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Abstract

In today’s information age, the World Wide Web and social media are important sources
for news and information. Different modalities (in the sense of information encoding) such
as photos and text are typically used to communicate news more effectively or to attract
attention. Communication scientists, linguists, and semioticians have studied the complex
interplay between modalities for decades and investigated, e.g., how their combination can
carry additional information or add a new level of meaning. The number of shared concepts
or entities (e.g., persons, locations, and events) between photos and text is an important
aspect to evaluate the overall message and meaning of an article. Computational models
for the quantification of image-text relations can enable many applications. For example,
they allow for more efficient exploration of news, facilitate semantic search and multimedia
retrieval in large (web) archives, or assist human assessors in evaluating news for credibility.
To date, only a few approaches have been suggested that quantify relations between photos
and text. However, they either do not explicitly consider the cross-modal relations of enti-
ties – which are important in the news – or rely on supervised deep learning approaches that
can only detect the cross-modal presence of entities covered in the labeled training data. To
address this research gap, this thesis proposes an unsupervised approach that can quantify
entity consistency between photos and text in multimodal real-world news articles.

The first part of this thesis presents novel approaches based on deep learning for infor-
mation extraction from photos to recognize events, locations, dates, and persons. These
approaches are an important prerequisite to measure the cross-modal presence of entities in
text and photos. First, an ontology-driven event classification approach that leverages new
loss functions and weighting schemes is presented. It is trained on a novel dataset of 570,540

photos and an ontology with 148 event types. The proposed system outperforms approaches
that do not use structured ontology information. Second, a novel deep learning approach for
geolocation estimation is proposed that uses additional contextual information on the envi-
ronmental setting (indoor, urban, natural) and from earth partitions of different granularity.
The proposed solution outperforms state-of-the-art approaches, which are trained with sig-
nificantly more photos. Third, we introduce the first large-scale dataset for date estimation
with more than one million photos taken between 1930 and 1999, along with two deep learn-
ing approaches that treat date estimation as a classification and regression problem. Both
approaches achieve very good results that are superior to human annotations. Finally, a
novel approach is presented that identifies public persons and their co-occurrences in news
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photos extracted from the Internet Archive, which collects time-versioned snapshots of web
pages that are rarely enriched with metadata relevant to multimedia retrieval. Experimental
results confirm the effectiveness of the deep learning approach for person identification.

The second part of this thesis introduces an unsupervised approach capable of quantifying
image-text relations in real-world news. Unlike related work, the proposed solution automat-
ically provides novel measures of cross-modal consistency for different entity types (persons,
locations, and events) as well as the overall context. The approach does not rely on any pre-
defined datasets to cope with the large amount and diversity of entities and topics covered
in the news. State-of-the-art tools for natural language processing are applied to extract
named entities from the text. Example photos for these entities are automatically crawled
from the Web. The proposed methods for information extraction from photos are applied to
both news images and example photos to quantify the cross-modal consistency of entities.
Two tasks are introduced to assess the quality of the proposed approach in real-world ap-
plications. Experimental results for document verification and retrieval of news with either
low (potential misinformation) or high cross-modal similarities demonstrate the feasibility
of the approach and its potential to support human assessors to study news.

Keywords: Image-text relations, news analytics, multimedia retrieval, image indexing,
face recognition, date estimation, geolocation estimation, event classification, deep learning,
computer vision, natural language processing
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Zusammenfassung

Das World Wide Web und die sozialen Medien übernehmen im heutigen Informationszeital-
ter eine wichtige Rolle für die Vermittlung von Nachrichten und Informationen. In der Regel
werden verschiedene Modalitäten im Sinne der Informationskodierung wie beispielsweise Fo-
tos und Text verwendet, um Nachrichten effektiver zu vermitteln oder Aufmerksamkeit zu
erregen. Kommunikations- und Sprachwissenschaftler erforschen das komplexe Zusammen-
spiel zwischen Modalitäten seit Jahrzehnten und haben unter Anderem untersucht, wie
durch die Kombination der Modalitäten zusätzliche Informationen oder eine neue Bedeu-
tungsebene entstehen können. Die Anzahl gemeinsamer Konzepte oder Entitäten (beispiels-
weise Personen, Orte und Ereignisse) zwischen Fotos und Text stellen einen wichtigen As-
pekt für die Bewertung der Gesamtaussage und Bedeutung eines multimodalen Artikels
dar. Automatisierte Ansätze zur Quantifizierung von Bild-Text-Beziehungen können für
zahlreiche Anwendungen eingesetzt werden. Sie ermöglichen beispielsweise eine effiziente
Exploration von Nachrichten, erleichtern die semantische Suche von Multimedia-Inhalten in
(Web)-Archiven oder unterstützen menschliche Analysten bei der Evaluierung der Glaub-
würdigkeit von Nachrichten. Allerdings gibt es bislang nur wenige Ansätze, die sich mit
der Quantifizierung von Beziehungen zwischen Fotos und Text beschäftigen. Diese Ansätze
berücksichtigen jedoch nicht explizit die intermodalen Beziehungen von Entitäten, welche
eine wichtige Rolle in Nachrichten darstellen, oder basieren auf überwachten multimodalen
Deep-Learning-Techniken. Diese überwachten Lernverfahren können ausschließlich die in-
termodalen Beziehungen von Entitäten detektieren, die in annotierten Trainingsdaten ent-
halten sind. Um diese Forschungslücke zu schließen, wird in dieser Arbeit ein unüberwachter
Ansatz zur Quantifizierung der intermodalen Konsistenz von Entitäten zwischen Fotos und
Text in realen multimodalen Nachrichtenartikeln vorgestellt.

Im ersten Teil dieser Arbeit werden neuartige Verfahren auf Basis von Deep Learn-
ing zur Extrahierung von Informationen aus Fotos vorgestellt, um Ereignisse (Events),
Orte, Zeitangaben und Personen automatisch zu erkennen. Diese Verfahren bilden eine
wichtige Voraussetzung, um die Beziehungen von Entitäten zwischen Bild und Text zu be-
werten. Zunächst wird ein Ansatz zur Ereignisklassifizierung präsentiert, der neuartige
Optimierungsfunktionen und Gewichtungsschemata nutzt um Ontologie-Informationen aus
einer Wissensdatenbank in ein Deep-Learning-Verfahren zu integrieren. Das Training er-
folgt anhand eines neu vorgestellten Datensatzes, der 570.540 Fotos und eine Ontologie
mit 148 Ereignistypen enthält. Der Ansatz übertrifft die Ergebnisse von Referenzsystemen
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die keine strukturierten Ontologie-Informationen verwenden. Weiterhin wird ein Deep-
Learning-Ansatz zur Schätzung des Aufnahmeortes von Fotos vorgeschlagen, der Kontext-
informationen über die Umgebung (Innen-, Stadt-, oder Naturaufnahme) und von Erdpar-
titionen unterschiedlicher Granularität verwendet. Die vorgeschlagene Lösung übertrifft die
bisher besten Ergebnisse von aktuellen Forschungsarbeiten, obwohl diese deutlich mehr Fo-
tos zum Training verwenden. Darüber hinaus stellen wir den ersten Datensatz zur Schätzung
des Aufnahmejahres von Fotos vor, der mehr als eine Million Bilder aus den Jahren 1930 bis
1999 umfasst. Dieser Datensatz wird für das Training von zwei Deep-Learning-Ansätzen zur
Schätzung des Aufnahmejahres verwendet, welche die Aufgabe als Klassifizierungs- und Re-
gressionsproblem behandeln. Beide Ansätze erzielen sehr gute Ergebnisse und übertreffen
Annotationen von menschlichen Probanden. Schließlich wird ein neuartiger Ansatz zur
Identifizierung von Personen des öffentlichen Lebens und ihres gemeinsamen Auftretens in
Nachrichtenfotos aus der digitalen Bibliothek Internet Archiv präsentiert. Der Ansatz er-
möglicht es unstrukturierte Webdaten aus dem Internet Archiv mit Metadaten, beispiels-
weise zur semantischen Suche, zu erweitern. Experimentelle Ergebnisse haben die Effektivi-
tät des zugrundeliegenden Deep-Learning-Ansatzes zur Personenerkennung bestätigt.

Im zweiten Teil dieser Arbeit wird ein unüberwachtes System zur Quantifizierung von Bild-
Text-Beziehungen in realen Nachrichten vorgestellt. Im Gegensatz zu bisherigen Verfahren
liefert es automatisch neuartige Maße der intermodalen Konsistenz für verschiedene Entitäts-
typen (Personen, Orte und Ereignisse) sowie den Gesamtkontext. Das System ist nicht auf
vordefinierte Datensätze angewiesen, und kann daher mit der Vielzahl und Diversität von En-
titäten und Themen in Nachrichten umgehen. Zur Extrahierung von Entitäten aus dem Text
werden geeignete Methoden der natürlichen Sprachverarbeitung eingesetzt. Examplarbilder
für diese Entitäten werden automatisch aus dem Internet beschafft. Die vorgeschlagenen
Methoden zur Informationsextraktion aus Fotos werden auf die Nachrichten- und herun-
tergeladenen Exemplarbilder angewendet, um die intermodale Konsistenz von Entitäten zu
quantifizieren. Es werden zwei Aufgaben untersucht um die Qualität des vorgeschlagenen
Ansatzes in realen Anwendungen zu bewerten. Experimentelle Ergebnisse für die Doku-
mentverifikation und die Beschaffung von Nachrichten mit geringer (potenzielle Fehlinfor-
mation) oder hoher multimodalen Konsistenz zeigen den Nutzen und das Potenzial des
Ansatzes zur Unterstützung menschlicher Analysten bei der Untersuchung von Nachrichten.

Stichworte: Bild-Text-Beziehungen, Nachrichtenanalyse, Multimedia Retrieval, Bildin-
dexierung, Personenerkennung, Schätzung des Aufnahmejahres, Schätzung des Aufnah-
meortes, Eventklassifikation, Deep Learning, Maschinelles Sehen, Natürliche Sprachverar-
beitung
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A.3 Results on the Im2GPS test dataset of all images . . . . . . . . . . . . . . . . 186

XIII



List of Tables

A.4 Results on the Im2GPS test dataset of all images classified as indoor . . . . . 187
A.5 Results on the Im2GPS test dataset of all images classified as natural . . . . 188
A.6 Results on the Im2GPS test dataset of all images classified as urban . . . . . 189
A.7 Results on the Im2GPS3k test dataset of all images . . . . . . . . . . . . . . . 190
A.8 Results on the Im2GPS3k test dataset of all images classified as indoor . . . . 191
A.9 Results on the Im2GPS3k test dataset of all images classified as natural . . . 192
A.10 Results on the Im2GPS3k test dataset of all images classified as urban . . . . 193
A.11 Results for cross-modal consistency on TamperedNews (Top-25%) . . . . . . . 195
A.12 Results for cross-modal consistency on all TamperedNews documents . . . . . 196
A.13 Results for cross-modal consistency on the Top-50% verified News400 docu-

ments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197

XIV



List of Figures

1.1 Exemplary multimodal news articles with cross-modal entity similarities com-
puted by the proposed system . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Taxonomy and examples for eight image-text relationships . . . . . . . . . . . 4
1.3 Examples of image-text relations in advertisements . . . . . . . . . . . . . . . 5
1.4 Reference and test images of the Multimodal Entity Image Repurposing dataset 6

2.1 Mathematical model of the perceptron . . . . . . . . . . . . . . . . . . . . . . 24
2.2 Popular activation functions used in neural networks . . . . . . . . . . . . . . 25
2.3 Illustration of a multilayer perceptron . . . . . . . . . . . . . . . . . . . . . . 25
2.4 Illustration of a two-dimensional convolution and a convolutional layer . . . . 28
2.5 Strided convolution and pooling . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.6 Illustration of the AlexNet architecture . . . . . . . . . . . . . . . . . . . . . . 31
2.7 Illustration of the Inception module . . . . . . . . . . . . . . . . . . . . . . . . 33
2.8 Illustration of two residual block variants . . . . . . . . . . . . . . . . . . . . . 36
2.9 Illustration of two Word2Vec models . . . . . . . . . . . . . . . . . . . . . . . 39
2.10 Exemplary output of spaCy for Named Entity Recognition . . . . . . . . . . . 41
2.11 Exemplary output of Ambiverse for Named Entity Disambiguation . . . . . . 43
2.12 Named Entity Disambiguation with Wikifier using a mention-entity graph . . 45
2.13 Exemplary Resource Description Framework graph . . . . . . . . . . . . . . . 46

3.1 Exemplary subset of the Ontology and photos of the proposed Visual Event
Classification Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Exemplary subset of the initial and final Ontology . . . . . . . . . . . . . . . 54
3.3 Event classification results for a selection of Event Nodes on VisE-Bing . . . . 64
3.4 Qualitative event classification results on VisE-Wiki . . . . . . . . . . . . . . 64
3.5 Workflow and sample images for geolocation estimation . . . . . . . . . . . . 69
3.6 Partitioning of the Earth into geographical cells . . . . . . . . . . . . . . . . . 72
3.7 Pipeline of the geolocation estimation frameworks . . . . . . . . . . . . . . . . 73
3.8 Comparison of the geolocation approaches trained with and without multiple

partitionings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.9 Qualitative results for different partitionings as well as hierarchical result . . . 80
3.10 Comparison of the Individual Scenery Networks to the baseline approaches . . 81
3.11 Comparison of the Multi-Task Network to a baseline approach . . . . . . . . . 82

XV



List of Figures

3.12 Screenshot of the demonstrator for geolocation estimation . . . . . . . . . . . 85
3.13 Example images from the Date Estimation in the Wild dataset . . . . . . . . 88
3.14 Number of crawled images and the accuracy of the provided timestamps for

each year in the Date Estimation in the Wild dataset . . . . . . . . . . . . . . 90
3.15 Workflow of the proposed person identification approach for news articles in

the Internet Archive. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
3.16 Exemplary results for person identification in the Internet Archive . . . . . . 104

4.1 Test and reference images of theMultimodal Entity Image Repurposing dataset
and two news from BreakingNews with outputs of the proposed system . . . . 108

4.2 Workflow for the quantification of Cross-modal Entity Similarities . . . . . . . 112
4.3 Workflow for the quantification of the Cross-modal Context Similarity . . . . 117
4.4 Cross-modal similarity values for person, location, and event entities . . . . . 121
4.5 Qualitative results for cross-modal document verification . . . . . . . . . . . . 125
4.6 Screenshot of the demonstrator for multimodal news analytics . . . . . . . . . 131

A.1 Number of training images for all Leaf Event Nodes in the Visual Event Clas-
sification Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180

A.2 Number of images for all Leaf Event Nodes in the VisE-Bing test dataset. . . 181
A.3 Number of images for all Leaf Event Nodes in the VisE-Wiki test dataset. . . 182

XVI



Acronyms

AP Average Precision. 121, 124, 128, 195–197

API Application Programming Interface. 89, 112, 119

AUC Area Under Receiver Operating Curve. 121–124, 126–128, 130, 195–197

BERT Bidirectional Encoder Representations from Transformers. 38

BoW Bag of Words. 42

CBOW Continuous Bag-of-Words. 38, 39

CMCS Cross-modal Context Similarity . XVI, 116, 117

CMES Cross-modal Event Similarity . 116

CMI Cross-modal Mutual Information. 4, 5, 9, 11, 49, 107–110, 132, 133

CMLS Cross-modal Location Similarity . 116, 126, 130

CMPS Cross-modal Person Similarity . 112, 115, 121

CMS Cross-modal Similarity . 114, 116, 125, 132

CNN Convolutional Neural Network . 23, 26–32, 35, 52, 58, 59, 68, 69, 71, 74, 75, 78, 83,
86–88, 90, 91, 93, 96–101, 105, 113, 115, 117, 130, 136, 139

CORE Computing Research & Education. 21

CRF Conditional Random Field . 41, 42

CV Computer Vision. 7, 23

ELMo Embeddings from Language Models. 38, 42

FNV Fowler-Noll-Vo. 41

GAN Generative Adversarial Network . 97

GCD Great Circle Distance. 79, 82, 84, 85, 118, 122, 124–126, 128, 186–193, 195–197

GCNN Graph Convolutional Neural Network . 52, 67, 138

GloVe Global Vectors for Word Representation. 37

GPS Global Positioning System. 69–73, 76, 79, 82, 83, 86

XVII



Acronyms

GPT Generative Pre-training . 38

HMM Hidden Markov Model . 41

HOG Histogram of Oriented Gradients. 99

HTML Hypertext Markup Language. 46

HTTP Hypertext Transfer Protocol . 47

ILSVRC ImageNet Large Scale Visual Recognition Challenge. 29–32, 34, 36, 58, 77, 78,
83, 89, 91, 102, 118

ISN Individual Scenery Network . 75–85, 186–193

LFW Labeled Faces in the Wild . 96, 102, 105, 113, 122

LSTM Long short-term memory . 26, 38, 42

MEIR Multimodal Entity Image Repurposing . XV, XVI, 6, 108, 118

MLP Multilayer Perceptron. 25, 27, 32

MP16 MediaEval Placing Task 2016 . 77

MS-Celeb-1M Microsoft-Celebrity-1M . 96, 98, 101

MTN Multi-Task Network . XV, 76, 79, 81, 82, 186–193

MvMF Mixture of von-Mises Fisher . 71, 83

NAS Neural Architecture Search. 30

NED Named Entity Disambiguation. XV, 37, 42–45, 95, 112, 113, 125, 129

NER Named Entity Recognition. XV, 37, 41, 42, 44, 112, 113, 138

NER & NED Named Entity Recognition and Disambiguation. 7, 12, 23, 44, 98, 108, 111,
112, 114, 131–134, 137

NLP Natural Language Processing . 7, 12, 23, 26, 31, 37, 41, 42

OWL Web Ontology Language. 46, 47

RDF Resource Description Framework . XV, 46, 47

RED Rare Event Dataset . 50, 65, 66

ReLU Rectified Linear Unit . 24, 25, 27, 31, 32, 34, 36, 37

SARE Stochastic Attraction and Repulsion. 71

SC Semantic Correlation. 4, 5, 109, 110

XVIII



Acronyms

SE Squeeze-and-Excitation. 30

SGD Stochastic Gradient Descent . 61, 78, 91, 102

SIFT Scale-invariant Feature Transform. 52

SocEID Social Event Image Dataset . 50, 65, 66

SPARQL SPARQL Protocol and RDF Query Language. 47

SVM Support Vector Machine. 41, 66, 99, 111

TF-IDF Term Frequency–Inverse Document Frequency . 42

TIB Leibniz Information Centre for Science and Technology . 85, 131

ULMFiT Universal Language Model Fine-tuning . 38

URI Uniform Resource Identifier . 42, 43, 46, 47

URL Uniform Resource Locator . 119

VA Verification Accuracy . 120, 124, 128, 130, 195–197

VGG Visual Geometry Group. 29, 32, 83, 111

VisE-D Visual Event Classification Dataset . XIII, XV, XVI, 11, 50–52, 66, 130, 135, 179,
180

VisE-O Visual Event Ontology . XIII, 11, 50, 52, 66, 113, 135, 138

WIDER Web Image Dataset for Event Recognition. 50, 52, 65, 66

YFCC100M Yahoo Flickr Creative Commons 100 Million dataset . 77, 78

XIX





Notations

In this chapter the description of notations used in this thesis are presented. In general, the
notation from Goodfellow et al. [79] are used.

Scalars, Arrays, and Sets
a A scalar (integer or real)
a A one-dimensional vector
A A two-dimensional matrix
A A three-dimensional tensor
A A set
|A| The number of items in set A
R The set of real numbers
{0, 1} A set containing 0 and 1

{0, . . . , n} A set containing all integers from 0 to n
G A graph
‖a‖1 The Manhattan (or l1) norm of a vector a
‖a‖2 The Euclidean (or l2) norm of a vector a

Indexing
ai Element with index i of vector a
Ai,j Element in row i and column j of matrix A

Datasets
X A set of training examples

X(i) or x(i) Input matrix X(i) or vector x(i) of the i-th element in the training set X
y(i) or y(i) Target vector y(i) or scalar y(i) of the i-th element in the training set X

XXI





1 Introduction

With the widespread availability and use of digital environments, the World Wide Web plays
an essential role in the dissemination of information and news. In particular, social media
platforms like Twitter (https://twitter.com/) allow users to follow worldwide events and
are a popular source of information [44, 214, 256]. Typically, multimedia articles and news
published on the World Wide Web include different modalities, such as photos, text, video,
or sound. According to Guo et al., a "modality refers to a particular way or mechanism
of encoding information" [85]. The various modalities act as mechanisms that can describe
different aspects of the same object to convey information about objects in the world [85].

An essential aspect of understanding multimodal messages is the complex interplay be-
tween different modalities [31], e.g., the semantic correlation and the number of co-occurring
concepts or entities. Due to the rapidly growing amount of multimodal articles and news on
the Web, automated approaches for multimodal content analysis are becoming increasingly
important. The quantification of cross-modal relations in news articles is particularly chal-
lenging as they are typically centered around real-world entities such as persons, locations,
and events. Moreover, new entities and topics can emerge every day. A fully-automatic
system capable of quantifying cross-modal relations of entities (e.g., persons, locations, and
events) between a photo and its associated text (illustrated in Figure 1.1) can enable many
tasks and applications in news analytics, semiotics, and multimedia retrieval.

Approaches that automatically quantify cross-modal relations allow users to efficiently
explore news articles and other multimodal documents, e.g., to reveal related parts of the
text to the accompanying photo. Named entities can be linked to knowledge bases such
as Wikipedia or Wikidata [268] to provide additional information, which can be helpful
for readers that might not be familiar with a news topic and the mentioned entities. The
quantification of entity relations can also help semioticians, linguists, and communication
scientists investigate the inter-dependencies of photo-text pairs, for example, to evaluate the
amount of shared and contrasting entities between both modalities.

Another application of approaches that quantify cross-modal relations is the evaluation
of inconsistent entity relations between photos and text, which can be helpful to detect
misinformation in news. Media and individual users may copy, paraphrase, or manipulate
news stories and use social media platforms to disseminate an intended narrative or opinion.
Fake news, i.e., articles that deliberately spread rumors or misleading information, have
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David Cameron PER 0.87 Brussels LOC 0.63
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[…] believes he proved he ’is not 

finished yet’ after his tenth  M                                                      

goal in the 1-1 draw with […]                                                        

the                                       manager […] (552 words)
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Merseyside derby EVENT 0.97
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(public domain)

44th president of the United States

Barack Hussein Obama II (born August 4, 
1961) is an American politician and attorney 
who served as the 44th president of the 
United States from 2009 to 2017. […]

Barack Obama

Figure 1.1: Left: Exemplary multimodal news articles with cross-modal entity similarities
for locations (LOC), persons (PER), and events (EVENT) computed by the pro-
posed approach presented in Chapter 4 of this thesis. Right: Entity information
extracted from Wikipedia and Wikidata [268]. A web application is available at:
https://labs.tib.eu/newsanalytics. Photos are replaced with similar ones
depicting the same entity relations due to image copyright restrictions. Links to
the original documents can be found on: https://github.com/TIBHannover/
cross-modal_entity_consistency/tree/master/supplemental_material

become a critical problem in recent years and have even been used repeatedly, e.g., during
the 2016 United States elections [13, 38]. In some cases, measures of cross-modal consistency
can be an important first step towards supporting human assessors and expert-oriented fact-
checking efforts such as PolitiFact1 and Snopes2 to identify fake news. Examples for news
articles that report about certain events at a claimed location but use photos of another
location have been reported in the media:

• Example 1: "COVID-19: Old Video from Azerbaijan Shared as Lockdown in Spain"
(archived web link from 12th April 2020 https://bit.ly/3wSU5kZ)

• Example 2: "CBS admits crowded New York hospital was actually in Italy" (archived
web link from 1st February 2021: https://bit.ly/3wS5TE6)

While the aforementioned applications focus on the evaluation of individual multimodal
documents, the quantification of cross-modal relations also allows news retrieval from large
multimedia collections or news archives. For example, news with low cross-modal consistency
can be retrieved that are potentially check-worthy for fact-checking efforts. On the other
hand, retrieval of multimodal articles with high cross-modal consistency more likely provides
users with credible news articles. Moreover, entity relations, e.g., between (public) persons
and events, can be indexed for information retrieval, allowing users to retrieve documents
that are likely to represent one or multiple specified entities in both photo and text.

1https://www.politifact.com/
2https://www.snopes.com/
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1.1 Background

1.1 Background

The interplay of different modalities or information channels has been studied in communi-
cation and computer science. This section briefly summarizes the importance of multimodal
relations for communication as well as related work in computer science.

1.1.1 Importance of Multimodal Information for Communication

Different modalities such as photo and text, diagrams and text, or video and speech (audio)
can help convey information more efficiently or attract attention [31, 153]. Therefore, mul-
timodal information is essential for different media types such as television, books, or social
media across various domains, e.g., education, entertainment, or news. Each information
channel carries specific information. Their combination enables the communication of a mul-
timodal message that can yield additional information and sometimes a new level of meaning
referred to as meaning multiplication [31, 134]. For example, in static multimodal articles,
the role of the photo can range from decorative (with little or no information compared to
the text) over depicting rich information enhancements (important or additional details) to
even misleading (contradictory) visual information. Examples of different relations between
photos and text according to Otto et al. [185] are shown in Figure 1.2.

In the past decades, linguists, semioticians, and communication scientists have been in-
vestigating the visual/verbal divide and attempted to define types of interrelations between
visual (e.g., photos, diagrams, or video) and verbal information (e.g., text or speech) us-
ing suitable taxonomies to describe the complex interplay between different modalities [30,
88, 153, 155, 162, 262]. According to Bateman [31], the consideration of relationships be-
tween the modalities, such as the semantic correlation and mutual concepts, is crucial to
understand and evaluate the overall message and meaning of multimodal documents.

1.1.2 Multimodal Relations in Computer Science

Computational models require rich features from both modalities to determine relations
between photo and text. Smeulders et al. [237] identified the semantic gap as one of the
biggest challenges for image retrieval applications and defined it as "the lack of coincidence
between the information that one can extract from the visual data and the interpretation that
the same data have for a user in a given situation" [237]. Twenty years ago, this problem
was mainly related to the fact that computer vision approaches were only able to describe
photo content based on low-level features (e.g., color, texture, shape). Substantial progress
has been made in recent years due to the introduction of deep learning approaches [91,
126, 285] for many computer vision tasks, such as object and scene recognition, that are
capable of extracting visual concepts as semantic, high-level features [303]. In recent years,
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Figure 1.2: Left: Categorization of eight image-text relations based on three computable
dimensions, namely Cross-modal Mutual Information (CMI), Semantic Correla-
tion (SC), and Status according to Otto et al. [185]. For Status, both modalities
can have the same relative importance to the multimodal message (I = T ), the
image can be superordinate to the text (I > T ), or vice versa (I < T ). Note
that there are no hierarchical relations implied and that discarded subtrees are
marked with a red cross. Right: Examples for each type of image-text rela-
tions [68, 185]. Underlined red text is contradictory to the photo content.

researchers have tackled challenging cross-modal tasks such as image captioning and visual
question answering [16, 19, 118, 138]. However, the proposed solutions focus on answers
and precise descriptions of the visual content based on (rather generic) concepts such as
objects, actions, or persons. Thus, they do not aim to describe more complex image-text
relations that are relevant in practice and can include complementary information [96, 306].
Moreover, these approaches lack the capabilities of (human) scene understanding, including
the interpretation of gestures, symbols, and other contextual information, and are unable
to capture the deeper semantic information and meaning of images. Thus, even with the
availability of high-level features from recent deep learning approaches, the semantic gap is
still a critical challenge, especially for automated solutions that aim to understand complex
relationships of multimodal information.

Quantification of Image-Text Relations: So far, only a few approaches [96, 127, 185,
294, 306] have been presented that aim to bridge the semantic gap with respect to multi-
modal relationships. Henning and Ewerth [96, 97] proposed the first approach that quan-
tifies image-text relations using two computable dimensions: Cross-modal Mutual Informa-

4



1.1 Background

Figure 1.3: Examples of image-text relations similar to Zhang et al. [306]. Due to image
copyrights restrictions, the original advertisement images (can be found in Zhang
et al. [306]) were replaced with similar ones. The text and images in examples
A and B share the same meaning (parallel relationship), although the modality-
specific information is not equivalent. Non-parallel relationships are shown in
examples C and D. While in C, the text does not mention the concept of smoking
and the image does not establish a connection to potential health-related issues,
the information in D seems contradictory since the fuzzy duckling is supposed
to be "not soft enough".

tion (CMI) and Semantic Correlation (SC). While CMI focuses on the mutual cross-modal
presence of concepts, SC describes the shared meaning of image and text. SC is comparable
to the different levels of semantic relations (low, medium, high) in the taxonomy of Marsh
and White [153]. Henning and Ewerth [96, 97] train an autoencoder that reconstructs the
multimodal input to learn a low-dimensional representation of the image-text pairs. Sub-
sequently, the encoder-network is used with labeled training data to train a classifier that
determines scores for CMI and SC. Otto et al. [185] suggested a third dimension called
Status, initially introduced by Barthes [30], which determines the relative importance of
each information channel to the multimodal message. They suggest training a multimodal
deep learning approach that quantifies scores for CMI, SC, and Status that can be used
to categorize image-text relations into eight distinct classes, as shown in Figure 1.2. Zhang
et al. [306] investigate the relation of images and embedded slogans in advertisements to pre-
dict parallel or non-parallel relationships based on a variety of visual and textual features,
as well as methods that analyze the semantics within and across channels. As illustrated
in Figure 1.3, text and image in parallel relationships are considered either redundant or
complementary and convey the same message, while in non-parallel relations, one modal-
ity can be contradictory, ambiguous, or decorative compared to the other. Ye et al. [294]
further extended this approach by interpreting the rhetoric of visual advertisements using
cross-modal embeddings and image embeddings for symbol regions. Kruk et al. [127] iden-
tified that Instagram posts often contain complex image-text relations and propose a deep
multimodal classifier to determine the author’s intent as well as the semiotic and contextual
relationships between image and caption in Instagram posts.
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Figure 1.4: Reference and test images of the Multimodal Entity Image Repurposing (MEIR)
dataset [219] and corresponding texts with original and manipulated entities.
Please note that these examples have significantly shorter text and fewer entities
compared to real-world news illustrated in Figure 1.1. Furthermore, the reference
dataset is very closely related to the images used for testing.

However, the aforementioned methods [96, 127, 185, 294, 306] do not explicitly consider
cross-modal relations of named entities such as public figures, locations, and events as shown
in Figure 1.1. As a result, the occurrence of, for example, an arbitrary person in text
and image can already result in a valid cross-modal relation since it matches the concept
person even if the identity of this person differs between the modalities. Many real-world
applications require more differentiated measures that are able to evaluate the cross-modal
consistency of every individual named entity.

Image Repurposing Detection: In recent years, solutions for image repurposing detec-
tion [114, 115, 219] addressed a similar problem and have evaluated the consistency between
an image and its associated entities (e.g., persons, locations, or organizations) claimed in
the text or metadata. These approaches rely on multimodal deep learning techniques that
require appropriate datasets containing non-manipulated pairs of image and text. Such
datasets are hard to collect automatically since they need to be verified for valid cross-modal
relations. In addition, these methods are limited to the verification of the cross-modal oc-
currence of entities that appear in the training and reference data. Thus, these supervised
approaches cannot cope well with the dynamic nature of news and other multimodal docu-
ments that can cover new topics and entities every day. Moreover, experimental evaluation
has been performed on images with relatively short image captions [114, 219] or existing
metadata [115], which do not reflect real-world characteristics, as illustrated in Figure 1.4.

1.2 Existing Limitations & Challenges

Multimedia articles and news are typically centered around entities such as persons, loca-
tions, or events, and new topics emerge every day. As discussed in the previous section,
current solutions that quantify image-text relation [96, 127, 185, 294, 306] do not focus on
evaluating the cross-modal occurrence of specific named entities and supervised approaches
for image repurposing detection [114, 115, 219] cannot handle the vast and ever-growing
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entity diversity. Whether an unsupervised approach can address these existing limitations
is the main research question of this thesis:

Research Question 1: “Can we develop an unsupervised approach for the quan-
tification of cross-modal entity consistency in news articles? What are the ad-
vantages, limitations, and challenges in comparison to supervised approaches? ”

However, such an unsupervised approach requires combining solutions from both Natural
Language Processing (NLP) and Computer Vision (CV) to extract meaningful information
from image-text pairs and leads to further research questions.

Tremendous progress has been made in NLP, and solutions for Named Entity Recogni-
tion and Disambiguation (NER & NED) [40, 98, 125, 281] have achieved promising results
in identifying named entities in a text. Also, recent advancements in deep learning have
led to significant progress in many computer vision areas such as object classification [92,
126, 255, 322], place classification [315], and face recognition [59, 228, 245, 282]. These
approaches can help verify the cross-modal presence of object classes (e.g., types of cars, an-
imals, and food), place categories (e.g., beach, church, and plaza), and persons (e.g., public
figures). However, it still remains challenging to identify the vast amount and diversity of
persons mentioned in the news and other multimodal documents every day. Moreover, eval-
uating the cross-modal occurrence of events, locations (latitude and longitude), and dates
requires extracting rich geospatial, temporal, and spatio-temporal information from photos,
but comparatively few approaches with several limitations were presented in the related
areas of event classification [4, 5, 8, 86, 273, 287], geolocation estimation [89, 90, 229, 267,
279], and date estimation [72, 77, 189, 221]. The individual limitations and challenges for
the related computer vision areas are discussed in the following.

Only a few datasets [8, 66, 287] have been introduced for the classification of events or
event types in photos. These datasets are relatively small and disregard many event types
relevant to the news, like epidemics or natural disasters. Due to the lack of a large-scale
image dataset, recent approaches on event classification focus on ensemble models [5, 6, 273]
and the integration of descriptors from local image regions [4, 78, 86, 287]. However, the
models used in these ensemble approaches are trained for related tasks such as object and
place (or scene) recognition and lack important features for event classification. For example,
some event types such as parades and protests can be similar in terms of place (e.g., street
or plaza) and object information (e.g., humans) but can significantly differ in the sentiment
of the depicted persons.

Geolocation estimation of photos is very challenging due to the considerable amount
of intra-class (e.g., different daytimes, objects, or camera settings) and extra-class varia-
tions (e.g., architecture, flora and fauna, or style of interior furnishings). Therefore, most
approaches simplify photo geolocalization by restricting the problem to urban photos of, for
example, well-known landmarks and cities [20, 142, 226, 280, 302, 313] or natural areas like
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deserts or mountains [24, 225, 261]. Only a few proposals [89, 90, 229, 267, 279] treat the
task at global scale without any prior assumptions. However, according to Vo et al. [267], a
single deep neural network, even with tens of millions of parameters, can struggle to mem-
orize the visual appearance of locations in the entire world. Moreover, the photos taken all
over the world are very unevenly distributed [279], making it difficult to train a deep learn-
ing approach using regression-based loss functions. To prevent bias, previous solutions [229,
267, 279] have divided the Earth into partitions with a similar number of images to treat
geolocalization as a classification problem. However, the choice of granularity for this par-
titioning entails a trade-off problem [229]. While fewer but larger (in terms of geographic
area) cells decrease the geospatial resolution of the model outputs, more but smaller cells
are more challenging to distinguish and also make the model susceptible to overfitting due
to the lower number of available training images per cell. Moreover, geographic information
at different spatial resolutions is important to identify locations of varying granularity (e.g.,
buildings, cities, or countries) relevant in news.

Date estimation approaches that aim to predict the acquisition year of (historical) pho-
tographs have not attracted much attention in recent years. Current solutions and datasets
on date estimation are restricted to historical color photographs [72, 154, 189] or specific
concepts such as cities [227], cars [133], persons [77, 221], or historical documents [94, 139].
No large-scale datasets and approaches are available for unconstrained date estimation of
black-and-white and color photographs depicting arbitrary motifs.

Unlike the previously mentioned tasks, face recognition is a very well-studied computer
vision area. Previous solutions [59, 228, 245, 282] have proposed deep learning models for
representation learning to verify persons based on reference (example) images that depict
them. However, acquiring these references images automatically from the Web, e.g., using
image search engines such as Google Images, poses additional challenges such as possible
selection biases or the acquisition of irrelevant photos that portray other entities instead.

Overall, the lack of datasets and the limitations of previous solutions in these computer
vision areas lead to:

Research Question 2: “How suitable are deep learning approaches in recog-
nizing events, locations, dates, and persons in photos specifically with respect to
information extraction from news articles?”

As mentioned in Section 1.1, one of the biggest challenges for information extraction in
images is the semantic gap [237]. Many approaches in computer vision areas such as object
classification [92, 126, 255, 322] and face recognition [59, 228, 245, 282] work on a descriptive
level. However, tasks such date estimation, geolocation estimation, or event classification
require a more profound scene understanding. For example, estimating a photo’s geoloca-
tion based on its visual content requires the consideration of various high-level features, e.g.,
architecture, street signs, flora and fauna, or style of interior furnishings depending on the
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environmental context. Similarly, approaches to date estimation can benefit from additional
features that describe the fashion style or types of cars. The classification of (news) events
can benefit from event relations to learn the fundamental differences of event types in differ-
ent domains such as politics, health, and sports. However, as mentioned above, solutions in
related computer vision areas may lack scene interpretation capabilities, world knowledge,
and other contextual information that are important for these tasks, resulting in:

Research Question 3: “Can contextual information, derived from knowledge
bases or related tasks like scene classification, improve image recognition and
interpretation and provide better performance for computer vision tasks? ”

1.3 Contributions

The goal of this thesis is to answer the research questions mentioned above by presenting
an unsupervised approach that is applicable to real-world news articles and other
multimodal documents and provides differentiated cross-modal relations for specific
named entities such as public figures, locations, and events. Such an approach is a crucial
step towards the quantification of fine-grained Cross-modal Mutual Information (CMI) of
multimodal documents. As illustrated in Figure 1.2, more reliable measures for CMI can
improve the categorization of image-text relations. As pointed out in the previous section,
the extraction of information from photos is an important prerequisite for this task. Thus,
another goal of this thesis is to improve information extraction from photos. The
contributions can be grouped into the following two categories.

Information Extraction from Photos: As discussed in Section 1.2, current solutions
for date estimation [72, 77, 189, 221], geolocation estimation [89, 90, 229, 267, 279], and
event classification [4, 5, 8, 86, 273, 287] have several limitations, such as the lack of ap-
propriate training datasets and insufficient scene interpretation capabilities. This motivates
the approaches presented in this thesis.

Existing datasets for event classification in photos [8, 66, 287] are relatively small and
contain only a few event types relevant in news. We introduce a large-scale dataset for event
classification that comprises 570,540 images along with an ontology of 148 newsworthy event
types extracted from Wikidata [268]. To date, the dataset covers the most diverse and com-
plete set of event classes. Unlike previous work that either uses ensemble models [5, 6, 273]
trained for similar tasks or integrates descriptors from local image regions [4, 78, 86, 287], the
dataset allows for the training of deep learning models from scratch. Besides, ontology-driven
deep learning models based on novel weighting schemes and loss functions are presented that
leverage event relations extracted from structured knowledge graph information. In this way,
the network is provided with additional contextual information to understand and learn from
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the fundamental similarities and differences of various event types, including sports, social
and cultural events, natural disasters, and health crises. Experimental results on several
benchmark datasets, including two novel test sets, have demonstrated the superiority of this
approach, outperforming baselines trained without structured ontology information.

Although related work [89, 90, 146, 229, 267, 279] has presented powerful deep learning
models for geolocation estimation, it remains a challenging task due to geographic am-
biguities, the vast amount of intra- and extra-class variations, and the trade-off problem
introduced by dividing the Earth into geographic cells. In this thesis, novel deep learning
approaches for geolocation estimation are suggested that combine the outputs of hierarchical
cell partitions of different granularity and consider the environmental context (e.g., indoor,
urban, rural) of the photo. Hierarchical cell partitions alleviate the entailed trade-off problem
since the network learns features at multiple geographical scales and allows for hierarchical
predictions using the outputs of each partitioning. Besides, it can learn geographic features
at different spatial resolutions, which is important because news articles mention locations
of varying granularity, e.g., buildings, cities, or countries. Finally, a complementary deep
learning approach for scene classification is incorporated to train individual expert networks
for different environmental settings (e.g., indoor, urban, rural) on photos with fewer intra-
and extra-class variations, which allows them to learn more discriminative features for the
particular setting. Experimental results have shown that the proposed approaches outper-
form strong baselines from the literature [229, 267, 279] on popular benchmark datasets
while using a significantly smaller number of training images.

A new dataset for date estimation is presented that comprises more than one million
images from Flickr captured between 1930 and 1999. Unlike previous datasets, the Date
Estimation in the Wild dataset is neither restricted to specific concepts [77, 94, 133, 139,
221, 227] nor to historical color photographs [72, 154, 189]. Two deep learning methods
are proposed that use different loss functions to treat date estimation as a regression and
classification problem, respectively. Experimental results on a novel test dataset have shown
the superiority of both approaches compared to human annotators.

While tremendous progress has been made in face recognition [59, 228, 245, 282], many
real-world applications can pose additional challenges. For example, persons mentioned in
the media are usually not known in advance. We present a multimedia retrieval approach
to identify (public) persons and their joint co-occurrences with other individuals in photos
extracted from news articles in the Internet Archive (https://archive.org/), which is a
digital library that has been capturing (multimedia) web pages since the mid-1990s. We
show how to automatically create a dictionary containing the most relevant persons for a
given time period and domain (e.g., politics or entertainment). Furthermore, we propose an
unsupervised approach that can identify persons without manual effort from the user. To
achieve this goal, example images for the relevant persons are crawled automatically from
the Web. An additional filtering step is since the image search results can contain irrelevant
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photos that can portray multiple or different persons. A case study has demonstrated the
feasibility of the solution for person identification in news photos.

Measures of Cross-modal Entity Consistency: This thesis presents an automatic
system for the quantification of cross-modal entity consistency. We go beyond existing
approaches that quantify image-text relations [96, 127, 185, 294, 306] by providing more dif-
ferentiated measures that allow for an evaluation of Cross-modal Mutual Information (CMI)
based on individual and more specific entities. Unlike related work on image repurposing
detection [114, 115, 219], the system is entirely unsupervised and does not rely on any pre-
defined reference or training data. To the best of our knowledge, we present the first system
that is applicable to real-world news articles by tackling several news-specific challenges such
as the excessive length of news documents, entity diversity, and unrelated reference (exam-
ple) images. Based on visual features extracted by appropriate deep learning approaches,
novel measures for different entity types (persons, locations, and events) as well as for a
more general news context are introduced to quantify cross-modal relationships between
photo and text. The feasibility of the proposed approach is demonstrated on two novel
datasets, namely TamperedNews and News400, covering different languages and domains.

The main contributions of this thesis can be summarized as follows:

• Visual Event Ontology (VisE-O) and Visual Event Classification Dataset (VisE-D) for
event type classification comprising 570,540 images for 148 event types

• Ontology-driven event classification approach including novel loss functions and weight-
ing schemes that outperforms baseline systems that were not trained with structured
ontology information

• Geolocation approach that leverages contextual geographical and environmental infor-
mation with state-of-the-art performance on two benchmark datasets

• Large-scale Date Estimation in the Wild dataset comprising more than one million
images for unrestricted date estimation for the period from 1930 - 1999

• Regression and classification-based deep learning models for date estimation that sur-
pass human performance

• Unsupervised person identification approach applicable to news articles from the In-
ternet Archive that reveals individual and joint occurrences of public figures

• Novel benchmark datasets covering different languages and domains for multimodal
document verification and retrieval as well as in-depth results of the proposed system

• Unsupervised news analytics system that provides measures of cross-modal context
and entity consistency
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1.4 Thesis Structure

The remainder of this thesis is structured as follows. The mathematical and theoretical foun-
dations to understand the proposed approaches of this thesis are explained in Chapter 2.
The chapter includes the foundations of the deep learning techniques applied for information
extraction from photos. In addition, NLP methods to generate word embeddings as well as
for Named Entity Recognition and Disambiguation (NER & NED) are explained. Finally,
definitions and notations for knowledge graphs are introduced. In Chapter 3, several com-
puter vision approaches are suggested for event classification, geolocation estimation, date
estimation, and person identification. These approaches allow us to obtain rich image fea-
tures that are used in conjunction with suitable techniques for NER & NED to quantify the
relation between image and text in news articles, as explained in Chapter 4. The thesis
concludes with a summary and outlines potential areas of future work in Chapter 5.

1.5 List of Publications

In this section, the publications that have been published in the context of this thesis are
listed. Parts of these publications are reused in this thesis.

