


Peridynamic Galerkin methods for 
nonlinear solid mechanics

Von der Fakultät für Maschinenbau
der Gottfried Wilhelm Leibniz Universität Hannover

zur Erlangung des akademischen Grades
Doktor-Ingenieur

genehmigte Dissertation
von

M. Sc. Tobias Bode

geboren am 04.04.1994 in Hannover

2021



1. Referent: Prof. Dr.-Ing. habil. Dr. h.c. mult. Dr.-Ing. E.h. Peter Wriggers
2. Referent: Prof. Dr.-Ing. habil. Christian Weißenfels

Tag der Promotion: 13.12.2021

Herausgeber:
Prof. Dr.-Ing. habil. Dr. h.c. mult. Dr.-Ing. E.h. Peter Wriggers

Verwaltung:
Institut für Kontinuumsmechanik
Gottfried Wilhelm Leibniz Universität Hannover
An der Universität 1
30823 Garbsen

Tel: +49 511 762 3220
Fax: +49 511 762 5496
Web: www.ikm.uni-hannover.de

© M. Sc. Tobias Bode
Institut für Kontinuumsmechanik
Gottfried Wilhelm Leibniz Universität Hannover
An der Universität 1
30823 Garbsen

Alle Rechte, insbesondere das der Übersetzung in 
fremde Sprachen, vorbehalten. Ohne Genehmigung  
des Autors ist es nicht gestattet, dieses Heft ganz oder 
teilweise auf photomechanischem,  
elektronischem oder sonstigem Wege zu  
vervielfältigen.

ISBN  978-3-941302-45-7







To my family





i

Zusammenfassung
Die simulationsgesteuerte Produktenwicklung ist heutzutage ein wesentlicher Bestandteil
des industriellen Digitalisierungsprozesses. Insbesondere im stark wachsenden Gebiet
der additiven und abtragenden Fertigungsverfahren gibt es ein steigendes Interesse an
realistischen und hochgenauen Simulationsverfahren. Dank ihrer Flexibilität eigenen sich
netzfreie Lösungsmethoden besonders für das Simulieren dieser Fertigungsprozesse, welche
oftmals von großen Verformungen, veränderlichen Diskontinuitäten oder Phasenwech-
seln begleitet werden. Darüber hinaus stellt im industriellen Bereich das Vernetzen von
komplexen Geometrien einen wesentlichen Arbeitsaufwand dar, welcher bei netzfreien
Verfahren für gewöhnlich weniger bedeutsam ist.

Im Laufe der Jahre wurden viele netzfreie Verfahren entwickelt. Einhergehend mit ihrer
Flexibilität in der Diskretisierung leiden netzfreie Methoden oftmals jedoch an einer Vermin-
derung der Genauigkeit, Effizienz und Stabilität oder einer wesentlich erhöhten Rechenzeit.
Die Peridynamik ist eine zur lokalen Kontinuumsmechanik alternative Theorie zur Beschrei-
bung von partiellen Differentialgleichungen in einer nicht-lokalen integro-differentialen
Form. Die Kombination der sogenannten peridynamischen Korrespondenzformulierung mit
einer Partikeldiskretisierung ergibt eine flexible netzfreie Simulationsmethode, führt jedoch
ohne weitere Behandlung nicht zu zuverlässigen Ergebnissen.

Um eine verlässliche, robuste und dennoch flexible netzfreie Simulationsmethode zu
entwickeln, wird in dieser Arbeit die klassische Korrespondenzformulierung in den Peridy-
namischen Galerkin (PG)-Methoden generalisiert. Anhand dieser werden Bedingungen an
die netzfreien Formfunktionen der virtuellen und tatsächlichen Verschiebung vorgestellt, die
eine genaue Aufbringung von Kraft- und Verschiebungsrandbedingungen ermöglichen und
zu Stabilität und optimalen Konvergenzraten führen. Auf Basis sich mit dem Auswertepunkt
bewegender Taylor-Entwicklungen werden spezielle Formfunktionen eingeführt, die alle
zuvor genannten Anforderungen unter Verwendung von Korrekturschemen erfüllen. Neben
verschiebungsbasierten Formulierungen werden unterschiedliche stabilisierte, gemischte
und angereicherte Varianten entwickelt, die in ihrer Anwendung auf die nahezu inkompres-
sible und elasto-plastische finite Deformation von Festkörpern zugeschnitten sind und den
großen Gestaltungsspielraum der PG-Methoden hervorheben.

Es werden umfangreiche numerische Validierungen und Benchmark-Simulationen
durchgeführt, um die Auswirkungen der Verletzung verschiedener Formfunktionsan-
forderungen aufzuzeigen und die Eigenschaften der verschiedenen PG-Formulierungen zu
demonstrieren. Im Vergleich zu verwandten Finite-Elemente-Formulierungen weisen die
PG-Methoden ähnliche Konvergenzeigenschaften auf. Darüber hinaus steht einer durch
die Nichtlokalität erhöhten Rechenzeit eine erheblich gesteigerte Robustheit bei schlecht
vernetzten Diskretisierungen gegenüber.

Schlagworte: Netzfreie Partikelmethode, Galerkin-Verfahren, Konsistenz, Peridynamik,
Smoothed Particle Hydrodynamics, Gemischte Methoden, Stabiliserte Methoden, Angerei-
cherte Methoden
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Abstract
Simulation-driven product development is nowadays an essential part in the industrial
digitalization. Notably, there is an increasing interest in realistic high-fidelity simulation
methods in the fast-growing field of additive and ablative manufacturing processes. Thanks
to their flexibility, meshfree solution methods are particularly suitable for simulating the
stated processes, often accompanied by large deformations, variable discontinuities, or
phase changes. Furthermore, in the industrial domain, the meshing of complex geometries
represents a significant workload, which is usually minor for meshfree methods.

Over the years, several meshfree schemes have been developed. Nevertheless, along with
their flexibility in discretization, meshfree methods often endure a decrease in accuracy,
efficiency and stability or suffer from a significantly increased computation time. Peri-
dynamics is an alternative theory to local continuum mechanics for describing partial
differential equations in a non-local integro-differential form. The combination of the
so-called peridynamic correspondence formulation with a particle discretization yields a
flexible meshfree simulation method, though does not lead to reliable results without further
treatment.

In order to develop a reliable, robust and still flexible meshfree simulation method, the
classical correspondence formulation is generalized into the Peridynamic Galerkin (PG)
methods in this work. On this basis, conditions on the meshfree shape functions of virtual
and actual displacement are presented, which allow an accurate imposition of force and
displacement boundary conditions and lead to stability and optimal convergence rates.
Based on Taylor expansions moving with the evaluation point, special shape functions are
introduced that satisfy all the previously mentioned requirements employing correction
schemes. In addition to displacement-based formulations, a variety of stabilized, mixed
and enriched variants are developed, which are tailored in their application to the nearly
incompressible and elasto-plastic finite deformation of solids, highlighting the broad design
scope within the PG methods.

Extensive numerical validations and benchmark simulations are performed to show the
impact of violating different shape function requirements as well as demonstrating the
properties of the different PG formulations. Compared to related Finite Element formula-
tions, the PG methods exhibit similar convergence properties. Furthermore, an increased
computation time due to non-locality is counterbalanced by a considerably improved
robustness against poorly meshed discretizations.

Keywords: Meshfree particle method, Galerkin method, Consistency, Peridynamic theory,
Smoothed Particle Hydrodynamics, Mixed methods, Stabilized methods, Enriched methods



iv



v

Acknowledgements

At this point I would like to express my sincere thanks to all those who made the production
of this work possible. First and foremost, I thank Prof. Dr.-Ing. habil. Dr. h.c. mult. Dr.-Ing.
E.h. Peter Wriggers for the opportunity to work at the Institute of Continuum Mechanics and
for giving me the greatest possible freedom in the focus of my research. The environment
he has created at the Institute has provided the possibility to have countless discussions
and gain broad insight beyond one’s own topic through the regular institute seminars
and external lectures. The opportunity to participate in further courses and international
conferences was a special and wonderful experience for me. Furthermore, I would like to
thank Prof. Dr.-Ing. habil. Christian Weißenfels, who motivated, supported and supervised
me since my master studies when I attended his really great continuum mechanics I lecture.
During the course of my doctoral studies we had many long discussions and he had always
an open door for questions.

I would also like to thank my great current and former colleagues for the good and harmonic
atmosphere in the institute and the enjoyable joint activities. The exchange with my
colleagues also working in the field of meshfree methods, especially with Dr.-Ing. Henning
Wessels, Dr.-Ing. Philipp Hartmann, Dr.-Ing. Jan-Philipp Fürstenau and Dr.-Ing. Meisam
Soleimani, was a lot of fun and advanced my work. Special thanks also go to Vera Halfar
for her constant support in bureaucratic matters, Jens Bsdok for always quickly solving all
my IT problems and Volker Meine for making most of the drawings in this work.

Finally, and most importantly, I would like to express my heartfelt gratitude to my parents,
siblings, relatives and friends for their constant support and understanding in all respects.

Hannover, December 2021 Tobias Bode



vi



Contents

1 Introduction 1
1.1 Meshfree Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Numerical challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Local continuum mechanics 5
2.1 Kinematics of the continuum . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Deformation and strain measures . . . . . . . . . . . . . . . . . . . 5
2.1.2 Multiplicative decomposition . . . . . . . . . . . . . . . . . . . . 7

2.2 Balance principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Conservation of mass . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Momentum balances . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.3 Conservation of energy . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.4 Entropy inequality . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Constitutive models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Finite elasto-plasticity . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Variational principles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 D’Alembert’s principle . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Hu-Washizu principle . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Fundamentals of peridynamic theory 17
3.1 States and non-local kinematics . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Integro-differential momentum balance . . . . . . . . . . . . . . . . . . . 19
3.3 Peridynamic constitutive models . . . . . . . . . . . . . . . . . . . . . . . 20
3.4 Correspondence theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Peridynamic Galerkin methods 23
4.1 Particle discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Bridging peridynamic and local quantities . . . . . . . . . . . . . . . . . . 26

4.2.1 Classical correspondence formulation . . . . . . . . . . . . . . . . 26
4.2.2 From states to tensors: A general shape function approach . . . . . 28
4.2.3 Inverse non-local averaging . . . . . . . . . . . . . . . . . . . . . 30

4.3 Treatment of boundary conditions . . . . . . . . . . . . . . . . . . . . . . 33
4.3.1 Dirichlet boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3.2 Neumann boundaries . . . . . . . . . . . . . . . . . . . . . . . . . 34

vii



viii CONTENTS

4.4 Temporal discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.4.1 Integration of motion . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Evolution of plastic variables . . . . . . . . . . . . . . . . . . . . . 36

4.5 Residual or discretized strong form . . . . . . . . . . . . . . . . . . . . . . 36
4.6 Linearization of the global equations . . . . . . . . . . . . . . . . . . . . . 38

4.6.1 Finite Difference approximation . . . . . . . . . . . . . . . . . . . 40
4.6.2 Consistent linearization . . . . . . . . . . . . . . . . . . . . . . . . 40
4.6.3 Automatic Differentiation . . . . . . . . . . . . . . . . . . . . . . 41

4.7 Local conservation properties . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 The role of shape functions 45
5.1 Requirements on test and trial shape functions . . . . . . . . . . . . . . . . 45

5.1.1 Consistency criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.2 Interpolation condition . . . . . . . . . . . . . . . . . . . . . . . . 47
5.1.3 Bond mapping criterion . . . . . . . . . . . . . . . . . . . . . . . 48
5.1.4 Integration constraints . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2 Specific meshfree shape functions . . . . . . . . . . . . . . . . . . . . . . 51
5.2.1 Shape functions of least square regressions . . . . . . . . . . . . . 52
5.2.2 A Moving Taylor Expansion . . . . . . . . . . . . . . . . . . . . . 56

