
either match exactly or are exactly anti-matching. This allows the following strategy: Alexa and Boris with
probability α randomly choose a leader; suppose it is Alexa. They generate uniformly a prediction for
Alexa’s input; say k1 ∈ {0 . . .mA − 1}; then another from the remaining mA − 1 choices a second
prediction, k2 ∈ {0 . . .mA − 1}\{k1}. They also with probability 1/2 decide whether they will use a
matching or unmatching strategy. Finally, they decide uniformly on a value for a, aL ∈ {0, 1}. Once Alexa
receives her input, if it matches k1 she returns outcome aL. If she receives k2, for the matching strategy she
returns aL, and if they are following the unmatching strategy aL ⊕ 1. If her input does not match k1 or k2,
then she outputs a failed detection F. It is clear this occurs with probability (mA − 2)/mA. Meanwhile, Boris
receives his input z ∈ {0 . . .mB − 1} and checks if G(k1, z) = G(k2, z). If these values match and they chose
the matching strategy he outputs aL ⊕ G(k1, z), otherwise he outputs F. If the two values are unequal and
they chose the unmatching strategy he outputs aL ⊕ G(k1, z), and F otherwise. They still with some

1 ⊕ denotes addition modulo 2.

4
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Figure 2. An illustration of the improved LHV strategy. The table gives the distribution for each component variable of the
underlying randomness λ. The matrix highlights for which input pairs given to Alexa and Boris they can reproduce the output
correlations successfully, and when they must abort, for an example λ. The detection threshold for which one can reproduce all
correlations is found by averaging over all possible λ outcomes.

probability β agree to both output F, regardless of input. This gives statistics:

pLHV(ab|xy) = (1 − β)

(
α

1

mA
+ (1 − α)

1

mB

)
p(ab|xy),

pLHV(Fb|xy) = (1 − β)

(
α

mA − 2

2mA
+ (1 − α)

1

mB

)
p(b|y),

pLHV(aF|xy) = (1 − β)

(
α

1

mA
+ (1 − α)

mB − 2

2mB

)
p(a|x),

pLHV(FF|xy) = β + (1 − β)

(
α

mA − 2

2mA
+ (1 − α)

mB − 2

2mB

)
.

(8)

The advantage of such a strategy becomes apparent in the final term; to achieve the joint failure rate
(1 − η)2, they can devote fewer runs to deterministically outputting FF, since their guessing strategy will
also output a joint failure some of the time; unlike the single input guessing strategy. Equating equations (3)
and (8) one finds one can replicate η � 2(mA + mB − 8)/(mAmB − 16). In the case where mA = mB = m,
one can see this simplifies2 to 4/(m + 4), which matches the known no-signalling threshold in numerically
evaluated cases.

4.2. Asymptotic power of the model
We now prove that the no-signalling detection threshold cannot be improved by increasing asymmetrically
one party’s possible measurements beyond the limit mB = 2�log2mA�. One may express any extremal point as
having p(ab|xy) = 1/2 when a ⊕ b = G(x, y) =

∑2nx

j=1Sj(y)Tj(x), with nx = �log 2 mA�. In particular this
implies there are at most 2nx functions of x defined by the inputs of Bob. Equivalently, it implies that for any
extremal point of a scenario with mB > 2nx , then for any input choice y > 2nx the joint distribution
p(ab|xy) is identical to the joint distribution p(ab|xy

′
) of some y′ � 2nx , ∀ a, b, x. Therefore, if one has a

valid LHV strategy for mA, mB = 2�log2mA� inputs up to efficiency η; one also has a valid strategy for all
mA, mB > 2�log2mA� which will also achieve efficiency η. This strategy simply treats y > 2�log2mA� identically
to the corresponding y′ � 2�log2mA�.