Event Classification

[174] Eric Müller-Budack, Matthias Springstein, Sherzod Hakimov, Kevin Mrutzek, and
Ralph Ewerth. “Ontology-driven Event Type Classification in Images”. In: IEEE
Winter Conference on Applications of Computer Vision, WACV 2021, Waikoloa, HI,
USA, January 3-8, 2021. IEEE, 2021, pp. 2927–2937. doi: 10.1109/WACV48630.

2021.00297

Abstract: Event classification can add valuable information for semantic search and
the increasingly important topic of fact validation in news. To date only few ap-
proaches address image classification for newsworthy event types such as natural dis-
asters, sports events, or elections. Previous work distinguishes only between a limited
number of event types and relies on rather small datasets for training. In this paper,
we present a novel ontology-driven approach for the classification of event types in
images. We leverage a large number of real-world news events to pursue two objec-
tives: First, we create an ontology based on Wikidata comprising the majority of event
types. Second, we introduce a novel large-scale dataset of images that was obtained
by crawling the Web. Several baselines are proposed including an ontology-driven
learning approach that aims to exploit structured information of a knowledge graph
to learn relevant event relations using deep neural networks. Experimental results on
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novel and existing benchmark datasets demonstrate the superiority of the proposed
ontology-driven approach.

Source Code & Dataset: https://github.com/TIBHannover/VisE

Geolocation Estimation

[173] Eric Müller-Budack, Kader Pustu-Iren, and Ralph Ewerth. “Geolocation Estimation
of Photos Using a Hierarchical Model and Scene Classification”. In: Computer Vision
- ECCV 2018 - 15th European Conference, Munich, Germany, September 8-14, 2018,
Proceedings, Part XII. ed. by Vittorio Ferrari, Martial Hebert, Cristian Sminchisescu,
and Yair Weiss. Vol. 11216. Lecture Notes in Computer Science. Springer, 2018,
pp. 575–592. doi: 10.1007/978-3-030-01258-8\_35. url: https://doi.org/10.
1007/978-3-030-01258-8_35

Abstract: While the successful estimation of a photo’s geolocation enables a number
of interesting applications, it is also a very challenging task. Due to the complexity
of the problem, most existing approaches are restricted to specific areas, imagery, or
worldwide landmarks. Only a few proposals predict GPS coordinates without any lim-
itations. In this paper, we introduce several deep learning methods, which pursue the
latter approach and treat geolocalization as a classification problem where the Earth
is subdivided into geographical cells. We propose to exploit hierarchical knowledge
of multiple partitionings and additionally extract and take the photo’s scene content
into account, i.e., indoor, natural, or urban setting etc. As a result, contextual in-
formation at different spatial resolutions as well as more specific features for various
environmental settings are incorporated in the learning process of the convolutional
neural network. Experimental results on two benchmarks demonstrate the effective-
ness of our approach outperforming the state of the art while using a significant lower
number of training images and without relying on retrieval methods that require an
appropriate reference dataset.

Source Code: https://github.com/TIBHannover/GeoEstimation

Web Demo: https://labs.tib.eu/geoestimation

[254] Golsa Tahmasebzadeh, Endri Kacupaj, Eric Müller-Budack, Sherzod Hakimov, Jens
Lehmann, and Ralph Ewerth. “GeoWINE: Geolocation based Wiki, Image, News and
Event Retrieval”. In: SIGIR ’21: The 44th International ACM SIGIR Conference
on Research and Development in Information Retrieval, Virtual Event, Canada, July
11-15, 2021. Ed. by Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie
Jones, and Tetsuya Sakai. ACM, 2021, pp. 2565–2569. doi: 10.1145/3404835.

3462786
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Abstract: In the context of social media, geolocation inference on news or events has
become a very important task. In this paper, we present the GeoWINE (Geolocation-
based Wiki-Image-News-Event retrieval) demonstrator, an effective modular system
for multimodal retrieval which expects only a single image as input. The GeoWINE
system consists of five modules in order to retrieve related information from various
sources. The first module is a state-of-the-art model for geolocation estimation of
images. The second module performs a geospatial-based query for entity retrieval
using the Wikidata knowledge graph. The third module exploits four different image
embedding representations, which are used to retrieve most similar entities compared
to the input image. The last two modules perform news and event retrieval from
EventRegistry and the Open Event Knowledge Graph (OEKG). GeoWINE provides
an intuitive interface for end-users and is insightful for experts for reconfiguration to
individual setups. The GeoWINE achieves promising results in entity label prediction
for images on Google Landmarks dataset.

Web Demo: http://cleopatra.ijs.si/geowine/

[257] Jonas Theiner, Eric Müller-Budack, and Ralph Ewerth. “Interpretable Semantic Pho-
to Geolocation”. In: IEEE Winter Conference on Applications of Computer Vision,
WACV 2022, Waikoloa, HI, USA, January 4-8, 2022. IEEE, 2022, pp. 750–760

Abstract: Planet-scale photo geolocalization is the complex task of estimating the
location depicted in an image solely based on its visual content. Due to the success
of convolutional neural networks (CNNs), current approaches achieve super-human
performance. However, previous work has exclusively focused on optimizing geolo-
calization accuracy. Due to the black-box property of deep learning systems, their
predictions are difficult to validate for humans. State-of-the-art methods treat the
task as a classification problem, where the choice of the classes, that is the partition-
ing of the world map, is crucial for the performance. In this paper, we present two
contributions to improve the interpretability of a geolocalization model: (1) We propose
a novel semantic partitioning method which intuitively leads to an improved under-
standing of the predictions, while achieving state-of-the-art results for geolocational
accuracy on benchmark test sets; (2) We introduce a metric to assess the importance
of semantic visual concepts for a certain prediction to provide additional interpretable
information, which allows for a large-scale analysis of already trained models. Source
code and dataset are publicly available.

Source Code: https://github.com/jtheiner/semantic_geo_partitioning

Date Estimation

[179] Eric Müller, Matthias Springstein, and Ralph Ewerth. “"When Was This Picture
Taken?" - Image Date Estimation in the Wild”. In: Advances in Information Retrieval
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- 39th European Conference on IR Research, ECIR 2017, Aberdeen, UK, April 8-13,
2017, Proceedings. Ed. by Joemon M. Jose, Claudia Hauff, Ismail Sengör Altingövde,
Dawei Song, Dyaa Albakour, Stuart N. K. Watt, and John Tait. Vol. 10193. Lecture
Notes in Computer Science. 2017, pp. 619–625. doi: 10.1007/978-3-319-56608-

5\_57. url: https://doi.org/10.1007/978-3-319-56608-5_57

Abstract: The problem of automatically estimating the creation date of photos has
been addressed rarely in the past. In this paper, we introduce a novel dataset Date Es-
timation in the Wild for the task of predicting the acquisition year of images captured
in the period from 1930 to 1999. In contrast to previous work, the dataset is neither
restricted to color photography nor to specific visual concepts. The dataset consists
of more than one million images crawled from Flickr and contains a large number of
different motives. In addition, we propose two baseline approaches for regression and
classification, respectively, relying on state-of-the-art deep convolutional neural net-
works. Experimental results demonstrate that these baselines are already superior to
annotations of untrained humans.

Source Code: https://github.com/TIB-Visual-Analytics/DEW-Model

Dataset: https://doi.org/10.22000/0001abcde

Person Identification

[178] Eric Müller, Christian Otto, and Ralph Ewerth. “Semi-supervised Identification of
Rarely Appearing Persons in Video by Correcting Weak Labels”. In: Proceedings of
the 2016 ACM on International Conference on Multimedia Retrieval, ICMR 2016,
New York, New York, USA, June 6-9, 2016. Ed. by John R. Kender, John R. Smith,
Jiebo Luo, Susanne Boll, and Winston H. Hsu. ACM, 2016, pp. 381–384. doi: 10.

1145/2911996.2912073

Abstract: Some recent approaches for character identification in movies and TV
broadcasts are realized in a semi-supervised manner by assigning transcripts and/or
subtitles to the speakers. However, the labels obtained in this way achieve only an
accuracy of 80 %−90 % and the number of training examples for the different actors is
unevenly distributed. In this paper, we propose a novel approach for person identifi-
cation in video by correcting and extending the training data with reliable predictions
to reduce the number of annotation errors. Furthermore, the intra-class diversity of
rarely speaking characters is enhanced. To address the imbalance of training data per
person, we suggest two complementary prediction scores. These scores are also used
to recognize whether or not a face track belongs to a (supporting) character whose
identity does not appear in the transcript etc. Experimental results demonstrate the
feasibility of the proposed approach, outperforming the current state of the art.
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[169] Markus Mühling, Nikolaus Korfhage, Eric Müller, Christian Otto, Matthias Spring-
stein, Thomas Langelage, Uli Veith, Ralph Ewerth, and Bernd Freisleben. “Deep
learning for content-based video retrieval in film and television production”. In: Mul-
tim. Tools Appl. 76.21 (2017), pp. 22169–22194. doi: 10.1007/s11042-017-4962-9

Abstract: While digitization has changed the workflow of professional media produc-
tion, the content-based labeling of image sequences and video footage, necessary for all
subsequent stages of film and television production, archival or marketing is typically
still performed manually and thus quite time-consuming. In this paper, we present
deep learning approaches to support professional media production. In particular,
novel algorithms for visual concept detection, similarity search, face detection, face
recognition and face clustering are combined in a multimedia tool for effective video
inspection and retrieval. The analysis algorithms for concept detection and similarity
search are combined in a multi-task learning approach to share network weights, saving
almost half of the computation time. Furthermore, a new visual concept lexicon tai-
lored to fast video retrieval for media production and novel visualization components
are introduced. Experimental results show the quality of the proposed approaches.
For example, concept detection achieves a mean average precision of approximately
90% on the top-100 video shots, and face recognition clearly outperforms the baseline
on the public Movie Trailers Face Dataset.

[171] Eric Müller-Budack, Kader Pustu-Iren, Sebastian Diering, and Ralph Ewerth. “Find-
ing Person Relations in Image Data of News Collections in the Internet Archive”.
In: Digital Libraries for Open Knowledge, 22nd International Conference on The-
ory and Practice of Digital Libraries, TPDL 2018, Porto, Portugal, September 10-13,
2018, Proceedings. Ed. by Eva Méndez, Fabio Crestani, Cristina Ribeiro, Gabriel
David, and João Correia Lopes. Vol. 11057. Lecture Notes in Computer Science.
Springer, 2018, pp. 229–240. doi: 10.1007/978-3-030-00066-0\_20. url: https:
//doi.org/10.1007/978-3-030-00066-0_20

Abstract: The amount of multimedia content in the World Wide Web is rapidly
growing and contains valuable information for many applications in different domains.
The Internet Archive initiative has gathered billions of time-versioned web pages since
the mid-nineties. However, the huge amount of data is rarely labeled with appropriate
metadata and automatic approaches are required to enable semantic search. Normally,
the textual content of the Internet Archive is used to extract entities and their pos-
sible relations across domains such as politics and entertainment, whereas image and
video content is usually disregarded. In this paper, we introduce a system for person
recognition in image content of web news stored in the Internet Archive. Thus, the
system complements entity recognition in text and allows researchers and analysts to
track media coverage and relations of persons more precisely. Based on a deep learning
face recognition approach, we suggest a system that detects persons of interest and
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gathers sample material, which is subsequently used to identify them in the image data
of the Internet Archive. We evaluate the performance of the face recognition system
on an appropriate standard benchmark dataset and demonstrate the feasibility of the
approach with two use cases.

Source Code: https://github.com/TIB-Visual-Analytics/PIIA

[172] Eric Müller-Budack, Kader Pustu-Iren, Sebastian Diering, Matthias Springstein, and
Ralph Ewerth. “Image Analytics in Web Archives”. In: The Past Web: Exploring Web
Archives. Ed. by Daniel Gomes, Elena Demidova, Jane Winters, and Thomas Risse.
Cham: Springer International Publishing, 2021, pp. 141–151. isbn: 978-3-030-63291-
5. doi: 10.1007/978-3-030-63291-5_11. url: https://doi.org/10.1007/978-3-
030-63291-5_11

Abstract: The multimedia content published on the World Wide Web is constantly
growing and contains valuable information in various domains. The Internet Archive
initiative has gathered billions of time-versioned web pages since the mid-nineties,
but unfortunately, they are rarely provided with appropriate metadata. This lack
of structured data limits the exploration of the archives, and automated solutions
are required to enable semantic search. While many approaches exploit the textual
content of news in the Internet Archive to detect named entities and their relations,
visual information is generally disregarded. In this chapter, we present an approach
that leverages deep learning techniques for the identification of public personalities in
the images of news articles stored in the Internet Archive. In addition, we elaborate
on how this approach can be extended to enable detection of other entity types such as
locations or events. The approach complements named entity recognition and linking
tools for text and allows researchers and analysts to track the media coverage and
relations of persons more precisely. We have analysed more than one million images
from news articles in the Internet Archive and demonstrated the feasibility of the
approach with two use cases in different domains: politics and entertainment.

Cross-modal Entity Consistency

[175] Eric Müller-Budack, Jonas Theiner, Sebastian Diering, Maximilian Idahl, and Ralph
Ewerth. “Multimodal Analytics for Real-world News using Measures of Cross-modal
Entity Consistency”. In: Proceedings of the 2020 on International Conference on
Multimedia Retrieval, ICMR 2020, Dublin, Ireland, June 8-11, 2020. Ed. by Cathal
Gurrin, Björn Þór Jónsson, Noriko Kando, Klaus Schöffmann, Yi-Ping Phoebe Chen,
and Noel E. O’Connor. ACM, 2020, pp. 16–25. doi: 10.1145/3372278.3390670
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Abstract: The World Wide Web has become a popular source for gathering informa-
tion and news. Multimodal information, e.g., enriching text with photos, is typically
used to convey the news more effectively or to attract attention. The photos can be
decorative, depict additional details, or even contain misleading information. Quanti-
fying the cross-modal consistency of entity representations can assist human assessors
in evaluating the overall multimodal message. In some cases such measures might give
hints to detect fake news, which is an increasingly important topic in today’s soci-
ety. In this paper, we present a multimodal approach to quantify the entity relations
between image and text in real-world news. Named entity linking is applied to ex-
tract persons, locations, and events from news texts. Several measures are suggested
to calculate the cross-modal similarity of these entities with the news photo, using
state-of-the-art computer vision approaches. In contrast to previous work, our system
automatically gathers example data from the Web and is applicable to real-world news.
The feasibility is demonstrated on two novel datasets that cover different languages,
topics, and domains.
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Abstract: In this paper, we present approaches that automatically estimate semantic
relations between textual and (pictorial) visual information. We consider the inter-
pretation of these relations as one of the key elements for empirical research on multi-
modal information. From a computational perspective, it is difficult to automatically
“comprehend” the meaning of multimodal information and to interpret cross-modal
semantic relations. One reason is that already the automatic understanding and in-
terpretation of a single source of information (e.g., text, image, or audio) is difficult
– and it is even more difficult to model and understand the interplay of two differ-
ent modalities. While the complex interplay of visual and textual information has
been investigated in communication sciences and linguistics for years, they have been
rarely considered from a computer science perspective. To this end, we review the few
currently existing approaches to automatically recognize semantic cross-modal rela-
tions. In previous work, we have suggested to model image-text relations along three
main dimensions: cross-modal mutual information, semantic correlation, and the sta-

18

https://doi.org/10.1007/s13735-021-00207-4
https://github.com/TIBHannover/cross-modal_entity_consistency
https://doi.org/10.1515/9783110725001-005
https://doi.org/10.1515/9783110725001-005
https://doi.org/10.1515/9783110725001-005


1.5 List of Publications

tus relation. Using these dimensions, we characterized a set of eight image-text classes
and showed their relations to existing taxonomies. Moreover, we have shown how
the cross-modal mutual information can be further differentiated in order to measure
image-text consistency in news at the entity level of persons, locations, and scene
context. Experimental results demonstrate the feasibility of the approaches.

[238] Matthias Springstein, Eric Müller-Budack, and Ralph Ewerth. “QuTI! Quantifying
Text-Image Consistency in Multimodal Documents”. In: SIGIR ’21: The 44th In-
ternational ACM SIGIR Conference on Research and Development in Information
Retrieval, Virtual Event, Canada, July 11-15, 2021. Ed. by Fernando Diaz, Chirag
Shah, Torsten Suel, Pablo Castells, Rosie Jones, and Tetsuya Sakai. ACM, 2021,
pp. 2575–2579. doi: 10.1145/3404835.3462796

Abstract: The World Wide Web and social media platforms have become popular
sources for news and information. Typically, multimodal information, e.g., image and
text is used to convey information more effectively and to attract attention. While
in most cases image content is decorative or depicts additional information, it has
also been leveraged to spread misinformation and rumors in recent years. In this
paper, we present a web-based demo application that automatically quantifies the
cross-modal relations of entities (persons, locations, and events) in image and text.
The applications are manifold. For example, the system can help users to explore
multimodal articles more efficiently, or can assist human assessors and fact-checking
efforts in the verification of the credibility of news stories, tweets, or other multimodal
documents.

Web Demo: https://labs.tib.eu/newsanalytics

Further Publications (Abstracts are omitted)

[42] Andreas Breitbarth, Eric Müller, Peter Kühmstedt, Gunther Notni, and Joachim Den-
zler. “Phase unwrapping of fringe images for dynamic 3D measurements without ad-
ditional pattern projection”. In: Dimensional Optical Metrology and Inspection for
Practical Applications IV. ed. by Kevin G. Harding and Toru Yoshizawa. Vol. 9489.
International Society for Optics and Photonics. SPIE, 2015, pp. 8–17. url: https:

//doi.org/10.1117/12.2176822

[69] Ralph Ewerth, Matthias Springstein, Eric Müller, Alexander Balz, Jan Gehlhaar,
Tolga Naziyok, Krzysztof Dembczynski, and Eyke Hüllermeier. “Estimating relative
depth in single images via rankboost”. In: 2017 IEEE International Conference on
Multimedia and Expo, ICME 2017, Hong Kong, China, July 10-14, 2017. IEEE Com-
puter Society, 2017, pp. 919–924. doi: 10.1109/ICME.2017.8019434

[177] Eric Müller-Budack, Jonas Theiner, Robert Rein, and Ralph Ewerth. “"Does 4-4-2 ex-
ist?" - An Analytics Approach to Understand and Classify Football Team Formations

19

https://doi.org/10.1145/3404835.3462796
https://labs.tib.eu/newsanalytics
https://doi.org/10.1117/12.2176822
https://doi.org/10.1117/12.2176822
https://doi.org/10.1109/ICME.2017.8019434


1 Introduction

in Single Match Situations”. In: Proceedings of the 2nd International Workshop on
Multimedia Content Analysis in Sports, MMSports@MM 2019, Nice, France, October
25, 2019. Ed. by Rainer Lienhart, Thomas B. Moeslund, and Hideo Saito. ACM,
2019, pp. 25–33. doi: 10.1145/3347318.3355527

[168] David Morris, Eric Müller-Budack, and Ralph Ewerth. “SlideImages: A Dataset for
Educational Image Classification”. In: Advances in Information Retrieval - 42nd Eu-
ropean Conference on IR Research, ECIR 2020, Lisbon, Portugal, April 14-17, 2020,
Proceedings, Part II. ed. by Joemon M. Jose, Emine Yilmaz, João Magalhães, Pablo
Castells, Nicola Ferro, Mário J. Silva, and Flávio Martins. Vol. 12036. Lecture Notes
in Computer Science. Springer, 2020, pp. 289–296. doi: 10.1007/978-3-030-45442-
5\_36. url: https://doi.org/10.1007/978-3-030-45442-5_36

[253] Golsa Tahmasebzadeh, Sherzod Hakimov, Eric Müller-Budack, and Ralph Ewerth. “A
Feature Analysis for Multimodal News Retrieval”. In: Proceedings of the 1st Interna-
tional Workshop on Cross-lingual Event-centric Open Analytics co-located with the 17th
Extended Semantic Web Conference (ESWC 2020), Heraklion, Crete, Greece, June 3,
2020 (online event due to COVID-19 outbreak). Ed. by Elena Demidova, Sherzod
Hakimov, Jane Winters, and Marko Tadic. Vol. 2611. CEUR Workshop Proceedings.
CEUR-WS.org, 2020, pp. 43–56. url: http://ceur-ws.org/Vol-2611/paper4.pdf

[50] Gullal S. Cheema, Sherzod Hakimov, Eric Müller-Budack, and Ralph Ewerth. “On
the Role of Images for Analyzing Claims in Social Media”. In: Proceedings of the
2nd International Workshop on Cross-lingual Event-centric Open Analytics co-located
with the 30th The Web Conference (WWW 2021), Ljubljana, Slovenia, April 12, 2021
(online event due to COVID-19 outbreak). Ed. by Elena Demidova, Sherzod Hakimov,
Jane Winters, and Marko Tadic. Vol. 2829. CEUR Workshop Proceedings. CEUR-
WS.org, 2021, pp. 32–46. url: http://ceur-ws.org/Vol-2829/paper3.pdf

[49] Gullal S. Cheema, Sherzod Hakimov, Eric Müller-Budack, and Ralph Ewerth. “A
Fair and Comprehensive Comparison of Multimodal Tweet Sentiment Analysis Meth-
ods”. In: MMPT@ICMR2021: Proceedings of the 2021 Workshop on Multi-Modal
Pre-Training for Multimedia Understanding, Taipei, Taiwan, August 21, 2021. Ed. by
Bei Liu, Jianlong Fu, Shizhe Chen, Qin Jin, Alexander G. Hauptmann, and Yong Rui.
ACM, 2021, pp. 37–45. doi: 10.1145/3463945.3469058

[195] Kader Pustu-Iren, Eric Müller-Budack, Sherzod Hakimov, and Ralph Ewerth. “Visu-
alizing Copyright-Protected Video Archive Content Through Similarity Search”. In:
Linking Theory and Practice of Digital Libraries - 25th International Conference on
Theory and Practice of Digital Libraries, TPDL 2021, Virtual Event, September 13-
17, 2021, Proceedings. Ed. by Gerd Berget, Mark Michael Hall, Daniel Brenn, and
Sanna Kumpulainen. Vol. 12866. Lecture Notes in Computer Science. Springer, 2021,

20

https://doi.org/10.1145/3347318.3355527
https://doi.org/10.1007/978-3-030-45442-5\_36
https://doi.org/10.1007/978-3-030-45442-5\_36
https://doi.org/10.1007/978-3-030-45442-5_36
http://ceur-ws.org/Vol-2611/paper4.pdf
http://ceur-ws.org/Vol-2829/paper3.pdf
https://doi.org/10.1145/3463945.3469058


1.6 Achievements

pp. 123–127. doi: 10.1007/978-3-030-86324-1\_15. url: https://doi.org/10.
1007/978-3-030-86324-1_15

[239] Matthias Springstein, Eric Müller-Budack, and Ralph Ewerth. “Unsupervised Training
Data Generation of Handwritten Formulas using Generative Adversarial Networks with
Self-Attention”. In: MMPT@ICMR2021: Proceedings of the 2021 Workshop on Multi-
Modal Pre-Training for Multimedia Understanding, Taipei, Taiwan, August 21, 2021.
Ed. by Bei Liu, Jianlong Fu, Shizhe Chen, Qin Jin, Alexander G. Hauptmann, and
Yong Rui. ACM, 2021, pp. 46–54. doi: 10.1145/3463945.3469059

1.6 Achievements

In the scope of this thesis, 22 papers (thereof nine as first author) have been published at
peer-reviewed conferences [42, 69, 168, 171, 173–175, 178, 179, 257], workshops [49, 50, 177,
239, 253], demo tracks [195, 238, 254], and journals [169, 176], as well as invited chapters [68,
172] in two books.

Five papers were published at conferences that are ranked A* [173] or A [168, 174, 179, 257]
within their domain according to the Australian Computing Research & Education (CORE)
Conference Portal3 (source: CORE2021) and two papers [174, 178] were published at the
ACM International Conference on Multimedia Retrieval (ICMR). The ICMR is one of the
top-tier conferences on multimedia as reported by Google Scholar’s h5-index metric4 and
"the premier forum of knowledge exchange for researchers and practitioners of multimedia
retrieval algorithms, tools, and systems", according to Candan et al. [45]. Moreover, two web
applications were accepted as demos [238, 254] at the ACM SIGIR Conference on Research
and Development in Information Retrieval, which is an A* ranked conference for information
retrieval according to the Australian CORE Conference Portal (source: CORE2021).

Best Paper Award: Our paper "Multimodal Analytics for Real-world News using Mea-
sures of Cross-modal Entity Consistency" [175] has received the Best Paper Award at the
International Conference on Multimedia Retrieval (ICMR) 2020. Thus, an extended ver-
sion of the paper was invited for publication in the International Journal of Multimedia
Retrieval (IJMIR) [176].

Honorable Mention Award: Our paper "Finding Person Relations in Image Data of
News Collections in the Internet Archive" [171] has received the Honorable Mention Award
at the International Conference on Theory and Practice of Digital Libraries (TPDL) 2018.

3http://portal.core.edu.au/conf-ranks/
4https://scholar.google.com/citations?view_op=top_venues&hl=de&vq=eng_multimedia
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Exhibitions and Media Attention: The geolocalization approach presented in "Geolo-
cation Estimation of Photos Using a Hierarchical Model and Scene Classification" [173] has
attracted attention in the media and was presented in a c’t article5 and was also mentioned
in a Computer Bild article6, which are both popular German computer magazines. In ad-
dition, the demonstrator (details are provided in Section 3.2.5) was or will be presented as
an exhibit at the following events and exhibitions:

• MS Wissenschaft 2019, 16th May 2019 to 24th October 2019, Exponat 26: "Woher
stammt das Bild?7

• Science Station Tour 2019 8, 24th April 2019 to 26th September 2019,

• Deutsches Museum Bonn - Exhibition on the topic artificial intelligence 20219,10

• Zukunftsmobil, scheduled for 2021

5Archived link from 19th September 2020 to the article: https://web.archive.org/web/20200919051036/
https://www.heise.de/select/ct/2019/5/1551091142351937

6Archived link from 9th August 2020 to the article: https://web.archive.org/web/20200809150022/
https://www.computerbild.de/artikel/cb-News-Internet-Google-erkennt-uebermenschlich-
genau-wo-ein-Foto-aufgenommen-wurde.-15152421.html

7Archived link from 8th December 2020 to the article: https://web.archive.org/web/20201208142719/
https://archiv.ms-wissenschaft.de/2019/ausstellung/rundgang/index.html#accordion-
shipplan-collapse-26

8Web link: https://www.wissenschaft-im-dialog.de/projekte/sciencestation/archiv/
9Web link: https://www.tib.eu/de/die-tib/neuigkeiten-und-termine/termine/detail/tib-
exponat-im-deutschen-museum-bonn-ausgestellt

10Archived link from 29th July 2021: http://web.archive.org/web/20210729105948/https://www.
deutsches-museum.de/bonn/ausstellung/mission-ki
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2 Foundations

In this chapter, the theoretical and mathematical foundations to understand the approaches
proposed in this thesis are introduced. First, the building blocks of neural networks are
presented in Section 2.1. In Section 2.2, convolutional layers and popular Convolutional
Neural Network (CNN) architectures for image classification are explained that are used
in Chapter 3 to train models for information extraction from photos. This information is
used to quantify the cross-modal consistency of named entities according to Section 4.2.
Methods for Named Entity Recognition and Disambiguation (NER & NED) are applied to
detect named entities in the text automatically. Furthermore, word embeddings, i.e., vector
representations of linguistic items (e.g., a word or sentence), are extracted to verify the
contextual consistency between photos and text, as explained in Section 4.3. The related
work and foundations of Natural Language Processing (NLP) approaches to generate word
embeddings as well as for Named Entity Recognition and Disambiguation (NER & NED)
are presented in Section 2.3. Finally, Section 2.4 introduces relevant concepts for Semantic
Web and knowledge graphs. These concepts are an important prerequisite for the event
classification approach presented in Section 3.1 and the quantification of cross-modal entity
consistency in Section 4.2.

2.1 Basics of Artificial Neural Networks

Deep learning approaches have achieved impressive performances and are widely applied in
many Computer Vision (CV) and Natural Language Processing (NLP) tasks. In this section,
the foundations to understand the perceptron (Section 2.1.1), neural networks (Section 2.1.2)
as well as network optimization (Section 2.1.3) are presented.

2.1.1 Perceptron

The perceptron [215], also referred to as neuron, is the smallest element of neural networks
and its functionality is inspired by biological processes in the brain of mammals. As illus-
trated in Figure 2.1, it takes a stimulation x = 〈x1, x2, . . . , xn〉 ∈ Rn with dimension n as
input and outputs a value ŷ based on the weights w = 〈w1, w2, . . . , wn〉 ∈ Rn that represent
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Figure 2.1: Mathematical model of the perceptron. The input stimuli x are multiplied with
the weights w. An activation function g(·) is applied on the weighted sum,
including a bias w0 to obtain the output ŷ.

the synapses connecting the perceptrons according to the following equation:

ŷ = g

(
w0 +

n∑
i=1

xiwi

)
= g

(
w0 + x>w

)
(2.1)

The bias w0 enables to horizontally shift the weighted sum or dot product x>w of the in-
puts x and their corresponding weights w. Finally, a non-linear activation function g(·) is
applied, allowing neural networks to solve complex non-linear tasks. Perceptrons are typi-
cally either activated ŷ = 1, which simulates that a perceptron "fires", or not activated ŷ = 0.
This behavior can be reproduced by a step activation function where the bias w0 defines the
activation threshold:

ŷstep =

0, x>w > w0 ,

1, otherwise .
(2.2)

However, the optimization of neural networks, e.g., with the gradient descent algorithm [37,
120, 213] and backpropagation [217] (explained in Section 2.1.3), requires that each operation
in a neural network is differentiable. Since the step function does not fulfill this criterion, it
is approximated. Figure 2.2 illustrates three activation functions commonly used in neural
networks: sigmoid, hyperbolic tangent, and Rectified Linear Unit (ReLU) [180, 246]. In
particular, the ReLU and its variants such as parametric ReLU [91] or leaky ReLU [288] are
widely applied because they are fast to compute due to their mathematical simplicity. Since
a single neuron cannot solve complex problems, multiple neurons are combined to form a
neural network, as explained in the next section.
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Figure 2.2: Popular activation functions and their first-order derivatives used in neural net-
works. From left to right: sigmoid, hyperbolic tangent, ReLU.
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Figure 2.3: Left: Simplified illustration of the perceptron. The bias, weight labels, and
non-linear activations are omitted in the illustration. It is assumed that each
connection is associated with a weight and that an activation function is applied
to an output z. Right: Multilayer Perceptron (MLP) based on the simplified
perceptron illustration with n input neurons, m output neurons, and k hidden
layers. The number of neurons in a hidden layer with index l ∈ {1, 2, . . . , k}
corresponds to dl.

2.1.2 Multilayer Perceptron

TheMultilayer Perceptron (MLP) is the basis of any type of neural network. As illustrated in
Figure 2.3, an MLP consists of a composition of neurons arranged in different layers to model
more complex functions and to obtain multidimensional outputs ŷ = 〈ŷ1, ŷ2, . . . , ŷm〉 ∈ Rm.
The layer(s) between the input and output layer are referred to as hidden layer(s). Unlike the
input and output layer, the states of neurons in hidden layers are typically unobserved. The
network weights connecting the neurons of the different layers are learned during network
optimization. An MLP is a particular type of feedforward neural network in which the
information flows solely in one direction from the input to the output layer. Thus, these
networks can be considered as a chain f(x) = f3(f2(f1(x))) of individual network functions,
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where f1(x) is the function of the first network layer, f2(f1(x)) the function of the second,
etc. [79]. In general, feedforward neural networks can be defined as a function ŷ = f(x;W)

that outputs a vector ŷ based on the input vector x parametrized by the set of weights W =

{w(0),w(1), . . . ,w(k)} (including the bias) of the input (layer index l = 0) and all k hidden
layers. As explained in Section 2.2, CNNs are another type of feedforward neural network
tailored towards processing spatial data such as images. Unlike feedforward neural networks,
recurrent neural networks (e.g., Long short-term memory (LSTM)), can process sequential
data, which are particularly useful for NLP applications (Section 2.3).

2.1.3 Network Optimization

In order to optimize a neural network, it is necessary to define a loss or cost function for
the given problem, e.g., a classification problem y = f?(x) that maps an input vector x

to a numeric class y. Given a dataset X = {(x(1),y(1)), (x(2),y(2)), . . . , (x(D),y(D))} with
D data points, this loss function L(f(x;W),y) returns a loss value for the prediction of the
network f(x;W) for a given input vector x and its target vector y (or alternatively target
value y). The goal is to learn a set of network weights W? that results in the best function
approximation and consequently achieves the lowest loss:

W? = arg min
W

1

D

D∑
i=1

L
(
f
(
x(i);W

)
,y(i)

)
= arg min

W
J(W) (2.3)

According to Equation (2.3) the optimization function J(W) can be treated as function
of network weights [79]. These weights are first initialized, either at random or with pre-
trained weights, i.e., weights learned by a previous network training. At each training step,
the loss J(W) is calculated based on the current weights W. A popular approach to optimize
the loss applied in many neural networks is the gradient descent algorithm [37, 120, 213].
This algorithm updates a weight wi ∈ W with a specified learning rate η according to the
following equation:

wi ←− wi − η
∂J(W)

∂wi
(2.4)

The partial derivative of the weight ∂J(W)
∂wi

is calculated with respect to the loss using back-
propagation [217]. However, neural networks can contain millions of weights [92, 235, 251],
and real-world optimization problems can be very complex. Consequently, many local min-
ima exist, and it is not guaranteed that greedy optimization algorithms such as gradient
descent find a global minimum. Adaptive learning rate algorithms such as Momentum [198]
or Adam [124] have been introduced to mitigate this problem. In addition, the loss is typi-
cally calculated on mini-batches with B < D data points [37] because it is much faster and
reliable than using all D data points (computationally expensive) or a single or very few
data points (prone to noise, i.e., data points with inaccurate labels).
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2.2 Convolutional Neural Networks for Image Classification

Computer vision approaches process images or videos that contain important spatial infor-
mation. However, the previously MLPs (introduced in Section 2.1.2) process one-dimensional
input vectors and flatten (linearize) the image to generate a one-dimensional representation.
This linearization has several drawbacks. (1) By using a one-dimensional input vector, the
spatial properties of the visual information are neglected. (2) These types of networks are
also called fully-connected neural networks because they consist of dense layers in which each
neuron is connected to all neurons in the preceding and the following layer, as illustrated in
Figure 2.3. As a result, fully-connected neural networks contain many parameters as each
connection represents one weight that needs to be learned.

CNNs, which are a particular type of feedforward neural network, provide a solution
to counteract these issues. In the remainder of this section, the convolutional layer (Sec-
tion 2.2.1), related work on CNN architectures for image classification (Section 2.2.2), and
widely applied network architectures, namely AlexNet (Section 2.2.3), GoogLeNet (Sec-
tion 2.2.4) and ResNet (Section 2.2.5), are explained in more detail.

2.2.1 Convolutional Layer

In the 1950s to 1960s, Hubel and Wiesel [109] have investigated the visual cortex of mam-
mals (cats, monkeys) and found that neurons respond to the direct environment. CNNs
imitate the visual cortex and convolve an n × n filter or kernel matrix W with an input
matrix X, as shown in Figure 2.4 (left). Note that padding (e.g., zero-padding) is applied
to maintain the spatial resolution of the input. As a result, a single output neuron is con-
nected to an input patch (if n > 1), which allows the integration of spatial information. The
respective values in the kernel represent the weights W that are learned during network
training. Moreover, the kernel is spatially shared and outputs a two-dimensional feature
map Ŷ by sliding the filter pixel by pixel over the whole input. This parameter sharing
drastically decreases the memory compared to dense layers used in fully-connected neural
networks, and it is also highly parallelizable and computationally efficient. As for any neural
network, a non-linear activation function such as ReLU is applied on the output feature map
to introduce non-linearities (Section 2.1.1).

In reality, the convolution is performed on three-dimensional input tensors X, e.g., an RGB
image with three channels or the output tensor Xl of another (preceding) convolutional layer l
with dl channels. Thus, the filter is also a three-dimensional tensor Wn×n×dl defined by its
kernel size n and the number of channels dl of the input tensor Xl. Typically, a number
of d filters are learned in a convolutional layer, and each filter W1,W2, . . . ,Wd produces a
two-dimensional feature map Ŷ. The result of a convolutional layer is a three-dimensional
output tensor Ŷ. Its output dimension is defined by the spatial resolution (width and height)
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Figure 2.4: Left: Example of a two-dimensional convolution of an input matrix X with an
exemplary convolutional filter W (in this case, the weights represent a Sobel
filter in x-direction). The output Ŷ is produced by moving the filter pixel by
pixel over the input. The convolution of the orange area in X with W results in a
single output value in Ŷ. Right: Illustration of a convolutional layer. The three-
dimensional convolution of each filter W1,W2, . . . ,Wd with the input tensor X
produces an individual two-dimensional feature map in the output tensor Ŷ. The
dimension of the output tensor is defined by its spatial resolution (width, height)
after the convolution and the number of kernels (depth) d to be learned.

of the feature maps obtained by the convolution and the specified number of filters (depth) d
to be learned, as illustrated in Figure 2.4 (right).

In most state-of-the-art CNN architectures [92, 251, 255], strided convolution or pooling is
applied to decrease the spatial resolution of the feature maps, as shown in Figure 2.5. These
operations simultaneously increase the receptive field, i.e., the size of the region in the input
that produces the feature in the subsequent layers. Consequently, more global and complex
filters in later layers of a CNN can be learned [303]. The stride determines the number of
pixels by which the convolution filter moves (shifts) each time. Usually, the convolutional
filter is applied pixel by pixel (stride = 1) to maintain the input resolution. However,
by increasing the stride (stride > 1), the spatial resolution can be decreased. Similarly,
a pooling operation decreases the spatial resolution by calculating the minimum (min),
maximum (max), or average (avg) of an n × n patch (typically n = 2) in a feature map.
Max pooling (using the maximum value within a patch) is widely applied in many CNN
architectures. In general, pooling can help CNNs gain invariance against small translations
in the inputs [79].
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Figure 2.5: Left: Example of a convolution with stride = 2, where the filter W is applied
on every 2nd pixel (colorized) of the input X. Right: Example of min, max,
and avg pooling using a kernel with size 2 × 2 and stride = 2. The respective
output values Ŷ of a certain input area are highlighted with the same color.

Any neural network that contains at least one convolutional layer is considered a CNN. The
architectural design of CNNs, including the type of layers (e.g., convolutional layers or fully-
connected layers), the number of layers (network depth), and the number of filters (network
width) for solving complex computer vision problems has been extensively researched in the
last decade, as discussed in the next section.

2.2.2 Overview of Convolutional Neural Network Architectures

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [58] has been widely
applied to evaluate computer vision approaches for object classification. In the scope of the
ILSVRC 2012, Krizhevsky et al. [126] were the first to apply a CNN, called AlexNet (Sec-
tion 2.2.3), for object classification in images and significantly outperformed previous ap-
proaches based on hand-crafted features. In recent years, many improvements regarding the
network architectures have been introduced.

Simonyan and Zisserman [235] from the Visual Geometry Group (VGG) of the University
of Oxford suggested using deeper networks and increased the number of convolutional layers
from eight (AlexNet) to 16 (VGG-16) and 19 (VGG-19) to learn more complex filters and
consequently improve the performance for object classification. Szegedy et al. [251, 252] also
proposed to leverage deeper (more layers) and wider (more filters) network architectures and
introduced the GoogLeNet architecture (Section 2.2.4). It uses an Inception module that
combines outputs from multiple branches of convolutional layers with different filter sizes
to extract features at different spatial resolutions. However, very deep neural network ar-
chitectures suffer from the Vanishing Gradient Problem (explained in Section 2.2.5) during
optimization. To alleviate this issue, He et al. introduced the ResNet architecture [92, 93]
that uses residual layers with skip connections to maintain the gradient in the first network
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layers. This enables to drastically increase the network depth, e.g., to 152 layers (ResNet-
152 ). Szegedy et al. [250] (Inception-ResNetv2 ) and also Xie et al. [286] (ResNeXt) exploit
the benefits of both residual architectures and inception modules and add the skip connec-
tion around an inception module that consists of multiple branches of convolutional filters
with different kernel sizes. This approach was extended by Chollet [54] in the Xception archi-
tecture by applying depthwise separable convolutions, which can be considered another form
of the Inception module. Unlike standard convolutions that perform both filter operations
in one step to combine inputs into a new set of outputs, depthwise separable convolutions
split this operation into two layers. Spatial correlations are extracted using a spatial con-
volution performed over each input channel independently, followed by a point-wise 1 × 1

convolution to extract cross-channel correlations. This factorization significantly reduces
the computational time and model size. Based on this observation, Howard et al. [100] and
Sandler et al. [222] proposed the MobileNet architectures that aim to reduce the network
complexity while maintaining competitive results compared to the state of the art.

Based on the idea of improving the information flow of CNNs with skip connections, Huang
et al. [106] proposed a Densely Connected Convolutional Network (DenseNet). Instead of a
single skip connection between a layer and its subsequent layer in residual architectures [92,
93], the DenseNet uses skip connections to all subsequent layers within a network block in
the architecture to reduce the Vanishing Gradient Problem further and increase informa-
tion propagation throughout the network. Unlike previous solutions that primarily aim to
improve the spatial encodings throughout the network, Hu et al. [103] proposed the Squeeze-
and-Excitation (SE) block to model the interdependencies between feature channels within
a neural network and consequently use this global information to emphasize informative
features across all channels and simultaneously suppress less useful ones.

CNN architectures have become very complex, and the definition of the optimal hyperpa-
rameters, layer types as well as their arrangement is a tedious task for computer scientists.
For this reason, Zoph and Le [321] and Zoph et al. [322] suggest a Neural Architecture
Search (NAS) to automatically find the optimal network architecture using a reinforcement
learning approach. Howard et al. [101] applied a NAS to find MobileNetv3 that, like its
predecessors [100, 222], aims to solve computer vision tasks with less complex network ar-
chitectures. Tan and Le [255] applied a NAS and further studied network scaling to balance
the network depth (number of layers), width (number of filters in a layer), and resolu-
tion (spatial resolution of input images) in order to automatically find suitable architectures
with varying complexity ranging from less complex models for mobile use to very complex
but powerful architectures. Their EfficientNet architectures have achieved state-of-the-art
results among networks with varying complexity on the ILSVRC 2012 dataset with 1,000

classes in 2019. Xie et al. [285] have presented a semi-supervised deep learning approach
and first trained an EfficientNet as a teacher network on labeled data that subsequently
generates noisy pseudo labels for 300 million unlabeled images. Then, they have trained a
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Figure 2.6: Illustration of the AlexNet architecture [126] with five convolutional layers and
three fully-connected (fc) or also called dense layers. The number of channels
in a convolution layer (conv) is defined by the number of specified filters from
the previous layer (Figure 2.4). Kernel sizes (quadratic) are displayed in the
red squares. A strided convolution with stride = 4 as well as max pooling with
a 3 × 3 kernel and stride = 2 is applied for dimension reduction. The number
of neurons in the last fully-connected layer (fc8) corresponds to the number of
1,000 classes in the ILSVRC 2012 dataset [58, 218].

student network using a more complex EfficientNet architecture on both labeled and pseudo
labeled images. They have iterated the process by setting students as new teachers and
demonstrated that this strategy can improve generalization and performance for image clas-
sification. Inspired by the success of transformer models in NLP [61, 203, 204] (Section 2.3),
Dosovitskiy et al. [64] recently proposed a visual transformer model. They split the image
into a sequence of patches and use a trainable linear projection (implemented via a single
convolutional layer) to create embeddings for each of them. Furthermore, they add posi-
tional embeddings to incorporate spatial information and feed the resulting sequence into a
transformer [264]. Experimental results have shown that this alternative approach matches
or outperforms ResNet-like CNN architectures [92, 101, 255, 285, 322] with comparable
complexity on many image classification datasets including ILSVRC 2012 dataset [58, 218]
and poses an interesting research direction.

2.2.3 AlexNet Architecture

The AlexNet architecture introduced by Krizhevsky et al. [126] was the first CNN applied
on the ILSVRC 2012 dataset [58, 218] for object classification and won the challenge by
outperforming traditional approaches based on hand-crafted features. An overview of the
architecture is illustrated in Figure 2.6. It can be divided into two parts: feature extraction
and classification.