5.3 Modification of shape function derivatives . . . . . . . . . . . . . . . . . . 57
5.3.1 Restoration of bond mapping . . . . . . . . . . . . . . . . . . . . . 57
5.3.2 Restoration of variational consistency . . . . . . . . . . . . . . . . 59

6 Specific Peridynamic-Galerkin formulations 63
6.1 Displacement based formulations . . . . . . . . . . . . . . . . . . . . . . . 63
6.2 Mixed displacement–pressure–dilation approaches . . . . . . . . . . . . . 64

6.2.1 Constant pressure and dilation . . . . . . . . . . . . . . . . . . . . 66
6.2.2 Higher order approaches . . . . . . . . . . . . . . . . . . . . . . . 67
6.2.3 A bubble-enriched formulation . . . . . . . . . . . . . . . . . . . . 67

6.3 Underintegration and stabilization . . . . . . . . . . . . . . . . . . . . . . 68
6.3.1 Full integration stabilization . . . . . . . . . . . . . . . . . . . . . 69
6.3.2 Stabilization with implicit gradients . . . . . . . . . . . . . . . . . 70

7 Numerical illustrations, verifications and examples 73
7.1 Errors in practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2 Isolation of pitfalls and verifications . . . . . . . . . . . . . . . . . . . . . 78

7.2.1 Eigen mode analysis . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.2.2 Patch tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2.3 Convergence in a manufactured 2-D problem . . . . . . . . . . . . 84
7.2.4 Comparison of total and updated Lagrange . . . . . . . . . . . . . 85
7.2.5 Numerical inf-sup test . . . . . . . . . . . . . . . . . . . . . . . . 89

7.3 Numerical benchmarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.1 2-D punch problem . . . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.2 Torsion of square hyperelastic prism . . . . . . . . . . . . . . . . . 93
7.3.3 3-D Punch problem . . . . . . . . . . . . . . . . . . . . . . . . . . 94



CONTENTS ix

7.3.4 Cook’s membrane . . . . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.5 Cylindrical necking . . . . . . . . . . . . . . . . . . . . . . . . . . 96
7.3.6 Dynamic torsion of square elasto-plastic prism . . . . . . . . . . . 98
7.3.7 Taylor anvil impact benchmark . . . . . . . . . . . . . . . . . . . . 101
7.3.8 Coupling with Finite Elements and symmetry boundary conditions . 108

8 Conclusion and outlook 111
8.1 Back to the origin of peridynamics: Fracture . . . . . . . . . . . . . . . . . 112
8.2 Fluid flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

A Exemplary derivation of the global tangent stiffness matrix 117

B Momentum preservation of mixed approaches 123

Bibliography 125

List of Figures 137

List of Tables 142

CURRICULUM VITAE 144





Chapter 1

Introduction

In last decades many different methods for the approximate solution of partial differential
equations were developed and applied to various engineering problems. The Finite Element
Method (FEM) is well accepted for the solution of a wide range of problems in industry, and
simulation-driven product development is nowadays an important part of the industrial devel-
opment process. Especially in the fast growing field of additive and ablative manufacturing
processes there is an increasing interest in realistic high fidelity simulation methods. How-
ever, for complex lifelike simulations it is advantageous to have more flexible discretization
schemes as with large distortions the FEM needs a remeshing which is prone to errors, cf.
HABRAKEN & CESCOTTO (1990). Due to their flexibility, meshfree solution methods are
particularly suitable for simulating these processes, which often exhibit large deformations,
variable discontinuities or phase changes (see e.g. WESSELS (2019), HARTMANN (2019),
HUANG (2020) and FÜRSTENAU (2021)). Furthermore, in the industrial domain, the
meshing of complex geometries represents a significant workload, which is usually less
significant for meshfree methods. Besides the advantage of flexibility in discretization
and oftentimes an exceptional robustness, the efficiency and accuracy of the mesh-based
FEM is hard to achieve. Some reasons include the consistency, stability and the imposi-
tion of boundary conditions which are challenging aspects in the scope of meshfree methods.

The target of this work is to introduce a new class of meshfree formulations that have a
comparable accuracy and reliability as the FEM, but are less sensitive to a poor meshing or
mesh distortion. Thereby, the nature of a particle method shall be retained to pave the way
for further developments for the usage within phase changes and moving surfaces where
the neighborhoods change and the connectivities have to be updated. In the further course
of this thesis, a brief overview into the variety of meshfree methods and the challenges in
their design is given in the following sections. With chapters 2 and 3, an introduction to
the theory of classical local continuum mechanics and the nonlocal peridynamic theory is
given, which provide the physical foundation for the further development of the numerical
methods. This is followed in chapter 4 by a detailed motivation and introduction into
the basic Peridynamic Galerkin (PG) methods as a generalization of the peridynamic
theory of correspondence materials. Inter alia, the application of boundary conditions, the
linearization of the weak form and the residual, and the local conservation properties are
discussed in more detail. The special requirements for the meshfree shape functions and a
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possible construction technique based on manipulations of a particular interpolating Moving
Taylor Expansion procedure are in depth addressed in chapter 5. Further on, an example
for more advanced PG formulations is given customized for the use within the region of
volumetric kinematic constraints as occurs in incompressibility or isochoric plastic flow.
Therefore, several mixed and stabilized approaches are designed in chapter 6. Examples of
pitfalls arising from the use of unsuitable meshfree schemes are demonstrated in chapter
7, followed by a selection of verification problems isolating their different appearance and
a set of benchmarks demonstrating the performance and competitiveness of proper PG
formulations. Finally, chapter 8 concludes the findings of this work and reveals two areas for
future developments, namely the modeling of fracture and the application to fluid dynamics,
and provides possible realization options. Parts of the current thesis have been published
previously in the original articles BODE ET AL. (2020a), BODE ET AL. (2020b) and BODE

ET AL. (2021) or are in preparation for submission.

1.1 Meshfree Methods
Discretization schemes that assemble a global algebraic system without previous meshing
have been developed since the 1930s, cf. LIU (2009) and LIU & GU (2005). While
numerous methods were introduced, some more prominent of them include the Smoothed
Particle Hydrodynamics (SPH) introduced by GINGOLD & MONAGHAN (1977) and LUCY

(1977), the Reproducing Kernel Particle Method (RKPM, LIU ET AL. (1995a) and LIU

ET AL. (1995b)), the Element Free Galerkin (EFG) method (BELYTSCHKO ET AL., 1994),
the Material Point Method (MPM, SULSKY ET AL. (1994)) and the more recent peridynamic
approach, combined with a particle discretization (see SILLING & ASKARI (2005)). A good
overview over the developments of meshfree methods and challenges therein can be found
in FRIES ET AL. (2003) and CHEN ET AL. (2017).

Peridynamics is a non-local field theory based on integro-differential equations which is
idealized and widely used to model discontinuities as occurring in fracture simulations (see
e.g. SILLING (2000) and SILLING (2003)), but in recent years the area of applications
rapidly increased. By now, the range of applications includes multifield and multiscale, as
well as complex flow, impact problems and wave dispersion (JAVILI ET AL., 2018). Applied
to the momentum equation, two fundamental modeling approaches are present. On the one
hand, a non-local balance equation can be directly combined with a non-locally defined
constitutive model, which results in the bond- and state-based peridynamic formulations.
On the other hand, utilizing a material model of the local continuum mechanics theory,
the so-called correspondence formulation was introduced, whereby the reduction operation
established the link between non-local and local measures. Together with a particle
discretization, a flexible meshfree method can be set up (WARREN ET AL., 2009). In BESSA

ET AL. (2014) the similarity of the peridynamic correspondence theory to the RKPM and
other meshfree methods with polynomial basis was shown. Further, in GANZENMÜLLER

ET AL. (2015), the peridynamic correspondence formulation was found to be equivalent to
the corrected SPH in the total Lagrangian perspective. Hence, it can suffer from the typical
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problems of meshfree methods which are further addressed and include:

• Rank deficiency and instability due to nodal-, particle- or rather underintegration

• Tensile instability resulting from Lagrange updates

• Inaccurate imposition of Dirichlet and Neumann boundaries

• Lack of consistency and the fulfillment of a patch test

• Erroneous convergence and reduced convergence rates

• Locking in the range of geometric constraints

1.2 Numerical challenges
Accompanied with the flexibility in discretization, a rank deficiency arises when particle
integration is used which results in spurious zero or low energy modes. Oftentimes, this
is addressed by corrections to restore stability (see e.g. the works of MONAGHAN (2000)
in SPH and WEISSENFELS & WRIGGERS (2018) in the Optimal Transportation Meshfree
(OTM) method). In terms of the peridynamic correspondence formulation, oscillations
occur due to the locally averaged deformation gradient, which is a reduction of the possibly
nonlinear peridynamic deformation state (see e.g. SILLING (2016) and FOSTER (2016)). In
the last years, this issue was suspect to extensive research and several stabilization schemes
have been introduced. One approach is, to apply correction forces, see e.g. LITTLEWOOD

(2010), BREITENFELD ET AL. (2014) and SILLING (2017). However, unphysical parame-
ters have to be determined that can be case sensitive and reduce the accuracy of the solution.
TUPEK & RADOVITZKY (2014) proposed an extended correspondence formulation based
on Seth-Hill strains. A higher order approximation using modified weight functions has been
developed in YAGHOOBI & CHORZEPA (2017). CHOWDHURY ET AL. (2019) addressed
the low-energy modes by means of a separation of the neighborhood of a particle into
subdivisions which was studied and extended in HARTMANN ET AL. (2020) and HART-
MANN ET AL. (2021). The use of bond-level and bond-associated deformation gradients
is studied in BREITZMAN & DAYAL (2018), CHEN (2018), GU ET AL. (2019), MADENCI

ET AL. (2019) and CHEN & SPENCER (2019). A stress-point method to overcome the
rank deficiency was presented in LUO & SUNDARARAGHAVAN (2018) and ZHANG ET AL.
(2020). Within this work, a unified Galerkin type shape function approach is pursued which
provides the basis for a variety of formulations within a generalized framework and is
generally stable without the use of further artificial stabilization techniques. Furthermore,
this allows to shift the most crucial aspects of the method to a matter of shape functions,
which than have to fulfill certain conditions.

The tensile instability, which also produces displacement oscillations, should not be mixed
up with the presence of a rank deficiency, cf. BELYTSCHKO ET AL. (2000) and BONET &
KULASEGARAM (2001), as it is a result of updating the perspective in which the kernel or
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shape functions are computed. This inconsistency arises when the actual deformation of a
neighborhood is not contained in the ansatz space, i.e. the actual current configuration of a
neighborhood and its pushed forward counterpart differ. Hence, the tensile instability has to
be treated separately from the rank deficiency or rather avoided by using a total Lagrangian
formulation. Here, a shape function condition is stated that ensures an accurate and bijective
mapping.