4.3. Comparison to numerically known no-signalling thresholds
Although the bound derived in the previous section holds for all pairs (mA, mB), we see from the numerical
evidence in table 1 it is not generally tight. In the case where mA = 3, mB = 4, we know the no-signalling
detection threshold to be η∗ = 5/9; however, the hidden variable strategy we have proposed only simulates
arbitrary distributions up to η = 1/2. To reproduce correlations up to η∗, one can mix our strategy with the
pre-existing one [25] presented earlier in this paper. By choosing the pre-existing strategy, which guesses a
single input, 20% of the time and our strategy, predicting two inputs, 80% of the time, and by choosing
Alexa solely as the leader for both strategies one can achieve η � 5/9. This mixing of strategies does not
extend to higher dimensional asymmetric scenarios though; for mA = 5, mB = 6 no combination of the two
strategies beats the bound given by equation (8).

2 The simplified bound also holds for mA = mB = 4, since cancellation prevents the denominator vanishing.
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As the number of input choices increases, one could propose a more general variation; in which the
leader (say Alexa) chooses many input predictions k1 . . . kn ∈ {0 . . .mA − 1}, n � mA. With this strategy,
they must beforehand predict whether G(ziki) will coincide with G(z, k1), for each i = 2 . . . n. This is
analogous to the ‘matching/unmatching’ choice seen earlier. The probability of guessing this correctly scales
as 2n−1. However, the benefit of predicting additional inputs only scales as n/mA. This implies the
probability of a correct output will scale as n

mA

1
2n−1 , which takes its maximal value at n = 1, 2 only. Trying to

incorporate this strategy to simulate mA = 5, mB = 6 distributions, our optimisation never chose
strategies with n > 2. This suggests for the asymmetric case a more nuanced joint strategy is required.
However, we stress that when mA = mB, the bound predicted by this model matches all numerically
obtained bounds.

In order to prove that our conjecture of η∗ = 4/(m + 4) for mA = mB = m is correct, one would need
to provide an extremal NS distribution pNS, and corresponding Bell inequality sxy

a′b′ , such that∑
a′ ,b′,x,ysxy

a′b′p
NS
η (a′b′|xy) � k, ∀ η > η∗. Here we have used a′, b′ to explicitly remind the reader that a′ ranges

both in the original values of a and F; that is, it is a three-outcome inequality. From numerical results, the
generalised PR box is the best candidate for the extremal point, but we found no obvious generalisation of
the witnessing Bell inequalities, which are provided for evaluated cases in the appendix.

4.4. Comparison to quantumly realisable thresholds
As stated above, to prove the no-signalling threshold η∗ for a given scenario requires a Bell inequality
violation

∑
a′,b′,x,ysxy

a′b′p
NS
η (a′b′|xy) � k, ∀η > η∗. Therefore sxy

a′b′ is the ‘optimal’ Bell inequality, in that it
detects non-locality for all efficiencies above the no-signalling threshold. A natural question is whether the
same Bell inequality is optimal with respect to quantum correlations; i.e.

∑
a′,b′,x,ysxy

a′b′p
Q
η (a′b′|xy) � k,

∀η > ηc.
For quantum correlations, a critical efficiency of ηc = 2/3 is achievable via qubits using the

mA = mB = 2 CHSH inequality [12], whilst testing ququarts with a mA = mB = 4 inequality allows a
critical efficiency of (

√
5 − 1)/2 ≈ 0.618 [13]. The respective Bell inequalities verifying non-locality for

efficiencies higher than the critical efficiency, when applied to the generalised PR box achieve the
no-signalling detection threshold, η∗, for their respective scenarios. These inequalities are somewhat special
in that they are ‘lifted inequalities’; they are of the form

sFb|xy = saxb|xy, saF|xy = saby |xy, ax, by ∈ {0, 1} ∀ x, y (9)

i.e. facet two-outcome inequalities where F is treated identically to one of the valid outputs. In contrast, the
optimal Bell inequality for mA = mB = 3 requires a truly new three-output inequality; something noted in
[28].