The first part of the network comprises five convolutional layers with varying kernel sizes
and number of features. It aims to learn a feature representation of the RGB input image
with dimension 224×224×3. After each convolutional layer, a ReLU is used as a non-linear
activation function. Strided convolution (stride = 4) and max pooling are applied to decrease
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the spatial dimension of the feature maps, according to Figure 2.6. The classification part
of the network is an MLP (similar to Figure 2.3) with three fully-connected layers. They
require a one-dimensional input vector produced by linearizing the feature representations
obtained by the first part of the network. The number of neurons in the last fully-connected
layer matches the number of m classes (m = 1,000 for the ILSVRC 2012 dataset [58, 218])
that are to be distinguished. In contrast to the first two fully-connected layers, which use
ReLU as activation function, softmax is applied on the outputs of the last fully-connected
layer to produce the final class probabilities ŷ = 〈ŷ1, ŷ2, . . . , ŷm〉. The softmax maps an
input vector x ∈ Rm to another vector ŷ with the same dimension according to:

ŷi = softmax(xi) =
exp(xi)∑m
j=1 exp(xj)

∀i ∈ {1, 2, . . . ,m} (2.5)

The softmax represents a discrete probability distribution over m values, as each class prob-
ability ranges from 0 ≤ ŷi ≤ 1 and the sum of all probabilities equals

∑m
i=1 ŷi = 1,

As discussed in Section 2.2.2, first attempts such as the VGG networks [235] mainly in-
creased the number of network layers and filters compared to the AlexNet to improve the
network capabilities. However, this has several drawbacks. (1) Larger networks typically
contain more parameters, making them more prone to overfitting, particularly if the amount
of training data is limited. (2) The network size in terms of memory requirements drastically
increases. (3) Very deep CNN with many convolutional layers suffer from the Vanishing Gra-
dient Problem. In the following, the GoogLeNet [251, 252] and ResNet [92, 93] architectures
are presented that aim to address these problems.

2.2.4 GoogLeNet Architecture

Inception Module: Szegedy et al. [251] introduced the Inception module, which learns
features at different kernel sizes to improve the network capabilities while drastically re-
ducing the number of parameters and consequently memory requirements of the neural
network. Figure 2.7 shows a naïve Inception module and their proposed implementation of
the Inception module. The kernel sizes in the network layers can significantly impact the
performance, and finding the optimal values is challenging. The Inception module allows
for applying filters with different kernel sizes within one layer by stacking their individual
outputs in the output tensor. Each module learns a number of 1× 1, 3× 3, and 5× 5 filters.
Besides, it also applies a parallel max pooling path, which does not require any parameters
but can increase translation invariance [79] (Section 2.2.1). While max pooling is usually
used for dimension reduction (stride = 2) in CNNs, stride = 1 is applied in the Inception
module to maintain the spatial resolution.

However, a naïve implementation of this approach is computationally-intensive, as the
example in Figure 2.7 reveals. Let the input of the network layer l be a tensor Xl with
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Figure 2.7: Exemplary naïve Inception module (left) and Inception module (in this case
Inception (3a) from Table 2.1) with dimension reduction (right) proposed by
Szegedy et al. [251]. Convolutional filters with kernel size 1×1 (purple) are used
to decrease the number of features before the "heavier" convolutional operations
with larger kernel sizes are computed. Same padding and stride = 1 is used for
the max pooling operation to maintain the spatial resolution.

dimension 28× 28× 192. The computational cost without dimension reduction to calculate
32 feature maps (with the same spatial resolution) using a 5×5 kernel can be approximated
as follows. For each of the 28×28×32 values in the output Xl+1, 5×5×192 multiplications
are necessary. This equals to a large number of approximately 120 million multiplications.

As a solution, Szegedy et al. [251] propose to apply 1 × 1 convolution filters in order to
decrease the number of channels of the input tensor Xl before the "heavier" convolutional
operations are computed. First, the number of channels is decreased by learning a smaller
number of 1 × 1 convolutional filters, in this case 16. These filters only require to perform
1×1×192 multiplications for each of the 28×28×16 output values, which totals in approx-
imately 2.4 million multiplications. Following the previous example, the computational cost
of 5×5 convolutional filters is drastically decreased because only 5×5×16 multiplications are
required to produce each of the 28×28×32 output values. As a result, the number of multi-
plications is decreased by a factor of around 10, from 120 million to 12.4 million (2.4 million
for 1× 1 and 10 million for 5× 5 convolutions). The number of features from the parallel
max pooling branch is equal to the number of input channels and is comparatively high. To
address this issue, another 1 × 1 convolution is applied in order to reduce the number of
max pooling features in the output tensor. Overall, the Inception module allows for building
more complex models as the memory requirement can be drastically decreased.
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Table 2.1: Details of the GoogLeNet architecture from Szegedy et al. [251]. All convolu-
tions (also inside the Inception modules) use ReLU as non-linear activation func-
tion. The input is an RGB image tensor with dimension 224 × 224 × 3. The
number of 1× 1 filters used for reducing the dimension (illustrated in Figure 2.7)
before the 3 × 3 and 5 × 5 convolution is denoted as "3 × 3 reduce" and "5 × 5
reduce". The number of 1 × 1 filters to reduce the feature dimension of the
max-pooling output can be found in the column "pool proj.".

type kernel size
(stride) output size 1× 1

3× 3
reduce 3× 3

5× 5
reduce 5× 5

pool
proj.

convolution 7× 7 (2) 112× 112× 64
max pool 3× 3 (2) 56× 56× 64
convolution 3× 3 (1) 56× 56× 192 64 192
max pool 3× 3 (2) 28× 28× 192

inception (3a) 28× 28× 256 64 96 128 16 32 32
inception (3b) 28× 28× 480 128 128 192 32 96 64
max pool 3× 3 (2) 14× 14× 480

inception (4a) 14× 14× 512 192 96 208 16 48 64
inception (4b) 14× 14× 512 160 112 224 24 64 64
inception (4c) 14× 14× 512 128 128 256 24 64 64
inception (4d) 14× 14× 528 112 144 288 32 64 64
inception (4e) 14× 14× 832 256 160 320 32 128 128
max pool 3× 3 (2) 7× 7× 832

inception (5a) 7× 7× 832 256 160 320 32 128 128
inception (5b) 7× 7× 1024 384 192 384 48 128 128
avg pool 7× 7 (1) 1× 1× 1024
dropout (40%) 1× 1× 1024
fully-connected 1× 1× 1000
softmax 1× 1× 1000

GoogLeNet: Table 2.1 contains the details of the GoogLeNet architecture suggested by
Szegedy et al. [251]. First, a strided convolution (stride = 2) and max pooling are applied
to decrease the spatial resolution of the input and, consequently, memory requirements.
The remainder of the architecture uses the proposed Inception modules. Max pooling is
used between blocks of these modules to further decrease the spatial resolutions in the later
network stages. Finally, average pooling is applied to generate a one-dimensional feature
representation that is subsequently used for classification. In order to prevent overfitting,
the activations of 40% of the neurons (randomly selected) are set to zero. This technique
is referred to as Dropout [240]. The number of neurons in the final dense layer matches
the number of m classes (m = 1,000 for the ILSVRC 2012 dataset [58, 218]), and the
softmax (Equation (2.5)) is calculated to produce the final class probabilities as explained
in Section 2.2.3.
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2.2.5 ResNet Architecture

Vanishing Gradient Problem: As mentioned in Section 2.2.2, especially very deep
CNNs with a large number of hidden layers suffer from the Vanishing Gradient Problem.
The origin of this problem lies in the backpropagation algorithm [217], which is used to
calculate the weight gradients for optimization (Section 2.1.3). Referring to Figure 2.3, the
outputs of a layer l are used as input of layer l + 1. Therefore, any neural network with
an input vector x (or tensor X) can be considered as a chain f(x) = f3(f2(f1(x))) of indi-
vidual functions, where f1(x) is the function of the first layer, f2(f1(x)) the function of the
second, etc. [79]. Therefore, the chain rule needs to be applied to backpropagate the loss
from the last to the initial network layer. These gradients can have small values, particu-
larly if activation functions such as the sigmoid or tanh are applied (Figure 2.2), that are
multiplied together. As a result, the gradient exponentially decreases while backpropagating
to the initial layers causing gradients that are almost zero. This problem is referred to as
Vanishing Gradient. It complicates the optimization of the weights in early network layers
leading to an overall inaccuracy of the whole network. It is worth noting that conversely,
the possibility of an Exploding Gradient (high gradients are multiplied together) exists.

Residual Layers: He et al. [92] introduced residual blocks to overcome this problem. They
suggest an identity mapping using a shortcut between the input tensor Xl of a residual block
and its output Xl+1. As illustrated in Figure 2.8, the input is directly added to a residual
mapping f(Xl) that is to be learned:

Xl+1 = f(Xl) + Xl (2.6)

The residual mapping makes it easier to propagate information through the network. In
addition, the derivative ∂Xl+1

∂f(Xl)
+
∂Xl+1

∂Xl
of the block is much larger since the partial derivation

of the shortcut corresponds to ∂Xl+1

∂Xl
= 1, which alleviates the Vanishing Gradient Problem.

Figure 2.8 shows different variants of the residual block proposed by He et al. [92, 93].
They investigated the arrangement of the operations in a residual block to identify the
optimal gradient flow and found that pre-activations with batch normalization (Residual
block v2 in Figure 2.8) generally provide the best results. Batch normalization [110] produces
normalized outputs by subtracting the mean and by dividing the standard deviation of the
outputs within a batch. It adds two trainable parameters to each layer to scale and shift
the normalized outputs for optimization. Batch normalization increases the stability of the
network training and further alleviates the problem of Vanishing Gradients. For deeper
CNNs, a residual block with bottleneck is introduced. It follows the general idea of the
Inception module [251] (Section 2.2.4) and uses a 1× 1 convolutional layer to decrease the
feature dimension of the input and the number of computations.
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Figure 2.8: Structure of the first [92] and second variant [93] of the residual block. The
second (improved) variant applies batch normalization (BN) and ReLU before
the convolution and generally achieves better results. A residual block with bot-
tleneck applies a 1× 1 convolution to decrease the number of features f1 (tensor
depth) of Xl to f2 < f1 similar to the Inception module [251] (Section 2.2.4).
This reduces the number of computations in the convolutional layer with a 3×3
kernel. Finally, another 1× 1 convolution with f1 filters is applied to match the
original feature dimension of the input tensor Xl.

ResNet: The residual blocks allow for building deeper networks for image classification.
He et al. [92, 93] investigated ResNet architectures with varying network depth (number
of layers). The architecture details are provided in Table 2.2. All proposed variants first
apply a strided convolution (stride = 2) and max pooling to decrease the spatial resolution.
Afterward, the variants use a different amount of residual blocks within each network block.
Residual blocks with bottlenecks are used in deeper network architectures with 50 or more
layers to increase computational efficiency. The first convolutional layer of each network
block performs a strided convolution (stride = 2) to decrease the spatial resolution of the
features. This dimension reduction enables the network to learn more filters (less memory
required due to the smaller spatial resolution) at a larger receptive field. Average pooling is
applied to generate a feature vector. Finally, a fully-connected layer with softmax activation
outputs the probabilities of m classes (m = 1,000 for the ILSVRC 2012 dataset [58, 218]).
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Table 2.2: Details of ResNet architectures [92] with varying depth, i.e., different number of
residual blocks. The input size is 224× 224× 3 pixels for RGB images. Residual
blocks with bottleneck (Figure 2.8) are used and denoted as follows: [kernel size
× kernel size, number of kernels] × number of blocks stacked. A convolution with
stride = 2 is performed by conv3_1, conv4_1, and conv5_1 to reduce the spatial
resolution. All convolutions use ReLU as non-linear activation function.

layer name output size ResNet-50 ResNet-101 ResNet-152

conv1 112× 112× 64 7× 7 conv, 64 filters, stride 2
max pool 56× 56× 64 7× 7 max pooling, stride 2

conv2_x 56× 56× 256

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

 1× 1, 64
3× 3, 64
1× 1, 256

× 3

conv3_x 28× 28× 512

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 4

1× 1, 128
3× 3, 128
1× 1, 512

× 8

conv4_x 14× 14× 1024

 1× 1, 256
3× 3, 256
1× 1, 1024

× 6

 1× 1, 256
3× 3, 256
1× 1, 1024

× 23

 1× 1, 256
3× 3, 256
1× 1, 1024

× 36

conv5_x 7× 7× 2048

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

 1× 1, 512
3× 3, 512
1× 1, 2048

× 3

avg pool 2048 7× 7 avg pool, stride=1
fc 1000 fully-connected layer with 1000 neurons

softmax 1000 softmax

2.3 Natural Language Processing

The extraction of textual features in the form of word embeddings and named entities such
as persons, organizations, and locations is an important preprocessing step to quantify rela-
tions between photos and text. This section introduces related work and the basic concepts
of NLP methods for distributional semantics (Section 2.3.1), Named Entity Recognition (Sec-
tion 2.3.2), and Named Entity Disambiguation (Section 2.3.3).

2.3.1 Distributional Semantics

Distributional semantics aim to map a linguistic item (e.g., a word or sentence) to a vector
representation, i.e., word embeddings, using their semantic similarities and distributional
properties in a large corpus of language data. Word embeddings are an essential prerequisite
for many NLP tasks, e.g., Named Entity Recognition (NER) and question answering, and
have been an active research topic for decades. Word2Vec [164], Global Vectors for Word
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Representation (GloVe) [191], and fastText [35] rely on the distributional hypothesis that
words used in the same context tend to share a similar meaning. These approaches are
trained in an unsupervised manner on large-scale corpora to learn from this distributional
hypothesis. However, each word is associated with a single global word embedding without
considering the textual context. For this reason, research has focused on contextual models
that aim to consider an entire input sequence to determine a representation of a word
or token. Thus, the same word or token can have different representations based on the
context. First approaches such as Embeddings from Language Models (ELMo) [192, 193] and
Universal Language Model Fine-tuning (ULMFiT) [102] have used LSTM models to process
input sequences, while more recent approaches like Bidirectional Encoder Representations
from Transformers (BERT) [61], Generative Pre-training (GPT) [203, 204], XLNet [293],
and other BERT variants [130, 149, 223, 248] instead rely on transformer models. Unlike
LSTM models [102, 192, 193] that process the inputs sequentially, transformers [61, 130,
149, 203, 204, 223, 248, 293] compute contextual embeddings for the input sequence in
parallel and model connections between words using an attention mechanism. This parallel
processing drastically reduces the computational time, and the use of skip connections [92,
93] (Section 2.2.5) in transformer models can alleviate the Vanishing Gradient Problem.

Word2Vec from Mikolov et al. [164, 165] is one of the most fundamental approaches in
distributional semantics. The details are presented in Section 2.3.1.1. Furthermore, the
fastText [35] algorithm, which can be considered as an extension of Word2Vec, is described
in Section 2.3.1.2 as it is used to extract word embeddings from the text in Section 4.3.

2.3.1.1 Word2Vec

Word2Vec [164, 165] is a neural network that learns unique vector representations for each
word in a large text corpus given for training. Based on the distributional hypothesis, the
goal is to learn similar word embeddings for words used in the same context as they tend
to share a similar meaning. Mikolov et al. [165] propose two different model architectures,
namely a Continuous Bag-of-Words (CBOW) Model and a Continuous Skip-gram Model for
learning distributed representations of words, as shown in Figure 2.9.

Unlike deep neural networks (Section 2.1.2), the proposed Word2Vec architectures are
relatively simple and comprise only a single hidden layer. While the CBOW model predicts
the current word (target) using the surrounding words as context, the Continuous Skip-gram
Model conversely estimates the surrounding words within a certain range given the current
word. The algorithmic details of both models are very similar. However, word embeddings
from the Continuous Skip-gram Model tend to work better because each context-target pair
is statistically a new observation. Therefore, the remainder of this section focuses on the
Continuous Skip-gram Model.
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Figure 2.9: Illustration of the Continuous Bag-of-Words (CBOW) (left) and Continuous
Skip-gram model (right) proposed by Mikolov et al. [165]. CBOW predicts the
target word with index i for an input sequence of T words using the one-hot
encoded vectors x of the surrounding words. In this example, the target word
is exist, the input text has a length of T = 5, and a context of one word sw = 1
is used. Conversely, the Continuous Skip-gram estimates the surrounding words
based on the target word. The vocabulary size nw defines the length of the one-
hot encoded vectors x. Word2Vec comprises a single hidden layer with d neu-
rons, which defines the feature dimension of the resulting word embedding. The
softmax of the dot product of each input x and the corresponding output y is
accumulated for optimization.

The words are represented as one-hot encoded vectors x, where the dimension matches the
number of words nw in the text corpus (vocabulary). The number of neurons d in the hidden
layer defines the dimensionality (typically several hundred) of the word embeddings learned
during network training. Given the one-hot encoded vectors x1,x2, . . . ,xT for a sequence
of T words, the training objective L of the Continuous Skip-gram Model is to maximize the
average log probability:

L =
1

T

T∑
i=1

∑
−sw≤j≤sw,j 6=0

log softmax(ŷ>i+jxi+j) (2.7)

The number of surrounding words sw represents the context of the center (target) word
with index i. The softmax function (Equation (2.5)) is applied to calculate the probability
distribution based on the input vector x and the corresponding output ŷ of the network.
The network weights are updated using backpropagation and gradient descent according
to Section 2.1.3. Since the number of words nw in the vocabulary is typically very large,
Mikolov et al. [165] also proposed to use the hierarchical softmax function introduced by
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Morin and Bengio [166] to decrease the number of output nodes to evaluate from nw to
log2 nw. During inference, the word embedding of a word is generated by multiplying the
respective one-hot encoded word vector xi with the input weight matrix Wnw×d

0 .

Mikolov et al. [164] identified that most of the complexity is caused by the non-linear
hidden layer in the model. They proposed a much simpler log-linear model that omits the
hidden layer to decrease the computational complexity. However, some extensions of the
Word2Vec approach, such as fastText [35], rely on the neural network variant with a hidden
layer, as explained in the next section.

2.3.1.2 FastText

Word2Vec assigns a distinct word embedding to each word in the vocabulary. For this reason,
it cannot handle so-called out-of-vocabulary words that it has not encountered during the
training process. For example, there might be no valid embedding of the word fasttext, even
if the individual parts fast and text exist in the vocabulary. Furthermore, parameters for
words with the same radicals, such as write and writing, are not shared.

As part of the fastText framework, Bojanowski et al. [35] derive a skip-gram model from
Word2Vec [165] in which each word is represented as a bag of character n-grams. More
specifically, they add boundary symbols < and > to indicate the beginning and end of
a word, which allows distinguishing prefixes and suffixes from other character sequences.
Furthermore, they create a set of n-grams for a given word, containing the word itself and
all character n-grams. In practice, the fastText [35] algorithm uses all n-grams for 3 ≤ n ≤ 6.
Given the word fasttext, the bag of n-grams contains:

n = 3: <fa, fas, ast, stt, tte, tex, ext xt>
n = 4: <fas, fast, astt, stte, ttex, text, ext>
n = 5: <fast, fastt, astte, sttex, ttext, text>
n = 6: <fastt, fastte, asttex, sttext, ttext>

and the word itself:

<fasttext>

The vocabulary size is defined by the number of different n-grams extracted from words
in a large text corpus. A multi-hot encoded vector x is created for each word, indicating the
n-grams appearing in the word. In contrast to Word2Vec [164, 165], which uses a one-hot
encoded vector for each word, this allows the integration of subword information and drasti-
cally decreases the number of out-of-vocabulary words. The word embedding for the whole
word is defined as the sum of individual vector representations of its n-gram. The feature
dimension of the vector representation used in fastText is set to d = 300. However, the num-
ber of n-grams and consequently the vocabulary can be very large. To decrease the memory
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Figure 2.10: Exemplary output of spaCy [99] for Named Entity Recognition (NER). Named
entities are detected in an unstructured text and classified into pre-defined cate-
gories such as organizations/institutions (ORG), countries/cities/states (GPE),
nationalities or religious or political groups (NORPS), dates (DATE), cardi-
nals (CARDINAL), persons (PERSON), etc. The screenshot is taken from:
https://explosion.ai/demos/displacy-ent

requirements Bojanowski et al. [35] also propose to use a hashing function (Fowler-Noll-
Vo (FNV)-1a hashing11) that maps the n-grams to a number of integers (bucket size) that
is smaller than the vocabulary size. The remaining model and training details correspond
to the Word2Vec approach in Section 2.3.1.1.

2.3.2 Named Entity Recognition

Given an input document D with unstructured textual information, approaches on NER aim
to detect a set of named entities E in it and to subsequently classify them into pre-defined
categories such as persons, locations, events, or organizations. The start and end charac-
ters (span) of each mention in a document are extracted and stored with a corresponding
type label. An example is shown in Figure 2.10. In information retrieval, named entities are
defined as physical or abstract real-world objects designated by a proper name consisting of
a continuous span of tokens without nesting. For example, "Leibniz University Hannover" is
considered as a single named entity, although "Hannover" is itself a name within this span.
Moreover, approaches for NER usually also consider temporal (e.g., dates, weekdays, etc.)
and numerical expressions (e.g., percentages, amounts of money, etc.) as named entities.

In recent years, several tools for NER such as Stanford Core NLP [73, 152], Illinois
NLP [209, 298], Dandelion [39], spaCy [99], FLAIR [9–11], and Stanza [196] have been in-
troduced. Traditional NER systems [73, 209] have used hand-crafted features (e.g., lower
and upper case, word orders, etc.) extracted from text. Based on these features, machine
learning algorithms such as Hidden Markov Models (HMMs) [65], Decision Trees [201],
Support Vector Machines (SVMs) [95], and Conditional Random Fields (CRFs) [128] have
been trained for NER. Lample et al. [129] were among the first to replace hand-crafted

11http://www.isthe.com/chongo/tech/comp/fnv/
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features with automatically generated features from a deep learning approach. More specif-
ically, they applied a bidirectional LSTM [84] to generate text representations, which are
subsequently used to train a CRF [128]. Similar to solutions in the field of distributional
semantics (Section 2.3.1), state-of-the-art systems such as FLAIR [9–11] use pre-trained lan-
guage models (e.g., ELMo [192, 193]) to include contextualized string embeddings for a more
robust NER. Qi et al. [196] introduced a complete neural pipeline system called Stanza as an
extension for Stanford Core NLP [73, 152]. Unlike most previous approaches, Stanza [196]
can process raw input texts as solves all related tasks (e.g., tokenization, lemmatization,
part-of-speech tagging) and NER within the same toolkit. A more comprehensive survey
that focuses on deep learning approaches for NER is provided by Li et al. [135].

Tools from industry, such as spaCy [99], are typically updated more frequently and are used
for NER in this thesis. The latest version 3 of spaCy uses a deep learning approach based
on word representations from RoBERTa [149], a recent transformer model for distributional
semantics12. Furthermore, they provide off-the-shelf solutions for NER including all related
tasks (e.g., tokenization, lemmatization, part-of-speech tagging, etc.), making them able to
process raw input texts.

2.3.3 Named Entity Disambiguation

For many applications, including the quantification of cross-modal entity relations, the text
spans of named entities extracted from the text are not sufficient for the following reasons.
Due to name variations, a specific entity extracted from the text can be denoted by several
mentions (e.g., U.S. President, President Obama, Barack Obama). Conversely, a single
mention can represent a candidate for multiple distinct named entities in a knowledge base
because of name ambiguities. For example, "Hanover" can refer to the capital city of the
German federated state of Lower Saxony but also many other cities, e.g., in the U.S. states
of New Hampshire, Pennsylvania, Indiana, Kansas, and Minnesota or the short form "Tesla"
can refer to the organization "Tesla, Inc." or the person "Nicola Tesla". In order to extract
valuable and complete information from the text, it is necessary to link each mention of a
named entity recognized in the text unambiguously to an actual entity in a knowledge base
such as Wikipedia, Wikidata [268], DBpedia [22], or YAGO [241] by assigning a distinct
Uniform Resource Identifier (URI) to it. An example is shown in Figure 2.11.

As for NER, traditional approaches for Named Entity Disambiguation (NED) use hand-
crafted features (e.g., Bag of Words (BoW) or Term Frequency–Inverse Document Fre-
quency (TF-IDF)) to calculate the similarity between a given string (also called mention)
of a named entity to its candidate linked entities in a knowledge base [12, 233]. Some of
these approaches, e.g., DBpedia Spotlight [56, 163] or Fang et al. [70], solely use their lexi-
cal similarity or empirical co-occurrence of these candidates to disambiguate each mention.

12Documentation of spaCy version 3: https://spacy.io/usage/v3
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Figure 2.11: Exemplary output of Ambiverse [98] for Named Entity Disambiguation (NED).
Named entities are linked to entries in Wikipedia to assign distinct URIs. The
screenshot is taken from: https://ambiversenlu.mpi-inf.mpg.de/

In this respect, the text context (e.g., surrounding words) and textual entity descriptions
from external sources such as Wikipedia are used to rank the candidates. Other meth-
ods [40, 41, 55, 98, 167, 194, 263] additionally consider that entities mentioned in the same
text tend to share similar topics and consequently aim to maximize the topic consistency
within a document. Most approaches such as AIDA [98], Agdistis [263], Babelfy [167, 181],
TagME [194], and Wikifier [40, 41] form a probabilistic graph that models the similarity
between a mention (text span) and entity as well as the relationship between entities. The
graph connectedness [167, 194, 263], Pagerank [40, 41], or dense sub-graphs containing ex-
actly one connected entity per mention [98] are used to find the optimal entity set with the
highest topic consistency.

Recent approaches for NED extensively apply deep neural networks [205, 231] and achieve
competitive results [12]. Unlike traditional methods, they rely on word embeddings to rep-
resent the words in a continuous vector space and use either approaches from distributional
semantics (Section 2.3.1), e.g., Word2Vec [164, 165] or deep neural networks to learn these
features automatically. While first neural approaches [74, 242] considered all surrounding
words (context) of a named entity as equally important, more recent proposals [67, 76] apply
attention mechanisms to assign graded importance to words to improve NED. However, the
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majority of these solutions cannot link mentions to unseen entities, which is a huge drawback
for many applications. For this reason, Logeswaran et al. [150] and BLINK [281] propose
neural approaches to zero-shot entity linking that aim to link mentions in the text to unseen
entities without in-domain labeled data.

Typically, NED requires text spans containing the raw text of the named entities found
by NER as input. Some frameworks [98, 125, 132, 167, 183] also propose joint solutions for
both Named Entity Recognition and Disambiguation (NER & NED). More comprehensive
overviews can be found in recent surveys from Al-Moslmi et al. [12], Sevgili et al. [231], and
Martínez-Rodríguez et al. [156]. We have used Wikifier for NED in Chapter 4 of this thesis.
The details are presented in the following.

Pagerank-based Wikification: As mentioned above, there are several approaches for
Named Entity Disambiguation (NED). Approaches that are based on the hypothesis that
named entities in a given document tend to share similar topics [40, 41, 55, 98, 167, 194,
263] are one possible solution to disambiguate mentions of named entities. These approaches
aim to maximize the topic consistency within a document. As shown in Figure 2.12, Brank
et al. [40, 41] propose a global disambiguation method called Wikifier that constructs a
mention-entity or mention-concept graph and computes the PageRank over it to disam-
biguate a set of entities with corresponding concepts from Wikipedia.

The mention-entity graph is a bipartite graph where the left set of vertices corresponds
to the mentions of named entities extracted from the text document D, and the right set
corresponds to distinct entities in Wikipedia.

Given a mention (text span) M of a named entity, an edge is assigned to a target
entity E (if available), i.e., a link to the Wikipedia page of entity E. For example, a
text document might mention M = Hanover. This string is used as a link to differ-
ent entities (pages) in Wikipedia, like the capital city of the German federated state of
Lower Saxony (https://en.wikipedia.org/wiki/Hannover) or a town in the U.S state
Indiana (https://en.wikipedia.org/wiki/Hanover,_Indiana). A transition probabil-
ity p(M −→ E) is assigned to each of these edges according to the ratio:

p(M −→ E) =
nM−→E

nM
, (2.8)

where nM is the total number of times the mention M is used as anchor text in Wikipedia
and nM−→E is the number of times the mention M links to the specific Wikipedia page of
entity E.

The graph is subsequently augmented by relations between entities E −→ E′ to capture the
semantic relationships between concepts. The intuition behind this step is that semantically
related entities often occur together within the same document. The internal link structure

44

https://en.wikipedia.org/wiki/Hannover
https://en.wikipedia.org/wiki/Hanover,_Indiana


2.4 Semantic Web & Knowledge Graphs

Leibniz University Hannover

University of Hannover
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https://en.wikipedia.org/wiki/University_of_Hanover
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Figure 2.12: Named Entity Disambiguation (NED) with Wikifier [40, 41] using a mention-
entity graph (bottom) based on mentions extracted from the text (top, the
screenshot is taken from: https://explosion.ai/demos/displacy-ent). The
number of times an anchor text of a mention M (left, orange vertices) links
to a specific entity E (right, blue vertices) defines the transition probabil-
ity p(M −→ E) (orange lines). The semantic relatedness (blue lines) measures
the proportion of pages that link from one entity to another and vice versa.
The line widths indicate the size of the (fictional) values.

of the Wikipedia is used to calculate the semantic relatedness p(E −→ E′). Let LE and L′E
be the set of Wikipedia pages that contain links to the pages of entity E and entity E′,
respectively, and |E| the total number of entities in Wikipedia, then the semantic relatedness
is defined as follows:

p(E −→ E′) = 1− log max (|LE |, |LE′ |)− log |LE ∩ LE′ |
logE− log min (|LE |, |LE′ |)

(2.9)

According to this equation, two entities are considered semantically related if a large pro-
portion of pages linking to one of these entities also links to the other and vice versa. For
each vertex in the mention-entity graph, a vector of PageRank scores according to Page
et al. [188] is calculated. Finally, the entity with the highest PageRank score is used to
disambiguate the corresponding mention.

2.4 Semantic Web & Knowledge Graphs

A knowledge graph, or knowledge base, is a data model and format that stores information
in a structured way for easy processing and interpretation by machines. Its origins are based
on the vision of the Semantic Web proposed by Berners-Lee et al. [33] in 2001, which can
be conceived as an extension of the World Wide Web. The Semantic Web supports the in-
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Jena

Hannover Germany
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Object : Jena

studies_at
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located_in has_university country

has_city has_city

country

N-Triple

Figure 2.13: Exemplary Resource Description Framework (RDF) graph that visualizes the
relations (edges) between different resources (vertices) as well as an RDF state-
ment (bottom right) in N-Triple format.

clusion of semantic content and meta information into unstructured Hypertext Markup Lan-
guage (HTML) documents using standards such as Resource Description Framework (RDF)
and Web Ontology Language (OWL).

RDF is a flexible, structured data model, which uses data triples to formulate a statement
about (web) resources. These data triples are defined as subject −→ predicate −→ object.
The subject represents the resource, and the predicate defines the relation between the
subject and the object, which can be another resource or a literal. Resources can represent
anything from a person, location, or event to more general or abstract objects and are
described by a distinct Uniform Resource Identifier (URI). Figure 2.13 shows a collection of
RDF statements intrinsically represents a labeled, directed multi-graph G(V,E), where the
resources form a set of vertices V and the predicates a set of edges E.

Linked Open Data allows everyone to contribute to the Semantic Web by publishing struc-
tured RDF data. The main vision is to link resources to other datasets on the Web using the
same standards in order to build a globally linked database. In this way, persons and ma-
chines can explore the Web of data and find other related data. The links between the same
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resources across different databases can be established by the OWL attribute "owl:sameAs".
The rules were formalized by Berners-Lee [32] in 2006:

• Use URIs as names for things.

• Use Hypertext Transfer Protocol (HTTP) URIs so that people can look up those names.

• When someone looks up a URI, provide useful information, using the standards (RDF,
SPARQL Protocol and RDF Query Language (SPARQL))

• Include links to other URIs, so that they can discover more things.

The ability to publish structured RDF data as Linked Open Data enabled the creation
of many domain-specific and cross-domain knowledge bases over the last decades. In the
scope of this thesis, knowledge bases such as Wikidata [268], DBpedia [22], or YAGO [241]
are of particular interest because they contain factual information and relations for named
entities and concepts. They provide a great source of world knowledge that can be used
to quantify cross-modal consistency in multimodal news articles. For example, Wikidata
provides a free and open knowledge base containing nearly 100 million items13 that can be
edited by both humans and machines and acts as central storage for other sister projects,
including Wikipedia.

13Archived statistics from 8th August 2021: https://web.archive.org/web/20210811234343/https://
www.wikidata.org/wiki/Special:Statistics
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News articles report on worldwide events and typically cover a variety of entities such as
locations, dates, persons, and the events themselves. As mentioned in Section 1.3, the goal
of this thesis is to present an unsupervised approach that evaluates cross-modal relations for
these types of named entities to provide more differentiated measures of Cross-modal Mu-
tual Information (CMI) compared to previous work [96, 127, 185, 294, 306]. This chapter
presents novel solutions that extract rich information from photos and evaluates them to
estimate their capabilities in recognizing these types of entities (research question 2). This
information is an important prerequisite for quantifying the cross-modal presence of entities
in articles containing photos and text, according to Chapter 4. As discussed in Section 1.2,
there are relatively few approaches with some limitations that focus on identifying events,
locations, and dates from photos. For this reason, novel approaches for event classifica-
tion (Section 3.1), geolocation estimation (Section 3.2), and date estimation (Section 3.3)
are proposed in the remainder of this chapter. We evaluate the impact of integrating con-
textual information, e.g., from related tasks or knowledge bases, into deep learning models
to improve image recognition and interpretation (research question 3). Unlike the aforemen-
tioned computer vision areas, person identification is a very well-studied computer vision
problem that has already attracted attention for decades. Section 3.4 presents an unsuper-
vised approach that addresses application-specific challenges for person recognition, such as
the web-based retrieval of example images, to automatically identify relevant persons (e.g.,
politicians or actors) in news articles extracted from the Internet Archive.
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3.1 Event Classification of Photos

News articles cover events of various domains, such as society, culture, politics, or sports,
that are of significant importance to a target audience. As a consequence, event classifica-
tion in photos is an essential task for various applications. It enables semantic search or
semantic retrieval in archives and news collections. In addition, it provides valuable fea-
tures for multimedia approaches [114, 175, 219] to quantify image-text relations that can
help to understand the overall multimodal message and sentiment or might even indicate
misinformation, i.e., Fake News.

Despite its clear potential, so far, only a few approaches [8, 36, 113, 136, 287] were proposed
that aim to recognize types of real-world events in contrast to other computer vision tasks.
Event classification is a challenging task in many regards, such as data collection, visual
similarities of related event types like elections and political campaigns, and class imbalance
due to the large number of expected (scheduled or regular) compared to unexpected or rare
events. Datasets for event classification mostly cover only specific event categories, e.g.,
social [3, 8, 211], sports [136], or cultural events [66]. To the best of our knowledge, the
Web Image Dataset for Event Recognition (WIDER) [287] is the largest corpus with 50,574

photos that considers a variety of event types (61). Nonetheless, many event types that are
important for news, like epidemics or natural disasters, are missing. Due to the lack of large-
scale datasets, related work has focused on ensemble approaches [5, 6, 273] typically based
on pre-trained models for object and place classification and the integration of descriptors
from local image regions [4, 78, 86, 287] to learn features for event classification. One of
the main challenges is to define a complete lexicon of important event categories. For this
purpose, Ahsan et al. [8] suggest to mine Wikipedia and gathered 150 generic social events.
However, the experiments were only conducted on WIDER and two other datasets, namely
Social Event Image Dataset (SocEID) and Rare Event Dataset (RED), which cover eight
social event types and a selection of 21 real-world events. Progress in the field of Semantic
Web has shown that it is possible to define a knowledge graph for newsworthy events [81,
82] but has not been leveraged by computer vision approaches yet. Particularly the relations
between events extracted from a knowledge base such as Wikidata [268] provide valuable
information that can be used to train powerful models for event classification.

In this section, we introduce an ontology along with a dataset that enables us to train a
novel ontology-driven deep learning approach for event classification. Our primary con-
tributions can be summarized as follows: (1) Based on a set of real-world events from
EventKG [81, 82], we propose the Visual Event Ontology (VisE-O) containing 409 nodes
that describe 148 unique event types such as different kinds of sports, disasters, and so-
cial events with high news potential. The ontology can be created with little supervision
and covers the largest number of event types for image classification to date. (2) In order
to train deep learning models, we have gathered a large-scale dataset, called Visual Event
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Figure 3.1: Exemplary subset of the Ontology (complete version is provided on our GitHub
page14) and photos of the Visual Event Classification Dataset (VisE-D). Leaf
Event Nodes (orange) and Branch Event Nodes (gray) are extracted based on
relations (e.g., "subclass of") to a set of Events (blue) using the Wikidata knowl-
edge base. The nodes connected by the green path define the Subgraph of basket-
ball to the Root Node (yellow). The combination (union) of all Subgraphs defines
the Ontology. Definitions are according to Section 3.1.2.1.

Classification Dataset (VisE-D), of 570,540 photos crawled automatically from the Web. It
contains 531,080 training and 28,543 validation photos, as well as two test sets with 2,779

manual annotated and 8,138 Wikimedia photos. Figure 3.1 depicts some example images.
(3) We provide several baselines, including ontology-driven deep learning approaches that
integrate the relations of event types extracted from structured information in the ontology
using novel loss functions and weighting schemes. As a consequence, it can understand the
fundamental differences of event types in different domains such as sports, crimes, or natural
disasters. Experimental results on several benchmark datasets demonstrate the feasibility
of the proposed approaches. Dataset and source code are publicly available14.

The remainder of this section is organized as follows. Section 3.1.1 reviews related work
on event classification of photos. The ontology and dataset for newsworthy event types are
presented in Section 3.1.2. In Section 3.1.3, we propose ontology-driven deep learning ap-
proaches for event classification. Experimental results for several benchmarks are presented
in Section 3.1.4. Section 3.1.5 summarizes this work and outlines areas of future work.

3.1.1 Related Work

Since there are different definitions of an event, approaches for event classification are very
diverse and range from specific actions in videos [259, 289] over the classification of more
personal events in photo collections [25, 36, 284] to the classification of social, cultural, and

14https://github.com/TIBHannover/VisE

51

https://github.com/TIBHannover/VisE


3 Information Extraction from Photos

sport event types in photos [86, 136, 273, 287]. In the sequel, datasets and proposals for the
recognition of events and event types in images with potential news character are reviewed.

Early approaches for event classification have used hand-crafted features such as Scale-
invariant Feature Transform (SIFT) to classify events in particular domains like sports [113,
136]. As one of the first deep learning approaches, Xiong et al. [287] suggested a multi-layer
framework that leverages two CNNs to incorporate the visual appearance of the whole im-
age as well as interactions among humans and objects. Similarly, several approaches aim
to integrate local information from image patches or regions extracted by object detection
frameworks [4, 78, 86] to learn rich features for event classification. Guo et al. [86] proposed
Graph Convolutional Neural Networks (GCNNs) to leverage relations between objects. An-
other line of studies applies ensemble models and feature combinations [5, 6, 273] to exploit
the capabilities of deep learning models trained for different computer vision tasks, most typ-
ically for object and place (or scene) classification. In the absence of a large-scale dataset for
many event types, Ahsan et al. [8] train classifiers based on images crawled for a set of 150

social event concepts mined from Wikipedia, while Wang et al. [273] apply transfer learning
to object and place representations to learn compact representations for event recognition
with few training images. A more detailed review of deep learning techniques for event
classification can be found in the survey from Ahmad and Conci [2].

There are many datasets and also challenges such as the MediaEval Social Event De-
tection Task [211] and ChaLearn Looking at People [66] for event classification. However,
they mostly cover specific domains such as social events [3, 211], cultural events [66], or
sports [136]. Besides, the datasets are either too small [136] to train deep learning models or
contain very few and incomplete event classes [3]. Other proposals have introduced datasets
and approaches to detect concrete real-world news events [8, 66, 78] but only distinguish
between a small pre-defined selection of events. To the best of our knowledge, WIDER [287]
is the most complete dataset in terms of the number of event categories that can be lever-
aged by deep learning approaches. It contains 50,574 images for 61 event types, but many
important event types for news, such as epidemics or natural disasters, are missing.

3.1.2 Dataset and Ontology for Event Type Classification

In contrast to prior solutions, this section presents an ontology and dataset for event classifi-
cation that covers a larger number of event types important for news across all domains such
as sports, crimes, and natural disasters. Based on definitions for terms and notations (Sec-
tion 3.1.2.1), we suggest an approach that leverages events identified by EventKG [81,
82] to automatically retrieve an ontology that can be refined with little supervision (Sec-
tion 3.1.2.2). Images for event types in the resulting VisE-O are crawled from the Web to
create the VisE-D according to Section 3.1.2.3.
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3.1.2.1 Notations & Definitions

In this section, we introduce definitions and notations that are used in the remainder of this
section. Figure 3.1 contains supplementary visualizations to clarify the definitions.

Event: In computer vision, an event can refer to many things, e.g., specific (inter)actions
in videos [259, 289] or general social events in everyday life [8, 287]. As in the EventKG [81],
we define an Event as contemporary or historical happening of global importance (e.g., 2011
NBA Finals in Figure 3.1) that is connected to one or multiple place(s) and time(s) or time
period(s). This definition matches our overall goal to evaluate the cross-modal consistency
of events in news that are important for a large target audience. Based on this definition of
an event e, we create a set of events E to construct an Ontology.

Ontology, Root Node, Event Nodes, and Relations: The Ontology is a directed
graph G(V,R) composed of a set of Event Nodes V as vertices and their corresponding
Relations R as edges. Relations R are knowledge base specific properties such as "subclass of"
in Wikidata [268] that describe the interrelations of Event Nodes V. All parent nodes v ∈ V
that connect a specific Event e ∈ E to the Root Node are denoted as Event Nodes. The Root
Node vR ∈ V (e.g., occurrence in Figure 3.1) matches the general definition of an Event and
represents a parent node shared by all Events.

Leaf and Branch Event Nodes: The Leaf Event Nodes VL ⊂ V such as basketball, are
the most detailed Event Nodes without children in the Ontology. They group Events of the
same type, e.g., 2011 NBA Finals −→ basketball (Figure 3.1). Event Nodes, e.g., ball game,
with at least one child node are referred to as Branch Event Nodes VB ⊂ V.

Subgraph: A Subgraph SL is a set of all Event Nodes SL = {vL, . . . , vR} ⊂ V related to a
specified Leaf Event Node vL ∈ VL while traversing to the Root Node vR.

3.1.2.2 VisE-O: Visual Event Ontology

Knowledge Base and Root Node Selection: Several knowledge bases such as DBpe-
dia [22], YAGO [241], orWikidata [268] are available. We investigated them in terms of event
granularity and correctness. The whole DBpedia ontology contains less than 1,000 classes.
Thus, the granularity of potential event types is very coarse, and for instance, some types of
natural disasters are either assigned to a wrong (Tsunami −→ television show)15 or generic

15Internet Archive snapshot for "Tsunami" from 14th February 2020: https://web.archive.org/web/
20200214202750/http:/dbpedia.org/page/Tsunami

53

https://web.archive.org/web/20200214202750/http:/dbpedia.org/page/Tsunami
https://web.archive.org/web/20200214202750/http:/dbpedia.org/page/Tsunami


3 Information Extraction from Photos

Public License

license

tennis tour

poli�cal campaign

tennis tournament

ATP tennis tournament

vo�ng

elec�ons in Catalonia
Nepalese local elec�on

tennis tournament edi�onfree license

sports fes�val

French Open associa�on football match

local elec�on

accord

WTA tennis tournament

elec�on campaign

so�ware license

agreement

associa�on football team season

contract

Elec�ons in Spain

volleyball team season

event

occurrence

campaign
referendum

sports season

sports season of a sports club

elec�on

elec�on in the United Kingdom

UK Parliamentary by-elec�on

Sco�sh Parliament by-elec�on

by-elec�on

compe��ve sport

event

ac�vity vo�ng

tennis

elec�on/referendum/poli�cal campaign

Ball Game

occurrence

ac�on

campaign

associa�on football

team sport

football

volleyball

sport

racket sport

Figure 3.2: Exemplary subset of the initial Ontology after the extraction of all relations
from Wikidata (left) and the respective final Ontology after applying the pro-
posed approaches for event class disambiguation and refinement (right). Blue
Event Nodes represent the same event type and might be too fine-granular to
distinguish. Green nodes are semantically and visually similar to other Event
Nodes in the Ontology and can therefore be ambiguous. Orange nodes do not
represent an Event according to the definition in Section 3.1.2.1. Best viewed in
color. Different versions of the Ontology can be explored on our GitHub page14.

classes (Earthquake −→ thing)16. As mentioned by Gottschalk and Demidova [81], YAGO
also contains noisy event categories. On the contrary, Wikidata offers fine-granular event
types and relations, as shown in Figure 3.2, and is therefore used as the knowledge base in our
approach. Gottschalk and Demidova [81] identified that Events are subclasses of Wikidata’s
knowledge base entries event (Wikidata identifier Q1656682 ) and occurrence (Q1190554 ).
We select occurrence as the Root Node of our Ontology since it is a parent of event (Fig-
ure 3.2) according to Wikidata and consequently covers more event instances.