If the rank deficiency and tensile instability are sufficiently treated, the resulting meshfree
method may be stable and robust, however, a disturbed convergence or the failure in
satisfying the patch test can oftentimes be observed. These issues apply for different
kinds of weak form methods where either the numerical integration is inaccurate, or the
ansatz spaces are not conforming such that the Galerkin orthogonality does not hold and
the solution is not anymore the optimal Galerkin solution. A criterion for the test shape
functions, later termed integration constraint, was developed that is needed to enable these
properties (cf. KRONGAUZ & BELYTSCHKO (1997)) and to ensure an accurate imposition
of Neumann boundary conditions. Different methodologies were presented to fulfill the
requirements for the test functions. See e.g. in Smoothed Particle Hydrodynamics (SPH)
BONET & LOK (1999), BONET & KULASEGARAM (2000) and FERNÁNDEZ-MÉNDEZ

ET AL. (2005) and for the nodal strain method PUSO ET AL. (2008). In CHEN ET AL.
(2013) the integration constraint was generalized in the more general variational consistency
for polynomials of higher order. Further, variationally consistent integration methods were
introduced and applied for the Stabilized Conforming Nodal Integration (SCNI, (HILLMAN

ET AL., 2014)), Stabilized Nonconforming Nodal Integration (SNNI, (HILLMAN & CHEN,
2016)) and Element-Free Galerkin (EFG, (DUAN ET AL., 2014)) method. In the present
thesis, a shape function derivative correction is presented that is compatible to Bubnov- and
Petrov-Galerkin methods and to all other shape function conditions that ensure consistency
and prevent tensile instabilities.

Like in the FEM, mere displacement-based meshfree approaches can exhibit locking
phenomena, as e.g. a stiffer response or divergence, when the problem is subject to
geometric constraints (see e.g. DOLBOW & BELYTSCHKO (1999) and CHEN ET AL.
(2000)). In the range of near incompressibility or isochoric plastic flow, a volumetric
locking arises. Next to other techniques, like selective reduced integration, projection
methods or the promising enhanced assumed strain elements (cf. KORELC ET AL. (2010)),
mixed displacement–pressure–dilation formulations on the basis of a Hu-Washizu potential
are known to overcome these problems and possess increased robustness. Whether a specific
formulation underlies a volumetric locking or spurious pressure modes can be verified by
means of an inf-sup condition, see FORTIN & BREZZI (1991). Although not fulfilling
this condition, the popular Q1P0 element of SIMO ET AL. (1985) usually leads to good
results in practice. The technique of underintegration and selective integration as well as the
formulation of mixed and enriched approaches will be addressed in the remainder of this
work.



Chapter 2

Local continuum mechanics

In this chapter, the simplified fundamentals of the local continuum mechanics are stated that
provide the local part of the physical basis for the discretization within the PG methods.
A complete set of equations for the modeling of finite strain solid mechanics include,
next to initial and boundary conditions, a kinematic description, the balance equations
and a constitutive model. For the numerical solution, variational principles are further
deployed. An extensive overview can be found e.g. in TRUESDELL & TOUPIN (1960) and
HOLZAPFEL (2002).

2.1 Kinematics of the continuum

In continuum mechanics, the macroscopic behavior of a body is described (see e.g.
HOLZAPFEL (2002)). Therefore, the body B consists of a continuous set of material particles
X ∈ B, which are embedded in the Euclidean space E3. The geometric region occupied by
the collection of the particles at a specific time t is called configuration Ω. In the initial, i.e.
undeformed, configuration Ω0, the position of particle X is given by X ∈ Ω0. The motion
X of body B is a mapping that assigns each particles initial position to a deformed position
x ∈ Ω (see Figure 2.1). With the geometric difference between the initial position and its
current position to a time t, the displacement vector field is defined as

u (X, t) = x (X, t)−X . (2.1)

2.1.1 Deformation and strain measures

For the objective, i.e. observer independent, description of the state of deformation in the
incremental neighborhood of a material particle, i.e. in the local theory, a linear mapping
operator can be defined. The two-field second order tensor field F (X, t) is termed material
deformation gradient and computes as the derivative of the current position x (X, t) with
respect to its initial position X. For convenience, the dependency (X, t) is further omitted.

5
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current
configurationc

initial
configuration

O

time ttime =0t

W0 W

x( , )X t

u( , )X t

X

XX

Figure 2.1. Motion of body B from initial to current configuration.

F =
∂x

∂X
=
∂ (X + u)

∂X
= 1 +

∂u

∂X
= 1 + H (2.2)

with the unity tensor 1 and the displacement gradient H. While the deformation gradient
F maps the incremental material distance vector dX into the incremental spatial distance
vector dx, the inverse mapping is performed by the spatial deformation gradient F−1. The
incremental initial volume element dV around a particle can be transferred with the Jacobian
J to its current counterpart:

dv = JdV with J = det F . (2.3)

To ensure the bijectivity of the linear mapping, the inverse F−1 has to exist, which yields
in the condition J 6= 0. Further, the self-penetration of material additionally restricts the
physical range of the Jacobian to J > 0, which serves as a criterion for the constitutive
modeling. In the case of incompressibility, the incremental volume element does not change
during deformation, which constraints the Jacobian to J = 1.

In the hyperelastic modeling of solids, further deformation measures are relevant. The sym-
metric right Cauchy-Green tensor, defined with respect to the initial configuration, states

C = FT · F . (2.4)

Analogously, the symmetric left Cauchy-Green tensor can be defined with respect to the
current configuration:

b = F · FT . (2.5)

A nonlinear strain measure can now be derived as the Green-Lagrange strain tensor in the
initial configuration

E =
1

2
(C− 1) , (2.6)

while its push-forward (transformation to the basis of the current configuration), the Euler-
Almansi strain tensor, yields with respect to the current configuration
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e = F−T · E · F−1 =
1

2

(
1− b−1

)
. (2.7)

For linear analyses, the strain measure can be linearized as

ε =
1

2

(
H + HT

)
. (2.8)

2.1.2 Multiplicative decomposition
For the application of geometric constraints or the numerical treatment of the deformation,
it can be advantageous to separate the deformation into consecutive parts. The polar decom-
position of the deformation gradient

F = R ·U = v ·R (2.9)

decomposes the rotational and the stretching part. Herein, R is the second order orthogo-
nal rotation tensor and U and v are the symmetric positive definite stretching tensors with
respect to the initial and current configuration, respectively. Alternatively, the deformation
gradient can be decomposed into a volume changing volumetric part Fvol and a shape chang-
ing isochoric part Fiso:

F = Fvol · Fiso with Fvol = J
1
3 1 and Fiso = J−

1
3 F . (2.10)

Accordingly, the isochoric part of the right and left Cauchy-Green tensor write

Ciso = FT
iso · Fiso = J−

2
3 FT · F = J−

2
3 C and biso = J−

2
3 b . (2.11)

For the modeling of elasto-plasticity within the range of finite deformations, the elastic and
plastic deformation can be separated and a stress-free plastic intermediate configuration is
introduced (see Figure 2.2). Hence, the deformation gradient splits consecutively into a
purely plastic and an elastic mapping:

F = Fe · Fp . (2.12)

While the plastic deformation is assumed to be perfectly isochoric, i.e.

Fp = Fp iso and Jp = det Fp = 1, (2.13)

the elastic part can again be split into an isochoric and a volumetric deformation

Fe = J
1
3
e Fe iso with Je = det Fe = J . (2.14)

If the elastic response is considered in terms of an hyperelastic strain energy potential, based
on the left Cauchy-Green tensor, the elastic part of it can be written as

be = be iso · be vol with be vol = Fe vol · FT
e vol = J

2
3 1 (2.15)

and the isochoric part of the elastic left Cauchy-Green tensor
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Fn+1

Fe volFp iso

Fe iso

time t n= +1

Fn+1D

Fn

time t n=

time =0t

W0 W

Figure 2.2. At the top: Superposition of isochoric plastic, isochoric elastic and vol-
umetric plastic deformation with intermediate configurations. At the
bottom: Updated Lagrangian decomposition of the deformation gradi-
ent mapping. The successive deformation of an infinitesimal spherical
region by a single multiplicatively split deformation gradient is shown
in gray.

be iso = J
− 2

3
e Fe · FT

e = J
− 2

3
e F · F−1

p · F−Tp · FT = J−
2
3 F ·C−1

p · FT , (2.16)

where the plastic deformation is only considered with the symmetric (isochoric) plastic right
Cauchy-Green tensor

Cp = FT
p · Fp . (2.17)

In the numerical treatment, it can be beneficial to describe the current configuration with
respect to a reference configuration. This can either be constant in time, as done for isopara-
metric Finite Elements, or consisting of the configuration of the last load or time step t = n.
In this updated Lagrangian description, the deformation gradient of the time t = n + 1 can
be composed of the old part Fn and an incremental part ∆Fn+1:

Fn+1 = ∆Fn+1 · Fn . (2.18)

2.2 Balance principles
The motion of body B underlies physical laws of axiomatic character which are stated in
this section in its Lagrangian description, i.e. with respect to the initial configuration. These
include, the mass balance, the balance of linear and angular momentum and the first and
second law of thermodynamics.
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2.2.1 Conservation of mass
First, the mass balance states, that the density integrated over the region of a closed system
is invariant to motion. This conservation states

Ddm

Dt
= 0 (2.19)

with the infinitesimal mass

dm = ρ0dV = ρdv, (2.20)

where ρ0 denotes the initial density, ρ is the current density and dv the infinitesimal current
volume.

2.2.2 Momentum balances
Cauchy’s first law of motion derives from the principle of the conservation of linear momen-
tum, which states that the change of linear momentum

I =

∫
Ω0

ρ0u̇ dΩ0 (2.21)

of a body B equals the sum of external forces acting on it:

DI

Dt
=

∫
Ω0

ρ0b dΩ0 +

∫
∂Ω0

T d∂Ω0 , (2.22)

where ρ0b is an external body force density and T are external surface tractions acting on the
initial surface ∂Ω0 of Ω0. With the initial outward unit vector n0, Cauchy’s theorem states
with respect to the initial configuration

T = NT · n0 = P · n0 (2.23)

where N is the nominal stress tensor (cf. OGDEN (1997)) and P = NT denotes the first
Piola-Kirchhoff stress tensor. By inserting Cauchy’s theorem into the change of linear mo-
mentum equation (2.22) and applying Gauß’s theorem, the surface integral can be trans-
formed into a volume integral, and the change of linear momentum yields∫

Ω0

ρ0ü dΩ0 =

∫
Ω0

ρ0b dΩ0 +

∫
Ω0

Div P dΩ0 , (2.24)

where Div (•) stands for the divergence with respect to the initial configuration. As the
control region on which the linear momentum has to be fulfilled is arbitrary, Cauchy’s first
law of motion can be written in its local Lagrangian form

−Div P + ρ0

(
ü− b

)
= 0 . (2.25)

Analogous to the linear momentum, an angular momentum with respect to a position x0 can
be computed as
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L =

∫
Ω0

ρ0 (x− x0)× u̇ dΩ0 . (2.26)

Considering non-polar materials, the change of angular momentum results from the moment
resulting from the acting external volume and surface forces:

DL

Dt
=

∫
Ω0

ρ0 (x− x0)× b dΩ0 +

∫
∂Ω0

(x− x0)×T d∂Ω0 . (2.27)

Again, it can be simplified and reduced to a local form, which yields Cauchy’s second law
of motion in its material description

F ·PT =
(
F ·PT

)T
, (2.28)

which can be implicitly fulfilled by a constitutive model.