In order to test whether our optimal Bell inequalities could lead to new quantum constructions, we
employed the NPA hierarchy of correlations [29]. These allow one to define successively tighter outer
approximations to Q, which we label Q1 ⊃ Q2 . . . ⊃ Q. For a fixed η, we can then employ semidefinite
programming to look for a set of correlations such that p ∈ Qi, s · pη � k, which implies pη /∈ L. It is then
clear that, if for a given i, η̃ no such p is found, then {p ∈ Q, s · pη̃ � k} must also be empty.

For the scenarios mA = mB = 3 and mA = 3, mB = 4, we know the quantum critical efficiency is not
higher than 2/3; since we may always embed the CHSH/qubit construction into these scenarios. Therefore,
an improvement in the quantum critical efficiency would require that {p ∈ Q, s · p2/3 � k} is non-empty.
However, in both scenarios, choosing s as the optimal Bell inequality for non-locality, we find that this set is
empty at level Q2 of the hierarchy; thus these inequalities do not help us to improve the quantum critical
efficiency, ηc.

5. Conclusions and discussion

In this paper, we have exploited the structure of the bipartite binary-output no-signalling polytope in order
to provide a lower bound on the detection loophole critical efficiency for an arbitrary number of inputs. We
have done this by constructing an explicit LHV model valid for all extremal points. Numerical evidence
suggests that when Alice and Bob share an equal number of inputs, this construction is optimal. An open
question is whether one can find a family of Bell inequalities verifying this.

One possible extension to this work would be improve the strategy for asymmetric measurement
capabilities; since we know our model does not provide a tight bound for mA = 5, mB = 6. A further
generalisation would be to test if this approach generalises to a larger number of outputs. Unfortunately, the
vertices of higher output no-signalling polytopes are not generally known, so we cannot say much about
their structure. Considering the results here, one would expect the successful simulation efficiency of a

6
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construction which predicts n inputs in a k-output scenario to scale as n
mA

1
kn−1 , which for k > 2 achieves

optimal integer value only at n = 1. This suggests for higher output-number scenarios the construction of
[25], defining equation (5), may be optimal.
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Appendix A. Local weight linear program

In order to calculate the linear weight of an arbitrary distribution q, we solve the following problem:

Maximise
∑

i

αi, subject to :
∑

i

αiq
L
i � q, αi � 0.

where qL
i are the extremal points of the polytope L. By rearranging the inequality, we see that the leftover

distribution q′ := q −
∑

i αqL
i has all positive entries, and satisfies the no-signalling constraints since so too

do q, qL
i . Therefore it is a valid (sub-normalised) distribution. This linear program therefore looks to

optimise the total weight of the local extremal points over all decompositions of q.
It is also worth mentioning that every linear program has a dual with the same optimal value [30]. The

dual of the above function gives us a vector b such that:

bTq =
∑

i

αi, bTqL
i � 1 ∀ i

we see immediately that if
∑

i αi < 1, this gives us a Bell inequality violated by q.

Appendix B. Bell inequalities which verify the threshold

In this supplemental file, the optimal Bell inequalities are provided to achieve the detection loophole
threshold for the generalised PR box. They are presented in matrix format:

(10)

where the solid lines delineate different inputs. All presented inequalities have local bound �1. Note that
there are nA + 1 (nB + 1) outputs to account for the additional output F.

7
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B.1. Optimal inequality for two-inputs
As mentioned in the main body of the paper, this inequality is a ‘lifting’ of the CHSH inequality. For all
measurements failure to output is treated identically to 0. Since other liftings of the same CHSH inequality
achieve the optimal value, we can see generally there is not a single unique inequality that witnesses the
threshold.

(11)

B.2. Optimal inequality for three-inputs
Unlike the previous case; this inequality is a ‘true’ three-input, three-output inequality; it cannot be created
from lifting a previous, lower dimensional inequality. What is interesting to note is that, for the first two
inputs for each party, failure is again treated identically to 0—it is only the final input which treats failure
differently.