Automated Creation of an Initial Event Ontology: A bottom-up approach is applied
to create an event ontology automatically. Based on a large set of |E| = 550,994 real-world
events17 from EventKG [81, 82], we recursively obtain all parent Event Nodes from Wikidata.
For Event Nodes, only relations of the type "subclass of" (Wikidata property P279 ) are
considered since they already describe specific categories. For Events, we additionally allow
for the properties "instance of" (P31) and "part of" (P361) as relations to increase the
coverage because some events like 2018 FIFA World Cup Group A are not a "subclass of"
an Event Node but "part of" a superordinate event, in this case, 2018 FIFA World Cup.
Finally, we remove all Event Nodes that are not connected to the Root Node. As illustrated
in Figure 3.1, the resulting Subgraphs of all Leaf Event Nodes are combined to generate the
Initial Event Ontology.

16Internet Archive snapshot for "Earthquake" from 18th February 2020: https://web.archive.org/web/
20200218100604/http:/dbpedia.org/page/Earthquake

17List of events available at: http://eventkg.l3s.uni-hannover.de/data/event_list.tsv
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We have also investigated a top-down approach where the child nodes of the Root Node
are extracted recursively to obtain Event Nodes. Even though this might lead to a more
complete event ontology, we found that the proposed bottom-up approach offers several
advantages. Most importantly, the names of real-world events provide more sophisticated
queries to retrieve images from the Web automatically, as explained in Section 3.1.2.3. These
queries can also prevent possible selection bias of image search engines since, for example,
queries constructed by names of Event Nodes such as "election" might only crawl images of
the latest U.S. elections. In addition, a top-down approach obtains many irrelevant Event
Nodes for event classification that were already neglected by EventKG [81, 82]. Given the
large number of real-world events, we argue that the proposed bottom-up approach covers
the most relevant Event Nodes while containing significantly fewer irrelevant ones.

However, we identified several problems in the Initial Event Ontology as illustrated in
Figure 3.2: (1) There are differences in the granularity of Leaf Event Nodes, and some of
them are too fine-grained, e.g., ATP tennis tournament or Nepalese local election, and might
be hard to recognize; (2) in particular, sports-centric Leaf Event Nodes such as association
football match and association football team season are ambiguous as they are semantically
and visually similar; (3) some Event Nodes, e.g., software license do not represent an Event
according to the definition in Section 3.1.2.1.

Event Class Disambiguation As pointed out above, most Leaf Event Nodes related to
sports are ambiguous since they represent the same type of sport. The Wikidata knowledge
base [268] distinguishes between sports seasons, sports competitions, etc. Although this
structure might make sense for some applications, we aim to combine Event Nodes related to
the same sports. However, this is not possible with the Initial Event Ontology that relies on
"subclass of" Relations. As illustrated in Figure 3.2 (green nodes), Event Nodes of different
sports domains (e.g., volleyball team season and association football team season) relate to a
particular type of competition (here team season) before they relate to another Event Node
of the same sports type (association football match). Value(s) for the Wikidata property
"sport" (P641 ) for each Event and Event Node were extracted and used as Relation (if
available) to solve this issue. As a result, sports events were combined according to their
sports category rather than the type of the competition, as shown in Figure 3.2 (right).
In addition, we delete all Event Nodes that are a parent of less than a minimum number
of |E|min = 10 Events to reduce the granularity of the resulting Leaf Event Nodes.

These strategies lead to the Disambiguated Event Ontology that, unlike datasets from
related work [3, 8, 66, 136, 287] with manually selected event classes, can be constructed
automatically. It can already be used for many applications and provides a hierarchical
overview to more efficiently explore and select event classes for specific tasks. However, it
can still contain irrelevant Event Nodes. Furthermore, expected (scheduled or regular) events
such as elections or sports festivals occur more frequently than unexpected or rare events

55



3 Information Extraction from Photos

Table 3.1: Number of Event Nodes |V|, Leaf Event Nodes |VL|, Relations |R|, and images |I|
for training (T), validation (V), and test (B - VisE-Bing, W - VisE-Wiki). All
ontologies can link approximately the same number of Events |E| to any Event
Node. However, the Refined Event Ontology can link the most Events |Ê| without
ambiguities to a Leaf Event Node while reducing the complexity of the Ontology.

Ontology Ontology Statistics Dataset Statistics
|E| |Ê| |V| |VL| |R| |IT | |IV | |IB| |IW |

Initial 526,853 236,464 6,114 3,578 7,845 — — — —
Disamb. 529,932 163,570 2,288 1,081 3,144 — — — —
Refined 529,932 447,161 409 148 635 531,080 28,543 2,779 8,138

such as epidemics or natural disasters. Leaf Event Nodes representing expected event types
more likely fulfill the filtering criteria |E|min and are consequently very fine-grained (e.g.,
elections in different countries), making them more difficult to distinguish. Thus, we decided
to refine the Disambiguated Event Ontology manually.

Event Ontology Refinement: Two annotators manually refined theDisambiguated Event
Ontology to create a challenging yet useful and fair ontology for image classification. To
pursue this goal, the ontology was refined according to two criteria: (1) reject Event Nodes
that do not match the Event definition in Section 3.1.2.1, and (2) select the most suitable
Leaf Event Nodes to prevent ambiguities. For example, election was chosen as a representa-
tive Leaf Event Node since its children contain different types of elections (e.g., by-election)
and elections in different countries (e.g., elections in Spain) that might be too hard to dis-
tinguish. We can use the hierarchical information to assign the children to the selected Leaf
Event Nodes automatically and simultaneously remove all resulting Branch Event Nodes as
candidates. Therefore, only around 500 annotations were necessary to label all 2,288 Event
Nodes extracted from the previous steps. Finally, we manually merged 30 Leaf Event Nodes
such as elections, political campaign, and referendum or award and award ceremony that are
semantically similar but could not be fused using the Disambiguated Event Ontology. The
statistics for all variants of the Ontology are shown in Table 3.1 and reveal that the Refined
Event Ontology links the most Events to Leaf Event Nodes. In the preliminary Ontologies,
many Events are children of Branch Event Nodes, and it is not possible to use them to
query example images for a specific Leaf Event Node, as explained in the next section. The
148 Leaf Event Nodes used in this thesis can be found in Appendix A.1.1. The Ontologies
presented in this section can be explored in the GitHub repository:

• Initial Ontology: https://tibhannover.github.io/VisE/VisE-O_initial

• Disamb. Ontology: https://tibhannover.github.io/VisE/VisE-O_disambiguated

• Refined Ontology: https://tibhannover.github.io/VisE/VisE-O_refined
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3.1.2.3 Visual Event Classification Dataset

Data Collection: To create a large-scale dataset for the proposed Ontology, we defined
different queries to crawl representative images from Bing. A maximum of 1,000 images (500

without restrictions and another 500 uploaded within the last year) using the names of the
Leaf Event Nodes were crawled. In addition, the names of popular Events related to a
Leaf Event Node that happened after 1900 were used as queries to increase the number of
images and reduce ambiguities (e.g., Skeleton at the 2018 Winter Olympics for Skeleton in
Figure 3.1). A sampling strategy was applied to set the number of images downloaded for
an Event based on its popularity, i.e., number of Wikipedia page views, and date to prevent
irrelevant images in the search results. Since less important events tend to contain more
unrelated photos in the image search results, we only consider Events that were viewed
at least 100 times per day on average. Images of historical events also typically contain
less relevant images for news, e.g., drawings and scans. To further reduce the amount of
irrelevant images, we emphasize significant events in the last decade(s). Thus, we used the
page views ve and the number of years ae an Event e ∈ E dates back to calculate the desired
amount of images |Ie| to crawl from Bing according to the following equation:

|Ie| = min

(
|Imax|,

kS · ve
max(1, ae) · vs

)
. (3.1)

The sampling parameter kS controls the number of images to be crawled and vs denotes the
number of views of all Events that are children of the specified Leaf Event Node according to
Wikidata. This normalization is used to achieve a more equal distribution of images crawled
for Leaf Event Nodes because some event types are less popular than others, e.g., skeleton
compared to basketball. We used kS = 40,000 for sampling and downloaded a maximum of
|Imax| = 1,000 images for the most popular events that represent a Leaf Event Node.

Ground-truth Labels: We provide two ground-truth vectors for each image based on
the search query: (1) The Leaf Node Vector yL ∈ {0, 1}|VL| indicates which of the
|VL| = 148 Leaf Event Nodes are related to the image and serves for classification tasks with-
out using Ontology information. Note that yL is multi-hot encoded as a queried Event (e.g.,
SpaceX Lunar Tourism Mission → spaceflight and expedition) can relate to multiple Leaf
Event Nodes; (2) the multi-hot encoded Subgraph Vector yS ∈ {0, 1}|V| denotes which of
the |V| = 409 Event Nodes (Leaf and Branch) are in the Subgraphs of all related Leaf Event
Nodes and enables to learn from Ontology information.

Splits: We were able to download about 588,000 images, which are divided into three
splits for training (90%), validation (5%), and test (5%). We only use images from Events
related to exactly one Leaf Event Node for the test set. Test images that are a duplicate (us-
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ing the image hash) of a training or validation image are removed. Overall, the dataset
provides an interesting challenge since it (1) contains the largest number of event types for
event recognition to date, (2) can be considered large-scale and thus allows to train neu-
ral networks, (3) enables approaches that learn from structured ontology information, and
(4) contains irrelevant web images for training which allows measuring the impact of self-
or semi-supervised deep learning techniques.

VisE-Bing Test Set: Two annotators verified whether a test image depicts the respective
Leaf Event Node or not. Each annotator labeled a maximum of ten valid images for each
Leaf Event Node to prevent bias in the test dataset. The annotators received different sets of
images to increase the number of test images. As a result, we were able to obtain 20 verified
test images for most (109) of the 148 Leaf Event Nodes. The final dataset statistics are
reported in Table 3.1, and the dataset distribution, including a list of all 148 Leaf Event
Nodes, is reported in Appendix A.1.1.

VisE-Wiki Test Set: To create another larger test set, we downloaded all Wikimedia
images for each Leaf Event Node and its child Events using the Commons category (Wikidata
property P373 ) linked in Wikidata. Although Wikimedia is a trusted source, we noticed
some less relevant images for news, e.g., historical drawings or scans. We applied a k-
nearest-neighbor classifier based on the embeddings of a ResNet-50 [92] trained on the
ILSVRC 2012 dataset [58, 218]. For each manually verified test image in VisE-Bing, we
selected the k = 100/|Iva| nearest images, where |Iva| is the number of annotated images of
the Leaf Event Node v ∈ VL in VisE-Bing. The test set comprises 8,138 images for 146 of
148 classes. Detailed dataset statistics are reported in Appendix A.1.1.

3.1.3 Ontology-Driven Event Classification

In this section, we propose a baseline classification approach (Section 3.1.3.1) and more
advanced strategies as well as weighting schemes to integrate event type relations from the
Ontology in the network training (Section 3.1.3.2). Section 3.1.3.3 introduces the inference
strategies adopted in the testing scenario.

3.1.3.1 Classification Approach

As shown in Table 3.1, the refined Ontology contains |VL| = 148 Leaf Event Nodes. As
a baseline classifier, we train a CNN that predicts Leaf Event Nodes without using on-
tology information. The Leaf Node Vector yL = 〈y1L, y2L, . . . , y148L 〉 ∈ {0, 1}|VL|=148 from
Section 3.1.2.3 is used as the target for optimization. We add a fully-connected layer on top
of a CNN architecture such as the ResNet-50 [92] with |VL| = 148 neurons. As an image can
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depict multiple event types, a sigmoid activation function (Figure 2.2) is used that outputs
a probability vector ŷL = 〈ŷ1L, ŷ2L, . . . , ŷ148L 〉 where each entry ŷiL ranges between 0 ≤ ŷiL ≤ 1

to learn from the multi-hot encoded Leaf Node Vector . During training, the cross-entropy
loss Lc is optimized according to :

Lc = −
|VL|∑
i=1

yiL · log ŷiL (3.2)

3.1.3.2 Integration of Ontology Information

In order to integrate information from the proposed Ontology in Section 3.1.2.2, we use
the multi-hot encoded Subgraph Vector yS = 〈y1S , y2S , . . . , y409S 〉 ∈ {0, 1}|V|=409 introduced
in Section 3.1.2.3 that includes the relations to all |V| = 409 Event Nodes as a target.
Consequently, a fully-connected layer with |V| = 409 neurons is added on top of a CNN
architecture. As in the previous section, a sigmoid activation function is used to predict
a probability vector ŷS = 〈ŷ1S , ŷ2S , . . . , ŷ409S 〉 with each entry ŷiS ∈ [0, 1]. Two different loss
functions are considered. As for the classification approach, we apply the cross-entropy loss
on the sigmoid activations ŷS to define an ontology-driven loss function:

Lcelo = −
|V|∑
i=1

yiS · log ŷiS (3.3)

As an alternative, we minimize the cosine distance of the predicted ŷS and the ground
truth yS Subgraph Vector :

Lcoso = 1− yS · ŷS
‖yS‖2 · ‖ŷS‖2

(3.4)

The granularity and the number of Event Nodes within the Subgraphs of Leaf Event Nodes
varies for different domains, e.g., sports, elections, or natural disasters. As a consequence,
the loss might be difficult to optimize. In addition, Branch Event Nodes such as action
or process represent general concepts shared by many Leaf Event Nodes. Some Branch
Event Nodes are also redundant since they do not include more Leaf Event Nodes than their
children. Based on these observations, we suggest several improvements as described below.

Redundancy Removal: To remove the redundancy in the proposed Ontology, every
Branch Event Node related to the same set of Leaf Event Nodes compared to its child nodes
in the Ontology is deleted. These nodes are redundant since they do not include any new
relationship information concerning the considered event types, i.e., Leaf Event Nodes. As
a result, we are able to reduce the size of the Subgraph Vector yS ∈ {0, 1}|V| from |V| = 409

to |VRR| = 245.
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Node Weighting: We investigated two weighting schemes to encourage the neural net-
work to focus on Leaf Event Nodes and more informative Branch Event Nodes in the On-
tology. Based on one of the schemes, each entry in the ground-truth yS and predicted ŷS

Subgraph Vector is multiplied with its corresponding weight before the loss according to
Equation (3.3) or Equation (3.4) is calculated.

We propose a Distance Weight γv based on the distance of an Event Node v ∈ V to
all connected Leaf Event Nodes in the Ontology. First, the length lv of the shortest path,
including self-loops (this means that a node is always in its own path; therefore lv > 0), to
each connected Leaf Event Node is determined. The average length lv of these paths is used
to calculate the weight:

γv =
1

2(lv−1)
. (3.5)

This weighting scheme encourages the network to learn from Event Nodes that are close to
the Leaf Event Nodes. They describe detailed event types that are harder to distinguish.
Please note that the average length lv can change if the redundancy removal is applied.

Similarly, we calculate a Degree of Centrality Weight ωv for each Event Node v ∈ V
based on the number cv of Leaf Event Nodes connected to an Event Node v and the total
number of Leaf Event Nodes |VL| = 148:

ωv = 1− cv − 1

|VL|
. (3.6)

According to Equation (3.6), the weights of all Leaf Event Nodes are set to ωv = 1,∀v ∈
VL (denoted as ωL), while, for instance, the Root Node vR is weighted with ωvR ≈ 0 because
it is connected to all Leaf Event Nodes. Thus, the network should focus on learning unique
event types such as tsunami or carnival rather than coarse superclasses related to many
Leaf Event Nodes.

While the maximum weight of Branch Event Nodes using the Distance Weights is 0.5 and
defined by the nodes closest to the Leaf Event Nodes (lv = 2), their corresponding Degree
of Centrality Weight can be close to ωL. To put more emphasis on Leaf Event Nodes, we
set their weights to ωL > 1. We set these weights to ωL = 6, as discussed in detail in
Section 3.1.4.3.

3.1.3.3 Inference

The classification approach predicts a Leaf Node Vector ŷL that contains the probabilities
of the |VL| = 148 Leaf Event Nodes that can be directly used for event classification. On the
other hand, the ontology-driven network outputs a Subgraph Vector ŷS with probabilities
for all |V| = 409 or |VRR| = 245 (with redundancy removal) Event Nodes in the Ontology.
There are several options to retrieve a Leaf Node Vector ŷL for classification using ŷS .
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(1) We retrieve the probabilities ŷoL that are part of the predicted Subgraph Vector ŷS .

(2) The cosine similarity of the predicted Subgraph Vector ŷS to the multi-hot encoded
Subgraph Vector yvS of each Leaf Event Node v ∈ VL is measured to leverage the probabilities
of Branch Event Nodes as follows:

ŷcosL =
yvS · ŷS

‖yvS‖2 · ‖ŷS‖2
∀v ∈ VL (3.7)

Note that the ground truth and predicted Subgraph Vectors are first multiplied with the
weights used during network training. As a result, we obtain |VL| = 148 similarities that
are stored as ŷcosL ∈ R|VL|.

We decided to use the elementwise product of both strategies ŷL = ŷoL � ŷcosL as the
prediction for the ontology approach since we found that this combination worked best in
most cases. Results using the individual probabilities are reported in Appendix A.1.2.

3.1.4 Experimental Setup & Results

In this section, the parameters (Section 3.1.4.1), evaluation metrics (Section 3.1.4.2), and
experimental results are presented. The experimental evaluation includes a comparison of
the ontology-driven approaches to the classification baseline (Section 3.1.4.3), an analysis
of results for specific event types (Section 3.1.4.4), and an evaluation on other benchmark
datasets (3.1.4.5).

3.1.4.1 Network Parameters

We used a ResNet-50 [92] as the basic architecture for the proposed approaches. They were
optimized using Stochastic Gradient Descent (SGD) with Nesterov momentum term [249],
weight decay of 1× 10−5, and a batch size of 128 images. The initial learning rate of 0.01 is
increased to 0.1 using a linear ramp up in the first 10,000 iterations to speed up the training.
Then, a cosine learning rate annealing [151] is applied to lower the learning rate to zero after
a total of 100,000 iterations. The model that achieves the lowest loss on the validation set
is used for the experiments.

3.1.4.2 Evaluation Metrics

We report the top-1, top-3, and top-5 accuracy using the top-k predictions in the Leaf Node
Vector ŷL (Section 3.1.3.3). However, the accuracy does not reflect the similarity of the
predicted to the ground-truth Leaf Event Node concerning the Ontology information. For
this reason, we create a multi-hot encoded Subgraph Vector ỹS ∈ {0, 1}|V| representing the
whole Subgraph of the predicted (top-1 ) Leaf Event Node v̂. Note that the full Subgraph
Vector with dimension |V| = 409 is created to generate comparable results for models
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trained with and without redundancy removal and that ỹS 6= ŷS since ŷS corresponds to
the predicted Subgraph Vector of an ontology-driven approach, whereas ỹS is the multi-hot
encoded Subgraph Vector of the predicted Leaf Event Node v̂. We propose to measure the
cosine similarity (CS ) and Jaccard Similarity Coefficient (JSC ) according to Equation (3.8)
and Equation (3.9) between the multi-hot encoded Subgraph Vector ỹS of the predicted class
and the ground-truth Subgraph Vector yS of the test image to quantify the similarity based
on all |V| = 409 Event Nodes.

CS =
yS · ỹS

‖yS‖2 · ‖ỹS‖2
(3.8)

JSC =
‖yS � ỹS‖1

‖yS‖1 · ‖ỹS‖1 · ‖yS � ỹS‖1
. (3.9)

3.1.4.3 Ablation Study

The results of an ablation study, including the various proposed approaches on VisE-Bing,
are presented in Table 3.2. The results of the ontology-driven approaches (denoted as O)
are significantly worse without applying any weighting scheme. The reason is that the
correct prediction of the majority of Event Nodes in a Subgraph is already sufficient to
achieve low loss signals. However, the ontology-driven approaches benefit from the weighting
schemes and clearly outperform the classification baseline (denoted as C). As discussed in
Section 3.1.3.2, a higher weight ωL for Leaf Event Nodes needs to be assigned using the

Table 3.2: Results (numbers are multiplied by 100) on VisE-Bing using different loss func-
tions, weighting schemes (WS), and ontology redundancy removal (RR)

Model Loss WS RR Accuracy
JSC CSNotation Top-1 Top-3 Top-5

C Lc 77.4 89.8 93.6 84.7 87.7

Ocel Lo 67.5 83.3 88.5 81.1 85.4
Ocelω Lcelo ω, ωL = 1 68.1 83.7 88.9 81.1 85.3
Ocel6ω Lcelo ω, ωL = 6 79.8 91.0 94.0 86.6 89.2
Ocel6ω+RR Lcelo ω, ωL = 6 X 81.7 91.5 94.5 87.9 90.3
Ocelγ Lcelo γ 66.6 83.5 89.1 78.3 82.8
Ocelγ +RR Lcelo γ X 73.2 86.8 91.3 82.6 86.2

Ocos Lcoso 67.6 77.8 81.8 82.6 86.7
Ocosω Lcoso ω, ωL = 1 72.7 84.1 87.2 84.5 87.9
Ocos6ω Lcoso ω, ωL = 6 80.2 90.6 93.4 86.3 88.9
Ocos6ω +RR Lcoso ω, ωL = 6 X 80.8 90.1 93.1 86.9 89.4
Ocosγ Lcoso γ 81.1 90.2 93.1 87.1 89.7
Ocosγ +RR Lcoso γ X 80.7 90.3 93.1 86.9 89.5

COcel6ω+RR Lc + Lcelo ω, ωL = 6 X 81.5 91.8 94.3 87.5 90.0
COcosγ Lc + Lcoso γ 81.9 90.8 93.2 87.9 90.4
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3.1 Event Classification of Photos

Degree of Centrality Weights to balance the impact of Branch and Leaf Event Nodes on the
overall loss. Thus, we increased the weight to ωL = 6 as it approximately corresponds to
the average number of Branch Event Nodes in all |VL| = 148 Subgraphs.

Models trained with the ontology-driven loss functions Lcelo and Lcoso achieve similar results
in their best setups. The models trained with Lcoso work well with both weighting schemes,
while models optimized with Lcelo are better with the Degree of Centrality Weight ω. We
argue they are more tailored towards single-label classification tasks and benefit from the
higher weights ωL = 6 of Leaf Event Nodes. We achieved slightly better results when
combining the classification-based (Lc) and one of the ontology-driven loss functions (models
denoted as CO). The combination emphasizes the prediction of Leaf Event Nodes while still
considering ontology information.

The best results for top-1 accuracy, JSC, and CS were achieved when combining the
classification (Lc) and ontology-driven cosine loss term (Lcoso ) with Distance Weights γ.
The cosine loss is, in general, more stable when training with and without redundancy
removal (RR), which could indicate that it is more robust to changes in depth and size
of the Ontology. Furthermore, it works well with the Distance Weights γ, which does not
require an extra weight parameter ωL for Leaf Event Nodes.

3.1.4.4 Experimental Results for Individual Event Types

The top-1 accuracy for a selection of Event Nodes and qualitative results of the COcosγ
model (notation according to Table 3.2) are provided in Figure 3.3 and Figure 3.4. The
proposed approach achieves good results for the majority of event types. Misclassification
can be typically explained by the visual similarity of the respective events. For example,
images for tornado, tsunami, and earthquake are often captured after the actual event,
and the consequences of these natural disasters can be visually similar, as illustrated in
Figure 3.1 and Figure 3.4(f). It also turned out that classes such as protest, earthquake, and
explosion are predicted very frequently because they depict visual concepts that are also part
of other events. For instance, images of the event types police brutality, vehicle fire, and
economic crisis are frequently classified as a protest since they depict typical scenes of riots or
demonstrations (Figure 3.4(e)). The best results were achieved for sports-centric event types,
which is not surprising as they are usually unambiguous. In general, the performance for
expected (scheduled or regular) event types such as election and sport is better compared to
unexpected or rare events. We assume the main reason is that journalists usually broadcast
live coverage of expected events. At the same time, photos of crimes (e.g., robbery, terrorist
attack) and natural disasters are rare and captured mainly by amateurs. Thus, it is more
likely that web images depict the consequences rather than the actual event.

63



3 Information Extraction from Photos

crime (57)
64.9

conven�on (60)
53.3

elec�on (20)
80.0

SciFi/anime/comic conven�on (20)
75.0

poli�cal conference (20)
40.0academic conference (20)

45.0

robbery (20)
85.0

terrorist a�ack (20)
60.0

ceremony (80)
92.5

Olymic Games ceremony (20)

award ceremony (20)
95.0

wedding (20)
100.0

natural disaster (177)
85.3

disaster (438)
74.2

epidemic (19)
57.9

avalanche (20)
75.0

earthquake (20)
90.0

tsunami (17)
64.7

wildfire (20)
100.0

industrial disaster (17)
17.6

occurrence (2779)
Top1: 81.9

protest (20)
90.0

sport (1316)
92.2

poker (20)
100luge (20)

90.0

basketball (20)
100.0

windsurfing (20)
90.0 tennis (20)

100.0

celes�al event (60)
98.3

meteor shower (20)
100.0

eclipse (20)
95.0

supernova (20)
100.0

80.0

54.5
kidnapping (11)

Figure 3.3: Top-1 accuracy [%] and number of images (in brackets) for a selection of Event
Nodes on the VisE-Bing test set using the COcosγ approach. The results corre-
spond to the mean top-1 accuracy of all (also those that are not shown) related
Leaf Event Nodes. The Ontology is simplified for better comprehensibility.
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Figure 3.4: Correctly (a – d) and incorrectly (e, f) classified examples of the COcosγ network
model from the VisE-Wiki test set.

64



3.1 Event Classification of Photos

3.1.4.5 Comparisons on other Benchmarks

We considered several benchmarks, including the novel VisE-Wiki (Section 3.1.2.3) test
dataset as well as WIDER [287], SocEID [8], and RED [8]. These benchmarks have different
characteristics, which allows us to evaluate the ontology-driven approach in various setups.
The WIDER dataset comprises 50,574 web images for 61 event types. To the best of our
knowledge, it covers the most diverse event classes to date. Similar to our proposed dataset,
the images are gathered from the Web and contain some irrelevant images, i.e., photos that
do not depict the labeled event. Furthermore, some event classes also relate to actions (e.g.,
Handshaking) or occupations (e.g., Surgeons) rather than actual event types. The SocEID
dataset consists of circa 37,000 images but contains only eight social event classes, while the
RED dataset is comparatively small and contains around 7,000 images from 21 real-world
events that were manually selected. We used the splits provided by the authors for the
WIDER [287] and SocEID [8] datasets. For the RED dataset, we randomly used 70 % of
the images for training and the remaining 30 % for testing, as suggested by Ahsan et al. [8].
The splits are provided on our GitHub page14 for fair comparisons.

As the WIDER, SocEID, and RED datasets do not provide an Ontology, we have manually
linked their classes to Wikidata, e.g., soccer in the WIDER dataset to the Wikidata item
association football with the identifier Q2736, to define the set of Leaf Event Nodes. Then,
we created the Ontologies according to Section 3.1.2.2. The Ontologies of the benchmark
datasets are available on our GitHub page:

• WIDER ontology: https://tibhannover.github.io/VisE/WIDER

• SocEID ontology: https://tibhannover.github.io/VisE/SocEID

• RED ontology: https://tibhannover.github.io/VisE/RED

The models are trained with parameters similar to Section 3.1.4.1. Due to the smaller
dataset sizes, the number of training iterations was reduced to 2,500 for the RED dataset
and 10,000 for the SocEID and WIDER datasets. Cosine learning rate annealing [151] was
applied from the beginning to decrease the learning rate from 0.01 to zero after the specified
amount of iterations. The results for our approach and other comparable solutions from the
related work [6, 8, 287] that use a single network model (and no ensemble) and the whole
image as input are presented in Table 3.3.

The ontology-driven approaches (CO) clearly outperform the classification baseline (C)
on the VisE-Wiki, WIDER, and RED test sets. As expected, the results on the SocEID
dataset just slightly improved because less Ontology information is provided due to the lower
number of eight classes, which leads to an ontology with fewer Event Nodes and relations.
Results on VisE-Wiki are worse compared to VisE-Bing (reported in Table 3.2) since the
test set is not manually annotated and contains unrelated or ambiguous images, particularly
for rare event types such as city fire. The same applies to the WIDER dataset. Superior
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Table 3.3: Results (numbers are multiplied by 100) on different benchmark datasets. While
our results are superior on SocEID and RED, Ahsan et al. [8] achieved better
results (77.9%) on WIDER using random splits (gray, not provided on request)
also compared to other baselines by training an SVM on AlexNet embeddings,
which is a similar approach for which Ahmad et al. [6] reported 41.9%. Their
results for WIDER and RED are nearly identical, although WIDER contains
more classes and is, in general, more challenging. We conclude that these results
are not explainable and need to be verified in a reproducibility experiment. Model
notations are according to Table 3.2.

Approach
VisE-Wiki WIDER [287] SocEID [8] RED [8]
148 classes 61 classes 8 classes 21 classes

Top-1 JSC Top-1 JSC Top-1 JSC Top-1 JSC

AlexNet [287] — — 38.5 — — — — —
AlexNet-fc7 [8] — — 77.9 — 86.4 — 77.9 —
WEBLY-fc7 [8] — — 77.9 — 83.7 — 79.4 —
Event conc. [8] — — 78.6 — 85.4 — 77.6 —
AlexNet [6] — — 41.9 — — — — —
ResNet-152 [6] — — 48.0 — — — — —

C 61.7 72.7 45.6 56.9 91.2 92.7 76.1 82.1
COcel6ω+RR 63.4 73.9 51.0 61.6 91.4 92.9 79.1 84.3
COcosγ 63.5 74.1 49.7 60.3 91.5 92.9 80.9 85.4

results are achieved in comparison to similar solutions [6, 8, 287]. It is worth noting that
the proposed ontology-driven approach can also be easily integrated into methods that use
ensemble models [5, 6, 273] or additional image regions [86, 287].

3.1.5 Summary

In this section, we have presented a novel ontology, dataset, and ontology-driven deep learn-
ing approach to classify newsworthy event types in photos. A large number of events in con-
junction with a knowledge base were leveraged to retrieve the Visual Event Ontology (VisE-
O) that covers many possible real-world event types. The corresponding large-scale Visual
Event Classification Dataset (VisE-D) with 570,540 photos allowed us to train powerful deep
learning models and is, to the best of our knowledge, the most complete and diverse public
dataset for event classification to date. We have proposed several baselines, including an
ontology-driven deep learning approach that exploits event relations to integrate structured
information from a knowledge graph. The results on several benchmarks have shown that the
integration of structured information from an ontology can improve event classification. For
this reason, we argue that the proposed approach provides discriminative semantic features
that allow for the distinction between a majority of event types covered in the news.
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In Chapter 4 of this thesis, we study the usefulness of the deep learning approach for the
quantification of cross-modal event relations in news articles. It should be noted that the
current ontology only distinguishes between event types (e.g., association football, election,
epidemic) and, therefore, mainly provides semantic features. The classification of more fine-
grained event classes or even concrete events (e.g., FIFA World Cup Final 2014, 2020 U.S.
election, COVID-19 pandemic) would allow for a more detailed analysis. In addition, con-
crete events are usually connected to one or multiple location(s), date(s), or time period(s)
and can also provide geospatial and temporal information. Thus, the prediction of concrete
events or fine-granular event types is another important research direction. Moreover, we
plan to further explore strategies that leverage ontology information such as Graph Convo-
lutional Neural Network (GCNN). Other interesting research directions are the combination
of several knowledge bases and the investigation of semi-supervised approaches to learn from
heterogeneous web sources that typically include also irrelevant images.
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3.2 Geolocation Estimation of Photos

News articles often refer to specific locations to describe the geographic context. These
locations can range from coarse entities such as continents and countries over specific urban
environments (e.g., cities, streets, buildings, and landmarks) to natural environments (e.g.,
mountains, seas, deserts, and forests). In order to verify the cross-modal occurrences of these
different types of locations between image and text, geographical information at a global
scale needs to be extracted from the photos without any restrictions to certain environments.

As mentioned in Section 1.2, predicting the geographical location of photos taken all over
the world without any prior knowledge is a very challenging task since they depict a huge
amount of intra-class (e.g., different daytimes, objects, or camera settings) and extra-class
variations (e.g., architecture, flora and fauna, or style of interior furnishings). Besides, the
photos can be ambiguous or provide only very few visual clues about their respective captur-
ing location. For these reasons, many approaches have simplified geolocation estimation and
focused on photos depicting well-known landmarks and cities [20, 142, 226, 280, 302, 313]
or natural areas like deserts or mountains [24, 225, 261]. Only a few proposals [89, 90, 229,
267, 279] treat the task at global scale without any prior assumptions. These approaches
particularly benefit from the advancements in deep learning (Section 2.2.2) and the increas-
ing number of publicly available large-scale image collections from platforms such as Flickr.
Due to the complexity of the problem and the unbalanced distribution of photos taken from
all over the world, methods based on CNNs [229, 267, 279] treat photo geolocalization as
a classification task by subdividing the Earth into geographical cells with a similar number
of images. However, as also discussed in Section 1.2, the granularity of this partitioning
is critical for the system performance and entails a trade-off problem [229]. A partitioning
with more cells covering smaller geographic areas allows for more accurate predictions at a
city (accuracy of about 25 km) or even street level (accuracy of about 1 km). However, it
also reduces the number of training photos available for each cell, making models prone to
overfitting. Models trained with fewer but larger cells, on the other hand, are less precise at
these fine-granular levels but tend to generalize better and improve performance at coarser
levels (e.g., country level with a geolocation accuracy of about 750 km).

Moreover, a single CNN consisting of tens of millions of parameters might struggle to
memorize the visual appearance of locations around the world, according to Vo et al. [267].
In our opinion, one of the main reasons for this problem is the huge diversity in the photos
caused by various environmental settings, which requires specific features to distinguish dif-
ferent locations. Referring to Figure 3.5, urban images mainly differ in, e.g., architecture,
people, and specific objects like cars or street signs. On the contrary, natural scenes like
forests or indoor scenarios are most likely defined by features encoding the flora and fauna
or the style of the interior furnishings, respectively. Therefore, we argue that photo geolocal-
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Figure 3.5: Left: Workflow of the proposed geolocation estimation approach. Right: Sam-
ple images of different locations for specific scene concepts.

ization can greatly benefit from contextual knowledge about the environmental scene since
the diversity in the data space could be drastically reduced.

In this section, we present solutions for the problems mentioned above by (1) incorporating
hierarchical knowledge at different geospatial resolutions in a multi-partitioning approach
and (2) using information about the respective type of environmental settings (e.g., indoor,
natural, and urban). We consider photo geolocalization as a classification task by subdividing
the Earth into geographical cells with a balanced number of images (similar to PlaNet [279]).
There are several contributions. We combine the outputs from all scales to exploit the
hierarchical information of a CNN that is trained simultaneously with labels from multiple
partitionings to encode local and global information. Furthermore, we suggest two strategies
to include information about the respective scene type: (a) deep networks that are trained
separately with images of distinctive scene categories, and (b) a multi-task network trained
with both geographical and scene labels. This multi-task approach should enable the CNN
to learn specific features for estimating the Global Positioning System (GPS) coordinate of
images in different environmental surroundings. The workflow is illustrated in Figure 3.5.

To the best of our knowledge, this is the first approach that considers scene classification
and exploits hierarchical (geo)information to improve unrestricted photo geolocalization.
Furthermore, we have used a state-of-the-art CNN architecture, and our comprehensive
experiments include an evaluation of the impact of different scene concepts. Experimental
results on two different benchmarks demonstrate that our approach outperforms the state of
the art without relying on image retrieval techniques (Im2GPS [89, 90, 267]) while using a
significantly lower number of training images compared to PlaNet [279] and CPlaNet [229].
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The remainder of this section is organized as follows. In Section 3.2.1, related work
on geolocation estimation is reviewed. The geographical cell partitioning of the Earth is
explained in Section 3.2.2. The proposed framework to extract and leverage visual concepts
of specific environmental settings and multiple partitionings of the Earth to estimate the GPS
coordinates of images is introduced in Section 3.2.3. Experimental results on two different
benchmarks are discussed in Section 3.2.4. A demonstrator of the system is presented in
Section 3.2.5. Section 3.2.6 summarizes the work and outlines areas of future work.

3.2.1 Related Work

Related work on image geolocalization can be roughly divided into two categories: (1) pro-
posals that are restricted to specific environments or imagery, and (2) approaches at planet-
scale without any restrictions. This section focuses on the second category since it is more
closely related to the scope of this thesis. A more comprehensive survey is provided by
Brejcha and Cadík [43].

Many proposals of the first category are introduced at city-scale resolution restricting the
problem to specific cities or landmarks. The proposed methods mainly apply retrieval ap-
proaches to match a query image against a reference dataset [20, 80, 121, 122, 202, 226, 304].
Other approaches [23, 140, 200, 313] focus on landmark recognition and therefore either use
a pre-defined set of landmarks or cluster a given photo collection in an unsupervised manner
to retrieve the most interesting areas for geolocalization. Another line of works matches
query images against 3D models of cities to enhance geolocation accuracy [53, 119, 141, 145,
206]. However, the underlying data collections of these methods are restricted to popular
scenes and urban environments and therefore lack accuracy when predicting photos that do
not have (many) instance matches. For this reason, some approaches additionally make use
of satellite aerial imagery to enhance the geolocalization in sparsely covered regions [232,
266, 301, 302]. Solutions have been presented that match an aerial query image against a
reference dataset containing satellite images in a wide baseline approach [14, 27, 280]. Some
of these proposals [142, 143] address geolocation at planet-scale and extend the solution
to rural areas. Only a minority of solutions have been suggested for natural geolocation
estimation of images depicting beaches [46, 274], deserts [261], or mountains [24, 225]. Most
of these approaches rely on extracted features from horizon lines to find the best matching
locations [24, 225, 261].

All of the aforementioned proposals are restricted to well-covered regions of the Earth, spe-
cific imagery, or specific environmental scenes. Hays and Efros [89] have introduced Im2GPS
as a first attempt for planet-scale geolocation estimation. They use a retrieval approach to
match a given query image based on a combination of six global image descriptors to a refer-
ence dataset consisting of more than six million images with GPS coordinates. The authors
extend Im2GPS [90] by incorporating information on specific geometrical classes like sky
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and ground. Furthermore, they use an improved feature representation and retrieval tech-
nique. Weyand et al. [279] have been the first who applied deep learning to geolocalization.
In their approach called PlaNet, the authors treat the task as a classification problem. For
this reason, the Earth is subdivided into geographical cells with a similar number of images
according to their GPS coordinates using a quad-tree approach. The resulting geographi-
cal cells are used as image labels to train a CNN. This approach noticeably outperformed
Im2GPS, which encouraged Vo et al. [267] to learn a feature representation with a CNN to
improve the Im2GPS framework. The features of a query photo extracted from the deep
learning model are used to search for the (k)-nearest neighbors in the reference dataset based
on a kernel density estimation. Moreover, a multi-partitioning approach is introduced to
train photo-geolocation at different geospatial resolutions simultaneously.

The underlying quad-tree cell partitioning from PlaNet [279] that converts geolocation
estimation to a classification problem introduces a critical trade-off problem. On the one
hand, fewer but geographically larger cells are easier to distinguish, but they also lower the
geospatial resolution of the outputs and consequently result in less accurate predictions. On
the other hand, more but smaller cells that provide a good geospatial resolution are more
difficult to distinguish and also lower the number of training examples per cell, making
the model more prone to overfitting. To solve this issue, Seo et al. [229] proposed a com-
binatorial partitioning approach with multiple overlapping partitionings created based on
the geographical and visual similarities of training images. It generates fine-grained output
classes by intersecting overlapping coarse partitionings of the Earth. This allows estimat-
ing photo locations at a high geospatial resolution while maintaining a sufficient number of
training examples per cell. Izbicki et al. [111] proposed a new loss function called Mixture
of von-Mises Fisher (MvMF) that, unlike standard classification loss functions such as the
Cross-entropy Loss, exploits the Earth’s spherical geometry and refines the geographical
cell shapes in the partitioning. Similar to methods for face recognition (Section 3.4.1), Liu
et al. [146] focus on a representation learning approach using a new Stochastic Attraction
and Repulsion (SARE) loss function. They learn discriminative image representations by
maximizing similarities among intra-place images while minimizing them among inter-place
images. These representations are used to retrieve the most similar images in a reference
database in order to determine the geolocation as proposed by Im2GPS [89, 90, 267].

3.2.2 Partitioning of the Earth Surface for Classification

We present a deep learning approach that aims to tackle the existing challenges by consider-
ing information about the environmental setting and exploiting hierarchical (geo)information
using partitionings of the Earth at multiple geospatial resolutions. According to PlaNet [279],
we treat the task as a classification problem by subdividing the Earth into geographical cells
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Oahu, Hawaii, USA New York City, USA

(d) Fine Partitioning (f) Fine Partitioning

(c) Coarse Partitioning (e) Coarse Partitioning

(b) Fine Partitioning

(a) Initial Geographical Cells

Figure 3.6: Partitioning of the Earth into geographical cells. (a) Four initial geographical
cells (light blue) and exemplary cells in the second (blue) and third (dark blue)
level of the quad-tree approach. Note that the top and bottom regions on the map
represent the two remaining initial geographic cells of the Earth projected onto a
cube with six sides and that the boundaries are spherical geodesics (i.e., straight
lines on the sphere) that appear to be curved on the two-dimensional map.
Coarse (τmin = 50; τmax = 5,000) and fine partitioning (τmin = 50; τmax = 1,000)
of the Earth (b), the Hawaiian island Oahu (c, d), and New York City (e, f).
Cell areas are smaller in regions that are photographed frequently, which allows
for a more accurate geolocation estimation. The Screenshots are taken from:
https://s2.sidewalklabs.com/regioncoverer/

that contain a similar number of images. The S2 geometry library18 is used to generate a
set of non-overlapping geographical cells C used as classes. The Earth’s surface is projected
on an enclosing cube with six sides representing the initial cells (illustrated in Figure 3.6).
An adaptive hierarchical subdivision based on the GPS coordinates of the training images
is applied [279], where each cell is the node of a quad-tree. Starting at the root nodes, the
respective quad-tree is subdivided recursively until all cells contain a maximum of τmax im-
ages. Afterward, all resulting cells with fewer than τmin photos are discarded because they
likely cover areas like poles or oceans, which are hard to distinguish.

This approach has several advantages compared to a subdivision of the Earth into cells
with roughly equal areas. On the one hand, an adaptive subdivision prevents dataset biases
and allows for classes with a similar number of images. On the other hand, fine cells are
generated in photographically well-covered areas, allowing more accurate prediction of image
locations that most likely represent regions of interest, such as landmarks or cities.
18https://code.google.com/archive/p/s2-geometry-library/
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Figure 3.7: Pipeline of the proposed geolocation estimation frameworks. Gray: Baseline
steps that are part of every network. Additional steps for various network setups
are visualized in different colors. Steps in dashed rectangles are applied to all
images before the training process takes place.

3.2.3 Geolocation Estimation using Contextual Information

In contrast to previous work, we exploit contextual information of the environmental sce-
nario solely using the visual content of a given photo to improve the localization accuracy.
Therefore, we predict the scene probabilities of all images based on the 365 categories of the
Places365 dataset [315] (Section 3.2.3.1). Several approaches that are aimed at integrating
the extracted information about the given type of scene and multiple geographical cell parti-
tionings are introduced in Section 3.2.3.2. Finally, we explain how the proposed approaches
are applied to estimate the GPS coordinates of images based on the predicted geo-cell proba-
bilities (Section 3.2.3.3). In this context, we introduce our hierarchical approach to combine
the results of multiple geospatial resolutions. An overview of the proposed framework is
presented in Figure 3.7.

3.2.3.1 Environmental Scene Classification

A ResNet model [93] with 152 layers19 provided by the authors of the Places365 dataset [315],
which is a subset of the Places2 database, is applied to calculate the scene probabilities of a
given image. The model has been trained with more than 16 million images from 365 different
place categories. This scene classification fits nicely with our approach since the resulting
classifier already distinguishes images that depict specific environments.