2.2.3 Conservation of energy
The first law of thermodynamics states, that the change of total energy E of body B, consist-
ing of kinetic energy K and inner energy U , is driven by the external force power Pext and
thermal power Q:

DE

Dt
=
DK

Dt
+
DU

Dt
= Pext +Q , (2.29)

where the change of kinetic energy computes via the conservation of mechanical energy to

DK

Dt
= Pext − Pint (2.30)

with the force power of the internal forces

Pint =

∫
Ω0

P : Ḟ dΩ0 . (2.31)

Therefore, the change of inner energy can be written as

U̇ = Pint +Q (2.32)

where the thermal power

Q = −
∫
∂Ω0

Q · n0 d∂Ω0 +

∫
Ω0

ρ0r dΩ0 (2.33)

is composed of the Piola-Kirchhoff heat flux Q across the surface and the volumetric heat
source density ρ0r. Utilizing Gauß’s theorem, and the arbitrariness of the control volume,
the local form of the first law of thermodynamics in material description reduces to

ρ0u̇ = P : Ḟ−Div Q + ρ0r (2.34)
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with the mass specific inner energy u. By applying the Legendre transformation ψ = u−ηθ,
where ψ is the specific free Helmholtz energy, η denotes the entropy and θ stands for the
absolute temperature (θ > 0), the first law of thermodynamics can alternatively be written as

ρ0ψ̇ = P : Ḟ + ρ0r −Div Q− η̇θ − ηθ̇ . (2.35)

2.2.4 Entropy inequality
The second law of thermodynamics stipulates a condition for the direction of a physical
process. It requires the entropy production Γ, which is the difference between the change in
entropy Ṡ and the entropy insertion rate Q̄, never to be negative:

Γ = Ṡ − Q̄ ≥ 0 (2.36)

with

Ṡ =
D

Dt

∫
Ω0

ρ0η dΩ0 and Q̄ = −
∫
∂Ω0

H · n0 d∂Ω0 +

∫
Ω0

ρ0r̄ dΩ0 , (2.37)

where H is an entropy flux with respect to the initial surface and ρ0r̄ denotes a volumetric
entropy density source. Inserting the postulation H = Q

θ
and r̄ = r

θ
into the second law of

thermodynamics yields

D

Dt

∫
Ω0

ρ0η dΩ0 +

∫
∂Ω0

Q

θ
· n0 d∂Ω0 −

∫
Ω0

ρ0
r

θ
dΩ0 ≥ 0 , (2.38)

known as the Clausius-Duhem inequality. Transforming the surface into a volume integral
by means of Gauß’s theorem, prescribing the heat to flow from warmer to colder regions and
considering the independence of the control volume, the Clausius-Planck inequality states in
the local material description

Dint = ρ0θη̇ + P : Ḟ− ρ0u̇ = ρ0θη̇ + Div Q− ρ0r ≥ 0 (2.39)

with the internal dissipation Dint. Equation (2.39) has to be fulfilled by the constitutive
models to be thermodynamically consistent. Considering isothermal processes (Θ̇ = 0), the
internal dissipation can further be simplified via the Legendre transformation to

Dint = P : Ḟ− ρ0ψ̇ = τ : d− ρ0ψ̇ ≥ 0. (2.40)

Here, the internal stress power can be expressed by other work conjugated pairs of stress
and strain measures as e.g., with respect to the initial configuration, via the second Piola-
Kirchhoff stress S = F−1 ·P and the Green Lagrange strain: P : Ḟ = S : Ė. Alternatively, it
can be written with respect to the current configuration which later serves for the concept of
maximal plastic dissipation. Therefore, the first Piola Kirchhoff stress P is pushed forward
to the symmetric Kirchhoff stress τ = P · FT and, exploiting the symmetry of τ , the
remaining part is transformed to the rate of deformation tensor d = 1

2

(
grad u̇ + gradT u̇

)
.
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2.3 Constitutive models
Next to the kinematic description of the continuum and the conservation laws, a description
of the response of a specific material, the constitutive model, is needed to set up a complete
initial boundary value problem. In the constitutive modeling, several aspects have to be
taken into account besides the fulfillment of the entropy inequality and the objectivity, which
include the determinism, material symmetry, equi-presence, multiplicative decomposition,
the concept of internal variables and fading memory (see e.g. TRUESDELL & TOUPIN

(1960), MALVERN (1969) and BECKER & BÜRGER (2013)).

2.3.1 Hyperelasticity
When considering an isentropic material behavior, the stored strain energy density can be
expressed in terms of a conservative potential function W (F) = ρ0ψ (F). Thus, the relation
between the deformation gradient and the resulting stress computes via the Coleman-Noll
procedure with Dint = 0 from equation (2.40) to

P =
∂W

∂F
, (2.41)

which is the two-field first Piola-Kirchhoff stress tensor. With the first Lamé constant λ
and the shear modulus (or second Lamé constant) µ, the strain energy density function of a
nonlinear isotropic neo-Hookean solid (cf. CIARLET (1988)) states

W =
µ

2
(tr [C]− 3− 2 ln [J ]) +

λ

4

(
J2 − 1− 2 ln [J ]

)
. (2.42)

In the region of nearly incompressible or incompressible material behavior, it can be more
convenient to split the strain energy density additively into a purely isochoric part Wiso and
volumetric part Wvol as

W = Wiso (biso) +Wvol (J) =
µ

2
(tr [biso]− 3) +

K

4

(
J2 − 1− 2 ln [J ]

)
, (2.43)

where the bulk modulus K is related to the Lamé constants via

K = λ+
2

3
µ . (2.44)

For the numerical analysis of polynomial displacement fields in terms of a patch test, a
model describing linearly elastic material behavior can be necessary. Therefore, the Saint
Venant-Kirchhoff model for the geometrically nonlinear regime provides a linear relationship
between the Green-Lagrange strain tensor E and the second Piola-Kirchhoff stress tensor S:

S =
∂2W

∂E2
: E with W = µ tr

[
E2
]

+
λ

2
tr [E]2 . (2.45)

In case of a linear analysis, the Green-Lagrange strain tensor has to be substituted with the
linearized strain measure (equation (2.8)).



2.3. CONSTITUTIVE MODELS 13

2.3.2 Finite elasto-plasticity
In an elasto-plastic material, the resistance against further deformation abruptly decreases if
a certain limit of stress is reached. When this yield limit is reached, the material starts to
deform irreversibly and the deformation can be split into a consecutive plastic and elastic
part (see section 2.1). To the reversible elastic part a neo-Hookean strain energy density
function can be assigned:

W = Wiso (be iso) +Wvol (Je) =
µ

2
(tr [be iso]− 3) +

K

4

(
Je

2 − 1− 2 ln [Je]
)
. (2.46)

The resulting first Piola-Kirchhoff stress tensor

P =
∂W

∂Fe

(2.47)

has one of its basis in the plastic intermediate configuration. Hence, for a push-forward to the
current configuration, only the elastic part of the deformation gradient has to be considered.
Thus, the symmetric Kirchhoff stress tensor states

τ = P · FT
e . (2.48)

Considering standard von Mises J2 plasticity (see e.g. SIMO (1988) and SIMO & HUGHES

(2006)) with nonlinear isotropic hardening, the yield limit that bounds the elastic regime
writes

F = σvM −
[
σy0 +Hα + (σy∞ − σy0)

(
1− e−δα

)]
(2.49)

where σy0 is the initial yield stress, H is the linear hardening modulus, α the hardening
variable and σy∞ and δ define the nonlinearity of the isotropic hardening. The von Mises
stress computes from the second main invariant of the deviatoric part of the Kirchhoff stress
tensor:

σvM =
√

3J2 (τdev) =

√
3

2
tr (τ dev · τ dev) with τ dev = τ − tr (τ )

3
1 . (2.50)

For the evolution of the plastic deformation, a flow rule is further necessary. The Clausius-
Planck inequality (2.40) leads with the concept of maximal plastic dissipation to a constraint
optimization problem and the resulting thermodynamically consistent associative plastic
flow rule

dp = λ̇FnF with nF =
∂F
∂τ

and α̇ = λ̇F , (2.51)

where dp is the spatial plastic rate of deformation tensor, nF is the normal on the yield
surface and λF the plastic Lagrange multiplier. By neglecting the plastic spin, the evolution
equation can alternatively be expressed in terms of the rate of the plastic right Cauchy-Green
tensor Ċp (cf. KORELC & STUPKIEWICZ (2014)) as

Ċ−1
p = −2λ̇F F−1 · nF · F ·C−1

p (2.52)
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The flow conditions can be summarized in the Karush-Kuhn-Tucker form

λ̇F ≥ 0 , F ≤ 0 and λ̇FF = 0 . (2.53)

with the consistency condition

λ̇F Ḟ = 0 for F = 0 . (2.54)

2.4 Variational principles
With the kinematic description of section 2.1, the fundamental balance laws of section 2.2,
a constitutive model of section 2.3, conditions on the Dirichlet and Neumann boundary and
imposed initial conditions, the coupled system of nonlinear partial differential equations
is complete. However, the solution of it can only be done analytically in idealized special
cases. The application to nonlinear material behavior within finite deformations on a
complex geometry needs a numerical treatment. Among other approaches (see e.g. BATHE

(2006)), the general weak form and the principle of Hu-Washizu are further listed.

2.4.1 D’Alembert’s principle
The general weak form of the linear momentum balance with respect to the initial configura-
tion is based on the principle of virtual displacements applied to equation (2.25). Multiplying
with a virtual displacement δu, also known as test function, and integration over the initial
region Ω0 of B yields

∫
Ω0

[
−Div P + ρ0

(
ü− b

)]
· δu dΩ0 = 0 (2.55)

which rewrites by doing integration by parts to the principle of d’Alembert in its Lagrangian
description ∫

Ω0

P : δF−Div (δu ·P) + ρ0

(
ü− b

)
· δu dΩ0 = 0 , (2.56)

where δF = Grad δu can be interpreted as the variation of the deformation gradient. With
the application of Gauß’s theorem, the second term in the volume integral can be shifted to
an integral over the boundary ∂Ω0 of Ω0, leading to the weak form:∫

Ω0

P : δF + ρ0

(
ü− b

)
· δu dΩ0 −

∫
∂Ω0

(P · n0) · δu d∂Ω0 = 0 (2.57)

or equivalently with Cauchy’s theorem of equation (2.23) written as∫
Ω0

P : δF + ρ0

(
ü− b

)
· δu dΩ0 −

∫
∂Ω0

T · δu d∂Ω0 = 0 . (2.58)
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As in the derivation no further assumptions were made, the weak form is generally valid,
also for non-conservative inelastic constitutive models.

2.4.2 Hu-Washizu principle
In the numerical processing of the weak form (2.57) in terms of a Galerkin method with
displacement degrees of freedom, an over-stiff behavior, called locking, can be observed in
certain situations. The phenomenon of volumetric locking occurs when the material behaves
incompressible or nearly incompressible, i.e. the bulk modulus approaches infinity. In these
situations, the Hu-Washizu principle (WASHIZU (1968)) showed to be advantageous where
next to the displacements, the strain measure and stress tensor are used as variables. Within a
special Hu-Washizu potential with respect to the displacement u, pressure p and dilation Θ,
cf. SIMO ET AL. (1985), the strain energy density can be decoupled by equation (2.43) and
independently processed. While the isochoric part as well as external and inertia forces are
directly handled via the general weak form (2.57), the volumetric part is treated separately:

Π = Πiso (biso) + Πvol (u, p,Θ) =

∫
Ω0

[Wiso (biso) +Wvol (Θ) + p (J −Θ)] dΩ0 , (2.59)

where the pressure can be interpreted as a Lagrangian multiplier. The variation of Π, includ-
ing additionally the external and inertia forces, leads to

∂Π

∂u
· δu =

∫
Ω0

∂Wiso

∂Fiso︸ ︷︷ ︸
Piso

+ JpF−T︸ ︷︷ ︸
Pvol

 : δF + ρ0

(
ü− b

)
· δu dΩ0 −

∫
∂Ω0

T · δu d∂Ω0 = 0 ,

∂Π

∂p
δp =

∫
Ω0

(J −Θ) δp dΩ0 = 0 and

∂Π

∂Θ
δΘ =

∫
Ω0

(
∂Wvol

∂Θ
− p
)
δΘ dΩ0 = 0 .