(12)

B.3. Optimal inequality for four-inputs
This inequality is also a lifting of a four-input, two-output inequality; however in this instance the choice of
treating failure as 0 or 1 depends on the input.

(13)

B.4. Optimal inequality for an asymmetric case: Alice 3 inputs, Bob 4 inputs
For this asymmetric case we can again provide a Bell inequality which achieves the optimal threshold for the
generalised PR Box. Like the previous cases, the inequality we provide here is a facet inequality; that is a
maximally dimensional face of the local polytope. This is the first inequality provided where the failure
outcome is treated differently from the valid outcomes for all input choices; we leave open the question

8
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whether this is necessary, or an artefact of this particular inequality.

(14)

B.5. Optimal inequality for five-inputs
The previous inequalities provided were all calculated using exact arithmetic. Unfortunately this takes much
longer than floating point methods, particularly as the dimension increases. Therefore, we are only able to
provide a Bell inequality here which is accurate up to 6 s.f. and moreover, not a facet inequality. However, it
still verifies the detection loophole threshold, and is included for completeness.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 144.708 0.047 6284 0 147.002 0.056 0145 0 147.002 0.056 0145 0

147.002 0.056 0145 0 148.982 0.050 4226 144.708 0 0.047 6284 147.002 0

0.056 0145 147.002 0 0.056 0145 147.002 0 0.056 0145 148.982 0 0.050 4226

0.047 6289 0.047 6289 0.100 928 0.049 4062 0.049 4062 0.032 6552 0.049 4062 0.049 4062 0.032 6552 0.049 4062

0.049 4062 0.032 6552 0.071 2469 0.071 2471 0.000 105 974 0 147.002 0.049 4056 147.860 0

0.058 2717 0 149.205 0.051 0420 147.860 0 0.058 2717 0 145.578 0.057 3425

147.002 0 0.049 4056 0 147.860 0.058 2717 149.205 0 0.051 0421 0

147.860 0.058 2717 145.578 0 0.057 3426 0.056 0145 0.056 0145 0.032 6547 0.058 2717 0.058 2717

0.033 6107 0.051 0419 0.051 0421 0.022 1489 0.058 2717 0.058 2717 0.033 6107 0.057 8340 0.057 8340 0.070 8747

0 147.002 0.049 4056 0 149.205 0.051 0420 147.860 0 0.058 2717 147.860

0 0.058 2717 0 145.578 0.057 3425 147.002 0 0.049 4056 149.205 0

0.051 0421 0 147.860 0.058 2717 0 147.860 0.058 2717 145.578 0 0.057 3426

0.056 0145 0.056 0146 0.032 6547 0.051 0419 0.051 0421 0.022 1489 0.058 2717 0.058 2717 0.033 6107 0.058 2717

0.058 2717 0.033 6107 0.057 8340 0.057 8340 0.070 8747 0 147.002 0.049 4056 147.860 0

0.058 2717 147.860 0 0.058 2717 0 149.205 0.051 0420 0 145.578 0.057 3425

147.002 0 0.049 4056 0 147.860 0.058 2717 0 147.860 0.058 2717 149.205

0 0.051 0421 145.578 0 0.057 3426 0.056 0145 0.056 0146 0.032 6547 0.058 2717 0.058 2717

0.033 6107 0.058 2717 0.058 2717 0.033 6107 0.051 0419 0.051 0421 0.022 1489 0.057 8340 0.057 8340 0.070 8747

0 148.982 0.071 2492 0 145.578 0.057 8340 0 145.578 0.057 8340 0

145.578 0.057 8340 149.070 0 0.066 1534 148.982 0 0.071 2493 145.578 0

0.057 8341 145.578 0 0.057 8341 145.578 0 0.057 8341 0 149.070 0.066 1534

0.050 4204 0.050 4204 0.000 1060 05 0.057 3429 0.057 3430 0.070 8752 0.057 3429 0.057 3430 0.070 8752 0.057 3429

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(15)
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