19ResNet-152 model trained with Caffe on Places365 [315]: https://github.com/CSAILVision/places365
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We consider three different sets {S3,S16, S365} of scene categories with different levels
of granularity using the scene hierarchy20 provided by the dataset. First, we compute the
scene probabilities ŷS365 for all 365 scenes in S365 using the classification output of the CNN.
The scene hierarchy allows a mapping in order to additionally extract the probabilities ŷS16

and ŷS3 of the sets S16 and S3 containing 16 and three superordinate scene categories,
respectively. For this purpose, we add the probabilities of all classes assigned to the same
superordinate scene category to generate the corresponding probabilities. However, some
place categories such as barn visually overlap and are consequently allocated to multiple
superordinate categories, in this case to "outdoor, natural" and "outdoor, man-made" that
are part of the scene set S3. For this reason, we first divide the probability of these classes
by the number of assigned categories to maintain the normalization

∑|S|
i=1 y

S
i = 1 with

S ∈ {S3,S16}. Please note that we use the terms natural for "outdoor, natural" and urban
for "outdoor, man-made" in the remainder of this thesis.

3.2.3.2 Geolocation Estimation

In this section, several approaches based on CNNs for unrestricted planet-scale geolocaliza-
tion are introduced. First, we present a baseline approach that is trained without using
scene information and multiple geographical partitionings. In the following, we describe
how the information for different geospatial resolutions as well as environmental concepts
are integrated into the training process. In this context, two different approaches using
environmental scene labels are proposed. An overview is provided in Figure 3.7.

Baseline: We first introduce a baseline system that does not rely on information about the
environmental setting and different geospatial resolutions to evaluate the impact of the sug-
gested approaches for geolocalization. Therefore, we generate a single geo-cell partitioning C
according to Section 3.2.2. For classification, we add a fully-connected layer with a softmax
activation function (Equation (2.5), page 32) on top of the "avg pool" layer (Table 2.2,
page 37) of the ResNet architecture [93], where the number of output neurons corresponds
to the number of geo-cells |C|. The cross-entropy geolocalization loss Lsinglegeo based on the
ground-truth cell label encoded in a one-hot vector y = 〈y1, y2, . . . , y|C|〉 ∈ {0, 1}|C| and the
predicted probability distribution ŷ = 〈ŷ1, ŷ2, . . . , ŷ|C|〉 ∈ R|C| is minimized during training:

Lsinglegeo (y, ŷ) = −
|C|∑
i=1

yi log ŷi (3.10)

Multi-Partitioning Variant: We propose to simultaneously learn geolocation estimation
at multiple geospatial resolutions, as also suggested by Vo et al. [267]. In contrast to the

20Places365 scene hierarchy: http://places2.csail.mit.edu/download.html
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baseline approach, we add a fully-connected layer with a softmax activation function for the
geographical cells of all p partitionings P = {C(1),C(2), . . . ,C(p)}. The multi-partitioning
classification loss Lmultigeo is calculated using the mean of the loss values Lsinglegeo for every
partitioning. Let y(j) ∈ {0, 1}|C(j)| and ŷ(j) ∈ R|C(j)| be the one-hot encoded ground truth
vector and the predicted probability distribution for geo-cell partitioning C(j), then the
multi-partitioning classification loss can be defined as follows:

Lmultigeo =
1

p

p∑
j=1

Lsinglegeo

(
y(j), ŷ(j)

)
(3.11)

As a consequence, the CNN can learn geographical features at different scales resulting in a
more discriminative classifier. However, in contrast to Vo et al. [267], we further exploit the
hierarchical knowledge for the final prediction. The details are presented in Section 3.2.3.3.

Individual Scenery Networks (ISNs): Given a set of scenes S ∈ {S3, S16,S365}, In-
dividual Scenery Networks (ISNs) for every scene s ∈ S are trained in a first attempt to
incorporate context information about the environmental setting for photo geolocalization.
For each photograph, we extract the scene probabilities ŷS using the scene classification ap-
proach presented in Section 3.2.3.1. During the training, every image with a probability ŷSi
for a scene s ∈ S with index i greater than a threshold of ŷSi > τS is used as input for
the respective ISNs. It can be optimized using a single or multiple geographical cell par-
titionings. Following this approach offers the advantage that the network is solely trained
on photos depicting specific environmental scenarios. It significantly reduces the diversity
in the underlying data space and enables the network to learn more specific features. On
the contrary, it is necessary to train individual models for each scene concept, which is hard
to manage if the number of different concepts |S| is large. For this reason, we suggest fine-
tuning a model, which was initially trained without scene restriction, with images of the
respective environmental category.

Multi-task Network (MTN): Since the aforementioned method for geolocation estima-
tion may become infeasible for many different environmental concepts, we aim for a more
practicable approach using a network that treats photo geolocalization and scene recognition
as a multi-task problem. We simultaneously train two classifiers for these complementary
tasks in order to encourage the network to distinguish between images of different environ-
mental scenes. Adding another (complementary) task has proven to be efficient in improv-
ing the results of the main task [34, 112, 216, 310]. More specifically, an additional fully-
connected layer with a softmax activation function on top of the "avg pool" layer (Table 2.2,
page 37) of the ResNet architecture [93] is used. Given a set of scenes S ∈ {S3, S16,S365},
the number of output neurons of this layer corresponds to the amount of scene categories |S|.
The weights of all other layers in the network are shared. In addition, the scene loss Lscene
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based on the ground-truth one-hot vector yS ∈ {0, 1}|S| and the scene probabilities ŷS ∈ R|S|

is minimized using the cross-entropy loss. The total loss of the Multi-Task Network (MTN)
is defined by the sum of the geographical and scene loss Ltotal = Lscene+Lgeo, where the geo-
graphical loss Lgeo can refer to both the single cross-entropy loss Lsinglegeo or multi-partitioning
cross-entropy loss Lmultigeo .

3.2.3.3 Predicting Geolocations using Hierarchical Spatial Information

In order to estimate the GPS coordinate from the classification output, we apply the trained
models from Section 3.2.3.2 on three evenly sampled crops of a given query image according
to its orientation. Afterward, the mean of the resulting class probabilities of each crop is
calculated. Please note that an additional step for testing is necessary for the ISNs. In this
case, the scene label s ∈ S with the maximum probability is predicted to feed the image into
the respective ISNs for geolocalization.

Standard Geo-Classification: Without relying on hierarchical information, we solely
use the probabilities ŷ(i) of one given geo-cell partitioning C(i). In this regard, we assign
the class label with the maximum probability to predict the geographical cell. Applying the
multi-partitioning approach in Section 3.2.3.2, we can obtain p class probabilities at different
geospatial resolutions. In our opinion, the probabilities at all scales should be exploited to
enhance the geolocalization and to combine the capabilities of all partitionings.

Hierarchical Geo-Classification: A fixed threshold parameter τmin for the adaptive
partitioning of the Earth explained in Section 3.2.2 is applied to ensure that every geo-
graphical cell in the finest representation can be uniquely connected to a larger parent area
in an upper level. As a result, we are able to generate a geographical hierarchy from the par-
titionings of varying granularity. Inspired by the hierarchical object classification approach
from YOLO9000 [210], we multiply the respective probabilities at each level of the hierarchy.
Consequently, the prediction for the finest subdivision can be refined by incorporating the
knowledge of coarser representations.

Class2GPS: Depending on the predicted class, we extract the GPS coordinates of the
given query image. In contrast to Weyand et al. [279], we use the mean location of all
training images assigned to the predicted cell instead of the geographical center. This
approach is more precise for regions containing an interesting area where the majority of
photos are taken. Imagine a geographical cell centered around an ocean and a city that is
located at the cell boundary. In this example, the error using the geographical center would
be very high, even if it is clear that the photo was most likely taken in the city.
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3.2.4 Experimental Setup & Results

In the following section, the experimental setup, system parameters, and implementation
details are introduced (Section 3.2.4.1 to Section 3.2.4.5). Subsequently, the different system
parameters are evaluated in detail (Section 3.2.4.6 to Section 3.2.4.8), and a comparison to
the state of the art is conducted (Section 3.2.4.9).

3.2.4.1 Training Data

A subset of the Yahoo Flickr Creative Commons 100 Million dataset (YFCC100M) [258]
is used as input data for our approach. This subset was introduced for the MediaEval
Placing Task 2016 (MP16) [131] and includes around five million geo-tagged images21 from
Flickr without any restrictions. The dataset contains ambiguous photos of, e.g., indoor
environments, food, and humans for which the location is difficult to predict. Like Vo et
al. [267], we exclude images from the same authors as in the test datasets, which we use for
evaluation. A ResNet model [93] is used, which has been pre-trained on the ILSVRC 2012
dataset [58, 218] to avoid duplicate images by comparing the resulting feature vectors from
the last pooling layer. Overall, our training dataset consists of 4,723,695 images.

3.2.4.2 Parameters for the Adaptive Partitioning using S2 Cells

As explained in Section 3.2.3.3, we choose a constant value of τmin = 50 (according to
PlaNet [279]) as the minimum threshold for the adaptive partitioning to enable the hier-
archical classification approach. Our goal is to train the geolocation at multiple geospatial
resolutions. Therefore, the following maximum thresholds τmax ∈ {1,000; 2,000; 5,000} are
used. We select these thresholds because the MP16 dataset has approximately 16 times
fewer images than PlaNet [279], and we aim to produce around

√
16 fewer classes (PlaNet

has 26,263 cells) at the middle representation. Since we want to show how fine and coarse
representations can be efficiently combined, the other thresholds are specified to produce
circa two times more and fewer classes than the middle representation. The resulting number
of classes |C| for different partitionings are shown in Table 3.4.

3.2.4.3 Scene Classification Parameters

The performance of the environmental scene classification (Section 3.2.3.1) is evaluated on
the Places365 validation dataset [315] containing 36,500 images (100 for each scene). In
Table 3.5, results for the different scene hierarchy levels are reported. The quality of the
scene classification is crucial for the ISNs presented in Section 3.2.3.2 because it defines the
underlying data space. Since the top-1 accuracy of 91.50 % already provides a good basis, we

21Available at: http://multimedia-commons.s3-website-us-west-2.amazonaws.com

77

http://multimedia-commons.s3-website-us-west-2.amazonaws.com


3 Information Extraction from Photos

Table 3.4: Number of geographical cells |C|
for Earth partitionings with dif-
ferent thresholds τmin and τmax

Partitioning C τmin τmax |C|

coarse 50 5,000 3,298
middle 50 2,000 7,202
fine 50 1,000 12,893

Table 3.5: Top-1 and Top-5 accuracy on the
Places365 validation set [315] us-
ing scenes of different granularity

Scene Set Top-1 Top-5

S3 91.5 % —
S16 72.1 % 97.1 %
S365 45.7 % 77.3 %

focus on a set of three scene concepts S3 = {indoor,natural, urban}. Furthermore, this limits
the number of ISNs to a feasible number of three concepts. We suggest applying a small
threshold of τS = 0.3. Admittedly, this selection is somewhat arbitrary, but we intend to use
images with similar scene probabilities as input for each ISN. This parameter selection can be
especially useful for images depicting rural areas because they share visual information like
architecture as well as flora and fauna that are beneficial for both environmental categories,
urban and natural. The scene filtering yields a total of around 1.80 million, 1.42 million,
and 2.34 million training images for the concepts indoor, natural, and urban, respectively.

3.2.4.4 Network Training

The proposed approaches are trained using a ResNet architecture [93] with 101 convolutional
layers (Table 2.2, page 37). The weights are initialized by a model pre-trained on the
ILSVRC 2012 dataset [58, 218]. The data is augmented by randomly selecting an area
covering at least 70 % of the image with an aspect ratio R between 3/4 ≤ R ≤ 4/3 to
avoid overfitting. Furthermore, the input images are randomly flipped and subsequently
cropped to 224×224 pixels. We use the SGD optimizer with an initial learning rate of 0.01,
a momentum of 0.9, and a weight decay of 0.0001. The learning rate is exponentially
lowered by a factor of 0.5 after every five training epochs. We initially train the networks
for 15 epochs and a batch size of 128. We validate the CNNs on 25,600 images of the
YFCC100M dataset [258].

As described in Section 3.2.3.2, it could be beneficial to fine-tune the ISNs based on a
model that was initially trained without scene restriction. For a fair comparison, all models
are therefore fine-tuned for five epochs or until the loss on the validation set converges.
In this regard, the initial learning rate is decreased to 0.001. Finally, the best model on
the validation set is used for conducting the experiments. The implementation is realized
using the TensorFlow library [1] in Python. The trained models and all necessary data to
reproduce our results are available at: https://github.com/TIBHannover/GeoEstimation
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Table 3.6: Notations of the geolocalization approaches. T denotes whether the network was
trained with a single/lone (L) or multiple (M) partition(s). C ∈ {c,m, f} indicates
which cell partition (coarse (c), middle (m), fine (f)) is used for classification. If
C is denoted with a star (*), the hierarchical classification is utilized.

Notation Description

base (T,C) Baseline trained without scene information
ISNs (T,C,S3) Individual Scenery Networks using the scene set S3
MTN (T,C,S) Multi-Task Network using a scene set S ∈ {S3,S16, S365}

3.2.4.5 Test Setup

We evaluate our approaches on two public benchmarks datasets for geolocation estimation.
The Im2GPS test dataset [89] contains 237 photos, where 5 % depict specific tourist sites
and the remaining are only recognizable in a generic sense. Because this benchmark is very
small, Vo et al. [267] introduced a new dataset called Im2GPS3k that contains 3,000 images
from Im2GPS (2,997 images are provided with a GPS tag and used for testing). The Great
Circle Distance (GCD) between the predicted and ground-truth image location is calculated
for evaluation. As suggested by Hays and Efros [89], we report the geolocalization accuracy
as the percentage of test images predicted within a certain distance to the ground-truth
location. The notations of the proposed approaches are presented in Table 3.6. The most
significant results using the suggested multi-partitioning and scene concepts for geolocal-
ization, as well as a comparison to the state-of-the-art methods, are given in the related
sections. A complete list of results is provided in Appendix A.2.

3.2.4.6 Evaluating the Multi-Partitioning Approach

The results for the baseline and the multi-partitioning approach are displayed in Figure 3.8.
Surprisingly, no significant improvement using multiple partitionings can be observed for the
Im2GPS test dataset. However, it is clearly visible that the results, especially for the fine
partitioning, have improved for the Im2GPS3k dataset, which is more representative due
to its larger size. The results demonstrate that the network is able to incorporate features
at different geospatial resolutions and use this knowledge to learn a more discriminative
classifier. A similar observation was made in the latest Im2GPS approach [267]. However,
by exploiting the hierarchical knowledge at different geospatial resolutions, the localization
accuracy can be indeed further increased. Figure 3.9 shows that the geolocation of the photo
is predicted with a higher accuracy using the coarse and middle partitioning compared to
the finest representation. Unfortunately, these coarser partitionings do not fully exploit
the network capabilities in terms of geospatial resolution. However, the use of hierarchical
information can refine the prediction at the finest resolution leading to a more accurate
estimation of the photo’s GPS position. Referring to the supplemental material and the
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base (L,C) vs. base (M,C) on the Im2GPS test dataset for C ∈ {c,m, f, f∗}
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Figure 3.8: Comparison of the geolocation approaches trained with and without multiple
partitions for geo-cell partitionings C of varying granularity on the Im2GPS (top)
and Im2GPS3k (bottom) test set. First mentioned approach base (L,C) is used
as reference and its accuracy [%] is denoted in the middle of the x-axis.

coarse (GCD: 1,366 km)

middle (GCD: 172 km)

fine (GCD: 5,305 km)

hierarchical (GCD: 50 km)

GT-Location
Latitude: 34.0652
Longitude: -5.0001

Photo by Jorge Díaz
(CC BY-NC-SA 2.0)

Figure 3.9: Prediction (yellow triangle) using outputs of different partitionings as well as the
hierarchical result compared to the ground truth (GT) location (green circle).

next section, it is worth mentioning that the ISNs greatly benefit from the knowledge at
multiple geospatial resolutions. The results on both datasets improve drastically while using
the multi-partitioning approach.

3.2.4.7 Evaluating the Individual Scenery Networks

We apply the scene classifier introduced in Section 3.2.3.1 to extract the scene labels for all
test images to evaluate the performance for specific environmental settings. The resulting
number of images for every scene is presented in Table 3.7. Due to the low number of im-
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Table 3.7: Number of images for the
Im2GPS and Im2GPS3k geolo-
calization benchmarks depicting
different scene concepts in S3

Scenes Im2GPS Im2GPS3k

all 237 2,997

indoor 19 545
natural 80 845
urban 138 1,607

Table 3.8: Top-1 and Top-5 scene classifi-
cation accuracies on the valida-
tion set of the Places365 bench-
mark [315] for different MTNs

Network Top-1 Top-5

MTN (L, f,S3) 92.0 % —
MTN (L, f,S16) 71.7 % 97.5 %
MTN (L, f,S365) 46.0 % 76.5 %
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base (M,f*) vs. ISNs (M,f*,S3) on the Im2GPS3k test dataset

-2.5 +2.5

1

25

200

750

2,500

G
C

D
th

re
sh

ol
d

[k
m

]

7.9

14.3

16.9

26.2

50.3

indoor -2.5 +2.5

3.3

17.5

32.0

46.3

61.7

natural -2.5 +2.5

13.8

36.3

43.9

58.4

73.6

urban -2.5 +2.5

9.7

27.0

35.6

49.1

66.0

overall

Figure 3.10: Comparison of the Individual Scenery Networks (ISNs) to the baseline ap-
proaches for different environmental scene concepts. First mentioned approach
is used as reference and its accuracy [%] is denoted in the middle of the x-axis.

ages in the Im2GPS test dataset, we analyze the performance of the ISNs on the Im2GPS3k
dataset. However, referring to Table 3.10 and the supplemental material, similar observa-
tions can be made for Im2GPS. The geolocation results do not improve when restricting
a single-partitioning network to specific concepts (Figure 3.10). On the other hand, using
a multi-partitioning approach with scene restrictions noticeably improves geolocation es-
timation, particularly for urban and indoor photos. One possible explanation is that the
intra-class variation for coarser subdivisions with more images in larger areas is reduced.
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base (M,f*) vs. MTN (M,f*, S3) on the Im2GPS3k test dataset
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Figure 3.11: Comparison of the Multi-Task Network (MTN) to the baseline approach for
different scene concepts. First mentioned approach is used as reference and its
accuracy [%] is denoted in the middle of the x-axis.

Therefore, the network can learn specific features for the respective scene concept. The best
results are achieved for urban images, which is intuitive since they often contain relevant
cues for geolocation. It is also not surprising that the performance of indoor photos is the
lowest among all scene concepts since the images can be ambiguous. For this reason, Weyand
et al. [279]) (PlaNet) even disregard indoor images for geolocation estimation. Despite only
1.42 million natural images are available to cover the huge diversity of very different scenes
like beaches, mountains, and glaciers, we were able to improve the performance for this
concept. We argue that the respective ISN mainly benefits from the hierarchical informa-
tion because it enables the encoding of more global features such as different climatic zones.
Overall, the results for nearly all GCD thresholds and scene categories show that geolocation
estimation benefits from training with specific scene concepts.

3.2.4.8 Evaluating the Multi-Task Network

We investigate the performance of the MTN regarding environmental scene classification (Ta-
ble 3.8) and geolocation estimation (Figure 3.11). Although the results show that the MTN
is able to learn both tasks simultaneously, geolocalization does not benefit from learning an
additional task no matter which model configuration we analyze. The results indicate that
reducing the diversity in the underlying data space is more important for the estimation of
GPS coordinates of photos. Regarding environmental scene classification, similar results are
achieved compared to the provided model of the Places365 dataset (Table 3.5).

3.2.4.9 Comparison to the State of the Art

In this section, we compare our proposed solutions to state-of-the-art baselines from the liter-
ature. However, these baselines use different network architectures and (number of) training
images (Im2GPS [267] also use additional retrieval datasets) that significantly impact the
performance. For a fair comparison, we have summarized the most important parameters
in Table 3.9. Regarding the number of training images, our approaches are comparable to
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Table 3.9: Parameters used by approaches for geolocation estimation, including the number
of training images (IT ), reference images (IR), and CNN architecture. The results
of the respective CNN architectures for object recognition on ILSVRC-2012 serve
as a reference to evaluate the overall network performance and are taken from:
https://pytorch.org/vision/stable/models.html

Method IT IR CNN ILSVRC 2012
Top-1 Top-5

Im2GPS [267]
• [L] 7011C 6M [89] – VGG-16 [235] 71.6 % 63.7 %
• [L] kNN,σ = 4 6M [89] 6M [89] VGG-16 [235] 71.6 % 90.4 %
• ... 28m database 6M [89] 22M [258] VGG-16 [235] 71.6 % 90.4 %

PlaNet (6.2M) [279] 6.2M [279] – Inception v3 [251] 77.3 % 93.5 %
PlaNet (91M) [279] 91M [279] – Inception v3 [251] 77.3 % 93.5 %

PlaNet (rep. by [229]) 30.3M [229] – Inception v3 [251] 77.3 % 93.5 %
CPlaNet (best) [229] 30.3M [229] – Inception v3 [251] 77.3 % 93.5 %

MvMF (best) [111] 6M [230] – Wide ResNet-50 [300] 78.5 % 94.1 %

Our models 4.7M [131] – ResNet-101 [93] 77.4 % 93.5 %

Im2GPS [L] 7011C [267], PlaNet (6.2M) [279], and MvMF [111]. The remaining PlaNet vari-
ants and CPlaNet [229] can be considered as equivalent at a larger scale. Unlike Im2GPS,
which uses a less powerful VGG-16 [235], the baselines use CNN architectures with compa-
rable performances for object recognition on the ILSVRC 2012 dataset [58, 218].

The results for geolocation estimation on the Im2GPS and Im2GPS3k test datasets are
presented in Table 3.10. It is evident that our proposed solutions outperform the current
state-of-the-art methods. Interestingly, our baseline approach base (L,m) already signifi-
cantly outperforms its equivalents, i.e., Im2GPS [L] 7011C and PlaNet (6.2M), which are
trained with a similar number of images and classes using a single partitioning of the Earth.
For this reason, we investigate the influence of the ResNet architecture [93] used in our
approach. Therefore, we train the system base (L,m) with the VGG-16 network [235] used
in Im2GPS [267]. The result is denoted with base-vgg (L,m) and shows that the main
improvement is explained by the more powerful ResNet architecture. As in PlaNet and
Im2GPS [L] 7011C, the system base-vggc (L,m) uses the geographical center of the pre-
dicted cell as location instead of the mean GPS coordinate of all images that we suggested
in Section 3.2.3.3. Using the mean coordinate already improves the performance on street
and city levels noticeably. As described in the previous sections, the geolocalization can be
further increased by training the CNN with multiple partitionings and exploiting the hier-
archical knowledge at all geospatial resolutions. Best results were obtained when combining
the ISNs with the hierarchical approach trained with images of a specific environmental
scene concept. Overall, we achieved state-of-the-art results even compared to baselines that
use significantly more training images or additional retrieval datasets on both benchmarks.
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Table 3.10: Results on the Im2GPS (top) and Im2GPS3k (bottom) test datasets. The
fraction of photos localized within various distances to the actual photo location
using the Great Circle Distance (GCD) are reported [%]. According to Vo et
al. [267], Human* performance was averaged from 30 Amazon Mechanical Turk
workers over 940 trials and might not be directly comparable.

Im2GPS Test Dataset – 237 Photos

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

Human* [267] 3.8 % 13.9 % 39.3 %

Im2GPS [267]
• [L] 7011C 6.8 % 21.9 % 34.6 % 49.4 % 63.7 %
• [L] kNN,σ = 4 12.2 % 33.3 % 44.3 % 57.4 % 71.3 %
• ... 28m database 14.4 % 33.3 % 47.7 % 61.6 % 73.4 %

PlaNet (6.2M) [279] 6.3 % 18.1 % 30.0 % 45.6 % 65.8 %
PlaNet (91M) [279] 8.4 % 24.5 % 37.6 % 53.6 % 71.3 %

PlaNet (reprod. by [229]) 11.0 % 31.2 % 37.6 % 64.6 % 81.9%
CPlaNet (best) [229] 16.5 % 37.1 % 46.4 % 62.0 % 78.5 %

MvMF (best) [111] 8.4 % 32.6 % 39.4 % 57.2 % 80.2 %

base-vggc (L,m) 7.6 % 22.8 % 35.0 % 50.6 % 66.7 %
base-vgg (L,m) 8.9 % 26.6 % 36.7 % 50.6 % 65.8 %
base (L,m) 13.5 % 36.3 % 50.6 % 64.1 % 79.7 %
base (M,m) 13.5 % 35.0 % 49.8 % 64.1 % 79.7 %
base (M,f*) 15.2 % 40.9 % 51.5 % 65.4 % 78.5 %

ISNs (M,f*,S3) 16.9% 43.0% 51.9% 66.7% 80.2 %

Im2GPS3k Test Dataset – 2,997 Photos

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

Im2GPS [267]
• [L] 7011C 4.0 % 14.8 % 21.4 % 32.6 % 52.4 %
• [M ] 7011C 3.7 % 14.2 % 21.3 % 33.5 % 52.7 %
• kNN, σ = 4 7.2 % 19.4 % 26.9 % 38.9 % 55.9 %

PlaNet (reprod. by [229]) 8.5 % 24.8 % 34.3 % 48.4 % 64.6 %
CPlaNet (best) [229] 10.2 % 26.5 % 34.6 % 48.6 % 64.6 %

base-vggc (L,m) 4.2 % 14.6 % 22.2 % 34.4 % 54.2 %
base-vgg (L,m) 4.8 % 16.5 % 22.6 % 34.5 % 54.4 %
base (L,m) 8.3 % 24.9 % 34.0 % 48.8 % 65.8 %
base (M,m) 8.2 % 25.5 % 35.1 % 48.7 % 65.2 %
base (M,f*) 9.7 % 27.0 % 35.6 % 49.2 % 66.0%

ISNs (M,f*,S3) 10.5% 28.0% 36.6% 49.7% 66.0%
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3.2.5 Demonstrator

We have developed a web demonstrator of our system to make our approach accessible to a
broad audience. Figure 3.12 shows a screenshot of the demonstrator. It is publicly available
as a lab service of the Leibniz Information Centre for Science and Technology (TIB) under
the following link: https://labs.tib.eu/geoestimation

The demonstrator allows users to either upload a photo to estimate its geolocation or
compete with the proposed approach for geolocation estimation on a subset of images from
Im2GPS [89] with Creative Commons licenses. Once an image has been selected, the user
can place a marker on the world map to guess the geolocation of the photo. After pressing
the button "Guess Location", the results of the proposed ISNs (M,f*,S3) are computed and
presented on the world map. In this context, markers of different colors (see legend below the
world map) are used to indicate the prediction of the user and the proposed approach as well
as to indicate the ground-truth location. The distances of the user and model prediction to

Figure 3.12: Screenshot of the demonstrator for geolocation estimation. The location of
the photo shown on the left side is estimated by the user (blue marker) and
the proposed ISNs (M,f*,S3) (gray marker). The GCD to the ground truth
location (yellow marker) is shown in the "Result" box.
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the ground-truth location are presented once the calculation has finished. Besides, the world
map is overlaid with a geographical heat map, where the regions colored in red represent the
most likely locations of the photo according to the proposed model. This visualization allows
some degree of explainability of the model’s output. In addition, the class activation map
of the predicted geographical cell is computed using the approach from Zhou et al. [314] to
visualize the photo parts that contributed most to the decision (not shown in the screenshot
for better visibility of the photo).

As mentioned in Section 1.6, the geolocalization approach has attracted attention in the
media and was or will be presented as an exhibit at several exhibitions.

3.2.6 Summary

In this section, several deep learning approaches for planet-scale photo geolocation estima-
tion have been presented. As suggested by previous solutions, we have treated geolocation
estimation as a classification task by subdividing the Earth into geographical cells. A multi-
partitioning approach has been proposed that combines hierarchical information from various
geospatial resolutions. Moreover, scene information has been exploited to incorporate con-
text about the environmental setting (e.g., indoor, natural, and urban) into a CNN model.
Experimental results on two benchmarks have demonstrated that our framework improves
the state of the art in estimating the GPS coordinates of photos. We have shown that the
CNN can learn specific features for the different environmental settings and geospatial res-
olutions, yielding a better classifier for geolocalization. Best results were achieved when the
hierarchical approach was combined with scene classification. In contrast to previous work,
the proposed framework neither relies on an exemplary dataset for image retrieval [89, 90,
267] nor a training dataset consisting of several tens of millions of images [229, 279].

Overall, the experiments demonstrated that deep learning approaches can accurately es-
timate photo locations, especially for outdoor photos, when given enough and unambiguous
geographical cues. For this reason, we conclude that CNNs provide rich geographic features
that can be used to measure the cross-modal consistency of locations in news articles and
other multimedia content. A corresponding system and study are provided in Chapter 4.

In the future, we intend to investigate how other contextual information like cultural,
climatic, or economic aspects as well as from specific objects, daytimes, and seasons can
be exploited to improve geolocalization. Moreover, we plan to leverage information from
geographic databases such as OpenStreetMap (https://www.openstreetmap.org) to create
partitions based on territorial borders (e.g., countries, cities), natural geological bound-
aries (e.g., rivers, mountains), or man-made barriers (e.g., roads, railways, or buildings)
that better reflect location entities mentioned in the media [257].
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3.3 Date Estimation of Historical Photos

Date estimation of photos is an interesting and challenging task with many applications. For
example, semantic search and multimedia retrieval can be leveraged by historians, archivists,
or even to sort (digitized) personal photo collections chronologically. Moreover, news articles
on the World Wide Web typically refer to specific events, points in time, or time periods
to provide temporal information to the reader. Consequently, temporal information offers
essential cues to quantify relations between image and text. However, as mentioned in
Section 1.2, only a few approaches [72, 77, 189, 221] have been presented that aim to estimate
the capturing time of (historical) images, but they simplify the task of date estimation.
Some approaches focus on specific concepts like cities [227], cars [133], persons [77, 221],
or historical documents [94, 139] and therefore cannot learn the temporal differences of the
wide variety of motifs. Other approaches use color features [72, 154, 189] to model the
developments in color photography. Thus, they rely on historical color photographs, which
were uncommon before the 1970s. Alternatively, solutions on timestamp verification [52,
117, 137, 187, 220] check the month and daytime information claimed in the metadata of
a photograph. However, these solutions cannot predict in which year a photo was taken
and use meteorological features [52], sun azimuth angles [117, 137], or satellite images [187,
220] for verification, which limits them to outdoor photos. These restrictions limit potential
applications, and due to the absence of large-scale training datasets for date estimation,
previous work has not yet exploited the potential of deep learning models to solve this task.

In this section, we introduce a novel dataset called Date Estimation in the Wild (Sec-
tion 3.3.2). Unlike previous datasets, it contains more than one million photos (black-
and-white and color) from Flickr captured in the period from 1930 to 1999. As shown in
Figure 3.13, the dataset covers a broad range of domains, e.g., city scenes, family photos,
nature, and historical events. Two baseline approaches are proposed using a deep CNN (in
this case, a GoogLeNet architecture [251]), treating the task of dating images as a classifi-
cation and regression problem, respectively. Experimental results have shown the feasibility
of the suggested approaches, which are superior to annotations of untrained humans.

The remainder of this section is structured as follows. Related work on date estimation is
reviewed in Section 3.3.1. The proposed Date Estimation in the Wild dataset is presented in
Section 3.3.2. In Section 3.3.3, two baseline approaches are proposed. Experimental results
on date estimation and a comparison to human annotations are provided in Section 3.3.4.
Section 3.3.5 contains a summary and outlines potential directions of future work.

3.3.1 Related Work

In this section, we briefly review related work on date estimation. As previously mentioned,
solutions for metadata verification use meteorological features (e.g., temperature, humidity,
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Figure 3.13: Some example images from the Date Estimation in the Wild dataset

or weather conditions) [52], the sun azimuth angle estimated from shadow angles as well as
the appearance of the sky [117, 137], or visual attributes from satellite images [187, 220] to
verify the claimed timestamp of a photo. However, these approaches are limited to outdoor
photos and only verify the month and time of day information without considering the year
the photo was taken. The first work that deals with dating historical images from different
decades has been introduced by Schindler et al. [227]. The authors present an approach to
sort a collection of city-scape images temporally by reconstructing the 3d-world, requiring
many overlapping images of the same location. Lee et al. [133] identify style-sensitive groups
of patches for cars and street view images in order to model stylistic differences across time
and space. He et al. [94] and Li et al. [139] address the task of estimating the age of historical
documents. While He et al. [94] explore contour and stroke fragments, Li et al. [139] apply
CNNs in combination with optical character recognition. Ginosar et al. [77] and Salem et
al. [221] model the differences in human appearance and clothing style in order to predict
the year of photos that depict people in school yearbooks.

More closely related to the scope of this thesis, Palermo et al. [189] suggest an approach to
automatically estimate the age of historical color photos without restrictions to specific con-
cepts. They combine different color descriptors to model the historical color film processes.
The results on the proposed dataset, which contains 1,375 images from 1930 to 1980, are
further improved by Fernando et al. [72] by including color derivatives and angles. Martin
et al. [154] treat date estimation as a binary task by deciding whether an image is older
or newer than a reference image. Ahmed et al. [7] have proposed a similar approach and
trained a CNN that estimates the acquisition date by predicting a timeline based on images
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with known temporal order from the same source (i.e., digital camera). Ashida et al. [21]
have used our Date Estimation in the Wild Dataset presented in this section and proposed
a rank-consistent ordinal classification scheme. In addition, they showed the effectiveness of
combining global image features from the entire input image and object-specific temporal
features from frequent concepts, such as cars or people, for date estimation. This direction
was also suggested as future work (Section 3.3.5) of our previous publication [179].

Overall, the works proposed for this research area are limited to dating historical color
photos [72, 154, 189], require pictures from the same source [7], or simplify the task of date
estimation to photographs of specific concepts [77, 94, 133, 139, 221, 227], which limits
potential applications.

3.3.2 Date Estimation in the Wild Dataset

To overcome the existing limitations, we introduce the Date Estimation in the Wild dataset
that is neither restricted to specific concepts nor to historical color photographs. The Flickr
Application Programming Interface (API) was used to download photos for each year from
1930 to 1999. We have observed that many historical images are supplemented with time
information, either in the title or in the related tags and descriptions. Therefore, we used
the specified year as an additional query term to reduce the number of irrelevant images
that were not captured in the queried year. The only kind of filtering that we applied was
restricting the web search to photos. As a consequence, the dataset contains some irrelevant
photos, for example, close-ups of plants or animals as well as historical documents. In order
to avoid a bias towards more recent images, the maximum number of images per year was
limited to 25,000. Finally, the dataset consists of 1,029,710 images with a high diversity
of concepts, as shown in Figure 3.13. Information about the granularity g ∈ {0, 4, 6, 8}
according to the Flickr annotation of the date entry is stored as well. The distribution of
images per year and the related granularity of dates are visualized in Figure 3.14.

A maximum number of 75 unique images for 1930 to 1954 and 150 unique images for
the remaining years were extracted to obtain reliable validation and test sets that match
the dataset distribution. A unique image is defined as an image with a date granularity of
g = 0 (Y-m-d H:i:s) or g = 4 (Y-m), for which no visual near-duplicates exist in the entire
dataset. The near-duplicates are detected by comparing the visual features extracted from
the last pooling layer of a GoogLeNet pre-trained on the ILSVRC 2012 dataset [58, 218] of
all images using the Euclidean distance. We consider all images with a Euclidean distance
of 15 or lower to another image as near-duplicates. Subsequently, 8,495 unique images were
extracted for the validation set, and another 16 per year were selected manually to obtain
a reliable test dataset comprising 1,120 images. The remaining 1,020,095 images constitute
the training set. The dataset22 is available at https://doi.org/10.22000/0001abcde.

22Images or links (depending on the copyright status) and metadata are provided.
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Figure 3.14: Number of crawled images and the accuracy (granularity g) of the provided
timestamps for each year in the Date Estimation in the Wild dataset

3.3.3 Deep Learning Models for Date Estimation

Two baseline approaches are realized that train a CNN architecture by treating image date
estimation as a regression (Section 3.3.3.1) or classification problem (Section 3.3.3.2).

3.3.3.1 Regression Model

Intuitively, date estimation is a regression task where the network should predict the ground
truth acquisition year of a photograph. Therefore, a fully-connected layer with a single
neuron (no activation function applied) is added on top of a CNN architecture that outputs
an estimated acquisition year. As the dataset contains images captured between 1930 and
1999, the bias of this neuron is initialized with 1975, which corresponds to the middle year
of this time period. During training, the Euclidean distance between the predicted â and
ground-truth acquisition year a is minimized to learn the network weights:

Leuc =

√
(a− â)2 (3.12)

However, as shown in Figure 3.14, the dataset contains fewer photographs for some ac-
quisition years, particularly before 1960. Besides, images of a particular year can relate to
specific historical events, which can introduce a dataset bias leading to less accurate models.
To alleviate this problem, we propose a classification model that uses a larger number of
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images for different time periods. Besides, it has been proven that transforming a regres-
sion problem into a classification problem can yield better results, e.g., for depth [75] or
geolocation estimation [279].

3.3.3.2 Classification Model

As mentioned in the last section, CNNs benefit from a larger number of images per class
or, in our case, acquisition year to learn appropriate models and prevent possible bias.
However, the proposed Date Estimation in the Wild dataset lacks images for the 1930s
to 1960s (Figure 3.14). For this reason, we assign the image acquisition years to 5-year
periods (1930 – 1934, 1935 – 1939, . . . , 1995 – 1999) to treat date estimation as a classi-
fication problem with lower complexity and more samples per class while still maintaining
a good temporal resolution. As a result, c = 14 time periods are extracted that are used
as classes. Based on the ground truth acquisition year a, we generate a one-hot encoded
vector y = 〈y1, y2, . . . , y14〉 ∈ {0, 1}14 that indicates the corresponding time period. A fully-
connected layer with softmax activation function (Equation (2.5)) and c = 14 neurons is
added on top of a CNN architecture to calculate a probability vector ŷ = 〈ŷ1, ŷ2, . . . , ŷ14〉
with each entry ŷi ∈ [0, 1] and the same dimension. During training, the cross-entropy loss
between the ground-truth y and predicted vector ŷ is optimized:

L = −
c∑
i=1

yi log ŷi (3.13)

Inference: Unlike the regression-based approach, the classification model does not di-
rectly predict an acquisition year â. To estimate the acquisition year, the averaged network
outputs ŷ = 〈ŷ1, ŷ2, . . . , ŷ14〉 ∈ Rc for c = 14 classes are interpolated by:

â = 1930 +

⌊
0.5 +

1999− 1930

c− 1
·

c∑
i=1

(i− 1) · ŷi

⌋
, with

c∑
i=1

ŷi = 1. (3.14)

3.3.4 Experimental Setup & Results

Network parameters: A GoogLeNet [251] (explained in Section 2.2.4), which was ini-
tialized with pre-trained weights learned on the ILSVRC 2012 dataset [58, 218], was used
as network architecture for the proposed approaches. We randomly selected 128 images per
batch for training, which were scaled by the ratio 256/min(w, h), where w and h correspond
to the width and height of the image. For data augmentation, the training images were
horizontally flipped and cropped randomly to 224× 224× 3 pixels to match the input reso-
lution of the GoogLeNet. The SGD optimizer was employed using 1 million iterations with a
momentum of 0.9. For the classification approach, a learning rate of 0.001 was used. For the
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regression-based approaches, the base learning rate was reduced to 0.0001 to stabilize the
training. The learning rates were decreased by a factor of 2 every 100,000 iterations. The
weights of the fully-connected classification layer (see Table 2.1, page 34) were re-initialized,
and their corresponding learning rates were multiplied by 10 for faster training.

While testing, the images are scaled by the ratio 224/min(w, h), and three evenly sampled
regions (crops) of size 224×224 pixels depending on the images’ orientations are passed to the
trained model. The averaged network outputs of the three crops are used as the prediction
â for regression or ŷ for classification.

Metrics: In the experiments, the trained GoogLeNet models were applied to the test set.
In contrast to Palermo et al. [189], we do not report the classification accuracy for predicting
the correct 5-year period. For example, imagine that the ground-truth date of an image is
1989, and the model predicts the class 1990 – 1994. Although the difference is possibly only
one year, the prediction would be false in this case. For this reason, we argue that the
absolute mean error (ME) and the number of images with an absolute estimation error of
at most n years (EEn) are more meaningful for evaluation.

Human Performance: We conducted a user study to compare our approach to human
performances. Seven untrained annotators of different ages (from 26 to 58) were asked to
label all 1,120 test images and to take a break after each batch of 100 images. The average
human performance and the results of our baseline approaches are displayed in Table 3.11.

Results: The results clearly show the feasibility of our baselines, outperforming human
annotations in nearly all periods and reducing the mean error by more than three years on
the entire test set. Another observation is that there is a correlation between the number
of images and the results for each 5-year period. For this reason, an increased mean error
for images between 1930 to 1964 is noticeable. Besides, the potential error can be higher for
classes at the interval boundaries (1930 and 1999), which explains the slightly worse results
from 1990 to 1999. A similar observation can be made for human annotations since they
are more familiar with images, TV material, and their own experiences starting from 1960.
Interestingly, the human error is noticeably lower for images covering the period from 1940

and 1944, which frequently show scenes from World War II.

Despite the problem caused by the interval bounds of the entire time period, which affects
the interpolation step, the classification approach provides slightly better results than the
regression approach. This improvement is attributed to the easier task of minimizing the
classification loss of c = 14 classes compared to minimizing the Euclidean loss for regression.
Overall, the results confirm related studies in other computer vision areas such as depth [75]
or geolocation estimation [279] that have shown the superiority of classification approaches.
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Table 3.11: Absolute mean error (ME; lower is better) in years and number of images esti-
mated with an absolute estimation error [%] of at most n years (EEn; higher is
better). Results are reported for human annotators and the GoogLeNet classi-
fication (cls) and regression (reg) baselines on the Date Estimation in the Wild
test dataset regarding different 5-year periods from 1930 to 1999.

Period human performance GoogLeNet cls GoogLeNet reg
ME EE0 EE5 EE10 ME EE0 EE5 EE10 ME EE0 EE5 EE10

30 – 34 15.7 3.0 24.8 40.7 15.0 0.0 5.0 37.5 14.4 0.0 7.5 41.3
35 – 39 12.2 2.7 34.1 53.2 11.1 2.5 23.8 52.5 10.7 3.8 26.3 58.8
40 – 44 9.6 4.1 43.2 66.6 8.8 2.5 40.0 67.5 9.1 7.5 42.5 66.3
45 – 49 11.7 3.9 31.1 54.3 8.2 6.3 51.3 71.3 8.5 3.8 43.8 70.0
50 – 54 12.2 2.5 29.6 49.8 7.5 3.8 47.5 77.5 7.3 2.5 52.5 73.8
55 – 59 13.3 1.4 27.1 49.5 6.1 6.3 60.0 86.3 7.0 7.5 50.0 77.5
60 – 64 13.6 1.4 24.1 43.0 7.3 5.0 51.3 73.8 7.2 1.3 47.5 75.0
65 – 69 12.5 2.7 24.6 46.4 5.4 12.5 63.8 82.5 6.0 1.3 52.5 83.8
70 – 74 10.5 4.8 33.2 55.9 5.6 3.8 58.8 85.0 5.4 8.8 61.3 85.0
75 – 79 9.4 4.1 37.9 62.1 4.7 8.8 71.3 90.0 5.0 7.5 63.8 90.0
80 – 84 7.5 5.2 45.5 76.1 4.4 8.8 62.5 95.0 4.5 6.3 61.3 93.8
85 – 89 7.6 5.0 49.6 77.3 4.8 10.0 71.3 83.8 4.9 8.8 68.8 90.0
90 – 94 7.5 5.9 51.3 76.1 5.6 5.0 66.3 85.0 5.7 6.3 61.3 83.8
95 – 99 9.4 6.1 39.5 62.9 7.5 11.3 52.5 75.0 8.7 1.3 36.3 73.8

overall 10.9 3.8 35.4 58.1 7.3 6.2 51.8 75.9 7.5 4.7 48.2 75.9

3.3.5 Summary

This section has introduced a novel dataset entitled Date Estimation in the Wild to foster
research regarding the challenging task of photo date estimation. In contrast to previous
work, the dataset is neither restricted to color photographs nor specific concepts but includes
photos with a broad range of motifs for the period from 1930 to 1999. In a first attempt
to tackle this challenging problem, we have proposed two approaches relying on deep CNNs
to predict an image’s acquisition year, considering the task as a classification as well as a
regression problem. Both approaches achieved a mean error of fewer than eight years and
were superior to annotations of untrained humans.