(2.60)
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Chapter 3

Fundamentals of peridynamic theory

Starting with the pioneering work of SILLING (2000), the peridynamic theory has been
developed. The adjective peridynamic is composed of the two greek words peri and dyna
meaning the near field and forces, respectively. In relation to solids, the noun peridynamics
is used as an abbreviation for the peridynamic theory of solid mechanics. Therefore,
the peridynamic theory is a non-local field theory and it provides, as an extension to
the local theory, an alternative way to model partial differential equations in terms of
an integro-differential form. The initial motivation was, to provide a consistent way of
modeling non-local effects and discontinuities by avoiding the use of spatial derivatives.
In the present chapter, an introduction to the peridynamic fundamentals is given, whereby
the classical peridynamic notation is partly adjusted for the sake of compatibility to the
local description of chapter 2. A comprehensive overview on the peridynamic theory can
be found in BOBARU ET AL. (2016), MADENCI & OTERKUS (2016a) and GERSTLE (2015).

In the peridynamic theory, a particle X ∈ B with initial position X ∈ Ω0 does not solely
interact with particles in an infinitesimal distance, but within its non-local neighborhood,
whereby the interaction beyond a radius δ, called horizon, is assumed to be negligible. The
collective material particles within the distance of δ form the region of the neighborhood,
the so-called family H0 of X (see Figure 3.1). Neighbor particle X ′ thereby exerts the
force f (X,X ′) dVXdVX′ on particle X , further called master particle, where dVX and dVX′
denote the infinitesimal volume of X and X ′, respectively.

X

X’

f( , )X X d d’ V V
X X’

dV
X

d

dV
X’

0H

Figure 3.1. The infinitesimal master particle X with volume dVX interacts with
each neighbor particle X ′ within its familyH0.
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Dx
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F
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t
H

X

X

Figure 3.2. The current bond vector state ∆x performs a generally nonlinear and
possibly non-smooth mapping of the initial family H0 into the current
configuration, while its reduction F̄ is its linearized weighted average.

3.1 States and non-local kinematics
The kinematic description of a family can be established by the position X of the master
particle X and the relative position of each infinitesimal particle within H0. With the initial
position X′ of particle X ′, the so-called bond ∆X defines the distance vector with respect to
X:

∆X = X′ −X (3.1)

and with respect to the current configuration the bond computes accordingly

∆x = x′ − x . (3.2)

In SILLING ET AL. (2007) the concept of scalar, vector and tensor states was introduced
as operators that assign each particle X ′ within H0 a scalar, vectorial or tensorial value,
respectively. With regard to the bonds in initial and current configuration, the collective
bonds ofH0 can thus be stored in the vector states, marked with an underline,

∆X : X ′ 7→ ∆X, X ′ ∈ H0 and ∆x : X ′ 7→ ∆x, X ′ ∈ H0 , (3.3)

where the evaluation for a single neighbor particle X ′ gives ∆X (X ′) = ∆X. In relation to
a second order tensor, a vector state is a generalization of the linear mapping to a nonlinear
mapping of a non-local neighborhood (see illustration in Figure 3.2).

The further abbreviations are frequently used in state calculus. The inner and outer product
of two states a and b are defined as the weighted integral of the inner and outer product for
each particle withinH0:

a • b =

∫
H0

a (X ′) · b (X ′) dH0 (3.4)



3.2. INTEGRO-DIFFERENTIAL MOMENTUM BALANCE 19

and

a ∗ b =

∫
H0

ω (X ′) a (X ′)⊗ b (X ′) dH0 (3.5)

where ω denotes an influence function. Applied to the initial bond vector state, the outer
product with itself yields the symmetric shape tensor

K = ∆X ∗∆X (3.6)

which is a measure for the shape of a family. An averaged second order tensor can then be
gained via the so-called peridynamic reduction. With respect to the current bond vector state
(see Figure 3.2), the reduction leads to an averaged deformation gradient

R{∆x} = (∆x ∗∆X) ·K−1 = F̄ . (3.7)

Note, that the definition of the peridynamic reduction is strongly related to the Weighted
Least Square fitting technique, which is further explained in chapter 4. For a non-local con-
stitutive modeling, the deformation of each bond is relevant. Therefore, the scalar extension
state

e = x−X with X = |∆X| and x = |∆x| (3.8)

stores the change in length of each bond. Further, the extension state can be decomposed into
an isotropic and deviatoric part as e = ei + ed. With the weighted volume m = (ωX) •X ,
the peridynamic dilation computes

Θ̂ =
3 (ωX) • e

m
. (3.9)

Hence, the isotropic and deviatoric part of the extension state write

ei =
Θ̂

3
X and ed = e− ei . (3.10)

3.2 Integro-differential momentum balance
In the peridynamic counterpart to the local momentum equation (2.25) the internal force
density is expressed in terms of an integral over the interactions with neighboring material
points. The force f (X,X ′) dVXdVX′ , that neighbor particle X ′ exerts on X , can be de-
coupled into a part tdVXdVX′ resulting from the deformation of the family H0 and a part
t′dVXdVX′ arising from the deformation of H′0. In this state-based formulation, t and t′

are called the pairwise force density vector states. With an external body force density ρ0b̃,
the relation of inner, inertia and external forces leads to the peridynamic linear momentum
balance
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−
∫
H0

(t− t′) dH0 + ρ0

(
ü− b̃

)
= 0 . (3.11)

Analogous to the local momentum balance, the principle of virtual displacements can be
applied to equation (3.11) by multiplication with a virtual displacement δu and integration
over the region Ω0 of B:∫

Ω0

[
−
∫
H0

(t− t′) dH0 + ρ0

(
ü− b̃

)]
· δu dΩ0 = 0 . (3.12)

For the derivation of a correspondence formulation that allows the usage of local material
models, it is more convenient to rewrite equation (3.12). Taking into account that the pairwise
force densities t and t′ are zero outside the scope of family H0, the family integral can be
extended to Ω0, the indices changed ( )↔ ( )′ and the integral again reduced toH0:

∫
Ω0

[
−
∫

Ω0

(t · δu− t′ · δu) dΩ0 + ρ0

(
ü− b̃

)
· δu

]
dΩ0 = 0∫

Ω0

[
−
∫

Ω0

(t′ · δu′ − t′ · δu) dΩ0 + ρ0

(
ü− b̃

)
· δu

]
dΩ0 = 0∫

Ω0

[
−
∫
H0

t′ · (δu′ − δu) dH0 + ρ0

(
ü− b̃

)
· δu

]
dΩ0 = 0

(3.13)

or alternatively by means of the same procedure (cf. MADENCI & OTERKUS (2016a))∫
Ω0

[∫
H0

t · (δu′ − δu) dH0 + ρ0

(
ü− b̃

)
· δu

]
dΩ0 = 0 . (3.14)

The conservation of angular momentum for non-polar peridynamic materials is fulfilled lo-
cally, provided that the resulting moment of each force state vanishes (see SILLING ET AL.
(2007)): ∫

H0

∆x× t dH0 = 0 . (3.15)

3.3 Peridynamic constitutive models
Besides the non-local kinematics and balance laws, the constitutive response needs to be
defined. Instead of a locally defined strain energy density function, the peridynamic mo-
mentum equation allows directly the consideration of non-local effects by defining the strain
energy density function with respect to peridynamic states. Generally, with a non-local strain
energy density function Ŵ (∆x), the pairwise force density state computes as the derivative
of Ŵ with respect to ∆x:
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t =
∂Ŵ

∂∆x
. (3.16)

Dependent on the relation and direction of t = t (X), it is distinguished between three
different types of materials: In a bond-based material, the pairwise force densities only de-
pend on the deformation of the corresponding bond (t = t (∆x)). State-based materials
additionally consider the deformation of the entire family (t = t (∆x)). While in ordinary
state-based materials, the force density vector t shows in the same direction as the current
bond ∆x, which fulfills the local angular momentum balance (3.15) a priori, in non-ordinary
state-based materials, the direction of t can be arbitrary. An elastic bond-based peridynamic
strain energy density function Ŵ can be set up by the composition of spring-like micro-
potentials w of each of the bonds within a family (see e.g. BOBARU ET AL. (2016)):

Ŵ =

∫
H0

1

2
w dH0 with w =

1

2
Ce2 . (3.17)

Here the 1/2 in the assembled strain energy density potential comes from the separation
of the bond strain energy to both families of the two concerning particles. e measures the
lengthening of the bond (see equation (3.8)) and C is a material parameter. The calibration
of C can be done by equating the strain energy density with the one of a local linear elastic
model (equation (2.45)) for a homogeneous deformation. This results for the non-discretized
interior apart from the influence of the surface in three dimensions in

C =
45K

2πδ5
. (3.18)

with the horizon or radius δ of a spherical neighborhood. From the fact, that only one ma-
terial parameter is used, an implicit assumption is included, that restricts the Poisson’s ratio
to ν = 0.25 in 3-D. A more general modeling approach can be gained via an ordinary state-
based formulation by utilizing the isotropic deviatoric decomposition of the scalar extension
state of equations (3.8) to (3.10). Accordingly, the peridynamic strain energy density poten-
tial (cf. SILLING ET AL. (2007) and LE ET AL. (2014)) writes

Ŵ =
K

2
θ̂2 +

α

2
(ωed) • ed (3.19)

with the bulk modulus K and a peridynamic shear modulus α. Again, a calibration of α can
be done by means of a comparison of strain energy within homogeneous deformation which
yields in the interior with the shear modulus µ and the weighted volume m

α =
15µ

m
. (3.20)

As a consequence of the split of the extension state, the resulting force density decouples to

t = (ti + td)
∆x

|∆x|
with ti =

∂Ŵ

∂ei
and td =

∂Ŵ

∂ed
. (3.21)

Since the isotropic part of the pairwise force-density depends on the averaged peridynamic
dilation Θ̂, strain energy (3.19) corresponds to a state-based material. Further, the direction
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∆x/|∆x| of the pairwise bond force density t makes it an ordinary state-based material.

The development of non-locally defined peridynamic constitutive models has been an active
research area since the last decade (cf. JAVILI ET AL. (2018)). Among other works, a se-
lection of progressing approaches include higher gradient expansions in ŠILHAVỲ (2017), a
state-based plasticity (MADENCI & OTERKUS (2016b)) and viscoplasticity FOSTER ET AL.
(2010) model and the peridynamic crystal plasticity model of SUN & SUNDARARAGHAVAN

(2014).

3.4 Correspondence theory
Next to constitutive models that depend directly on the non-local kinematics, local material
models can be adopted for the peridynamic momentum equation (SILLING ET AL., 2007).
Therefore, the peridynamic reduction operation (see equation (3.7)) is classically used to
average the current bond vector state to a second order tensor, the averaged deformation
gradient F̄. With this, a strain energy function of the local continuum mechanics theory
W
(
F̄
)

can be applied to define the stress response in terms of the averaged first Piola-
Kirchhoff stress P̄. Finally, the second order stress tensor has to be redistributed to the
pairwise force density state which can be done, analogous to a peridynamic material model,
via the derivative with respect to the current bond vector state:

t
(
P
(
F̄
))

=
∂W

(
F̄
)

∂∆x
=
∂W

(
F̄
)

∂F̄
:
∂R{∆x}
∂∆x

= ωP̄ ·K−1 ·∆X , (3.22)

where the chain rule was applied and the averaged deformation gradient (3.7) inserted.
This so-called correspondence formulation leads to a generally non-ordinary state-based
model that still conserves the angular momentum balance in accordance with equation
(3.15) (see SILLING ET AL. (2007)). Though flexible, the correspondence formulation
suffers from low-energy modes that manifest in oscillations in a numerical setting (see e.g.
LITTLEWOOD ET AL. (2012)).



Chapter 4

Peridynamic Galerkin methods

The correspondence formulation of equation (3.22) is the underlying principle for the
further derivation of the Peridynamic Galerkin methods. Thereby, the integral over a family
is discretized in a finite sum of collocated particles. In a generalized Galerkin framework,
this yields a powerful unified particle method that reduces, on the one hand, to the classical
peridynamic correspondence formulation or rather the corrected SPH. On the other hand, a
strong relationship to other well established Galerkin methods as the FEM is produced.

In the FEM, the region Ω0 is separated into adjacent elements and numerically integrated
at Gauß points. The shape functions can be defined on a reference configuration for a
fixed set of nodes, dependent on the element formulation, and isoparametrically mapped
into the initial or current configuration. Instead of elements, the PG methods utilize
non-conforming and overlapping families or rather neighborhoods, generally consist-
ing of an arbitrary number of nodes. Therefore, the discretization is more flexible for
the cost of higher complexity. Further, in place of Gauß points and nodes, the neighbor
particles serve as integration points, as well as nodal points for the meshfree shape functions.

Within this chapter, a detailed description on the development of PG methods is given, sub-
divided into the following main aspects: First, the underlying spatial particle discretization
together with an explanation of the discrete notation is presented in section 4.1. In section
4.2, the relation of discrete peridynamic states and their corresponding local quantities is
discussed. Thereby, the classical discrete correspondence formulation is reviewed and more
general shape function based approaches, bridging peridynamic and local measures, are
presented that lead to the discretized weak form of the PG methods. Following, section
4.3 addresses the treatment of Dirichlet and Neumann boundary conditions. The explicit
and implicit temporal discretization is performed in section 4.4. The linearization of the
variational formulation as well as three different linearization procedures for implicit
analyses, namely the finite difference approximation, a consistent linearization and the
automatic symbolic differentiation, are presented in sections 4.5 and 4.6. Finally, section
4.7 deals with local strong form preservation properties.

23
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Figure 4.1. Particle discretization with the discrete connectivity and pairwise force
densities acting between master particle k and its neighborhoodHk

0 .

4.1 Particle discretization

The basis for the PG methods is the particle discretization which establishes the meshfree
character. Analogous to chapters 2 and 3, the region Ω0 is separated into particles carrying
the displacement u as the primary variable. Instead of infinitesimal particles, the spatial
discretization yields a finite number of np discrete particles with associated volumes V and
densities ρ0. Starting from a particle k, further called master particle, the connectivity to
its surrounding region is build up by the discrete family (or neighborhood) Hk

0 , consisting
of a number of Nk neighbor particles (see illustration in Figure 4.1). With the collocation
of the particle discretization, the integral relations from the previous chapters turn into as-
semblies or rather sums. A global integral over Ω0 is therefore assembled via all np particle
contributions and an integral overHk

0 is expressed as a sum on the family level:

∫
Ω0

( ) dΩ0 →
np

A
k=1

{
( )k V k

}
and

∫
Hk0

( ) dHk
0 →

Nk∑
i=0

()i V i ,

(4.1)

where
np

A
k=1

{ } is the assembling operator over all particles. Index i = 0 denotes the master

particle k and all i 6= 0 correspond to its neighbors. Hence, when the sum
∑Nk

i=1 is used,
the master particle is excluded. The discrete kinematic description is made of the collective
bond vectors, stored in a container, the discretized state:
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∆Xkj = Xj −Xk → ∆Xk =


∆Xk0

∆Xk1

...
∆XkNk

 . (4.2)

In the further thesis, a single superscript refers to a quantity related to a single particle or the
family of a single particle. Accordingly, Xk describes the position of the discrete particle
k and ∆Xk stands for the discrete initial bond vector state of the family Hk

0 of particle
k. Furthermore, the combination of ∆ with a double superscript, as ∆Xkj , expresses a
difference with respect to the first superscript. Note, that when a double superscript is
used without a ∆, like e.g. the pairwise force density tkj or the deformation gradient Fkj ,
this expresses generally not a difference. Instead, the first superscript belongs to a master
particle that specifies the family and the second one determines the point of evaluation.
Thus, Fkj expresses the deformation gradient at position Xj from the perspective of family
Hk

0 . In the definition of shape functions, a third superscript arises that will be explained in
the next section.

The underlying particle distribution can be generated in several ways (cf. CHOI & KIM

(1999), KLAAS & SHEPHARD (1999), LI ET AL. (2000b) and LI ET AL. (2000a)). In
peridynamics, a common approach consists in separating the region Ω0 into (regularly
structured) elements. The particle positions and volumes are then the centroids and volumes
of each corresponding element. As a result, no particle is located directly on the surface of
Ω0, which makes the imposition of boundary conditions more cumbersome and less accurate
in the context of correspondence models (see section 4.3). Alternatively, the particle
positions and associated volumes can be gained from the nodes of a FE mesh. While the
positions are predetermined by the nodal ones, their volume has to be determined by means
of a lumping strategy, like e.g. row summation or nodal quadrature (see ZIENKIEWICZ

ET AL. (2005)). Next to a comfortable imposition of boundary conditions, this yields the
possibility to straightforwardly couple a meshfree domain with an adjacent mesh-based
domain by connecting their nodes. For this purpose, the meshfree shape functions have to
meet certain criteria to accomplish a smooth transition, which will be addressed in chapter
5.

While in FE methods, the shape functions on each element are defined by a specific number
of nodes, PG methods use an arbitrary number of particles for their construction and hence,
the shape of a family is flexible. When peridynamic constitutive models including non-local
effects are used, the size can be determined by the horizon δk as the largest length scale on
which non-local effects are present. In the utilization of local models within the PG methods,
the non-local approach is aimed to be the basis for a versatile particle method, where in
the limiting refinement case, the local model should be reached. Hence, with decreasing
average particle spacing h̄, the support of the neighborhood can be set proportional to h̄.
Typically, a horizon between δk = 1.51h̄ and δk = 3.01h̄ is chosen.

Spherical neighborhoods with a globally constant horizon ensure a pairwise connectivity,
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which means, each particle j inside family Hk
0 has particle k in its own family Hj

0. With
irregular or partially refined particle patterns a globally fixed horizon can lead to a large
number of neighbor particles in fine regions and therefore to an increased computational
cost. One possibility is, to define dual-families to allow a varying horizon size (see REN

ET AL. (2016) and REN ET AL. (2017)). However, the PG methods are not restrictive to
spherical family shapes when based on the weak forms or a potential as later defined and
collected in Table 4.1. In this work, two other possibilities are pursued. The first one,
consists in a nearest neighbor search algorithm. Thereby, a family is made up of the master
particle and its nearest Nk neighbor particles. To ensure pairwisity (which is not necessarily
needed in PG methods), all particles j, that have particle k in their family Hj

0 and are not
part of the nearest Nk neighbors of particle k, can be added to the family Hk

0 . While for
a reduced computational cost, a small number of neighbor particles is desired, a minimal
number of neighbors is usually specified by the number of regression coefficients of the
meshfree shape functions (see section 5.2.2). A second promising approach employs the FE
discretization of which the particles are collocated. Here, the collection of nodes or rather
particles belonging to the adjacent elements of a master particle form its family.

4.2 Bridging peridynamic and local quantities

As outlined in section 3.4, the application of constitutive models from the local theory within
the peridynamic momentum equation requires the formulation of two bridges between the
non-local measures and its local counterparts – the correspondence formulation. First, the
non-local kinematics have to be related to the deformation gradient. More precisely in
a discrete setting, the discrete current bond vector state ∆xk has to be transferred into a
deformation gradient F̄k. Once the constitutive response is calculated in form of the first
Piola-Kirchhoff stress P̄k, a back-distribution has to convert the local stress tensor into
the discrete pairwise force density vector state tk. Classically, the first bridge is build by
the discrete peridynamic reduction operation. The second one can be gained on several
ways, whereby one of which is equating the peridynamic and local discrete virtual work of
internal forces. In the following, the classical correspondence formulation is stated, and its
proneness for low-energy modes is analyzed. Subsequently, more general shape function
based correspondence formulations are presented, resulting in the discrete weak form of the
PG methods.

4.2.1 Classical correspondence formulation

In the classical correspondence formulation, the peridynamic reduction (equation (3.7)) de-
fines an averaged deformation gradient within a family. When the particle discretization is
performed with equation (4.1), the discretized averaged deformation gradient yields
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F̄k = R{∆xk} =
(
∆xk ∗∆Xk

)
·Kk−1

=

 Nk∑
j=0

ωkj∆xkj ⊗∆XkjV j

 ·Kk−1
, (4.3)

where the symmetric discrete shape tensor Kk computes from equations (3.5), (3.6) and (4.1)
to the outer product of the discrete initial bond vector state with itself:

Kk = ∆Xk ∗∆Xk =
Nk∑
j=0

ωkj∆Xkj ⊗∆XkjV j . (4.4)

To improve the locality of the averaged deformation gradient, a weight function (kernel) ω
can be defined. Commonly, a radial weight function depending on the length of the reference
bonds is used, as e.g.

ωkj =

{
1

|∆Xkj|2 ∀ j 6= k

0 ∀ j = k
. (4.5)

For regular particle patterns, special integration rules can alternatively be adopted to get
a higher order accuracy of the discretized shape tensor and averaged deformation gradient
(see YAGHOOBI & CHORZEPA (2017)). Finally, the pairwise force relation discretizes from
equation (3.22) to

tkj = ωkjP̄k ·Kk−1 ·∆Xkj . (4.6)

With this linking of local and non-local measures, the resulting non-ordinary state based
peridynamic method (WARREN ET AL. (2009)) is a flexible meshfree method that can
handle the whole range of local material models. However, in practice, the classical
correspondence formulation suffers from low-energy modes that pollute the displacement
field and make the solution without further treatment useless. Next to other interpretations
of this phenomenon, it can be attributed to the surjectiveness of the peridynamic reduction
operation, which is further discussed.

As the use of peridynamic material models, directly depending on non-local kinematics,
does not generally lead to low-energy modes, the critical point in the correspondence
formulation becomes evident: During the two bridging operations between local and
non-local measures, i.e. between ∆xk → F̄k and P̄k → tk, the low-energy modes arise. If
both operations (equations (4.3) and (4.6)) are analyzed, it shows, that in the computation
of an averaged deformation gradient, a loss of information takes place which can not be
restored by the re-distribution into pairwise force densities. Mathematically, this information
loss can be seen as an inadmissible linearization of the non-linear mapping of a family by
means of a single second order tensor, yielding a surjective operation (see Figure 4.2). In
comparison with the FEM, such an information loss occurs when elements that allow more
than linear deformation modes are averaged or rather underintegrated, which results in a
rank deficient element stiffness matrix with spurious zero-energy modes. The understanding
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Figure 4.2. The linearization of the generally non-linear mapping of the deforma-
tion of Hk

0 using a constant locally averaged deformation gradient F̄
leads as a surjective operation to a loss of information. Blue colored
particles denote the points of evaluation.

of a single family as an overlapping kind of element provides an explanation why the
low-energy modes in the classical correspondence formulation are present: If there is a more
general higher order correspondence formulation, the rank deficiency will result either from
an underintegration, an insufficient approximation basis or both.