Although the results have shown the superiority of deep learning approaches compared
to human annotators for the task of (historical) date estimation, the average error is quite
significant, and the exact date information (day, month, time of the day) cannot be extracted
with the proposed system. The system is also limited to photographs that were taken until
the year 1999. The low temporal resolution and year restriction might limit the potential
system applications, including the prediction of temporal information in contemporary news
articles. However, the approach can be used to assess temporal information in news articles
and multimedia content that cover historical events.
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In the future, it is planned to exploit different specific classifiers for frequent concepts,
such as persons or cars, to enhance the performance of our systems further. Besides, the
estimation of more recent acquisition years (after 1999) and fine-granular image dates (e.g.,
calendar day and daytime) will be investigated. However, this probably requires geographic,
economic, and cultural features since images taken at the same date can look quite different
depending on their location. For example, photos taken in high-populated cities such as New
York City require different temporal cues for date estimation compared to images captured
in rural areas of, e.g., South America.
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3.4 Person Identification in News Articles of the Internet
Archive

Person entities are an important aspect of news and other multimodal documents. Appro-
priate deep learning approaches are necessary to extract rich facial feature vectors to verify
the cross-modal occurrence of persons in joint placements of image and text. This section
presents a novel approach for person identification in image data of news articles extracted
from the Internet Archive (www.archive.org) to evaluate the capabilities of deep learning
models for facial feature extraction.

The World Wide Web contains billions of web pages and related multimedia content.
These web pages include valuable information for many academic and non-academic appli-
cations. Therefore, the Internet Archive and national (digital) libraries have been capturing
the (multimedia) web pages with time-stamped snapshots in large-scale archives since the
mid-1990s. The Internet Archive serves as a playground for researchers and analysts in
different domains such as digital humanities, politics, economics, and entertainment. One
of the main challenges is to make the available unstructured data, which is rarely enriched
with appropriate metadata, accessible and explorable by the users. For this reason, it is nec-
essary to develop (semi)-automatic content analysis systems to extract metadata that can
be subsequently used for semantic search and information visualization in order to provide
users with relevant information about a given topic.

As discussed in Section 2.3.3, many tools like AIDA [98], Agdistis [263], Babelfy [167,
181], and BLINK [281] for Named Entity Disambiguation (NED) have been introduced that
can be used to generate meta information from textual web content in order to, e.g., track
entities and their relations in web archives. Although these tools achieve good results, online
news articles are often complemented with photos. These photos potentially show additional
entities that might not be mentioned in the text. Furthermore, possible ambiguities could
be resolved using the photo content. Thus, photo and text are complementary, and their
combination can serve as a basis for a more complete and robust detection of entities.
While some approaches aim to find efficient solutions for person identification and object
classification in large-scale datasets [71, 169, 170, 269], approaches that exploit image or
video data in the Internet Archive are rare [171, 172].

This section presents an approach (illustrated in Figure 3.15) to identify persons and
their joint occurrences in the image content of news articles in large-scale web archives such
as the Internet Archive. It can be used by researchers and analysts to find and explore
media coverage and relations of persons of interest in a given domain, e.g., politics, sports,
or entertainment. We address various problems, such as how to automatically define which
entities should be considered in such a system and how they can be automatically verified
in large web collections. Example images are crawled for every entity using an image search
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Figure 3.15: Workflow of the proposed person identification approach. A CNN serves as
a generalized feature descriptor to obtain and filter features for a specified
dictionary of persons. These features are used to identify persons as well as
their relations in news articles gathered from the Internet Archive.

engine like Google Images. Due to irrelevant photos in the retrieved data of this web-based
approach, we investigate three strategies to improve the quality of the example dataset. A
state-of-the-art CNN is used to learn a robust feature representation to describe the facial
characteristics of the entities. Based on the example dataset, the deep learning model is
applied to identify the selected entities in the image content of news articles extracted from
the Internet Archive. The CNN for facial feature extraction is evaluated on the Labeled
Faces in the Wild (LFW) dataset [107]. Finally, we evaluate the performance of our system
by presenting two use cases along with appropriate graphical representations that visualize
the person relations extracted from the news articles. To the best of our knowledge, this is
the first approach to identify entities in the Internet Archive solely using image data.

The remainder of this section is organized as follows. Section 3.4.1 reviews related work on
face recognition. In Section 3.4.2, we introduce our deep learning system to identify persons
in the image content of the Internet Archive. Experimental results for the face recognition
approach and some use cases are presented in Section 3.4.3. Section 3.4.3.4 summarizes this
work and outlines areas of future work.

3.4.1 Related Work

Face recognition has been a well-studied computer vision task for decades, and the perfor-
mance has significantly improved since deep learning (Section 2.2.2) as well as huge public
data collections like CASIA-WebFace [295], Microsoft-Celebrity-1M (MS-Celeb-1M) [87], or
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VGGFace [47, 190] have been introduced. As stated by Jin and Tan [116], a face recognition
system relies on three modules for face detection, face alignment using facial landmark detec-
tors, and facial feature extraction. The remainder only focuses on facial feature extraction
based on deep learning approaches. Surveys including face and facial landmark detection
can be found in Jin and Tan [116], Ranjan et al. [208], and Wu and Ji [282].

Unlike many other image classification tasks, face recognition applications differentiate
between a high number of identities that are rarely covered completely by publicly available
training datasets. Thus, related work based on deep neural networks introduced new loss
functions like the contrastive loss [243, 244, 246, 247, 272, 295], triplet loss [62, 63, 190, 224,
228], center loss [60, 197, 278, 283, 308], and large margin loss [59, 147, 148, 271] to learn
robust face representation. These representations are used for face verification by compar-
ing facial features extracted from an image (or video) to exemplary images of each identity
of interest. Pose-variations, occlusions, and aging are among the main challenges in face
recognition as they drastically increase intra-class variations. Some approaches use 3d face
reconstruction [15, 157–159, 161], autoencoders [199, 291, 296, 319], or more recently Gen-
erative Adversarial Networks (GANs) [28, 29, 48, 234, 311] to synthesize new views (poses)
of the face in order to augment the training dataset and improve the robustness against pose
variations. Others instead frontalize faces using autoencoders [309, 318, 320] or GANs [108,
260, 297] to generate a normalized view, or alternatively use CNNs to directly learn a map-
ping for normalization [104, 316, 317]. Another widely applied technique to increase the
robustness against poses and occlusions is to use multi-input networks [63, 243–246, 292]
that use several image patches around facial landmarks as input to extract and combine
their features. As training data of individuals at a different age is rare, approaches on cross-
age face recognition suggest to, e.g., generate a face for a given age [17, 18, 275, 290] or
decompose aging and identity components to obtain age-invariant features [270, 277, 312].
Masi et al. [160] provide a more detailed overview that also includes many other variations
affecting face recognition, such as make-up or low-resolution images.

3.4.2 Person Identification in Archived Web News

In this section, a system for the identification of interesting persons in photos of archived
web news is introduced. First, a CNN is trained to learn robust facial representations (Sec-
tion 3.4.2.1). Subsequently, we describe a way to define a lexicon of persons and to au-
tomatically gather example images for them from the Web to build an entity dictionary
for a given domain like politics or entertainment (Section 3.4.2.2). For this purpose, we
explain how to reduce the amount of irrelevant data, i.e., photos that do not depict the
queried person, in the example dataset caused by the web-based image retrieval. Finally,
the proposed approach that identifies persons in image data retrieved from the Internet
Archive (Section 3.4.2.3). The workflow is illustrated in Figure 3.15.
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3.4.2.1 Learning a Feature Representation for Faces

A CNN is trained to learn facial representations for person identification in the subsequent
steps. Given a dataset of face images, such as MS-Celeb-1M [87] or CASIA-WebFace [295],
covering n individual persons, a model with n classes is trained for classification. During
training, the cross-entropy loss is minimized given the one-hot encoded vector y ∈ {0, 1}n

for the ground-truth class and predicted probability distribution ŷ of the model:

L = −
n∑
i=1

yi log(ŷi) . (3.15)

Removing the fully-connected layer that assigns probabilities to the pre-defined classes of
faces transforms the model into a generalized feature extractor. Thus, for a query image,
the model outputs a compact vector of facial features f . In this way, a query image can be
compared with the facial features of entities in the pre-defined dictionary, which is presented
in the next section.

3.4.2.2 Creating a Dictionary of Persons for a Domain

First, it is explained how to automatically define entities and gather example images for
them from the Web. Second, the process of defining a compact representation for every
entity is described. In this context, three strategies for filtering inappropriate facial features
are introduced and discussed.

Selection of Relevant Persons: As a first step, it is necessary to define entities of
interest that the approach should identify in the archived web news collections. There are
several options available to define a dictionary of relevant persons. (1) The person dictionary
can be manually defined by the user(s) according to the specific needs and goals. (2) NER
& NED approaches can be applied to extract mentions of people from the corresponding
textual content automatically. (3) External sources such as the Wikipedia encyclopedia can
be leveraged to identify which people are relevant for a general audience. We follow the latter
approach to automatically choose a set of relevant persons P whose Wikipedia pages were
viewed most frequently in a given year and who were born after 1920. Only persons p ∈ P
associated with the target group, such as politicians, are considered to specify a target
domain. However, the person dictionary can be modified according to specific user needs
since example image material is gathered automatically using a web-based image retrieval.

Web-based Retrieval of Example Images: Since the person dictionary might contain
a large number of entities, a manual selection of representative example images is, in general,
not feasible. Instead, we propose an automatic web-based approach to retrieve exemplary
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images for each person. Given the names of the selected entities, an image search engine
such as Google Images is crawled to find a given number of k example images for each
person p ∈ P. However, the collected images do not necessarily always or only depict the
target person p, and irrelevant photos should be eliminated for the subsequent steps.

Extraction and Filtering of Feature Vectors: In order to distinguish between the
target person from other persons, it is necessary to compare feature vector representations
describing the characteristics of all facial regions in the retrieved image material of a specific
person p ∈ P. First, a face detection approach is applied to retrieve the facial regions
in a photo. We have used the dlib [123] face detector based on Histogram of Oriented
Gradients (HOG) features [57] and an SVM classifier. Though not able to detect extreme
facial poses, this face detector ensures efficiency in terms of computational speed when it
comes to the large-scale image data of news pages gathered by the Internet Archive. For all
v faces (face areas) detected in the photos crawled for a person p ∈ P, a set of feature vectors
Fp = {f (1)p , f

(2)
p , . . . , f

(v)
p } is computed using the CNN model presented in Section 3.4.2.1.

Since the detected faces can depict the target person p but also other individuals, a filtering
step on the extracted facial features Fp is conducted. For this purpose, it is necessary to
determine a target feature vector f?p representing the individual p. For the choice of this
vector, we propose three strategies: (1) amanual selection of one or multiple representative
face region(s) within the example material, (2) calculating the mean vector of all facial
representations, or (3) applying a clustering approach to calculate the mean of all facial
representations within the majority cluster that most likely represents the queried person.
We have applied an agglomerative clustering approach (using Ward Jr [276]’s minimum
variance method for linkage) based on the cosine similarity between all feature vectors of an
individual. The cosine similarity s(f (i)p , f

(j)
p ) between a feature vector f (i)p ∈ Fp and another

feature vector f (j)p ∈ Fp with i 6= j from images crawled the same person p is defined as:

s(f (i)p , f (j)p ) =
f
(i)
p · f (j)p

‖f (i)p ‖2 · ‖f (j)p ‖2
. (3.16)

The feature vectors are assigned to the same cluster as long as their similarity is above a
similarity threshold τc that is used as the clustering stopping criteria. Note that we use the
normalized cosine similarity (Equation (3.17)) for comparison throughout this section:

ρ(f (i)p , f (j)p ) =
s(f

(i)
p , f

(j)
p ) + 1

2
∈ [0, 1] . (3.17)

The manual selection of one or multiple representative face region(s) is the most reliable
option since it unambiguously represents the target entities and ensures more robust filter-
ing. However, in contrast to both other unsupervised approaches, it does require human
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supervision and might not be viable if a large number of entities is considered. Taking the
mean of all facial representations relies on the assumption that a majority of facial regions
in the retrieved exemplary material already depict the target person. While this is usually
the case for popular or famous people (public figures), this approach might fail for less pop-
ular persons containing more irrelevant images, i.e., photos that do not depict the specified
person, in the exemplary material. Thus, a clustering approach seems to be more robust
since the facial features within the majority cluster more likely represent the queried person.

Finally, the target feature vector f?p determined by one of the aforementioned approaches
is compared to all facial representations f (i)p ∈ Fp of the queried person using the normalized
cosine similarity ρ(f

(i)
p , f?p ) (Equation (3.17)). We keep each facial representation f

(i)
p ∈ Fp

with a normalized cosine similarity greater than a threshold ρ(f
(i)
p , f?p ) > τc to create a filtered

set of feature vectors F?p ⊂ Fp. The evaluation of the proposed approaches for filtering as
well as the choice of threshold τc are discussed in Section 3.4.3.2.

After the filtering step is applied, we calculate the mean feature vector fp of the remaining
facial representations F?p for each person p ∈ P. As a result, the number of comparisons for
each face found in a web archive is reduced to the number of persons |P| in the person
dictionary. Although a comparison to each remaining facial representation might lead to
better results, it is much more computationally expensive.

3.4.2.3 Person Identification Pipeline

The components introduced in the previous sections enable automatic identification of per-
sons in the image data of the Internet Archive. Given a photo, the face detector (same as
used in Section 3.4.2.2) is applied to extract face regions. Facial representations for these
regions are computed using the CNN described in Section 3.4.2.1 and subsequently com-
pared to the representative feature vector fp of each person p ∈ P in the dictionary using
the normalized cosine similarity. This comparison allows for determining the most simi-
lar (likely) person shown in each image region. Given the similarity value ρ̂ of the most
likely person p̂ ∈ P, the identification threshold τid decides whether the face region depicts
this person (ρ̂ ≥ τid) or an unknown (out-of-dictionary) person (ρ̂ < τid). Based on the
results of the person identification, visualizations for single and joint occurrences of persons
of interest in news articles of the Internet Archive can be created.

3.4.3 Case Study & Qualitative Results

In this section, we evaluate the components of the proposed person identification approach.
First, the dictionary of persons and dataset is introduced (Section 3.4.3.1). We present
details of the technical realization and experimental results on the learned face representation
as well as parameter selection in Section 3.4.3.2. Without loss of generality, the feasibility
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of our system is demonstrated on image data of the Internet Archive concentrating on
a selection of German web content (Section 3.4.3.3). For this purpose, visualizations for
relations among the persons of interest in the selected data are shown.

3.4.3.1 Person Dictionaries & News Dataset

Person Dictionaries: In our experimental setting, the goal is to recognize persons in the
German web content of the Internet Archive published in 2013 and visually infer relations
among them. Hence, people of public interest have to be selected for the dictionary. We
choose the groups of politicians and actors for each of whom we create a dictionary according
to the description in Section 3.4.2.2. We query the German Wikipedia for persons according
to the selected occupations to obtain German as well as international personalities. The
entity names are fetched via SPARQL queries to the Wikidata knowledge base [268], along
with the number of page views. Since Wikidata provides page views from mid-2015, we
fetch the numbers for the year 2016. This results in a minor mismatch in terms of time
concerning our search space for the Internet Archive data containing articles published
in 2013. However, the extracted persons are still identifiable and relevant, as shown in
Section 3.4.3.3. The number of page views determines the relevance of the collected entities.
Thus, the ranked list of entity names is reduced to the first 100 most relevant entries. Given
the sets of persons for the selected occupational groups, we crawl the Google Images search
engine for a maximum of k = 100 images per entity using the entity name.

News Dataset: The Internet Archive contains an enormous amount of multimedia data
that can reveal dependencies between entities in various fields. Looking only at the collection
of web pages, a large part of the multimedia content is irrelevant for person search, e.g.,
shopping websites. For this reason, we aim at selecting useful and interesting domains in
which the entities from the dictionary are depicted. To demonstrate the feasibility of image
analytics in web archives, we have selected two popular German news websites welt.de

and bild.de. While welt.de addresses political subjects, bild.de has a stronger focus on
entertainment news as well as celebrity gossip. We select image data published in the year
2013, in which the German elections took place. The number of analyzed news photos and
corresponding faces extracted from them is shown in Table 3.12.

3.4.3.2 Parameter Selection

Network Training: Several publicly available datasets exist to train a CNN model for
the person recognition task. We use the large-scale MS-Celeb-1M [87] dataset comprising
8.5 million images of around 100 thousand different persons as input data to learn the net-
work weights. A classification model considering all the available identities of the dataset is
trained using the ResNet-101 architecture [92] with 101 convolutional layers (Section 2.2.5).
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Table 3.12: Number of photos and
faces extracted from
archived news articles
of the selected domains
published in 2013

Domain Images Faces

welt.de 648,106 205,386
bild.de 566,131 243,343

Table 3.13: Results of methods for the filtering
step of the entity dictionary on a sub-
set of 20 politicians

Method Precision Recall F1

No filtering 0.669 1 0.802
Manual selection 0.977 0.922 0.949
Mean vector 0.993 0.449 0.618
Clustering 0.985 0.912 0.947

The network weights are initialized by pre-trained weights learned on the ILSVRC 2012
dataset [58, 218]. Furthermore, we augment the data by randomly selecting an area covering
at least 70 % of the image. The input images are then randomly cropped to 224× 224 pix-
els. The SGD optimizer is used with a momentum of 0.9. The initial learning rate of 0.01
is exponentially decreased by a factor of 0.5 after every 100,000 iterations. The model is
trained for 500,000 iterations with a batch size of 64. The trained model is available at
https://github.com/TIB-Visual-Analytics/PIIA.

Evaluation of the Model Performance and the Clustering Threshold: The trained
model is evaluated on the LFW benchmark [107] to measure its performance for face veri-
fication and evaluate the threshold τc applied for face clustering and filtering introduced in
Section 3.4.2.2. As suggested by Huang et al. [107], a ten-fold cross-validation is conducted,
where each fold consists of 300 matched and mismatched face pairs. The normalized cosine
similarity (Equation (3.17)) between the feature vectors of two face images is calculated to
determine whether the images depict the same or different individuals. For each subset, the
best threshold maximizing the accuracy of the remaining nine subsets is calculated. Finally,
the yielded accuracy, as well as threshold values, are averaged for the ten folds.

We obtained an accuracy of 98.0 % with a threshold of τc = 0.757 (for normalized cosine
similarities ρ ∈ [0, 1]). Compared to approaches with state-of-the-art results on the LFW
benchmark reviewed in Section 3.4.1, our model yields competitive results using a base
architecture and loss function and provides a solid basis for our system. Moreover, the
estimated threshold can be considered stable as it has a standard deviation of only 0.002.

Evaluating the Methods for Feature Vector Filtering: In Section 3.4.2.2, three
methods for selecting a target vector f?p for each person p ∈ P were introduced to filter
irrelevant faces in the example material. We manually annotated whether 1,100 facial re-
gions detected in example photos crawled for 20 politicians depict the queried person or
not. A comparison of the proposed options for filtering regarding mean precision, recall,
and F1-score values of the filtered faces to the ground truth annotations obtained for the
20 politicians is shown in Table 3.13. The results demonstrate that the best performance
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regarding the F1-score was achieved using manually selected feature vectors for data fil-
tering. However, the results of the agglomerative clustering approach are comparable and
were achieved without any supervision. Thus, this method allows for fully-automatic person
identification and is used in the remainder of the case study in Section 3.4.3.3.

Evaluating an Identification Threshold for Face Verification: After filtering irrel-
evant example photos, each entity is described by its mean vector fp. The use of a mean
vector is plausible for our approach since we do not detect and identify faces in extreme
poses. A ten-fold cross-validation is performed based on the manually annotated subset
of politicians from the previous paragraph to evaluate the identification threshold τid that
determines whether or not a face depicted in a news image represents a person in the person
dictionary. An accuracy of 96 % is obtained. The threshold results in τid = 0.833 (for the
normalized cosine similarities ρ ∈ [0, 1]) and shows a standard deviation of 0.002. In partic-
ular, the small standard deviation implies that the mean entity vector works very stable for
the face verification task of our approach.

3.4.3.3 Face Recognition in Image Collections of the Internet Archive

We conducted a case study based on news articles extracted from the Internet Archive (Sec-
tion 3.4.3.1). To quantify the relevance of individuals and their relation to other enti-
ties, we count how often the specific entities were identified in the selected image data
and how often they are portrayed with other persons in the dictionary. Exemplary re-
sults are shown in Figure 3.16 and can be interactively explored in our demo available at
https://github.com/TIB-Visual-Analytics/PIIA.

Figure 3.16 (top) visualizes relations between well-known heads of states and other politi-
cians in 2013 inferred by our analysis system for the German news website welt.de. The
graph shows that Angela Merkel, the German chancellor, and the former German minister
of foreign affairs, Guido Westerwelle, appear most frequently in the image data. They also
often seem to appear together, as indicated by the strong relationship in Figure 3.16, which
is reasonable given their political role. The most relevant international politician detected
in the news photos is Barack Obama, who also shares a strong relation to Angela Merkel.
The relation of Guido Westerwelle to Frank-Walter Steinmeier is due to the transition of
power in late 2013. Besides, relations between former and new heads of states of Germany
and the USA have been revealed.

Figure 3.16 (bottom) visualizes relationships between different actors in 2013. For exam-
ple, the graph indicates that the actors George Clooney and Sandra Bullock, who have both
acted in the movie Gravity, often appear together. Moreover, actors of the sitcom The Big
Bang Theory (Kaley Cuoco, Jim Parsons, Johnny Galecki) share relations with each other.
The strongest relation has been discovered between Angelina Jolie and Brad Pitt, which is
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3 Information Extraction from Photos

Figure 3.16: Graph showing relationships among an exemplary set of international politi-
cians (top) and actors (bottom) using the domains welt.de and bild.de, re-
spectively. The size of vertices encodes the occurrence frequency of the entity.
The strength of edges denotes the frequency of joint occurrences.

reasonable as they are a famous actor couple. The actress Natalie Portman provides con-
nections to all actors of the graph having the second strongest appearance frequency. These
relations imply that there must be several images published in bild.de which depict her
with colleagues, maybe due to a celebrity event like the Academy Awards.
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3.4.3.4 Summary

In this section, we have presented a system for the identification of persons of interest in
the image content of web news in the Internet Archive. For this task, a CNN-based feature
representation for faces was trained and evaluated on the LFW benchmark set. Moreover,
we introduced a semi-automatic web-based method to create a dictionary of persons of in-
terest, given a domain of interest. In addition, methods for filtering inappropriate images
in the example data were introduced and evaluated, including a robust and fully-automatic
filtering based on an agglomerative clustering approach. In order to cope with the enormous
amount of image content the Internet Archive provides, a constrained search domain was
defined. The proposed system reliably detects dictionary entities and reveals relations be-
tween the entities by means of joint occurrences. For this reason, we argue that deep learning
approaches for face identification provide rich image features that should be well suited to
quantify cross-modal person relations between image and text, as proposed in Chapter 4.

In the future, we plan to improve individual steps of the pipeline further. In particular,
we aim to improve our deep learning model using a more sophisticated loss function or
preprocessing steps to increase the robustness for pose and age variation. The process
of determining a representative feature vector for individual persons can be enhanced by
querying Wikipedia or Wikidata images that likely contain less to no irrelevant images.
Finally, the approach will be extended to allow the exploration of relations of persons across
different domains.
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In the previous chapter, deep learning approaches for event classification (Section 3.1), ge-
olocation estimation (Section 3.2), date estimation (Section 3.3), and face recognition (Sec-
tion 3.4) were introduced to extract rich information from photos. This information is a
vital prerequisite to quantify entity relations between photos and text. Referring to Sec-
tion 1.3, the goal of this thesis is to present an unsupervised and fully-automated approach
applicable to real-world news articles and other multimodal documents that provides differ-
entiated cross-modal relations for specific named entities such as (public) persons, locations,
dates, and events (research question 1). While results for event classification, geolocation
estimation, and person recognition are promising, the date estimation approach presented
in Section 3.3 is not applicable to photographs taken after the year 1999, and the average
error of about seven years is quite significant. Thus, we focus on measuring the cross-modal
consistency of persons, locations, and events in this chapter.

As discussed in Section 1.1.2, previous solutions that quantify cross-modal relations be-
tween photos and text can be divided into two categories and have several limitations. Part
of the related work [96, 127, 185, 294, 306] has suggested computational models to quan-
tify image-text relations, such as the Cross-modal Mutual Information (CMI) [96, 185] that
indicates the number of shared concepts between both modalities. However, they do not
explicitly consider cross-modal relations of named entities that are relevant in the news.
On the other hand, solutions on image repurposing detection [114, 115, 219] aim to verify
the cross-modal occurrence of such entities, e.g., persons, locations, or organizations. In
a more general sense, these kinds of approaches also quantify Cross-modal Mutual Infor-
mation (CMI) in terms of shared entities between photos and text. But these solutions
rely on multimodal deep learning techniques that require appropriate datasets with non-
manipulated pairs of photos and text, which are hard to acquire automatically as they need
to be verified for valid cross-modal relations. In addition, these methods cannot cope well
with the ever-growing amount and diversity of entities covered in the news since they are
restricted to the verification of entities that appear in the datasets used for training or re-
trieval. Experimental evaluation has been performed on images with relatively short image
captions [114, 219] or existing metadata [115] using closely related reference data, which do
not reflect real-world characteristics as illustrated in Figure 4.1.
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Reference My going away
party when

I moved out of

PutneyLas Vegas

My going away 
party when

I moved out of

[…] have been appalled yesterday to witness the behavior 

of                      , when, at a news conference 

with       David Camero n   in   Brussels (LOC)

he was asked whether  Scotlan d (L   should remain 

in the  UK (LOC)    or leave. […] (504 words)

Barack Obama PER 0.89

David Cameron PER 0.87 Brussels LOC 0.63

Scotland LOC 0.59

UK LOC 0.76

[…] Steven   (PE    believes he proved he ’is not 

finished yet’ after his tenth  M   erseyside derby (EVENT)    

goal in the 1-1 draw with […]                                                ,       

the  Liverpool (LOC)         manager […] (552 words)

Steven Gerrard PER 0.85

Merseyside derby EVENT 0.97

Brendan Rodgers PER 0.65

Liverpool LOC 0.97 Photo by Ruaraidh Gillies
(CC BY-SA 2.0)

Test

Photo by Jere Keys (CC BY 2.0) Photo by Jere Keys (CC BY 2.0)

Photo by The White House
(public domain)

Figure 4.1: Top: Test and reference images of the MEIR dataset [219] and correspond-
ing texts with the original and manipulated entity. Bottom: Two real-
world news from BreakingNews [207] and outputs of our system for lo-
cations (LOC), persons (PER), and events (EVENT). The examples show
that real-world news articles have much longer text and refer to many enti-
ties. Photos are replaced with similar ones depicting the same entity rela-
tions due to image copyright restrictions. Links to the original documents
can be found on: https://github.com/TIBHannover/cross-modal_entity_
consistency/tree/master/supplemental_material

In this chapter, we propose an unsupervised approach that quantifies the cross-modal
consistency of entity relations. In contrast to previous work, the approach allows for a more
fine-grained quantification of Cross-modal Mutual Information (CMI) and is completely un-
supervised as it does not rely on any pre-defined reference or training data. To the best of
our knowledge, we present a first system applicable to real-world news articles by tackling
several news-specific challenges such as the arbitrary length of news documents, entity di-
versity, and irrelevant reference images. We automatically crawl reference images for entities
extracted from the text by Named Entity Recognition and Disambiguation (NER & NED).
These images serve as input for the verification of the entities to the accompanying news
image. For this purpose, the proposed computer vision approaches from Chapter 3 are used
as generalized feature extractors. Finally, novel measures for different entity types (persons,
locations, events) as well as for the more general news context are introduced to quantify the
cross-modal similarity of image and text. As mentioned in Chapter 1, the applications are
manifold, ranging from a retrieval system to find articles with low or high cross-modal corre-
lations to an exploration tool that reveals the relations between image and text (Figure 4.1).
The feasibility of our approach is demonstrated on a novel large-scale dataset for cross-modal
consistency verification derived from BreakingNews [207]. The dataset contains real-world
news articles in English and covers different topics and domains. In addition, we have col-
lected articles from German news sites to verify the performance in another language. In
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contrast to previous work on image repurposing detection [114, 219], the entities are ma-
nipulated with more sophisticated strategies in order to obtain challenging datasets. Source
code, web application, and datasets are publicly available23. The web application has been
published as a demo paper at the ACM SIGIR Conference on Research and Development in
Information Retrieval 2021 [238].

The remainder of this chapter is organized as follows. Related work is reviewed in Sec-
tion 4.1. The unsupervised system to quantify cross-modal entity and context relations
between photos and text is described in Section 4.2 and Section 4.3. Section 4.4 introduces
two benchmarks datasets that allow for measuring the performance of the proposed solu-
tions for document verification and collection retrieval. The experimental results on these
datasets are discussed in Section 4.5. A demonstrator of the proposed system is presented
in Section 4.6. Section 4.7 summarizes this chapter and outlines areas of future work.

4.1 Related Work

The analysis of multimodal information such as image and text has attracted researchers
from both communication and computational science for many years. According to Bate-
man [31], the consideration of multimodal relationships is crucial for understanding the
overall multimodal message. As a comprehensive survey [26] on multimodal machine learn-
ing reveals, computer scientists have introduced a variety of novel multimodal approaches
for specific tasks like image captioning [118, 265, 299, 307] or visual question answering [16,
19, 105, 236]. However, these applications typically disregard the deeper meaning between
multimodal information and do not allow any form of (human-like) interpretation. On the
other hand, communication scientists [30, 88, 153, 155, 262] attempt to assign joint place-
ments of image and text to distinct image-text classes in order to define the interrelations
using suitable taxonomies. However, only recently, few works attempted to build computa-
tional models to quantify the cross-modal relations between image and text. They can be
divided into two categories and are described in more detail in the remainder of this section.

4.1.1 Quantification of Image-Text Relations

Several works [96, 127, 185, 294, 306] have recently been proposed that introduce com-
putational concepts and models to quantify mutual information and semantic correlations
between image and text. They aim to bridge the semantic gap [237] between both modal-
ities in order to build more powerful models, e.g., for information retrieval. Henning and
Ewerth [96, 97] suggested two computable metrics, namely Cross-modal Mutual Informa-
tion (CMI) and Semantic Correlation (SC), to quantify the relations between image and
text. CMI describes the number of shared concepts (e.g., objects) in both modalities. SC,
23https://github.com/TIBHannover/cross-modal_entity_consistency
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on the other hand, aims to quantify the shared meaning of both modalities by considering
the overall context regardless of the shared concepts. Due to the absence of large-scale
training datasets, Henning and Ewerth [96, 97] train an autoencoder to reconstruct the
multimodal input. The encoder learns a compact, low-dimensional representation of the
input used by the decoder to reproduce the salient parts of the image and text. Finally, the
encoder-network is used in conjunction with a limited amount of training data to train the
final classifier that outputs scores for CMI and SC. Otto et al. identified that the Seman-
tic Correlation (SC) is comparable to the semantic relations from Marsh and White [153].
Furthermore, they analyzed established taxonomies from communication science [153, 155,
262] and observed that some image-text classes entail a difference in the abstractness level
between image and text. They applied the autoencoder approach from Henning and Ew-
erth [96, 97] to identify whether the image is an abstraction of the text or vice versa. In
another work, Otto et al. [185, 186] identified the Status relation proposed by Barthes [30] as
an essential image-text relation that has been adopted by the majorities of taxonomies [155,
262] established by communication scientists. Thus, they extended the initial set containing
CMI and SC proposed by Henning and Ewerth [96, 97] with the Status relation. It describes
the hierarchical relation between an image and text with respect to their relative importance.
In this way, it can be quantified whether image and text are equally important for conveying
the entire multimodal message or whether one modality (text or image) is "subordinate"
to the other. Furthermore, they proposed a novel dataset to directly train a multimodal
deep learning approach that outputs scores for three image-text dimensions: CMI, SC, and
Status. These scores are used to characterize eight specific image-text classes (Figure 1.2,
page 4), which are partially compliant to classes in existing taxonomies.

Other works take a more differentiated approach to image-text relationships. Zhang et
al. [306] investigate image-text relations in advertisements. They claim that image-text
alignment methods alone are insufficient to detect parallel relationships between both modal-
ities because the information from text and image do not always align but can still convey
the same message. Zhang et al. [306] use a variety of features from both modalities, as
well as methods that analyze the semantics within and across channels to predict parallel
or non-parallel relationships between image and text. Ye et al. [294] further extended this
approach by interpreting the rhetoric of advertisements using cross-modal embeddings and
image embeddings for symbol regions. Both aforementioned approaches define their own
types of image-text relations and do not leverage established relations from previous work,
e.g., from the field of linguistics. Kruk et al. [127] provided some additions to the taxonomy
of Marsh and White [153] to determine the author’s intent in Instagram posts. In compli-
ance with Bateman [31], they realized that the combination of different modalities could
create a new meaning that needs to be modeled more carefully. Thus, Kruk et al. [127]
modeled contextual and semiotic relationships between the literal and signified meanings of
the image and caption, respectively.
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4.2 Cross-modal Entity Consistency

4.1.2 Image Repurposing Detection

Solutions on image repurposing detection [114, 115, 219] intend to reveal inconsistencies be-
tween image-text-pairs concerning more concrete entities (persons, locations, organizations,
etc.), mainly to identify repurposed multimedia content that might indicate misinformation.

Jaiswal et al. [114] presented an assessment system that considers a multimedia package
containing an image and a corresponding caption to verify its semantic integrity. They train
a multimodal deep learning model (e.g., a multimodal autoencoder [182]) that jointly encodes
features from photos and text to output consistency scores. A VGG-19 [235] is applied to
generate image features, and the averageWord2Vec embeddings [164] of the caption is used as
a textual representation. Finally, an outlier detection model (SVM or isolation forest [144])
is trained on the reference dataset and used to output the inlierness of an image-caption pair,
which is considered as the semantic integrity by the authors. To evaluate the system, they
constructed a synthetic dataset with manipulated image-text-pairs by completely replacing
one modality (image or text). However, this results in semantically inconsistent image-
caption-pairs that are relatively easy to detect. Sabir et al. [219] improved this dataset
and carefully replaced specific entities with entities of the same type (persons, locations,
and organizations) to generate semantically consistent altered packages. They have also
refined the multimodal model using a multitask learning approach that further incorporates
geographical information. Alternatively, Jaiswal et al. [115] presented an adversarial neural
network that simultaneously trains a bad actor who intentionally counterfeits metadata and
a watchdog who verifies the multimodal semantic consistency. The counterfeiter selects
manipulated metadata for a given image by analyzing the similarity to images of different
entities in the reference dataset. On the other hand, the watchdog uses evidence from the
reference dataset to assess the credibility of the claimed metadata. The system was tested
for person verification, location verification, and painter verification of artworks. However,
in contrast to the aforementioned approaches, the system is more closely related to work on
metadata verification [51, 52, 117, 137] as it only verifies the consistency between pairs of
images and metadata and does not incorporate any textual information.

4.2 Cross-modal Entity Consistency

This section presents an unsupervised system that goes beyond existing approaches and
automatically verifies the cross-modal relations in terms of shared entities between pairs
of photos and text. Verification is realized through measures of cross-modal similarity for
different entity types (persons, locations, and events). Based on NER & NED (Section 4.2.1),
example photos for the detected entities are collected from the Web. Features are obtained
from the photos by appropriate computer vision approaches (Section 4.2.2), which are used
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Figure 4.2: Workflow of the proposed system to quantify cross-modal entity similarities.
Left: Extraction of entities T from the text according to Section 4.2.1, as well
as features for persons P (green), locations L (purple), and events E (blue)
from the document’s photo (Section 4.2.2). Right: Workflow to measure the
Cross-modal Person Similarity (CMPS) between photo and text (Section 4.2.3)
based on example images crawled from the Web. The same pipeline but without
filtering is used for locations and events.

in conjunction with measures of cross-modal similarity (Section 4.2.3) to quantify the cross-
modal consistency. The workflow is illustrated in Figure 4.2.

4.2.1 Extraction of Entities from the Text

In order to quantify cross-modal relation for specific types of entities, namely persons, lo-
cations, and events, Named Entity Recognition and Disambiguation (NER & NED) are
applied to extract a set of named entities T from the text. We have tried several tools
such as AIDA [98], Rizzo and Troncy [212], or Kolitsas et al. [125]’s approach. In an ini-
tial experiment, we found that combining the output of spaCy [99]24 for Named Entity
Recognition (NER) and Wikifier [40, 41] (explained in Section 2.3.3) for Named Entity Dis-
ambiguation (NED) provide the best results for different languages. Given an NER system
for a specific language, Wikifier enables our system to support a large number of 100 lan-
guages. Furthermore, it can dynamically detect entities in the text covered in Wikipedia
information used at inference time, while learning-based approaches are limited to the en-
tities mentioned in the training data and require fine-tuning to adapt to new entities. We
link the entity candidate with the highest PageRank according to Wikifier for every named
entity recognized by spaCy to the Wikidata knowledge base [268]. Linked entities with a
PageRank below 1 · e−4 are neglected due to their low confidence. If Wikifier does not
provide a linked entity for a given string, the Wikidata API function "wbsearchentities" is
used for disambiguation.

24spaCy version 2.2.4 was used in this thesis
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4.2 Cross-modal Entity Consistency

As shown in Figure 4.2, suitable computer vision approaches based on deep learning are
applied to extract features from photos used to quantify the cross-modal entity consistency.
The computer vision model is selected based on the type (person, location, or event) of the
named entity. Therefore, it is necessary to assign each named entity to one of these entity
types. Although some NER tools such as spaCy [99] automatically predict entity types,
they do not make use of valuable knowledge base information provided by NED. To handle
mistakes of entity type classification by spaCy and to discard irrelevant entities such as given
names that cannot be linked to a knowledge base, the entity types are re-evaluated using
the Wikidata information of the linked entities based on the following requirements. For
persons, only entities that are an instance (Wikidata property P31 ) of human (Wikidata
identifier Q5 ) according toWikidata are considered, while for locations, a valid coordinate lo-
cation (P625 ) is set as a requirement. This allows us to extract a variety of locations ranging
from continents, countries, and cities to specific landmarks, streets, or buildings. For events,
we instead require an entity to be in a verified list of events17 according to EventKG [81,
82], which was also used to create the Visual Event Ontology (VisE-O) presented in Sec-
tion 3.1.2.2. Entities that do not fulfill any of the aforementioned criteria are neglected. As
a result, distinct sets of persons P, locations L, and events E are extracted from the text
that are verified with example images from the Web, as explained in Section 4.2.3.

4.2.2 Extraction of Features from Photos

Our approach is applicable to articles with multiple images, but we assume that only a single
image is present for simplicity. Suitable models are applied to obtain image representations.

Person Features: Although the proposed model used in Section 3.4 achieves good re-
sults for person identification in news images, we have applied an implementation25 of
FaceNet [228] as it provides slightly better results on the LFW benchmark [107]. The
FaceNet model is used to calculate the individual feature vectors fv of all faces v ∈ V found
in the image by the face detection approach from Zhang et al. [305].

Location Features: We employ the base (M,f*) model26 for geolocalization [173] pre-
sented in Section 3.2 to obtain a geospatial representation of the article’s photo. It provides
good results across different environmental settings (indoor, natural, and urban) using a sin-
gle CNN model. In contrast to the original method, we treat geolocalization as a verification
approach and use the feature vector fL from the last pooling layer (Table 2.2, page 37) of
the ResNet-101 model [92, 93].

25FaceNet implementation from David Sandberg : https://github.com/davidsandberg/facenet
26base (M, f*) model for geolocation estimation: https://github.com/TIBHannover/GeoEstimation
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Event Features: As discussed in Section 3.1, related approaches for event classification [3,
8, 287] have not considered many event types relevant to news and are consequently not ca-
pable of distinguishing between them. Thus, we have used a more general image descriptor
for place classification (trained on the Places365 dataset [315]) to extract features for events
in our initial method presented in Müller-Budack et al. [175]. As explained in Section 3.1,
we recently introduced a dataset and ontology-driven deep learning models for event clas-
sification [174]. Unlike previous work, these models distinguish between the majority of
newsworthy event types such as natural disasters, epidemics, and elections. For this rea-
son, we use the ontology-driven COcosγ model27 in the approach described in this thesis. The
event features fE are extracted from the last pooling layer of the ResNet-50 architecture [92,
93]. A comparison to the previous approach [175] is conducted in Section 4.5.4.

4.2.3 Verification of Shared Cross-modal Entities

In this section, we present measures of Cross-modal Similarity (CMS) for different entity
types, namely persons, locations, and events. It should be emphasized that we treat each
verification task independently. The CMS results for different entity types are not combined,
which allows a more detailed and realistic analysis. Referring to Figure 4.1 (bottom), please
imagine a news article where the image depicts one or several person(s) talking at a confer-
ence. While multiple events and locations might be mentioned in the corresponding text,
the news image does not provide any visual cues for their verification. This aspect is typical
for news articles since the text usually contains more entities and information. In the case
of fake news, it is expected that only certain entities of one entity type are manipulated to
maintain credibility.

4.2.3.1 Verification of Persons

As illustrated in Figure 4.2, we first crawl a maximum of I example images using image
search engines such as Google or Bing for each person p ∈ P extracted from the NER &
NED approach presented in Section 4.2.1. However, as also discussed in Section 3.4, these
images can be misleading as they may depict multiple or different persons than the queried
one. Thus, a filtering step is necessary. Feature vectors are extracted for each detected face in
the reference images according to Section 4.2.2. These features are compared with each other
to perform a single-linkage hierarchical clustering with a minimum similarity threshold τP
as a termination criterion. The normalized cosine similarity between two feature vectors f1
and f2 is used for comparison to output a probability distribution ρ(f1, f2) ∈ [0, 1]:

ρ(f1, f2) = 0.5 ·
(

f1 · f2
‖f1‖2 · ‖f2‖2

+ 1

)
(4.1)

27COcos
γ model for event classification: https://github.com/TIBHannover/VisE
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4.2 Cross-modal Entity Consistency

The feature vectors of the majority cluster are averaged to create a reference vector f̂p

because they most likely represent the queried person p.

In order to quantify the image-text relation of person p, its reference vector f̂p is compared
to the feature vector fv of each face v ∈ V detected in the document image. We define the
entity similarity ESp as the maximum among all comparisons since it is sufficient if one face
depicts the queried entity:

ESp = max
v∈V

(
ρ(fv, f̂p)

)
. (4.2)

Using this approach, we can extract the cross-modal similarity of each individual mentioned
in the text, as shown in Figure 4.1, allowing for fine-grained document analysis. How-
ever, many multimedia and information retrieval applications require an overall cross-modal
similarity for the entire multimedia document. Several options are available to calculate
the overall Cross-modal Person Similarity (CMPS) based on the individual entity similar-
ities ESp for all persons p ∈ P, such as the mean, n%-quantile, or the maximum of all
comparisons. Yet, as mentioned above, the text usually contains more entities than the im-
age, and already a single correlation can theoretically ensure credibility. Since the mean or
quantile would require the presence of several or all entities mentioned in the text, we define
the CMPS as the maximum similarity among all comparisons according to Equation (4.3)

CMPS = max
p∈P

(ESp) (4.3)

4.2.3.2 Verification of Locations and Events

In general, we follow the pipeline of person entity verification. The feature vectors of a max-
imum of I reference images for each location and event mentioned in the text are calculated
using the CNN of the respective entity type according to Section 4.2.2. However, while
some entities are very specific (e.g., landmarks, sports finals), others are more general (e.g.,
countries, international crises) and can therefore contain diverse example data. This makes
filtering based on clustering complicated as these entities can already contain many visually
different sub-clusters due to high intra-class variations.

Thus, the entity similarity (ESt) of an entity t ∈ T;T ∈ {L,E} is calculated by comparing
the feature vector of the news photo (Section 4.2.2) to the feature vector f̂t,i of each reference
image i ∈ It crawled for the given entity. The entity similarity for a location t = l ∈ L and
for an event t = e ∈ E is defined according to the following equations:

ESl = Ψ
i∈Il

(
ρ(fL, f̂l,i)

)
(4.4)

ESe = Ψ
i∈Ie

(
ρ(fE , f̂e,i)

)
(4.5)
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Since the comparison of all reference images to the news photo leads to a similarity vector s,
a function Ψ : s→ [0, 1] (e.g., the maximum operator) maps these similarities to a scalar.
In the experiments (Section 4.5.2), we evaluate the maximum and several n%-quantiles as
potential functions. We argue that using an n%-quantile is more robust against incorrect or
unrelated entity images in the retrieved reference data.

As explained for person verification (Section 4.2.3.1), a single correlation might already
ensure the credibility of the whole document, and typically only a single location or event
is portrayed in a news photo. Therefore, we decided to use the maximum CMS among all
entities of a given type for both the overall Cross-modal Location Similarity (CMLS) and
Cross-modal Event Similarity (CMES).

CMLS = max
l∈L

(ESl) (4.6)

CMES = max
e∈E

(ESe) (4.7)

4.3 Cross-modal Context Consistency

In the previous section, we have presented an approach that quantifies the cross-modal
consistency for each entity based on reference images crawled from the Web. This approach
is not feasible for the quantification of the contextual semantic relation since web queries are
hard to define automatically based on the entire news content. For this reason, we pursued
a different direction. We extracted word embeddings from the article text (Section 4.3.1)
as well as the probabilities of general environmental settings (e.g., beach, conference center,
or church) from the photo along with the respective word embeddings of the environment
names (Section 4.3.2) to quantify the Cross-modal Context Similarity (CMCS) according to
Section 4.3.3. An overview is illustrated in Figure 4.3.

4.3.1 Text Context

To retrieve suitable candidates representing the context C of the text, the part-of-speech
tagging from spaCy [99] is applied to extract all nouns c ∈ C. They can represent general
concepts (e.g., politics or sports), places, or actions that might correlate to specific classes,
e.g., of a place classification dataset such as Places365 [315]. We calculate the word em-
bedding wc for each candidate c ∈ C using fastText [83] (explained in Section 2.3.1.2) as a
prerequisite for the cross-modal comparison explained in Section 4.3.3.
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CMCS = max
𝑐∈ℂ
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Figure 4.3: Workflow for the quantification of the Cross-modal Context Similarity (CMCS).
Red boxes indicate the text context (Section 4.3.1), while blue boxes provide
the photo context (Section 4.3.2). Part-of-speech tagging is applied to extract
context candidates C, i.e., nouns from the text. The word embedding wc of
each noun c ∈ C is compared to the word embedding ws of 365 environmental
settings s ∈ S from the Places365 dataset [315] using the normalized cosine sim-
ilarity ρ(ws,wc) (Equation (4.1)). The resulting similarity values are weighted
with the probabilities yS of the environmental settings extracted from the photo
using a CNN model to calculate the CMCS according to Section 4.3.3.

4.3.2 Photo Context

A ResNet-50 model28 [92, 93] for place classification trained on the Places365 dataset [315]
is applied to predict the probabilities ŷS of 365 environmental settings S from the photo. As
for the text context (Section 4.3.1), fastText [83] is employed to extract the corresponding
word embeddings ws for the labels of each environmental setting s ∈ S. While environments
such as beach, conference center, or church are rather generic, their word embeddings can
also be associated with specific news topics such as travel, politics, or religion. Both the
probabilities of the environmental settings and their word embeddings are used as photo
context. The class labels in the Places365 dataset were manually translated to German for
the experiments on German news articles.

4.3.3 Cross-modal Context Similarity

Unlike the quantification of cross-modal entity consistency (Section 4.2), calculating the
Cross-modal Context Similarity (CMCS) does not require any reference images. We compare
the individual word embeddings wc of each noun c ∈ C to the word embeddings ws of all
365 environmental settings s ∈ S covered by the Places365 dataset [315] using the normalized
cosine similarity ρ(ws,wc) (Equation (4.1)). Since only certain environmental settings are
depicted in a news photo, these similarities are weighted with the respective probability ŷs of
an environmental setting s ∈ S to integrate the image information. Finally, the Cross-modal
Context Similarity (CMCS) is defined as the maximum similarity among all comparisons
according to the equation in Figure 4.3.
28ResNet-50 model trained with PyTorch on Places365 : https://github.com/CSAILVision/places365
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4.4 Datasets

Two real-world news datasets that cover different languages, domains, and topics are used
for the experiments. They are both manipulated to perform experiments for cross-modal
consistency verification. Experiments and comparisons to related work [114, 219] on datasets
such as MEIR [219] are not reasonable since (1) they do not contain public persons or events,
and (2) rely on pre-defined reference or training data for given entities. These restrictions
severely limit the application in practice. We propose an automated solution for real-world
scenarios that can handle the vast and ever-growing amount of entities represented in a
knowledge base. Source code and datasets to reproduce our results are publicly available23.

In the remainder of this section, the manipulation strategies (Section 4.4.1), as well as
two novel datasets called TamperedNews (Section 4.4.2) and News400 (Section 4.4.3) are
introduced, which contain articles written in English and German, respectively.

4.4.1 Manipulation Techniques

We create multiple sets of manipulated entities for each document in our datasets. Similar to
Sabir et al. [219], we replace entities extracted from the text at random with another entity
of the same type to change semantic relations as little as possible. We also present more so-
phisticated manipulation techniques as follows. Three additionally manipulated person sets
are created by replacing each original person with another person of the same gender (PsG),
the same country of citizenship (PsC), or matching both aforementioned criteria (PsCG).
Locations are replaced by other locations that share at least one parent class (e.g., country
or city) according to Wikidata [268] and are located within a Great Circle Distance (GCD)
of dmin to dmax kilometers (GCDdmax

dmin ). Three intervals are used to experiment with differ-
ent geospatial resolutions at region-level (GCD200

25 ), country-level (GCD750
200), and continent-

level (GCD2500
750 ). Events that share the same parent class (e.g., sports competition or natural

disaster) with the original event are used for a second set (EsP) of manipulated events.
When no valid candidate for a manipulation strategy was available, we have used a random
candidate that matched most of the other criteria.

The contextual verification is based on the nouns in the text. Thus, textual manipulation
techniques are not applicable. We instead replaced the image with a random image from
all other documents for a first manipulated set. We randomly selected similar images (from
Top-k% with k ∈ {5, 10, 25}) to maintain semantic relations to create three more sets. The
similarity was computed using feature vectors extracted from a ResNet model [92, 93] trained
on the ILSVRC 2012 dataset [58, 218] for object recognition.
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Table 4.1: Number of test documents |D|, unique entities T∗ in all articles, and mean amount
of unique entities T in articles containing a given entity type (for context, this is
the mean amount of nouns as explained in Section 4.3.1) for TamperedNews (top)
and News400 (bottom). Valid image-text relations for News400 were first man-
ually verified according to Section 4.4.3.

TamperedNews dataset

Documents |D| T∗ T

All (context) 72,561 — 121.40

With person entities 33,695 4,772 4.01
With location entities 66,484 3,464 4.78
With event entities 15,467 875 1.32

News400 dataset

Documents |D| T∗ T

All (thereof with manually verified context) 397 (91) — 137.35

With person entities (thereof manually verified) 320 (116) 413 5.31
With location entities (thereof manually verified) 389 (69) 434 8.83
With event entities (thereof manually verified) 166 (31) 39 1.84

4.4.2 TamperedNews Dataset

To the best of our knowledge, BreakingNews [207] is the largest available corpus with news
articles that contain both images and text. It originally covered approximately 100,000 news
articles published in 2014 written in English across different domains and a huge variety of
topics (e.g., sports, politics, healthcare). We created a subset called TamperedNews for cross-
modal consistency verification of 72,561 articles for which the news text and image were
still available. The entities in these articles were additionally manipulated according to
Section 4.4.1. Only persons and locations mentioned in at least ten documents and events
that occur in at least three documents are considered to discard most irrelevant entities.
Detailed dataset statistics are reported in Table 4.1.

4.4.3 News400 Dataset

To show the capability of our approach for another language and time period, we have
used the Twitter API to obtain the web links (Uniform Resource Locators (URLs)) of news
articles from three popular German news websites (faz.net, haz.de, sueddeutsche.de).
The texts and main images of the articles were crawled from the URLs. We have gathered
397 news articles covering four different topics (politics, economy, sports, and travel) in the
period from August 2018 to January 2019. The smaller dataset size allowed us to conduct a
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manual annotation with three experts to ensure valid relationships between image and text.
For each document, the annotators verified the presence of at least one person, location, or
event in the image as well as in the text and whether the context was consistent in both
modalities. Experiments were conducted exclusively on data with valid relations. Again the
manipulation techniques presented in Section 4.4.1 are applied to create the test sets. Due
to its smaller size, every entity is considered regardless of how often it appears in the entire
dataset. The resulting statistics are shown in Table 4.1.

4.5 Experimental Setup & Results

In this section, we introduce the tasks and metrics for evaluation (Section 4.5.1) and ex-
plain the parameter selection (Section 4.5.2). The performance of the proposed system
on real-world news articles is evaluated in Section 4.5.3, and two different deep learning
approaches for the quantification of cross-modal event relationships are compared in Sec-
tion 4.5.4. Finally, the limitations and dependencies of our proposed approach are discussed
in Section 4.5.5.

4.5.1 Evaluation Tasks and Metrics

The evaluation tasks are motivated by potential real-world applications of our system. We
propose to evaluate the system regarding two tasks: (1) document verification and (2) col-
lection retrieval. As illustrated in Figure 4.1, the system can also be used as an analytics
tool to explore cross-modal relations within a document efficiently.

Document Verification: Please imagine a set of two or more news articles with similar
text content and images but differences in the mentioned entities that might have been
manipulated by an author with harmful intents. The idea behind this task is to decide
which pair of image and entities extracted from the news text provides a higher cross-
modal consistency. Thus, document verification can help users to detect the most or least
suitable document. We address this task using the following strategy. For each individual
document in the dataset, we compare the cross-modal similarities between the news image
and the respective set of original entities as well as one set of manipulated entities (e.g.,
PsG) according to the strategies proposed in Section 4.4.1. This separate analysis allows
us to evaluate the impact of different manipulation strategies. We report the Verification
Accuracy (VA) that quantifies how often the original entity set has achieved the higher
cross-modal similarity to the document’s image. Some qualitative examples are shown in
Figure 4.5 (page 125). Please note that the image is manipulated for the context evaluation
instead and that the nouns in the text are considered as "entities".
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Figure 4.4: Cross-modal similarity values of all (or a subset of) TamperedNews documents
sorted in descending order for person, location (outdoor), and event entities using
different manipulation techniques (notations according to Section 4.4.1)

Collection Retrieval: The system can also be leveraged in news collections to retrieve
news articles with high or low cross-modal relations to support human assessors to gather
the most credible news or possibly fake news (in extreme cases). In contrast to document
verification, we consider all |D| original documents as well as |D| manipulated documents
applying one manipulation strategy. The cross-modal similarities are calculated and used
to rank all 2 · |D| documents. As suggested by previous work [114, 219], the Area Under
Receiver Operating Curve (AUC) is used for evaluation. We also propose to calculate the Av-
erage Precision (AP) for retrieving original (AP-original) or manipulated (AP-manipulated)
documents at specific recall levels R according to Equation (4.8). In this respect, TPi is the
number of relevant documents at position i. For example, AP-manipulated@25% describes
the average precision when |DR| = 0.25 · |D| of all manipulated documents are retrieved.

AP@R =
1

|DR|

k∑
i=1

TPi

i
, (4.8)

Test Document Selection for TamperedNews: Although the large size of the Tam-
peredNews dataset allows for a large-scale analysis of the results, unfortunately, a manual ver-
ification of cross-modal relations as for News400 is infeasible. Thus, reporting the proposed
metrics for the whole dataset can be misleading since it turned out during the annotation
of News400 that only a fraction of the documents has cross-modal entity correlations (Ta-
ble 4.1). As discussed at the beginning of Section 4.2.3, not a single entity mentioned in
a news text may be depicted in the corresponding image. To address this issue, we sug-
gest measuring the metrics for specific subsets. We consider the Top-25% and Top-50%

documents (denoted as TamperedNews (Top-d%)) concerning their cross-modal similarity
of original entities since they more likely contain relations between image and text. This
selection is also supported by the CMPS values for person verification (Figure 4.4), which de-
crease more significantly after 25%−50% of all documents and correspond to the percentage
of manually verified documents in the News400 dataset.
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Table 4.2: AUC for different functions Ψ (AC - agglomerative face clustering, Qn - n%
similarity quantile, max - max similarity) to calculate the cross-modal similarity
for each entity of a given type (Section 4.2.3). Results are reported for the number
of |D| documents in the respective TamperedNews (Top-50%) dataset with the
hardest manipulation strategy (notations according to Section 4.4.1).

Test set |D| AC Q75 Q90 Q95 max

Persons: PsCG 16,848 0.93 0.92 0.94 0.94 0.90
Location-Outdoor: GCD250

25 14,113 — 0.71 0.73 0.74 0.77
Location-Indoor: GCD250

25 19,129 — 0.64 0.66 0.67 0.69
Events: EsP 7,734 — 0.72 0.73 0.74 0.75

Please note that experiments on Top-d% subsets limit the comparability between two
approaches to some degree. Depending on the specified parameters (e.g., feature descriptor,
function Ψ), the Top-d% subsets comprise different documents. In Section 4.5.4, we explain
how a meaningful comparison between two different approaches can be conducted.

4.5.2 Parameter Selection

Face Clustering Threshold: The threshold τP impacts the clustering approach that
filters retrieved face candidates for a person explained in Section 4.2.3.1. For this reason, we
have tested the FaceNet model [228] on the LFW [107] benchmark and evaluated an optimal
cosine similarity (normalized to the interval [0, 1]) threshold of τP = 0.65.

Operator Function for Cross-modal Similarities: In Section 4.2.3, we mentioned a
number of possible functions Ψ such as the n%-quantile or maximum to compute cross-modal
similarity based on the comparisons of all reference images of a specific entity to the news
image. The AUC using different operators and a maximum of I = 10 reference images for
all image sources (Google, Bing, and Wikidata) on the respective TamperedNews (Top-50%)
subsets are presented in Table 4.2. For comparison, we also tested the face verification using
the approach applied for event and location entities described in Section 4.2.3.2. Surprisingly,
results for 90% and 95% quantiles are on par with the proposed person clustering. Also,
contrary to our assumption that a quantile is more robust against irrelevant photos in the
example images for locations and events, it turned out that the maximum operator provides
slightly better results for these entity types. These results indicate that irrelevant examples
in the reference data have no significant impact on the performance since they are less likely
to match the location or event depicted in the news image. In the remainder of this section,
results for persons are reported using the clustering strategy, as it yields similar results to the
other operators and is likely more robust to larger amounts of unrelated reference images.
For locations and events, the maximum operator is applied.
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Table 4.3: AUC using different image sources (W - Wikidata, G - Google, B - Bing) and max-
imum number of I images on the respective TamperedNews (Top-50%) subsets.
Results are reported for the hardest manipulation strategy (notations according
to Section 4.4.1).

Source #Images Persons Locations Events
Outdoor Indoor

IW IG IB PsCG GCD25
200 GCD25

200 EsP

Google — 20 — 0.95 0.76 0.68 0.73
Bing — — 20 0.90 0.76 0.71 0.77

All-10 all 10 10 0.93 0.77 0.69 0.75
All-20 all 20 20 0.93 0.78 0.71 0.76

Amount and Sources of Reference Images: In total, we collected a maximum of
I = 20 images from the image search engines of Google and Bing as well as all IW available
images on Wikidata (mostly one Wikimedia image) for each entity recognized in the text.
We have used multiple sources to prevent possible selection biases of a specific image source
and investigated the performance for different image sources and number of images. Since
Wikidata usually only provides a single or sometimes no image for the linked entities, we
exclude it from the comparison. The results on the respective TamperedNews (Top-50%)
subsets for the AUC metric using the hardest manipulation strategies are presented in Ta-
ble 4.3. They demonstrate that the performance using a single or all image sources is very
similar. Also, the results using I = 10 reference images are almost identical compared to
the maximum of I = 20 images. Hence, for the rest of our experiments, we use all available
image sources with a maximum of I = 10 images per source since this provides a good
trade-off between performance and speed and prevents possible selection biases.

4.5.3 Experimental Results

In this section, we present the baseline results of the proposed system for cross-modal con-
sistency verification on the TamperedNews (Section 4.5.3.1) and News400 dataset (Sec-
tion 4.5.3.2). Unfortunately, a comparison to previous work such as Jaiswal et al. [114] or
Sabir et al. [219] is not reasonable since these approaches cannot handle the significantly
longer news texts and need to be trained with labeled reference data that are much closer re-
lated to the source images. As discussed above, these approaches cannot deal with real-world
news in contrast to our approach.
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4.5.3.1 Results on TamperedNews

Qualitative and quantitative results are presented in Table 4.4, Figure 4.4 (page 121), and
Figure 4.5 (page 125). Results for all TamperedNews documents as well as the Top-25%

subset allow for similar conclusions and are reported in Appendix A.3.

Table 4.4: Results for document verification (DV) and collection retrieval for the Tampered-
News (Top-50%) dataset for different entity test sets (notations according to
Section 4.4.1)

Test set
DV Collection Retrieval

VA AUC
AP-original [%] AP-manipulated [%]

@25% @50% @100% @25% @50% @100%

Persons (16,848 documents)

Random 0.94 0.95 96.08 95.45 92.64 100.0 100.0 96.16
PsC 0.93 0.94 95.53 94.67 91.68 100.0 100.0 95.61
PsG 0.94 0.95 95.77 95.07 92.27 100.0 100.0 96.00
PsCG 0.93 0.94 95.04 94.70 91.70 100.0 100.0 95.56

Locations - Outdoor (14,113 documents)

Random 0.88 0.85 92.57 88.02 81.71 100.0 100.0 88.82
GCD2500

750 0.86 0.81 88.04 83.65 77.25 100.0 100.0 85.45
GCD750

200 0.79 0.74 82.85 76.96 70.56 100.0 96.98 79.38
GCD200

25 0.77 0.72 80.50 74.23 68.30 100.0 95.19 77.42

Locations - Indoor (19,129 documents)

Random 0.74 0.72 68.47 66.53 65.34 100.0 99.01 79.62
GCD2500

750 0.73 0.70 63.62 62.86 62.72 100.0 97.57 77.80
GCD750

200 0.74 0.71 66.93 65.10 63.97 100.0 97.70 78.14
GCD200

25 0.69 0.68 55.99 57.74 59.48 100.0 95.97 76.04

Events (7,734 documents)

Random 0.92 0.91 92.20 91.26 87.61 100.0 100.0 93.66
EsP 0.75 0.71 70.72 67.30 64.92 100.0 96.72 77.68

Context (36,217 documents)

Random 0.81 0.80 88.95 83.03 76.32 100.0 100.0 84.79
Top-25% 0.78 0.77 83.52 78.12 72.43 100.0 99.70 82.25
Top-10% 0.76 0.74 77.76 73.21 68.78 100.0 98.33 79.84
Top-5% 0.74 0.71 74.31 69.89 66.22 100.0 96.84 77.92
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Figure 4.5: Positive (a-c, higher CMS for original entities) and negative (d-e, higher CMS
for manipulated entities) verification results of some TamperedNews documents.
Within each example, the similarities (from red to green with intervals: per-
sons [0.45, 1], locations [0.7, 1], events [0.8, 1]) of the news photo to a set
of original and manipulated entities using one specific manipulation strat-
egy (MS) are shown. Photos are replaced with similar ones depicting the
same entity relations due to image copyright restrictions. Links to the orig-
inal documents can be found on: https://github.com/TIBHannover/cross-
modal_entity_consistency/tree/master/supplemental_material

Results for Person Entities: As expected, person verification achieves the best per-
formance since the entities and the retrieved example material are very unambiguous, and
neural networks for face recognition, such as FaceNet [228], can achieve impressive results.
Despite the more challenging manipulation techniques, our approach is still able to produce
similar results. We have only experienced problems if persons were depicted in challenging
conditions (e.g., extreme poses as shown in Figure 4.5a for John Kerry) or were relatively
unknown, which can lead to confusions with other persons (e.g., with a similar name) and
consequently false NED results or retrieval of irrelevant example photos.

Results for Location Entities: To evaluate the performance for location entities, we dis-
tinguish between images in indoor and outdoor environments using the place probabilities ŷS

according to Section 4.3.2 and the hierarchy provided by the Places365 dataset [315]. Due
to the data diversity, ambiguity, and unequal distribution of photos on Earth, geolocation
estimation is a complex problem, as discussed in Section 1.2 and Section 3.2.1. Therefore,
the results were expected to be worse compared to the person verification. Despite the
complexity, good results were achieved for news with outdoor images, whereas the assess-
ment of modified indoor locations is more challenging given the low amount of geographical
cues and their ambiguity. But even when entities are manipulated with locations of similar
appearance and low Great Circle Distance (GCD), as in Figure 4.5b and Figure 4.5d, the
system can operate on a reasonable level and shows promising results.
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4 Multimodal Analytics using Measures of Cross-modal Consistency

Table 4.5: AUC for a selection of location types on the TamperedNews (Top-50%) subset.
|D| is the number of documents containing at least one entity of this type and
|Ds| is the number of times this type achieves the highest cross-modal similarity
within the original data. Results are reported for the documents Ds of each type.

Selection of 12 / 1,063 location entity types

Type (num. of entities) |D| |Ds|
AUC

Random GCD2500
750 GCD750

200 GCD200
25

continent (7) 1,510 116 0.82 0.76 0.77 0.78
country (184) 9,516 2,892 0.86 0.76 0.72 0.70
state (109) 1,969 411 0.87 0.75 0.73 0.71

city (706) 9,781 3,333 0.86 0.83 0.78 0.75
town (592) 4,774 1,655 0.80 0.88 0.71 0.69
street (24) 300 64 0.80 0.78 0.76 0.73
tourist attraction (63) 880 172 0.94 0.91 0.90 0.88
building (40) 640 77 0.91 0.87 0.90 0.88

mountain range (13) 201 42 0.94 0.86 0.70 0.62
mountain (9) 85 31 0.97 0.92 0.79 0.77

ocean (4) 344 59 0.89 0.63 0.58 0.63
river (36) 412 106 0.90 0.82 0.78 0.71

Unlike person entities, locations are an instance of various parent classes such as countries
or cities. For an in-depth analysis, we calculate results for different types of locations
using the documents Ds where an instance of a given type achieves the highest CMLS
within the original set of entities. The results for some location types are presented in
Table 4.5 and show that the performance is best for more fine-grained entities such as
tourist attractions, buildings, and cities. The performance for coarse location types such as
oceans, mountain ranges, and country states are typically worse since they do not provide
sufficient geographical cues or are too broad to retrieve suitable reference images. Although
the results for continents or countries are also comparatively high, the candidates used for
manipulation are easier to distinguish since locations of those types have higher geographical
and cultural differences. The manipulations are much more challenging for fine-grained
entities, as illustrated in Figure 4.5b and Figure 4.5d.

Results for Event Entities: Referring to Table 4.4, good results were achieved for event
verification. As for locations, we have provided results of common event types in Table 4.6.
While the results for festivals, holiday, and disasters are promising, event types such as
football club competitions, protests, and wars are hard to distinguish due to the high visual
similarity of events within these types. For example, many news articles on football club
cups contain images which, unlike articles on sport competitions that refer to different types
of sports, depict typical scenes (e.g., players on the pitch) of the same sport. Thus, reference
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Table 4.6: AUC for a selection of event types on the TamperedNews (Top-50%) subset. |D| is
the number of documents containing at least one entity of this type, and |Ds| is
the number of times this type achieves the highest cross-modal similarity within
the original data. Results are reported for the documents Ds of each type.

Selection of 12 / 479 event entity types

Type (num. of entities) |D| |Ds|
AUC

Random EsP

football club cup (3) 1,094 801 0.93 0.49
sport competition (14) 155 111 0.95 0.76

festival (64) 516 421 0.90 0.77
award (6) 260 206 0.91 0.74
holiday (28) 285 141 0.91 0.84
television series (16) 144 123 0.87 0.70

war (39) 919 665 0.83 0.67
murder (19) 154 134 0.93 0.78
disaster (5) 70 61 0.93 0.91

scandal (10) 112 95 0.95 0.68
protest (7) 60 54 0.89 0.67
legal case (10) 37 34 0.89 0.79

images for the different competitions are very similar. Moreover, the utilized event classi-
fication approach [174] presented in Section 3.1 distinguishes between event types such as
football, elections, or types of natural disasters rather than between sub-types or concrete
event instances such as UEFA Champions League or 2020 U.S. elections. Despite these
limitations, the results are superior to the place classification approach used in our previous
work [175], as discussed in more detail in Section 4.5.4.

Cross-modal Context Similarity: The results for context verification in Table 4.4 indi-
cate that our system can reliably detect documents with randomly changed images. However,
as also stated by Sabir et al. [219], this task is relatively easy as the semantic coherence is
not maintained. When similar images are used for manipulation, this task becomes much
more challenging. Since networks for object classification (used for manipulation) and place
classification (used for verification) can produce comparable results, performance steadily
decreases using more similar images for manipulation that might even show the same topic,
e.g., sports. However, our system is still able to hint towards cross-modal consistencies.

4.5.3.2 Results on News400

Since the number of documents is rather limited and the cross-modal mutual presence of
entities was manually verified, results for News400 are reported for all documents with
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verified relations. Based on the results reported in Table 4.7, similar conclusions on the
overall system performance can be drawn. However, results while retrieving manipulated
documents are noticeably worse. This is mainly caused by the fact that some original
entities with valid cross-modal relations can be unspecific (e.g., mention of a country),
or the retrieved images for visual verification do not fit the document’s image content.

Table 4.7: Results for document verification (DV) and collection retrieval for the News400
dataset. Results are reported for all verified documents for different entity test
sets (notations according to Section 4.4.1).

Test set
DV Collection Retrieval

VA AUC
AP-original [%] AP-manipulated [%]

@25% @50% @100% @25% @50% @100%

Persons (116 verified documents)

Random 0.95 0.91 100.0 100.0 93.70 85.19 85.96 85.95
PsC 0.92 0.90 100.0 99.49 92.14 83.07 84.52 84.14
PsG 0.91 0.90 99.10 98.40 92.34 82.40 84.36 84.64
PsCG 0.92 0.91 100.0 100.0 94.00 84.38 85.25 85.60

Locations - Outdoor (54 verified documents)

Random 0.89 0.85 100.0 98.01 87.72 83.19 80.76 79.47
GCD2500

750 0.81 0.80 92.61 89.94 81.49 72.19 72.95 73.20
GCD750

200 0.80 0.74 86.70 82.42 74.76 63.03 66.73 67.33
GCD200

25 0.80 0.72 86.70 82.25 72.85 63.59 67.97 66.35

Locations - Indoor (15 verified documents)

Random 0.80 0.75 91.67 80.94 74.85 88.75 86.44 77.20
GCD2500

750 0.67 0.64 62.20 58.74 60.04 80.42 82.28 69.37
GCD750

200 0.87 0.69 85.42 74.31 68.90 88.75 85.23 72.96
GCD200

25 0.80 0.62 69.17 62.64 61.40 80.42 78.06 67.12

Events (31 verified documents)

Random 1.00 0.93 100.0 96.18 92.58 100.0 99.63 93.93
EsP 0.74 0.72 63.44 66.19 65.49 89.57 86.45 74.76

Context (91 verified documents)

Random 0.70 0.70 87.03 87.50 73.62 61.11 63.09 63.19
Top-25% 0.70 0.68 92.19 88.43 72.96 53.60 57.77 59.69
Top-10% 0.64 0.66 70.54 74.12 65.58 56.15 59.72 59.75
Top-5% 0.66 0.63 74.48 73.09 64.18 50.77 55.99 56.98
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This problem was bypassed because subsets of the Top-d% documents for TamperedNews
were used to counteract the influence of original documents that do not show any cross-
modal relations (as discussed in Section 4.5.1, paragraph "Test Document Selection for
TamperedNews"). We have verified the same behavior for News400 when experimenting on
these subsets. For more details, we refer to Appendix A.3. In addition, performance for
context verification is worse compared to TamperedNews. We assume that this is due to
the less powerful word embedding for the German language. Overall, the system achieves
promising performance for cross-modal consistency verification. Since it dynamically gathers
example data from the Web, it is robust to changes in topics and entities, even when applied
to news articles from another country and publication date.

4.5.4 Comparison of Event Feature Descriptors

As discussed in Section 4.2.2, we use the ontology-driven event classification approach [174]
presented in Section 3.1 to compute event features for our proposed system. Due to the
absence of suitable methods for event classification, a more general place classification model
was applied in our previous approach [175]. The visual features fE are obtained from the
last pooling layer of a ResNet-50 model28 [92, 93] trained on 365 place categories covered
by the Places365 dataset [315].

To compare both approaches, we evaluate their performances on the News400 dataset as
it contains documents with verified event relations. As explained in Section 4.5.1 (paragraph
"Test Document Selection for TamperedNews"), we have used the TamperedNews (Top-50%)
documents as subsets for evaluation since they more likely contain cross-modal relations.
However, this complicates the comparison of two approaches as those subsets can be dif-
ferent depending on their specified parameters (e.g., feature descriptor, function Ψ). Thus,
we report results on all documents as well as on the intersection and union of the Tam-
peredNews (Top-50%) document sets of both approaches. In this way, the test sets contain
documents that are either considered relevant from both or at least one approach, respec-
tively. The results are presented in Table 4.8 and demonstrate that the event classification
approach achieves superior performances. However, as already discussed in Section 4.5.3.1,
the approach is not trained to classify concrete event instances and instead focuses on more
generic event types. As a consequence, improvements for the EsP test set containing manip-
ulated events of the same parent class are not as significant as for the randomly manipulated
test set. Further limitations and dependencies are discussed in the next section.

4.5.5 Limitations and Dependencies

News covered in the World Wide Web are dynamic, and new entities and topics evolve every
day. We have deliberately chosen Wikifier for Named Entity Disambiguation (NED) because
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Table 4.8: Verification Accuracy (VA) and AUC using a place classification network trained
on Places365 [315] and the ontology-driven event classification approach trained
on VisE-D according to Section 3.1 as a feature extractor for different event
manipulation strategies and datasets.

Feature Extractor
Event Manipulation Technique

Random EsP
VA AUC VA AUC

News400 (31 verified documents)

Place CNN trained on Places365 [315] 0.87 0.85 0.68 0.64
Event CNN COcosγ trained on VisE-D (Section 3.1) 1.00 0.93 0.74 0.72

TamperedNews (all 15,467 documents)

Place CNN trained on Places365 [315] 0.67 0.66 0.59 0.56
Event CNN COcosγ trained on VisE-D (Section 3.1) 0.70 0.70 0.59 0.57

TamperedNews (Top-50% intersection - 6,080 documents)

Place CNN trained on Places365 [315] 0.91 0.89 0.75 0.70
Event CNN COcosγ trained on VisE-D (Section 3.1) 0.94 0.93 0.76 0.71

TamperedNews (Top-50% union - 9,388 documents)

Place CNN trained on Places365 [315] 0.83 0.82 0.70 0.65
Event CNN COcosγ trained on VisE-D (Section 3.1) 0.86 0.86 0.71 0.67

it can dynamically cover Wikipedia entities. However, the proposed system is restricted to
entities that exist in a knowledge base at the time of inference. Besides, the system relies
on the rankings and response times of image search engines. In this regard, the reference
images for coarse entities such as countries or continents crawled from the Web might not
match the news image. Some named entities such as "Hanover" (German or U.S. city) or
"Tesla" (company or inventor) can also be ambiguous. Referring to Figure 4.1, we also
noticed that querying entities such as the city "Liverpool" using Google’s image search
engine retrieves images that depict another (more popular) entity, in this case, the football
club "Liverpool F.C." rather than the actual entity.

A potential solution to the aforementioned problems is to include knowledge graph in-
formation and relations that are already extracted by the system. For example, adding
the country (Wikidata property P17 ) "Germany" to the query "Hanover" (Wikidata iden-
tifier Q1715 ) or using the entity type (P31 ) "city" in combination with the query "Liver-
pool" (Q24826 ) can prevent potential ambiguities. Since reference images for coarse location
entities rarely match the news image, the classification output of the geolocation approach
presented in Section 3.2 might be a better alternative to quantify the CMLS due to its strong
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Figure 4.6: Screenshot of the demonstrator for news analytics for an exemplary multimodal
article. Entity information (right) is revealed by hovering over specific entities.

performance at the country and continent level. This approach could also be combined with
a large-scale reference dataset covering locations around the Earth for verification, as pro-
posed by Vo et al. [266, 267]. Although the feasibility of this solution needs to be evaluated
in the future, we have already integrated the classification outputs of the geolocation model
into our demonstrator, as presented in the next section.

4.6 Demonstrator

We have developed a demonstrator of the proposed system for multimodal news analyt-
ics [238]. The demonstrator is publicly available as a lab service of the Leibniz Information
Centre for Science and Technology (TIB) at https://labs.tib.eu/newsanalytics. A
screenshot to illustrate the functionality is shown in Figure 4.6.

The demonstrator allows users to copy the web link of a news article or alternatively
upload an image and text to analyze the multimodal content for cross-modal entity occur-
rences. Once an image-text pair has been selected, NER & NED are applied according to
Section 4.2.1 to extract mentions of persons, locations, and events. By hovering over specific
entities, the user is provided with entity descriptions extracted from Wikipedia and Wiki-
data as well as an image, if available, using the Wikidata property P18. After the named
entities are extracted from the text, the user can click on the corresponding buttons to let
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the system calculate the proposed Cross-modal Similarity (CMS) for persons, locations, and
events according to Section 4.2. Subsequently, the results are presented, and the crawled
web images for the named entities can be displayed by hovering over them. Furthermore,
the output of the geolocation approach presented in Section 3.2 is visualized on a world
map. These illustrations also allow the user to assess the cross-modal consistency of news
articles manually.

4.7 Summary

In this chapter, we have presented a novel analytics system and benchmark datasets to
measure the cross-modal consistency between photos and text in real-world news articles.
Tools for Named Entity Recognition and Disambiguation (NER & NED) are combined to
detect persons, locations, and events in the news text. Example images for these entities
are automatically gathered from the Web and used in combination with novel measures of
cross-modal similarity to quantify the entity consistency between photos and text. For this
purpose, suitable computer vision methods for information extraction from photos are ap-
plied. Furthermore, a more general measure to evaluate the cross-modal context consistency
between photo and text has been introduced. Unlike previous solutions that quantify image-
text relations [96, 127, 185, 294, 306], we explicitly consider cross-modal relations of named
entities to provide more differentiated measures of Cross-modal Mutual Information (CMI).
In contrast to supervised approaches on image repurposing detection [114, 115, 219], our
system is unsupervised and does not rely on labeled training or pre-defined reference data.
Thus, it is applicable to real-world news since it can better cope with the growing amount
and variety of entities. Experiments were conducted on two datasets that contain real-world
news articles across different topics, domains, and languages and have demonstrated the
feasibility of the proposed approach.

As mentioned in Section 4.5.5, the system performance for coarse (e.g., countries or con-
tinents), ambiguous, or less popular entities can suffer due to the lack of relevant reference
images crawled by the automatic web image search. Thus, we aim to refine the image search
queries based on knowledge graph information and entity relationships in the future. Fur-
thermore, the event classification approach (Section 3.1) can only distinguish event types
such as types of sports, natural disasters, or elections. The system can benefit from an event
classification approach capable of differentiating between more fine-grained event types and
concrete event instances, e.g., UEFA Champions League or 2020 U.S. elections. Another
research direction is to measure the cross-modal consistency of other types of entities such
as dates, times, or organizations.

132



5 Conclusions

News articles are an essential part of our everyday lives. Articles published on news sites,
social media, or in the newspaper typically use different modalities, such as photos and text,
to convey information more effectively or to attract attention. The relations between the
modalities, such as the number of shared entities and the semantic correlation, are an impor-
tant aspect to understand the overall message and meaning of multimodal documents [31].

In this thesis, the question has been investigated whether an unsupervised approach can
automatically quantify the cross-modal consistency of named entities, e.g., persons, loca-
tions, dates, and events between photos and text in real-world news articles. This function-
ality enables many tasks and applications. For example, it allows for efficient exploration
of news and facilitates semantic search and multimedia retrieval in large (web) archives. In
some use cases, cross-modal consistency measures can assist users and manual fact-checking
efforts in assessing the credibility of news, which is an important task given the increasing
amount of misinformation, i.e., fake news, published on the World Wide Web.

We have proposed a novel system that quantifies the cross-modal consistency of named
entities detected by suitable methods for Named Entity Recognition and Disambiguation in
news articles. Quantification has been realized by comparing information extracted from
the news photo to example photos for these named entities crawled automatically from
the Web. As this step requires the extraction of semantic, geospatial, temporal, and spatio-
temporal information from photos, novel approaches for the related computer vision tasks of
event classification, geolocation estimation, date estimation, and face recognition have been
suggested. To the best of our knowledge, we have proposed the first unsupervised solution to
quantify the cross-modal consistency of entities that is applicable to real-world news. Unlike
previous approaches that quantify image-text relations without explicitly considering named
entities [96, 127, 185, 294, 306], this approach allows for more differentiated measures of
Cross-modal Mutual Information with respect to entity consistency. Compared to supervised
multimodal deep learning approaches for the detection of repurposed image content based on
entity verification [114, 115, 219], it does not require labeled training or pre-defined reference
data and can better cope with the growing amount and variety of entities in the media.

In the following, we summarize the contributions and provide answers to the research
questions of this thesis (Section 5.1). Section 5.2 discusses the limitations of the proposed
solutions and directions of future work.
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5.1 Answers to the Research Questions

This section provides answers to the three research questions addressed in this thesis.

Research Question 1: Can we develop an unsupervised approach for the quan-
tification of cross-modal entity consistency in news articles? What are the ad-
vantages, limitations, and challenges in comparison to supervised approaches?

We have proposed and evaluated an unsupervised approach for the quantification of cross-
modal entity consistency in real-world news articles (Chapter 4). As mentioned above, we
applied Named Entity Recognition and Disambiguation to extract named entities such as
events, locations, and persons from the text. For each detected entity, example images
were crawled automatically from the Web and served as visual evidence. Depending on the
entity type, features were extracted using the proposed solutions for event classification,
geolocation estimation, and person recognition presented in Chapter 3. These features were
compared to the news photo based on novel measures of cross-modal similarity to quan-
tify the cross-modal entity consistency. Moreover, semantic features from a place (or scene)
classification approach have been extracted and used with word embeddings to measure con-
textual relationships between image and text. Finally, a publicly available web demonstrator
of the system was presented. Experimental results on novel datasets for different tasks, do-
mains, and languages (English and German) have shown that the approach can determine
multimodal relationships between photos and text when appropriate example images for the
entities can be acquired. In particular, promising results have been achieved for quantify-
ing the cross-modal consistency of persons and fine-grained geographical locations such as
tourist attractions, buildings, streets, and cities. Thus, we have successfully presented a first
solution towards the quantification of cross-modal entity consistency in real-world news.

The main advantage of our proposed approach over supervised solutions is that it does
not rely on pre-defined training or reference datasets labeled for cross-modal relations that
(1) are difficult and tedious to annotate and (2) restrict these learning-based approaches
to the verification of entities already covered in these datasets. Our unsupervised solution
can provide differentiated measures of cross-modal entity consistency for a vast amount and
diversity of entities appearing in the news. However, the performance relies on the automatic
retrieval of suitable example images for the named entities from the Web. As a consequence,
the system depends on the rankings and response times of the used image search engines. In
particular, retrieved images for coarse, less popular, or ambiguous entities can be irrelevant
or depict the wrong entities. For example, querying image search engines based on the name
of a certain country or continent is typically too broad. Thus, the retrieved photos usually
do not reflect the content in the news photo and are therefore not valuable for quantifying
cross-modal relations. Although suitable deep learning approaches were applied to extract
features for different entity types from the photos, the complexity of the individual tasks
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limits the applications of the proposed solution to a certain degree, as discussed in the
answers to the following research question.

Research Question 2: How suitable are deep learning approaches in recog-
nizing events, locations, dates, and persons in photos specifically with respect to
information extraction from news articles?

The extraction of information from photos is a vital prerequisite to quantify cross-modal
entity consistency. Thus, novel deep learning solutions for event classification, geolocation
estimation, date estimation, and person recognition have been proposed in Chapter 3. These
approaches (except for date estimation) were used to quantify the entity consistency between
photos and text in Chapter 4. The answers to the research question for each entity type are
provided below.

Events: In Section 3.1, an ontology-driven deep learning approach for event type clas-
sification in photos has been introduced. We presented the Visual Event Classification
Dataset (VisE-D) comprising 570,540 images that, unlike previous datasets, covers the ma-
jority of event classes important to news. Besides, we have proposed a Visual Event Ontol-
ogy (VisE-O) based on Wikidata knowledge base information that contains relations for a
total of 148 event types. Several loss functions and weighting schemes have been suggested
to integrate event relations from structured knowledge graph information into an ontology-
driven deep learning approach. Results on several benchmarks and two novel test datasets
have shown that the integration of structured information from an ontology improves event
classification in photos. We noticed that the performance for expected (scheduled or regu-
lar) event types, such as elections and sport-centric events, is better than for unexpected or
rare events, e.g., natural disasters. Experimental results in Chapter 4 have confirmed that
the approach can generally quantify cross-modal event consistency in news. However, news
articles typically mention concrete event instances like specific sports competitions (e.g.,
UEFA Champions League, Premier League), elections (e.g., 2016 U.S. election, 2020 U.S.
election), or epidemics (e.g., 2014-15 Ebola epidemic, COVID-19 pandemic) that are difficult
to distinguish by the proposed solution as they are subordinate to the event types.

Locations: Novel deep learning approaches for planet-scale photo geolocation estimation
have been introduced in Section 3.2. We have proposed a hierarchical approach that uses
geographical information from partitionings of the Earth with varying granularity. It helps
to measure the cross-modal consistency of locations at different geographical levels (e.g.,
street, city, country), which are frequently used in the news. Moreover, it addresses a criti-
cal trade-off problem where a higher number of cells leads to a more fine-grained partitioning
of the Earth but results in fewer training images per cell, making a model more susceptible
to overfitting. Besides, we have suggested two strategies to include contextual scene infor-
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mation into a geolocation estimation approach to learn important features for photos taken
in different environmental settings, e.g., urban, natural, or indoor. It has been shown that
individual CNNs trained with images depicting a particular environmental setting along
with partitionings of different granularity yield more accurate classifiers for geolocation es-
timation. The proposed solution achieves state-of-the-art performance on two benchmark
datasets and outperforms strong baselines from the literature while relying on a signifi-
cantly smaller amount of training images. Given the complexity of geolocation estimation,
impressive results have been reported for localizing photos that depict tourist attractions,
buildings, streets, and cities in Section 3.2 and Chapter 4. Geolocation estimation of photos
taken in natural environments is also promising, yet it faces more challenges which lead to
slightly less accurate results. On the other hand, close-ups, stock images, or photos of indoor
environments are often demanding to localize since they lack unique geographical cues or
could even be misleading. Moreover, the geospatial distribution of photos covered in public
datasets is biased. Fewer photographs are available for continents such as Africa and South
America compared to Europe and North America. As a result, it is more difficult to precisely
estimate the location of photos taken in less frequently captured regions. However, recent
studies [267] have already shown that deep learning approaches exceed human performance
for this task. Overall, the proposed solution can reliably recognize locations from photos
that depict unique and unambiguous geographical cues.

Dates: Related work on date estimation is restricted to historical color photographs or
specific concepts such as persons or cars. For this reason, a novel large-scale dataset enti-
tled Date Estimation in the Wild with more than one million photos from Flickr captured
between 1930 and 1999 that is neither restricted to specific concepts nor to color photographs
has been introduced in Section 3.3. Two deep learning approaches that treat date estimation
as a regression and classification problem have been proposed. Both systems outperform
untrained human annotators with an average error of less than eight years. Although the
approaches exceed human performance, the relatively high average error indicates that the
approach cannot reliably verify the acquisition year of photos in news articles. Furthermore,
the system can only predict the acquisition year of photos taken between 1930 and 1999.
Overall, this limits the current approach to the verification of dates in articles about histor-
ical events with a precision of five to ten years. Many real-world use cases require the exact
date of capture, including precise date and time of day information, from contemporary
photographs. For this reason, experiments on cross-modal date verification were omitted in
this thesis and will be investigated in the future.

Persons: In Section 3.4 of this thesis, an approach for the identification of public figures
in news photos extracted from the Internet Archive has been presented. Example images
for relevant persons in a given time period and domain (e.g., politics or entertainment) were
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crawled automatically from the Web. Several strategies have been investigated to exclude
photos that do not depict the queried personalities, including a clustering technique that
allows for a fully-automatic identification of public figures in news images. The identification
has been realized by comparing facial features extracted from the news photo and the filtered
example images. Results and case studies have demonstrated that the suggested approach
can extract meaningful relations between public figures in news images. It also turned out
that the quantification of person consistency in news articles provides the best results across
all entity types (Chapter 4). We only experienced issues for relatively unknown personalities
since the example images crawled from the Web might not depict them. In some cases, pose-
variations, occlusions, and aging can be very challenging when quantifying the cross-modal
consistency of individuals. However, in summary, deep learning approaches are capable of
identifying persons in news photos.