4.2.2 From states to tensors: A general shape function approach
Following the considerations of section 4.2.1 with Figure 4.2, there are a couple of possi-
bilities of how the mapping of a family from the initial to the current configuration can be
done more appropriately. Since the difference between the initial and current configuration
consists of the displacement of each particle, an approximation of this displacement field
within the family may be performed by means of a Taylor series expansion with respect to
the master particle’s position Xk:

u
(
∆Xkj

)
= uk +

∂u

∂X

∣∣∣∣k ·∆Xkj +
1

2

∂2u

∂X∂X

∣∣∣∣k : ∆Xkj ⊗∆Xkj +O (∆X⊗∆X⊗∆X) ,

(4.7)
where the expansion was terminated after the second derivatives. Note, that the termination
after the first derivatives actually yields a linear approximation as done by the peridynamic
reduction. Similarly to the Taylor series expansion, a regression analysis of the family dis-
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placement field could be executed. In here, already a set of basis functions (e.g. (1, X,X2)
in 1-D) is used to fit the real displacement field by optimizing their coefficients. A more
general approach, in which the upper ones can be unified, consists in the classical Galerkin
shape function ansatz with respect to the master particle’s position Xk:

ukj = uk
(
Xj
)

=
Nk∑
i=0

uiNkji . (4.8)

ukj denotes the displacement at the position of particle j, approximated in the family of
particle k, consistent with the notation described in section 4.1. In the triple index of the
shape function Nkji, the first index stands for the family in which the shape functions are
constructed, i.e. Hk

0 . Index j identifies the point of evaluation Xj and the third index marks
the particle that is the supporting grid point of the shape function. For a closer relation to
the non-local kinematics of bonds (∆xkj = ∆Xkj + ∆ukj), the approximation can also be
stated with respect to differences:

ukj − uk =
Nk∑
i=0

∆ukiNkji . (4.9)

A description of the deformation of family Hk
0 that is invariant to rigid body translations

results from the derivative of equation (4.9) as the displacement gradient with respect to the
initial configuration

∂ukj

∂X
=

Nk∑
i=0

∆uki ⊗ ∂Nkji

∂X
. (4.10)

The position-dependent deformation gradient, required for the application of a material
model from the local continuum mechanics theory, can therefore be expressed as a func-
tion of the deformed bond vector state and computes

Fkj =
Nk∑
i=0

∆xki ⊗ ∂Nkji
u

∂X
, (4.11)

where the shape functions Nkji
u , marked with ( )u, are called trial shape functions. Analo-

gously, the virtual displacement gradient can be defined with respect to the virtual displace-
ments δu:

δFkj =
Nk∑
i=0

∆δuki ⊗ ∂Nkji
δu

∂X
. (4.12)

Index ( )δu indicates the approximation of the virtual displacement gradient with the
so-called test shape functions Nkji

δu . Generally, the trial and test shape functions do not
have to match and, in fact, the requirements that each of them should fulfill are different
which will be discussed in chapter 5. The approximation of equations (4.11) and (4.12) are
quite general and the locally averaged peridynamic deformation gradient, resulting from the
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reduction operation, can be restored by a special choice of shape functions as demonstrated
in section 5.2. Note, that with the upper definition, Fkj is generally not the same as Fjj ,
even if it denotes the deformation gradient at the position of particle j, the family in which
the approximation is made differs. This shows that the resulting global approximation is
non-conforming. In contrast, in case of the classical peridynamic reduction, Fkj is equal to
Fkk as there is a constant deformation gradient per family.

4.2.3 Inverse non-local averaging
Now, the second relation between local and non-local measures, i.e. the dependency
tk = t

(
P̄k
)
, is addressed. In the classical correspondence formulation of equation (4.6),

the pairwise force density state depends only on a single stress tensor, averaged around mas-
ter particle k. As already mentioned, this correlates with a loss of information towards the
peridynamic deformation vector state. Hence, to enable the benefit of a variable approxi-
mation of the deformation gradient field inside family Hk

0 , a more general expression for
this relation, like tk = t (P), is needed that includes changing stresses or rather the first
Piola-Kirchhoff stress tensor state Pk, consisting of the collective Pkj ∀j ∈ Hk

0 . In the fol-
lowing, two generalized correspondence formulations are derived via a comparison of the
discrete local and peridynamic virtual work of internal forces, resulting in the Peridynamic
Petrov-Galerkin (PPG) and Peridynamic Bubnov-Galerkin (PBG) methods. Therefore, the
particle discretization (equation (4.1)) has to be applied to equations (2.57) and (3.13) or
rather (3.14), yielding respectively the discretized weak form of the local and peridynamic
linear momentum balance

δUh =
np

A
k=1

{
δW k

int +
[
ρk0V

k
(
ük − b

k
)
− Ak

(
Pk · nk0

)]
· δuk

}
= 0 and (4.13)

δUh =
np

A
k=1

{
δŴ k

int + ρk0V
k
(
ük − b̃k

)
· δuk

}
= 0 . (4.14)

Whereby the discrete virtual work of internal forces at particle level computes (see equation
(3.13))

δW k
int = V kPk : δFk and (4.15)

δŴ k
int = V k

Nk∑
j=0

tkj ·∆δukjV j = −V k

Nk∑
j=0

tjk ·∆δukjV j = −V k

Nk∑
j=0

[
tkj − tjk

]
V j · δuk .

(4.16)

Petrov-Galerkin

First, a Petrov-Galerkin type correspondence formulation is derived. Therefore, the Galerkin
ansatz for the virtual deformation gradient of equation (4.12) is inserted into the local virtual
work of equation (4.15) as δFk = δFkk:
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δW k
int = V kPk :

Nk∑
i=0

∆δuki ⊗ ∂Nkki
δu

∂X
. (4.17)

With an increasing refinement in a nonlinear simulation, the deformation gradient within a
family tends to be constant. Therefore, when the same material model is used, the virtual
strain energy of the local and peridynamic form have to match for homogeneous deforma-
tions to ensure a convergence to the same solution. Equating δW k

int and δŴ k
int leads with the

peridynamic description of the virtual work of the right part of equation (4.16) to

V kPk :
Nk∑
i=0

∆δuki ⊗ ∂Nkki
δu

∂X
= −V k

Nk∑
j=0

tjk ·∆δukjV j . (4.18)

To get an expression for the pairwise force density, the left side can be rearranged in index
notation, the summation index changed and extended with −V j/− V j:

V kP k
AB

Nk∑
i=0

∆δukiA
∂Nkki

δu

∂XB

= −V k

Nk∑
j=0

(
− 1

V j
P k
AB

∂Nkkj
δu

∂XB

)
∆δukjA V

j . (4.19)

Going back to symbolic notation, the pairwise force density can be read of

−V k

Nk∑
j=0

(
− 1

V j
Pk · ∂N

kkj
δu

∂X

)
·∆δukjV j = −V k

Nk∑
j=0

tjk ·∆δukjV j . (4.20)

Since in the limiting case of homogeneous deformations, the stress is constant, the perspec-
tive of the approximation of the stress Pk at the absolute position Xk can be changed to the
same perspective of the corresponding pairwise force density. Thus, a generalized corre-
spondence formulation, including changing stresses can be written as

tjk = − 1

V j
Pjk · ∂N

kkj
δu

∂X
or rather tkj = − 1

V k
Pkj · ∂N

jjk
δu

∂X
. (4.21)

So far, no properties of the test shape functions were applied or analyzed in the derivation.
Some specific test function requirements (see chapter 5) will later show to be more easily
satisfied with an alternative formulation. Hence, at this point, the test shape functions can be

redefined: ∂Nkkj
δu

∂X
→ −∂Njjk

δu

∂X
, leading to

tkj =
1

V k
Pkj · ∂N

kkj
δu

∂X
. (4.22)

In the upper expressions for the pairwise force densities, the virtual deformation gradient
is evaluated only once inside a family, while the actual deformation gradient is evaluated at
each neighbor particle. This leads generally, i.e. in the case of nonlinear shape functions, to
a Petrov-Galerkin formulation, resulting in a non-symmetric stiffness matrix. Therefore, the
correspondence formulations of equations (4.21) and (4.22) are further denoted as PPG1
and PPG2, respectively.
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Bubnov-Galerkin

A correspondence formulation leading to a Bubnov-Galerkin method, provided that the trial
and test shape functions coincide (Nkji

u = Nkji
δu = Nkji), can be derived by the following

idea of smoothing the stress power by means of a least square minimization:

min

[∫
Hk0

(
Pk : δFk −P : δF

)2
dHk

0

]
. (4.23)

By taking the derivative with respect to Pk : δFk, it motivates the transformation

Pk : δFk → 1

V H
k
0

∫
Hk0

P : δF dHk
0 . (4.24)

Applied to the discrete virtual work of internal forces at particle level, this yields

δW k
int = V kPk : δFk ≈ V k

V H
k
0

Nk∑
j=0

Pkj : δFkjV j (4.25)

which can also be seen as a reverse averaging within the family Hk
0 . Note, that the conver-

sion is accurate in the limiting case of a homogeneous deformation, where the deformation
gradient, as well as the stresses are constant. The volume V Hk0 of Hk

0 thereby computes as
the sum of all particle contributions

V H
k
0 =

Nk∑
j=0

V j . (4.26)

Again, the discrete virtual strain energy (4.25) can be equated with its peridynamic form of
the left-hand side of equation (4.16):

V k

V H
k
0

Nk∑
j=0

Pkj : δFkjV j = V k

Nk∑
j=0

tkj ·∆δukjV j . (4.27)

By insertion of the virtual displacement gradient (4.12) into the left part with a change of
indices, it can be rearranged in index notation to

V k

V H
k
0

Nk∑
i=0

P ki
ABδF

ki
ABV

i = V k

Nk∑
j=0

1

V jV H
k
0

Nk∑
i=0

P ki
AB

∂Nkij
δu

∂XB

V i∆δukjA V
j . (4.28)

Hence, equation (4.27) rewrites

V k

Nk∑
j=0

 1

V jV H
k
0

Nk∑
i=0

V iPki · ∂N
kij
δu

∂X

 ·∆δukjV j = V k

Nk∑
j=0

tkj ·∆δukjV j . (4.29)

Therefore, the pairwise force density can be expressed as
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tkj =
1

V jV H
k
0

Nk∑
i=0

V iPki · ∂N
kij
δu

∂X
, (4.30)

which leads to a Bubnov-Galerkin formulation of the internal forces, further denoted as
PBG formulations, and results for of hyperelastic material behavior to a symmetric global
tangent stiffness matrix.

4.3 Treatment of boundary conditions
Compared to the mesh-based FEM, the imposition of Dirichlet and Neumann boundary
conditions requires an increased attention within meshfree particle methods and has been
suspect to extensive research in the past. Further, an incomplete overview of techniques for
the imposition of both is given. Generally, it is possible to impose the boundary conditions
almost analogously to mesh-based methods, if certain conditions on the shape functions are
fulfilled which will be addressed in chapter 5.

4.3.1 Dirichlet boundaries
Concerning the essential (Dirichlet) boundaries, several classes of methodologies are
present (FRIES ET AL., 2003). One of them consists in a modification of the weak form by
adding a term that enforces the boundary conditions weakly. These include the Lagrangian
multiplier method (see e.g. BELYTSCHKO ET AL. (1996) and BREZZI (1974)), the penalty
method (see e.g. ZHU & ATLURI (1998) and FERNÁNDEZ-MÉNDEZ & HUERTA (2004))
and the Nitsche’s method (cf. NITSCHE (1971)). Alternatively, the Dirichlet boundary
conditions can be strongly imposed via shape functions that posses the Kronecker delta
or rather Lagrange property. Therefore, the meshfree domain can either be coupled to
Finite Elements on which the essential boundary conditions are imposed (see BELYTSCHKO

ET AL. (1995) and HUERTA ET AL. (2004a)) or the Kronecker delta property has to be
recovered. This can be done by means of a transformation method (cf. CHEN ET AL.
(1997), CHEN & WANG (2000) and LI & LIU (2002)), the use of generalized variables via
D’Alembert’s principle (GÜNTHER & LIU (1998)) or using singular weighting functions
in the construction of Moving Least Square shape functions (see LANCASTER & SALKA-
USKAS (1981), KALJEVIĆ & SAIGAL (1997) and WU (2014)).