Research Question 3: Can contextual information, derived from knowledge
bases or related tasks like scene classification, improve image recognition and
interpretation and provide better performance for computer vision tasks?

Since event classification and geolocation estimation are very challenging tasks that require
a profound scene understanding, we suggested novel techniques to provide deep learning ap-
proaches with contextual information. It turned out that the proposed ontology-driven event
classification approach (Section 3.1), which exploits event relations extracted from struc-
tured knowledge graph information, achieved the best results on several datasets for event
recognition in photos. In Section 3.2, it has been demonstrated that hierarchical geographic
information from partitionings of the Earth with different granularity in combination with
complementary contextual scene information about the environmental setting achieves the
best results for geolocation estimation. In summary, experimental results have shown that
the integration of contextual information into deep learning approaches improves event clas-
sification and geolocation estimation, leading to the conclusion that contextual information
indeed improves image recognition and interpretation.

5.2 Limitations & Future Work

In this thesis, a first unsupervised approach for the quantification of entity consistency in
real-world news has been presented. Several challenges and limitations can be the subject
of future work.

Named Entity Recognition and Disambiguation: We have used Wikifier [40, 41] for
Named Entity Recognition and Disambiguation as it can dynamically detect entities in the
text covered in Wikipedia at inference time. Thus, it is more flexible than learning-based
approaches, which are limited to the entities mentioned in the training data and require
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fine-tuning to adapt to new entities. However, despite its flexibility, it cannot handle new
entities without entries in the knowledge base that may appear in the news every day,
such as unexpected events. A potential solution is to additionally consider named entities
from Named Entity Recognition (NER) tools such as spaCy [99] that were not linked to a
knowledge base. However, this would introduce new challenges. For example, it significantly
increases the computational time since each mention of an entity, even if it represents the
same entity (e.g., President Obama and Barack Obama), would be considered individually.

Example Image Retrieval: As discussed in Section 5.1, the system relies on suitable
example photos for named entities detected in the text. A potential solution to find more
meaningful example images is to refine image search queries. This can be achieved in nu-
merous ways. For example, knowledge graph information (e.g., parent classes indicating the
entity type, location coordinates, event dates) or contextual information, such as the topic
of the news article, can be included in the query. Rather than crawling example images
for specific entities, it might be worth investigating whether images from news articles that
mention the same entity (or even entities) in a similar context can be retrieved. These
images more likely reflect the image content of the investigated news article. Moreover, we
found that queries for broader locations, such as continents, countries, and (in some cases)
even cities, are not specific enough to retrieve valuable example photos. Since these location
entities are relatively static, i.e., there are rarely new cities or countries mentioned in the
media, a pre-defined reference dataset covering most relevant locations around the world
might provide more meaningful example images. This direction has already been pursued
by Vo et al. [267] and proven to be efficient outside the news domain.

Cross-modal Entity Consistency: While the proposed solution can quantify the cross-
modal consistency of events, locations, and persons, the verification of other entity types
such as times (e.g., decades, dates, daytime) or organizations remains an open issue. An
approach that can estimate complete image dates (day, month, and year) and daytime in-
formation without any restrictions would allow for the verification of temporal information
in contemporary news articles. However, this is challenging because the model needs to
incorporate geographic, economic, and cultural information that influences temporal char-
acteristics. As an alternative, the proposed news analytics system would greatly benefit from
an event classification approach that is capable of identifying concrete event instances (e.g.,
FIFA World Cup Final 2014, 2020 U.S. election, COVID-19 pandemic) rather than more
generic event types (e.g., association football, election, epidemic). Such an approach would
enable the quantification of image-text relations for more fine-grained events as well as their
associated dates (or time periods) and location(s). In this regard, we plan to exploit strate-
gies such as Graph Convolutional Neural Network that leverage the proposed Visual Event
Ontology (VisE-O). This ontology already provides a solid foundation since it covers more

138



5.2 Limitations & Future Work

than 500 thousand real-world events. In Section 3.2, it was demonstrated that incorporating
contextual information on the environmental setting and hierarchical geospatial information
into deep learning models improves geolocation estimation. It would be interesting to inves-
tigate how additional information on aspects such as culture, climate, or economy can impact
the performance of CNNs for this task. Moreover, the consideration of human-interpretable
aspects allows for more plausible predictions from deep learning approaches that are usually
black-box systems. In general, the interpretability of results generated by the proposed deep
learning approaches is another exciting research direction given the potential impact of mis-
information in news and social media. Thus, we plan to explore approaches on explainable
artificial intelligence to provide users with plausible and interpretable system outputs for
cross-modal entity consistency in real-world news.
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A Appendix

A.1 Event Classification of Photos

This section contains detailed dataset statistics for the train and test datasets (Appendix A.1.1)
as well as the results using different inference strategies (Appendix A.1.2).

A.1.1 Detailed Dataset Statistics

We presented the Visual Event Classification Dataset (VisE-D) including two test datasets
in Section 3.1.2.3 of this thesis. In this section, detailed statistics on the image distribution
for the Leaf Event Nodes are provided in Figure A.1 – A.3. The illustrations also provide
the complete list of Leaf Event Nodes.

A.1.2 Results using other Inference Strategies

We have evaluated the ontology-driven approaches using an inference strategy that combines
two different probabilities ŷL = ŷoL� ŷcosL (Section 3.1.3.3). The results using the individual
probabilities ŷoL or ŷcosL are provided in Table A.1 and Table A.2.

In general, the probabilities ŷoL provide slightly better results, in particular for the top-3
and top-5 accuracy. We argue that Leaf Event Nodes with shorter paths in the Ontology
tend to achieve higher probabilities ŷcosL , as the overall (accumulated) weight of Branch
Event Nodes is lower for the respective Subgraph. However, similar results are achieved
in comparison to the reported numbers of the combined strategy presented in Table 3.2.
Thus, the results allow the same conclusion with respect to the overall performance of the
ontology-driven loss functions and weighting schemes.
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Figure A.2: Number of images for all Leaf Event Nodes in the manually annotated VisE-Bing
test dataset.
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Figure A.3: Number of images for all Leaf Event Nodes in the VisE-Wiki test dataset.
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A.1 Event Classification of Photos

Table A.1: Results (numbers are multiplied by 100) on the manually annotated VisE-Bing
test dataset using the probabilities ŷoL for classification in combination with
different loss functions, weighting schemes (WS), and ontology redundancy re-
moval (RR).

Model Loss WS RR Accuracy
JSC CSNotation Top1 Top3 Top5

C Lc 77.4 89.8 93.6 84.7 87.7

Ocel Lo 66.9 83.2 88.6 80.2 84.5
Ocelω Lcelo ω, ωL = 1 67.7 83.1 88.9 80.3 84.5
Ocel6ω Lcelo ω, ωL = 6 79.8 91.0 94.3 86.5 89.2
Ocel6ω+RR Lcelo ω, ωL = 6 X 81.9 91.7 94.6 87.9 90.4
Ocelγ Lcelo γ 66.7 83.6 89.9 78.3 82.7
Ocelγ +RR Lcelo γ X 73.2 87.2 91.8 82.4 86.0

Ocos Lcoso 67.5 77.8 81.5 82.2 86.2
Ocosω Lcoso ω, ωL = 1 72.5 83.8 87.7 84.1 87.6
Ocos6ω Lcoso ω, ωL = 6 80.4 90.7 93.6 86.4 89.0
Ocos6ω +RR Lcoso ω, ωL = 6 X 80.9 90.1 93.3 86.9 89.5
Ocosγ Lcoso γ 81.3 90.1 93.6 87.3 89.7
Ocosγ +RR Lcoso γ X 80.9 90.4 93.1 87.0 89.5

COcel6ω+RR Lc + Lcelo ω, ωL = 6 X 81.6 91.7 94.5 87.5 90.0
COcosγ Lc + Lcoso γ 81.9 90.8 93.5 87.9 90.4
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Table A.2: Results (numbers are multiplied by 100) on the manually annotated VisE-Bing
test dataset using the probabilities ŷcosL for classification in combination with
different loss functions, weighting schemes (WS), and ontology redundancy re-
moval (RR).

Model Loss WS RR Accuracy
JSC CSNotation Top1 Top3 Top5

C Lc 77.4 89.8 93.6 84.7 87.7

Ocel Lo 68.0 77.5 81.0 82.1 86.4
Ocelω Lcelo ω, ωL = 1 68.0 78.2 82.4 81.6 85.8
Ocel6ω Lcelo ω, ωL = 6 79.7 89.9 92.0 86.5 89.2
Ocel6ω+RR Lcelo ω, ωL = 6 X 81.5 90.8 92.9 87.8 90.3
Ocelγ Lcelo γ 66.3 80.5 85.8 78.3 82.9
Ocelγ +RR Lcelo γ X 72.7 84.7 88.2 82.3 86.0

Ocos Lcoso 68.8 78.8 82.1 83.9 87.7
Ocosω Lcoso ω, ωL = 1 72.5 82.9 85.2 84.7 88.1
Ocos6ω Lcoso ω, ωL = 6 80.1 89.5 92.0 86.3 89.0
Ocos6ω +RR Lcoso ω, ωL = 6 X 80.8 89.3 91.9 86.9 89.5
Ocosγ Lcoso γ 79.8 87.5 89.6 86.6 89.4
Ocosγ +RR Lcoso γ X 78.3 86.6 88.3 86.1 89.0

COcel6ω+RR Lc + Lcelo ω, ωL = 6 X 81.4 91.0 93.1 87.4 89.9
COcosγ Lc + Lcoso γ 81.4 90.5 92.5 87.2 89.8
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A.2 Results for Geolocation Estimation

A.2 Results for Geolocation Estimation

The tables on the following pages contain the results for the geolocation approaches pre-
sented in Section 3.2 for the Im2GPS [89] as well as Im2GPS3k [267] benchmark datasets.
Furthermore, results for the benchmark subsets containing images of a specific scenery or
environmental setting (indoor, natural, and urban) are reported.
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Table A.3: Results on the Im2GPS test dataset of all images (ovr). Percentage is the
fraction of images localized within the given radius using the Great Circle Dis-
tance (GCD).

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

base-vggc (L,m) 7.6 % 22.8 % 35.0 % 50.6 % 66.7 %
base-vgg (L,m) 8.9 % 26.6 % 36.7 % 50.6 % 65.8 %
vgg-ISNs (L,m,S3) 11.8 % 32.1 % 44.3 % 56.5 % 71.7 %

base (L, c) 8.0 % 32.9 % 51.1 % 67.1 % 81.4 %
base (L,m) 13.5 % 36.3 % 50.6 % 64.1 % 79.7 %
base (L, f) 14.3 % 41.4 % 51.9 % 64.1 % 78.9 %

base (M, c) 8.9 % 33.3 % 47.3 % 63.7 % 78.1 %
base (M,m) 13.5 % 35.0 % 49.8 % 64.1 % 79.7 %
base (M,f) 14.3 % 40.1 % 49.8 % 64.6 % 79.3 %
base (M,f*) 15.2 % 40.9 % 51.5 % 65.4 % 78.5 %

ISNs (L, c,S3) 8.9 % 30.4 % 48.5 % 66.2 % 83.5%
ISNs (L,m,S3) 13.1 % 32.5 % 46.8 % 63.7 % 79.7 %
ISNs (L, f,S3) 15.2 % 40.9 % 50.6 % 62.0 % 77.6 %

ISNs (M, c, S3) 9.7 % 33.8 % 48.5 % 65.0 % 80.2 %
ISNs (M,m, S3) 15.6 % 38.8 % 52.3% 67.9% 82.3 %
ISNs (M,f, S3) 16.5 % 42.2 % 51.9 % 66.2 % 81.0 %
ISNs (M,f*,S3) 16.9% 43.0% 51.9 % 66.7 % 80.2 %

MTN(L, f,S3) 13.9 % 38.4 % 48.9 % 62.9 % 79.3 %
MTN(L, f,S16) 12.7 % 37.1 % 44.7 % 59.1 % 75.5 %
MTN(L, f,S365) 13.9 % 37.1 % 46.0 % 60.8 % 74.3 %

MTN(M, c, S3) 8.4 % 32.1 % 48.1 % 62.4 % 78.1 %
MTN(M,m, S3) 13.1 % 34.2 % 44.3 % 63.3 % 78.9 %
MTN(M,f, S3) 14.3 % 38.4 % 47.3 % 63.7 % 76.4 %
MTN(M,f*,S3) 13.5 % 37.6 % 46.8 % 63.3 % 78.1 %
MTN(M, c, S16) 8.9 % 33.3 % 48.1 % 62.4 % 75.1 %
MTN(M,m, S16) 12.7 % 35.4 % 46.8 % 61.2 % 74.7 %
MTN(M,f, S16) 13.5 % 36.7 % 46.8 % 63.3 % 75.9 %
MTN(M,f*,S16) 13.5 % 38.4 % 45.1 % 59.9 % 74.7 %
MTN(M, c, S365) 8.0 % 29.5 % 43.5 % 59.9 % 75.5 %
MTN(M,m, S365) 13.5 % 34.2 % 44.7 % 59.9 % 77.2 %
MTN(M,f, S365) 13.1 % 35.4 % 43.5 % 59.9 % 75.5 %
MTN(M,f*,S365) 13.9 % 36.7 % 44.3 % 61.6 % 77.6 %
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A.2 Results for Geolocation Estimation

Table A.4: Results on the Im2GPS test dataset of all images classified as indoor. Percentage
is the fraction of images localized within the given radius using the Great Circle
Distance (GCD).

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

base-vggc (L,m) 5.3 % 10.5 % 15.8 % 31.6 % 47.4 %
base-vgg (L,m) 5.3 % 10.5 % 15.8 % 31.6 % 47.4 %
vgg-ISNs (L,m,S3) 5.3 % 10.5 % 10.5 % 26.3 % 36.8 %

base (L, c) 0.0 % 26.3 % 31.6 % 42.1 % 52.6 %
base (L,m) 5.3 % 21.1 % 21.1 % 31.6 % 52.6 %
base (L, f) 10.5 % 31.6 % 31.6 % 42.1 % 57.9 %

base (M, c) 0.0 % 31.6 % 36.8 % 52.6 % 68.4 %
base (M,m) 10.5 % 36.8% 42.1% 57.9% 78.9%
base (M,f) 10.5 % 36.8% 42.1% 57.9% 78.9%
base (M,f*) 10.5 % 36.8% 42.1% 57.9% 78.9%

ISNs (L, c,S3) 0.0 % 26.3 % 31.6 % 47.4 % 63.2 %
ISNs (L,m,S3) 5.3 % 21.1 % 21.1 % 26.3 % 42.1 %
ISNs (L, f,S3) 10.5 % 31.6 % 31.6 % 36.8 % 47.4 %

ISNs (M, c, S3) 5.3 % 31.6 % 36.8 % 42.1 % 52.6 %
ISNs (M,m, S3) 15.8% 36.8% 42.1% 47.4 % 68.4 %
ISNs (M,f, S3) 15.8% 26.3 % 31.6 % 42.1 % 57.9 %
ISNs (M,f*,S3) 15.8% 31.6 % 36.8 % 42.1 % 57.9 %

MTN(L, f,S3) 10.5 % 31.6 % 31.6 % 52.6 % 73.7 %
MTN(L, f,S16) 5.3 % 15.8 % 26.3 % 26.3 % 47.4 %
MTN(L, f,S365) 10.5 % 21.1 % 26.3 % 42.1 % 47.4 %

MTN(M, c, S3) 0.0 % 26.3 % 36.8 % 52.6 % 57.9 %
MTN(M,m, S3) 5.3 % 21.1 % 21.1 % 42.1 % 63.2 %
MTN(M,f, S3) 0.0 % 21.1 % 21.1 % 42.1 % 63.2 %
MTN(M,f*, S3) 0.0 % 21.1 % 21.1 % 42.1 % 57.9 %
MTN(M, c, S16) 5.3 % 31.6 % 31.6 % 47.4 % 63.2 %
MTN(M,m, S16) 5.3 % 26.3 % 26.3 % 47.4 % 63.2 %
MTN(M,f, S16) 5.3 % 21.1 % 26.3 % 47.4 % 63.2 %
MTN(M,f*, S16) 5.3 % 26.3 % 26.3 % 52.6 % 68.4 %
MTN(M, c, S365) 5.3 % 26.3 % 31.6 % 47.4 % 57.9 %
MTN(M,m, S365) 5.3 % 15.8 % 21.1 % 36.8 % 57.9 %
MTN(M,f, S365) 5.3 % 21.1 % 26.3 % 42.1 % 57.9 %
MTN(M,f*,S365) 0.0 % 21.1 % 26.3 % 47.4 % 63.2 %
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Table A.5: Results on the Im2GPS test dataset of all images classified as natural. Percentage
is the fraction of images localized within the given radius using the Great Circle
Distance (GCD).

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

base-vggc (L,m) 1.3 % 13.8 % 36.3 % 48.8 % 62.5 %
base-vgg (L,m) 2.5 % 22.5 % 38.8 % 51.3 % 60.0 %
vgg-ISNs (L,m,S3) 3.8 % 27.5 % 42.5 % 48.8 % 61.3 %

base (L, c) 1.3 % 18.8 % 46.3 % 58.8 % 76.3%
base (L,m) 3.8 % 30.0 % 50.0 % 60.0 % 71.3 %
base (L, f) 3.8 % 37.5% 52.5% 61.3% 73.8 %

base (M, c) 1.3 % 22.5 % 46.3 % 57.5 % 68.8 %
base (M,m) 3.8 % 26.3 % 48.8 % 57.5 % 68.8 %
base (M,f) 3.8 % 35.0 % 48.8 % 56.3 % 65.0 %
base (M,f*) 3.8 % 33.8 % 48.8 % 57.5 % 66.3 %

ISNs (L, c,S3) 1.3 % 16.3 % 41.3 % 56.3 % 75.0 %
ISNs (L,m,S3) 3.8 % 26.3 % 45.0 % 57.5 % 68.8 %
ISNs (L, f,S3) 3.8 % 37.5% 46.3 % 56.3 % 76.3%

ISNs (M, c, S3) 1.3 % 22.5 % 45.0 % 58.8 % 72.5 %
ISNs (M,m, S3) 3.8 % 26.3 % 46.3 % 57.5 % 73.8 %
ISNs (M,f, S3) 2.5 % 36.3 % 48.8 % 56.3 % 71.3 %
ISNs (M,f*,S3) 2.5 % 36.3 % 46.3 % 56.3 % 72.5 %

MTN(L, f,S3) 5.0% 37.5% 48.8 % 55.0 % 71.3 %
MTN(L, f,S16) 2.5 % 35.0 % 43.8 % 53.8 % 67.5 %
MTN(L, f,S365) 2.5 % 37.5% 50.0 % 60.0 % 71.3 %

MTN(M, c, S3) 1.3 % 18.8 % 38.8 % 52.5 % 68.8 %
MTN(M,m, S3) 2.5 % 28.8 % 41.3 % 56.3 % 70.0 %
MTN(M,f, S3) 3.8 % 35.0 % 45.0 % 55.0 % 68.8 %
MTN(M,f*,S3) 2.5 % 32.5 % 41.3 % 53.8 % 70.0 %
MTN(M, c, S16) 1.3 % 20.0 % 43.8 % 55.0 % 67.5 %
MTN(M,m, S16) 3.8 % 32.5 % 45.0 % 53.8 % 67.5 %
MTN(M,f, S16) 3.8 % 33.8 % 47.5 % 61.3% 70.0 %
MTN(M,f*,S16) 3.8 % 35.0 % 42.5 % 52.5 % 66.3 %
MTN(M, c, S365) 1.3 % 18.8 % 38.8 % 53.8 % 67.5 %
MTN(M,m, S365) 5.0% 28.8 % 41.3 % 51.3 % 72.5 %
MTN(M,f, S365) 3.8 % 33.8 % 42.5 % 52.5 % 68.8 %
MTN(M,f*,S365) 3.8 % 35.0 % 41.3 % 55.0 % 70.0 %
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A.2 Results for Geolocation Estimation

Table A.6: Results on the Im2GPS test dataset of all images classified as urban. Percentage
is the fraction of images localized within the given radius using the Great Circle
Distance (GCD).

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

base-vggc (L,m) 11.6 % 29.7 % 37.0 % 54.3 % 71.7 %
base-vgg (L,m) 13.0 % 31.2 % 38.4 % 52.9 % 71.7 %
vgg-ISNs (L,m,S3) 17.4 % 37.7 % 50.0 % 65.2 % 82.6 %

base (L, c) 13.0 % 42.0 % 56.5 % 75.4 % 88.4 %
base (L,m) 20.3 % 42.0 % 55.1 % 71.0 % 88.4 %
base (L, f) 21.0 % 44.9 % 54.3 % 68.8 % 84.8 %

base (M, c) 14.5 % 39.9 % 49.3 % 68.8 % 84.8 %
base (M,m) 19.6 % 39.9 % 51.4 % 68.8 % 86.2 %
base (M,f) 21.0 % 43.5 % 51.4 % 70.3 % 87.7 %
base (M,f*) 22.5 % 45.7 % 54.3 % 71.0 % 85.5 %

ISNs (L, c,S3) 14.5 % 39.1 % 55.1 % 74.6 % 91.3%
ISNs (L,m,S3) 19.6 % 37.7 % 51.4 % 72.5 % 91.3%
ISNs (L, f,S3) 22.5 % 44.2 % 55.8 % 68.8 % 82.6 %

ISNs (M, c, S3) 15.2 % 40.6 % 52.2 % 71.7 % 88.4 %
ISNs (M,m, S3) 22.5 % 46.4 % 57.2% 76.8% 89.1 %
ISNs (M,f, S3) 24.6 % 47.8 % 56.5 % 75.4 % 89.9 %
ISNs (M,f*,S3) 25.4% 48.6% 57.2% 76.1 % 87.7 %

MTN(L, f,S3) 19.6 % 39.9 % 51.4 % 68.8 % 84.8 %
MTN(L, f,S16) 19.6 % 41.3 % 47.8 % 66.7 % 84.1 %
MTN(L, f,S365) 21.0 % 39.1 % 46.4 % 63.8 % 79.7 %

MTN(M, c, S3) 13.8 % 40.6 % 55.1 % 69.6 % 86.2 %
MTN(M,m, S3) 20.3 % 39.1 % 49.3 % 70.3 % 86.2 %
MTN(M,f, S3) 22.5 % 42.8 % 52.2 % 71.7 % 82.6 %
MTN(M,f*, S3) 21.7 % 42.8 % 53.6 % 71.7 % 85.5 %
MTN(M, c, S16) 13.8 % 41.3 % 52.9 % 68.8 % 81.2 %
MTN(M,m, S16) 18.8 % 38.4 % 50.7 % 67.4 % 80.4 %
MTN(M,f, S16) 20.3 % 40.6 % 49.3 % 66.7 % 81.2 %
MTN(M,f*, S16) 20.3 % 42.0 % 49.3 % 65.2 % 80.4 %
MTN(M, c, S365) 12.3 % 36.2 % 47.8 % 65.2 % 82.6 %
MTN(M,m, S365) 19.6 % 39.9 % 50.0 % 68.1 % 82.6 %
MTN(M,f, S365) 19.6 % 38.4 % 46.4 % 66.7 % 81.9 %
MTN(M,f*,S365) 21.7 % 39.9 % 48.6 % 67.4 % 84.1 %
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Table A.7: Results on the Im2GPS3k test dataset of all images (ovr). Percentage is the
fraction of images localized within the given radius using the Great Circle Dis-
tance (GCD).

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

base-vggc (L,m) 4.2 % 14.6 % 22.2 % 34.4 % 54.2 %
base-vgg (L,m) 4.8 % 16.5 % 22.6 % 34.5 % 54.4 %
vgg-ISNs (L,m,S3) 5.8 % 19.3 % 27.1 % 40.5 % 59.0 %

base (L, c) 6.1 % 23.3 % 34.0 % 48.4 % 64.9 %
base (L,m) 8.3 % 24.9 % 34.0 % 48.8 % 65.8 %
base (L, f) 9.7 % 25.8 % 33.8 % 46.7 % 63.8 %

base (M, c) 6.2 % 23.1 % 34.3 % 48.6 % 65.9 %
base (M,m) 8.2 % 25.5 % 35.1 % 48.7 % 65.2 %
base (M,f) 9.6 % 26.3 % 34.8 % 48.1 % 65.3 %
base (M,f*) 9.7 % 27.0 % 35.6 % 49.1 % 66.0 %

ISNs (L, c,S3) 6.2 % 23.5 % 34.5 % 48.6 % 65.0 %
ISNs (L,m,S3) 8.0 % 24.8 % 34.5 % 48.7 % 65.2 %
ISNs (L, f,S3) 9.7 % 26.1 % 34.4 % 47.6 % 64.0 %

ISNs (M, c, S3) 6.4 % 23.7 % 35.2 % 50.1% 66.5 %
ISNs (M,m, S3) 8.8 % 26.4 % 36.5 % 50.1% 66.6%
ISNs (M,f, S3) 10.1 % 27.2 % 36.2 % 49.3 % 65.6 %
ISNs (M,f*,S3) 10.5% 28.0% 36.6% 49.7 % 66.0 %

MTN(L, f,S3) 9.4 % 25.3 % 32.8 % 45.8 % 62.9 %
MTN(L, f,S16) 9.1 % 24.9 % 32.8 % 45.5 % 62.7 %
MTN(L, f,S365) 8.5 % 23.2 % 30.9 % 44.3 % 61.3 %

MTN(M, c, S3) 6.0 % 22.9 % 33.4 % 49.0 % 65.4 %
MTN(M,m, S3) 8.0 % 24.6 % 33.5 % 47.1 % 64.2 %
MTN(M,f, S3) 9.0 % 25.1 % 33.7 % 46.5 % 63.6 %
MTN(M,f*,S3) 9.4 % 26.1 % 34.5 % 47.7 % 64.6 %
MTN(M, c, S16) 5.6 % 21.8 % 32.3 % 46.2 % 64.1 %
MTN(M,m, S16) 7.7 % 23.3 % 31.8 % 45.0 % 62.7 %
MTN(M,f, S16) 9.2 % 24.3 % 32.2 % 45.3 % 63.5 %
MTN(M,f*,S16) 9.3 % 25.1 % 33.3 % 45.9 % 63.5 %
MTN(M, c, S365) 5.6 % 20.3 % 29.9 % 44.1 % 61.9 %
MTN(M,m, S365) 7.3 % 22.1 % 30.2 % 44.2 % 61.7 %
MTN(M,f, S365) 8.6 % 23.1 % 30.2 % 43.5 % 61.7 %
MTN(M,f*,S365) 8.9 % 23.6 % 31.0 % 44.4 % 62.0 %
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A.2 Results for Geolocation Estimation

Table A.8: Results on the Im2GPS3k test dataset of all images classified as indoor. Percent-
age is the fraction of images localized within the given radius using the Great
Circle Distance (GCD).

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

base-vggc (L,m) 2.4 % 6.6 % 7.7 % 15.4 % 39.6 %
base-vgg (L,m) 2.8 % 7.2 % 7.7 % 15.6 % 39.8 %
vgg-ISNs (L,m,S3) 4.8 % 9.9 % 11.2 % 20.6 % 41.5 %

base (L, c) 4.6 % 13.0 % 17.4 % 28.3 % 50.1 %
base (L,m) 8.4 % 14.1 % 16.5 % 29.5 % 50.5 %
base (L, f) 7.7 % 13.4 % 16.1 % 23.7 % 48.1 %

base (M, c) 5.0 % 13.0 % 16.0 % 25.0 % 50.6 %
base (M,m) 7.3 % 13.2 % 16.3 % 26.1 % 49.2 %
base (M,f) 8.1 % 13.9 % 16.0 % 25.1 % 48.8 %
base (M,f*) 7.9 % 14.3 % 16.9 % 26.2 % 50.3 %

ISNs (L, c,S3) 4.4 % 13.0 % 16.9 % 27.3 % 49.7 %
ISNs (L,m,S3) 7.3 % 12.5 % 15.2 % 25.7 % 47.7 %
ISNs (L, f,S3) 8.1 % 14.3 % 16.5 % 25.9 % 48.1 %

ISNs (M, c, S3) 5.3 % 14.5 % 17.6 % 28.4 % 49.4 %
ISNs (M,m, S3) 8.6 % 15.0 % 17.8% 29.4 % 51.7%
ISNs (M,f, S3) 9.2% 15.4 % 17.8% 29.9% 48.4 %
ISNs (M,f*,S3) 9.2% 15.8% 17.2 % 28.3 % 49.5 %

MTN(L, f,S3) 8.6 % 13.4 % 15.0 % 24.8 % 47.2 %
MTN(L, f,S16) 7.2 % 13.0 % 15.4 % 26.6 % 46.8 %
MTN(L, f,S365) 6.6 % 12.5 % 14.9 % 27.3 % 48.8 %

MTN(M, c, S3) 4.6 % 12.1 % 15.0 % 27.7 % 49.4 %
MTN(M,m, S3) 7.3 % 13.2 % 15.4 % 27.5 % 47.7 %
MTN(M,f, S3) 7.3 % 13.4 % 15.6 % 26.2 % 44.8 %
MTN(M,f*, S3) 7.5 % 13.4 % 15.2 % 26.4 % 46.8 %
MTN(M, c, S16) 4.2 % 12.3 % 15.2 % 26.8 % 49.9 %
MTN(M,m, S16) 7.7 % 13.0 % 15.2 % 26.4 % 49.4 %
MTN(M,f, S16) 7.5 % 12.8 % 15.8 % 26.1 % 50.3 %
MTN(M,f*, S16) 8.1 % 14.1 % 16.9 % 28.4 % 52.3 %
MTN(M, c, S365) 4.0 % 11.4 % 14.9 % 26.1 % 47.7 %
MTN(M,m, S365) 5.7 % 12.1 % 15.2 % 27.2 % 47.9 %
MTN(M,f, S365) 6.1 % 12.1 % 14.5 % 26.4 % 49.4 %
MTN(M,f*, S365) 6.2 % 12.7 % 15.0 % 26.1 % 47.9 %
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Table A.9: Results on the Im2GPS3k test dataset of all images classified as natural. Per-
centage is the fraction of images localized within the given radius using the Great
Circle Distance (GCD).

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

base-vggc (L,m) 1.1 % 9.0 % 21.1 % 35.0 % 51.4 %
base-vgg (L,m) 1.3 % 11.2 % 22.2 % 35.4 % 51.6 %
vgg-ISNs (L,m,S3) 1.2 % 11.1 % 24.7 % 39.4 % 56.6 %

base (L, c) 1.3 % 12.1 % 27.5 % 43.4 % 60.1 %
base (L,m) 2.0 % 15.0 % 28.6 % 44.3 % 60.9 %
base (L, f) 3.3 % 17.2 % 28.0 % 42.7 % 60.4 %

base (M, c) 1.5 % 12.8 % 30.1 % 46.6 % 63.1 %
base (M,m) 2.1 % 15.7 % 31.7 % 46.6 % 61.3 %
base (M,f) 3.4 % 17.2 % 30.8 % 44.9 % 60.6 %
base (M,f*) 3.3 % 17.5 % 32.0 % 46.3 % 61.7 %

ISNs (L, c,S3) 1.1 % 12.2 % 28.6 % 45.4 % 61.9 %
ISNs (L,m,S3) 2.1 % 15.1 % 30.9 % 46.7 % 62.0 %
ISNs (L, f,S3) 2.8 % 17.2 % 30.2 % 44.3 % 60.9 %

ISNs (M, c, S3) 1.9 % 12.5 % 29.9 % 47.2% 64.4%
ISNs (M,m, S3) 3.0 % 15.4 % 31.6 % 46.5 % 62.8 %
ISNs (M,f, S3) 3.2 % 17.0 % 31.8 % 46.6 % 63.1 %
ISNs (M,f*,S3) 3.9% 18.1% 32.8% 47.0 % 62.8 %

MTN(L, f,S3) 2.7 % 16.2 % 27.8 % 42.5 % 59.2 %
MTN(L, f,S16) 3.0 % 16.8 % 30.4 % 43.3 % 59.6 %
MTN(L, f,S365) 2.5 % 14.8 % 26.5 % 41.2 % 55.7 %

MTN(M, c, S3) 1.1 % 12.2 % 27.0 % 45.6 % 62.2 %
MTN(M,m, S3) 2.4 % 14.8 % 28.3 % 42.4 % 59.8 %
MTN(M,f, S3) 3.4 % 16.3 % 28.8 % 41.3 % 59.1 %
MTN(M,f*,S3) 3.4 % 17.0 % 29.6 % 43.4 % 61.1 %
MTN(M, c, S16) 1.3 % 11.4 % 27.1 % 41.8 % 59.1 %
MTN(M,m, S16) 2.1 % 13.4 % 27.0 % 40.5 % 57.9 %
MTN(M,f, S16) 2.8 % 15.7 % 27.5 % 41.1 % 57.9 %
MTN(M,f*,S16) 2.8 % 15.5 % 28.0 % 40.1 % 56.2 %
MTN(M, c, S365) 1.3 % 10.2 % 24.5 % 40.0 % 58.3 %
MTN(M,m, S365) 2.0 % 13.1 % 26.3 % 40.5 % 57.6 %
MTN(M,f, S365) 2.1 % 14.0 % 25.8 % 39.1 % 56.4 %
MTN(M,f*,S365) 3.0 % 14.8 % 26.5 % 39.8 % 57.2 %

192



A.2 Results for Geolocation Estimation

Table A.10: Results on the Im2GPS3k test dataset of all images classified as urban. Percent-
age is the fraction of images localized within the given radius using the Great
Circle Distance (GCD).

Method Street City Region Country Continent
1 km 25 km 200 km 750 km 2,500 km

base-vggc (L,m) 6.5 % 20.3 % 27.8 % 40.5 % 60.7 %
base-vgg (L,m) 7.3 % 22.5 % 27.9 % 40.4 % 60.7 %
vgg-ISNs (L,m,S3) 8.5 % 26.8 % 33.8 % 47.9 % 66.2 %

base (L, c) 9.2 % 32.6 % 43.0 % 57.8 % 72.5 %
base (L,m) 11.6 % 33.8 % 42.8 % 57.7 % 73.5 %
base (L, f) 13.8 % 34.5 % 42.8 % 56.6 % 70.9 %

base (M, c) 9.1 % 32.0 % 42.8 % 57.7 % 72.6 %
base (M,m) 11.6 % 34.8 % 43.2 % 57.4 % 72.7 %
base (M,f) 13.4 % 35.2 % 43.3 % 57.6 % 73.3 %
base (M,f*) 13.8 % 36.3 % 43.9 % 58.4 % 73.6 %

ISNs (L, c,S3) 9.6 % 33.0 % 43.6 % 57.6 % 71.8 %
ISNs (L,m,S3) 11.3 % 34.0 % 43.0 % 57.6 % 72.7 %
ISNs (L, f,S3) 13.9 % 34.8 % 42.8 % 56.8 % 71.1 %

ISNs (M, c, S3) 9.1 % 32.6 % 44.0 % 58.9 % 73.5 %
ISNs (M,m, S3) 11.9 % 36.1 % 45.5% 59.0% 73.7%
ISNs (M,f, S3) 14.1 % 36.6 % 44.8 % 57.3 % 72.7 %
ISNs (M,f*,S3) 14.5% 37.3% 45.2 % 58.4 % 73.2 %

MTN(L, f,S3) 13.3 % 34.1 % 41.4 % 54.8 % 70.1 %
MTN(L, f,S16) 12.9 % 33.1 % 40.0 % 53.1 % 69.8 %
MTN(L, f,S365) 12.3 % 31.3 % 38.6 % 51.7 % 68.5 %

MTN(M, c, S3) 9.1 % 32.2 % 43.0 % 58.1 % 72.5 %
MTN(M,m, S3) 11.1 % 33.5 % 42.3 % 56.2 % 72.2 %
MTN(M,f, S3) 12.6 % 33.6 % 42.4 % 56.2 % 72.4 %
MTN(M,f*, S3) 13.2 % 35.2 % 43.6 % 57.2 % 72.5 %
MTN(M, c, S16) 8.3 % 30.4 % 40.8 % 55.1 % 71.6 %
MTN(M,m, S16) 10.6 % 32.0 % 40.0 % 53.6 % 69.8 %
MTN(M,f, S16) 13.2 % 32.7 % 40.3 % 54.0 % 71.0 %
MTN(M,f*, S16) 13.1 % 33.9 % 41.6 % 54.9 % 71.1 %
MTN(M, c, S365) 8.3 % 28.7 % 37.9 % 52.3 % 68.6 %
MTN(M,m, S365) 10.7 % 30.2 % 37.3 % 51.9 % 68.6 %
MTN(M,f, S365) 12.9 % 31.7 % 37.9 % 51.6 % 68.6 %
MTN(M,f*,S365) 12.9 % 31.9 % 38.7 % 53.1 % 69.4 %
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A.3 Results on other Subsets of TamperedNews and News400

Results for the Top-25% documents according to the cross-modal similarity values obtained
for the original entities as well as for all documents of TamperedNews are presented in
Table A.11 and Table A.12. As discussed in Section 4.5.1 (paragraph "Test Document
Selection for TamperedNews") of this thesis, we have used subsets of TamperedNews in
order to counteract the influence of original documents that do not contain a single cross-
modal entity relation. Thus, results for all documents are worse compared to the proposed
subsets since many documents without cross-modal relations are considered. On the other
hand, results for TamperedNews (Top-25%) and TamperedNews (Top-50%) allow for similar
conclusions. However, in particular, retrieval of original documents is noticeable better when
using (smaller) subsets. As discussed in Section 4.5.3.2, this is mainly caused by the fact
that some original entities in the documents depicted in both image and text can be either
unspecific (e.g., mentioning of a country) or the retrieved images for visual verification do not
fit the document’s image content. When using these subsets, we have bypassed this problem.
We have verified the same behavior for News400 when experimenting on a subset with the
Top-50% documents according to the cross-modal similarity values of original entities (Top-
25% subset is omitted since in contains too few documents). The respective results are
shown in Table A.13.
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A.3 Results on other Subsets of TamperedNews and News400

Table A.11: Results for document verification (DV) and collection retrieval for the Tam-
peredNews (Top-25%) dataset for different entity test sets (notations according
to Section 4.4.1).

Test set
DV Collection Retrieval

VA AUC
AP-original [%] AP-manipulated [%]

@25% @50% @100% @25% @50% @100%

Persons (8,424 documents)

Random 0.98 0.98 96.74 96.63 96.41 100.0 100.0 98.76
PsC 0.98 0.98 96.49 96.40 96.05 100.0 100.0 98.61
PsG 0.98 0.98 96.45 96.27 96.15 100.0 100.0 98.71
PsCG 0.98 0.98 95.21 95.71 95.79 100.0 100.0 98.65

Locations - Outdoor (7,057 documents)

Random 0.94 0.93 96.34 94.06 90.66 100.0 100.0 95.38
GCD2500

750 0.93 0.90 91.62 89.27 85.98 100.0 100.0 93.21
GCD750

200 0.88 0.85 88.62 84.66 80.12 100.0 100.0 89.23
GCD200

25 0.85 0.82 86.59 82.19 77.36 100.0 100.0 87.11

Locations - Indoor (9,565 documents)

Random 0.83 0.81 75.08 73.58 73.09 100.0 100.0 87.15
GCD2500

750 0.80 0.78 68.25 67.94 68.65 100.0 100.0 84.64
GCD750

200 0.82 0.79 72.63 71.50 71.00 100.0 100.0 85.61
GCD200

25 0.76 0.74 57.67 60.50 63.75 100.0 100.0 82.46

Events (3,867 documents)

Random 0.97 0.96 92.75 92.85 92.36 100.0 100.0 97.20
EsP 0.78 0.75 74.81 71.28 68.69 100.0 100.0 82.02

Context (18,108 documents)

Random 0.92 0.92 94.24 92.41 88.83 100.0 100.0 94.48
Top-25% 0.90 0.89 89.48 87.55 84.27 100.0 100.0 92.38
Top-10% 0.87 0.85 84.32 82.08 79.35 100.0 100.0 89.88
Top-5% 0.84 0.82 80.36 78.09 75.66 100.0 100.0 87.68
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Table A.12: Results for document verification (DV) and collection retrieval for all documents
of the TamperedNews dataset for different entity test sets (notations according
to Section 4.4.1).

Test set
DV Collection Retrieval

VA AUC
AP-original [%] AP-manipulated [%]

@25% @50% @100% @25% @50% @100%

Persons (33,695 documents)

Random 0.72 0.70 94.11 89.98 74.74 62.38 63.10 62.91
PsC 0.71 0.69 93.59 89.38 73.75 60.89 61.54 61.65
PsG 0.72 0.69 93.82 89.76 74.31 61.76 62.32 62.31
PsCG 0.71 0.68 93.52 89.28 73.46 60.06 60.66 61.08

Locations - Outdoor (28,226 documents)

Random 0.68 0.64 85.53 77.76 66.80 60.93 61.08 59.48
GCD2500

750 0.66 0.61 81.39 73.65 63.82 56.04 57.01 56.61
GCD750

200 0.62 0.58 74.85 67.35 59.85 54.53 54.89 54.43
GCD200

25 0.59 0.56 71.89 64.71 58.19 52.73 53.34 53.22

Locations - Indoor (38,258 documents)

Random 0.57 0.56 61.07 58.48 55.34 58.51 56.78 54.64
GCD2500

750 0.55 0.54 57.98 56.37 53.93 53.12 53.33 52.66
GCD750

200 0.57 0.55 60.47 57.98 54.93 55.87 55.10 53.71
GCD200

25 0.54 0.54 53.66 53.84 52.61 53.97 53.64 52.62

Events (15,467 documents)

Random 0.70 0.70 89.52 83.63 71.87 74.70 71.98 66.70
EsP 0.59 0.57 66.43 62.68 57.63 57.53 56.60 55.10

Context (72,433 documents)

Random 0.57 0.57 76.63 67.39 59.74 56.45 55.62 54.52
Top-25% 0.57 0.57 73.16 65.31 58.69 55.81 55.34 54.26
Top-10% 0.56 0.55 68.85 62.40 57.04 54.88 54.43 53.50
Top-5% 0.55 0.54 65.89 60.31 55.84 53.82 53.57 52.83
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A.3 Results on other Subsets of TamperedNews and News400

Table A.13: Results for document verification (DV) and collection retrieval for the News400
dataset. Results are reported for the Top-50% verified documents (sorted by
the cross-modal similarity values obtained for the original entities) for different
entity test sets (notations according to Section 4.4.1).

Test set
DV Collection Retrieval

VA AUC
AP-original [%] AP-manipulated [%]

@25% @50% @100% @25% @50% @100%

Persons (58 verified documents)

Random 1.00 1.00 100.0 100.0 100.0 100.0 100.0 100.0
PsC 1.00 1.00 100.0 100.0 99.49 100.0 100.0 99.60
PsG 1.00 0.99 100.0 99.10 98.40 100.0 100.0 99.34
PsCG 1.00 1.00 100.0 100.0 100.0 100.0 100.0 100.0

Locations - Outdoor (27 verified documents)

Random 1.00 0.99 100.0 100.0 99.29 100.0 100.0 99.42
GCD2500

750 0.89 0.93 93.79 92.61 89.94 100.0 100.0 95.36
GCD750

200 0.89 0.87 89.17 86.70 82.42 100.0 100.0 90.77
GCD200

25 0.89 0.86 89.17 86.70 82.25 100.0 100.0 89.96

Locations - Indoor (8 verified documents)

Random 1.00 0.88 100.0 95.00 87.01 100.0 100.0 91.44
GCD2500

750 0.75 0.67 58.33 62.20 62.70 100.0 100.0 78.17
GCD750

200 1.00 0.78 100.0 85.42 77.81 100.0 100.0 85.27
GCD200

25 0.88 0.77 100.0 85.42 76.70 100.0 100.0 84.43

Events (16 verified documents)

Random 1.00 0.97 100.0 100.0 96.18 100.0 100.0 97.92
EsP 0.81 0.82 56.67 66.36 71.42 100.0 100.0 88.76

Context (46 verified documents)

Random 0.93 0.94 81.83 87.03 88.18 100.0 100.0 95.81
Top-25% 0.91 0.91 97.53 92.19 88.72 100.0 100.0 93.88
Top-10% 0.78 0.86 64.94 71.45 75.82 100.0 100.0 91.14
Top-5% 0.85 0.82 76.59 77.25 75.64 100.0 99.63 86.93
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