Within this work, the direct nodal imposition of the Dirichlet boundaries is further used. In
case the particle distribution is governed by the collocation of a FE mesh (see section 4.1),
it is sufficient to fulfill the Kronecker delta property of the shape functions related to the
nodes that are directly on the Dirichlet boundary. Alternatively, but less accurate, additional
rows of wall particles can be incorporated to account for discretizations where particles do
not lie directly on the boundary or to improve the behavior for shape functions that lack the
Kronecker delta property. In section 5.2.2, a special sort of meshfree shape functions will
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be presented, based on a concept of a moving Taylor series expansion, that allows a nodal
imposition by satisfying the Kronecker delta property.

4.3.2 Neumann boundaries
By investigating the discrete classical and peridynamic weak forms (4.13) and (4.14) it stands
out that the stress boundaries on the surface do not have a counterpart in the peridynamic
form. Hence, the external forces have to be converted into volumetric forces acting on a
particle layer near the surface. Therefore, an additional layer of particles, not part of the
discretization of region Ω0, can be added (cf. MADENCI & OTERKUS (2016a)). The surface
forces act then as resulting internal forces between the additional particle layer and the par-
ticles within the discretized body. Alternatively, the Neumann boundaries can be imposed
on the particles lying directly on the surface (e.g. by means of a collocated FE mesh). By
equating the external forces of (4.13) and (4.14) on particle level,

−ρk0V kb̃k = −ρk0V kb
k − AkPk · nk0 , (4.31)

the external volumetric force density acting on a particle on the Neumann boundary is com-
posed of two parts, truly volumetric ones like the gravity and converted ones:

b̃k = b
k

+ s̃k with s̃k =
1

ρk0V
k
Pk ·Ak (4.32)

where s̃k denotes the additional equivalent volume force density. To ensure a consistent im-
position of the Neumann boundaries, the nodal outer surface normal with respect to the initial
configuration Ak = Aknk0 has to be in agreement with the discrete form of Gauß’s theorem
(see also WEISSENFELS (2019)). This is accomplished, if the condition for linear variational
consistency is utilized (which is suspect to chapter 5) and computes for the correspondence
formulations (4.21), (4.22) and (4.30) as

PPG1 : Ak =
Nk∑
j=0

V j ∂N
jjk
δu

∂X
−

Nk∑
j=0

V k ∂N
kkj
δu

∂X
, (4.33)

PPG2 : Ak =
Nk∑
j=0

V k ∂N
jjk
δu

∂X
−

Nk∑
j=0

V j ∂N
kkj
δu

∂X
and (4.34)

PBG : Ak =
Nk∑
i=0

N i∑
j=0

V iV j

V H
i
0

∂N ijk
δu

∂X
−

Nk∑
i=0

Nk∑
j=0

V kV j

V H
k
0

∂Nkji
δu

∂X
. (4.35)

4.4 Temporal discretization
Looking in the discretized peridynamic weak form (4.14), the structure of the virtual work
of internal forces, as well as the treatment of boundary conditions have been described in
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sections 4.2 and 4.3, respectively. Now, the missing transient behavior is addressed, which
will be separated into the evolution of inertia forces and the evolution of constitutive history
variables with regard to von Mises plasticity. While the latter one is done locally at the
integration points or rather neighbor particles, the former is usually globally coupled, at least
via the mass matrix. However, with the particle discretization of equation (4.1), the mass
matrix is by default diagonal, i.e. without further lumping. Thus, also the integration of
motion becomes a decoupled problem on particle level, if specific explicit time integration
schemes are used.

4.4.1 Integration of motion
For an implicit time integration of each particle’s movement, the Newmark-beta method (cf.
NEWMARK (1959)) can be applied. Therefore, originating from time tn, the equilibrium is
generally iteratively obtained in the new time tn+1 = tn + ∆tn. With the Newmark-beta
method, the new velocity u̇kn+1 and acceleration ükn+1 of particle k are related to its new
displacement ukn+1 via the following expressions:

u̇kn+1 =
γNM

βNM∆t2
(
ukn+1 − ukn

)
+

(
1− γNM

βNM

)
u̇kn + ∆t

(
1− γNM

2βNM

)
ükn (4.36)

and

ükn+1 =
1

βNM∆t2

[
ukn+1 − ukn −∆tu̇kn −∆t2

(
1

2
− βNM

)
ükn

]
. (4.37)

With the Newmark time integration parameters βNM = 0.25 and γNM = 0.5, the resulting
constant average acceleration leads to an unconditional stability. Hence, only the iterative
solution procedure of the assembled discretized weak form limits the size of the time step
∆tn. However, the time step size has to be chosen small enough to capture the physical
phenomena. If this required time step becomes very small, it can be advantageous to use
an explicit time integration as the central difference method, where the time step size is
restricted by the Courant-Friedrichs-Lewy condition (see e.g. BELYTSCHKO ET AL. (1976)).
Here, the equilibrium is stated in the current time step tn and explicitly extrapolated to the
new time step tn+1. The current velocity u̇kn and acceleration ükn of particle k follow from
the central differential quotients as

u̇kn =
ukn+1 − ukn−1

2∆t
(4.38)

and

ükn =
ukn+1 − 2ukn + ukn−1

∆t2
, (4.39)

where in the zeroth time step

uk−1 = uk0 −∆tu̇k0 +
∆t2

2
ük0 . (4.40)
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Except for the use with continuously approximated mixed variables (see chapter 6) or
rate-dependent behavior, the central difference time integration does not need the solution
of a global system. In contrast to the implicit constant mean acceleration of equations (4.36)
and (4.37), the central difference method additionally conserves as a symplectic method the
momentum and energy (see also SIMO & TARNOW (1992)).

4.4.2 Evolution of plastic variables
Further on, the constitutive model can require an additional evolution of internal variables
in time. In terms of the evolution of the plastic part of the inverse right Cauchy-Green
tensor (2.52) for von Mises elasto-plasticity, the integration can be done via an exponential
ansatz (see e.g. (KORELC & STUPKIEWICZ, 2014)) that ensures that the plastic deformation
remains perfectly isochoric. If the Yield function F is positive in an elastic predictor step,
the set of local equations that has to be solved iteratively in a Newton-Raphson procedure at
each integration point (or neighbor particle) states

Q =
{
C−1
p − F−1 · e2∆αn · F ·C−1

p n, F
}

= 0 (4.41)

with the evolution of the hardening variable ∆α = ∆λ. While quantities with the index
n belong to the current or prior time (tn in the implicit and tn−1 in the explicit case), the
indices referring to the new or current time (tn+1 in the implicit and tn in the explicit case)
are omitted for convenience. The updated history variables C−1

p and α have to be varied to
get the local tangent for the solution of the Newton iteration:

A =
∂Q

∂h
with h =

{
C−1
p , α

}
. (4.42)

This can generally be done via the same procedures as for the linearization of the global
equations that will be presented in section 4.6. Within this work, the Automatic Differentia-
tion tool AceGen is used to compute the local tangent (4.42).

4.5 Residual or discretized strong form
With a correspondence formulation for the pairwise force densities, the external volume and
surface forces, a temporal discretization of the inertia forces and applied essential boundary
conditions, the general weak form is fully defined. Table 4.1 lists the weak forms resulting
from the pairwise force density expressions (4.21), (4.22) and (4.30) inserted into the discrete
weak form (4.14). With the approaches of the actual and virtual deformation gradient (4.11)
and (4.12), the virtual nodal displacements can be excluded from the assembled weak form:

δUh = Ru · δU = 0 , (4.43)

whereby δU denotes the global vector of virtual nodal displacements. The resulting global
nodal residual vector Ru = Ru (U) is a generally nonlinear function of the global nodal
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displacement vector U and its temporal derivatives, which are, in turn, related to the dis-
placements via the time integration approach. It contains the internal, external and inertia
forces acting on each node and can be obtained by filtering out the virtual nodal displace-
ments by means of the derivative of the assembled weak form with respect to the virtual
nodal displacements:

Ru =
∂δUh
∂δU

=
np

A
k=1

{
Rk

u

}
, (4.44)

with the local residual Rk
u = ∂δUh

∂δuk
. As the virtual nodal displacements in equation (4.43)

can be arbitrary apart from the essential boundary, the residual itself has to vanish for all free
nodes:

Rk
u = 0 , (4.45)

whereas for particles suspect to Dirichlet boundary conditions, the residual equals the reac-
tion force. By evaluating Rk

u with equation (4.16), it becomes apparent that within a particle
discretization, the nodal residual, resulting from the weak form, is equivalent to the direct
discretization of the strong form (equation (3.11)) provided that the pairwisity of the connec-
tivity is fulfilled:

Rk
u = −V k

Nk∑
j=0

V j
(
tkj − tjk

)
+ ρk0V

k
(
ük − b̃k

)
= 0 . (4.46)

The local residual or rather the discretized strong form resulting from the different ap-
proaches PPG1, PPG2 and PBG are summarized in Table 4.1.

In case Automatic Differentiation is used to generate the family-wise assembling routine of
the residual and tangent matrix (see also section 4.6), it can be more convenient to formulate a
pseudo potential (cf. HUDOBIVNIK ET AL. (2019)) that governs the weak form via variation.
For the PBG method, the pseudo potential writes

Uh =
np

A
k=1

 V k

V H
k
0

Nk∑
j=0

V jW kj +
[
ρk0V

k
(
ük − b

k
)
−Pk ·Ak

]
· uk
 . (4.47)

A variation, while holding the plastic history variables as well as the inertia and external
forces fixed, leads to

δUh =
∂Uh
∂U

∣∣∣∣
∂h
∂u

=0 , ∂ü
∂u

= ∂b
∂u

=
∂(P·A)
∂u

=0

· δU , (4.48)

equivalent to the PBG weak form in Table 4.1. The residual can then directly be derived
from Uh by inserting equation (4.48) into the expression (4.44):

Ru =
∂Uh
∂U

∣∣∣∣
∂h
∂u

=0 , ∂ü
∂u

= ∂b
∂u

=
∂(P·A)
∂u

=0

(4.49)
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which can efficiently be done by the use of Automatic Differentiation. Note, that
pseudo potential (4.47) reduces to a real potential when static, hyperelastic behavior with
displacement-independent external loads is considered.

4.6 Linearization of the global equations
The collective nodal residual vectors (4.46) construct, except for the explicit case, a coupled
system of nonlinear equations Rn+1 = 0 with the nodal displacements Un+1 as unknowns.
For its solution, the Newton-Raphson iterative scheme can be applied. Therefore, the residual
Rn+1 is linearized with respect to an initial guess of the nodal displacement vector – typically
from the last time or load step Un – by means of a Taylor series expansion:

L{Rn+1}
∣∣
U=Un

= Rn + ∆Rn = Rn +
∂Rn

∂Un

· (U−Un) , (4.50)

which can be set equal to the zero vector to get an estimate for the root Un+1. If the initial
guess of U is sufficiently close to the root, the alternate linearization and its solution lead
with quadratic convergence to the solution Un+1 via the following algorithm:

Un+1 i+1 = Un+1 i + ∆Un+1 i+1 (4.51)

with ∆Un+1 i+1 as the solution of

Kn+1 i ·∆Un+1 i+1 = −Rn+1 i . (4.52)

Thereby Kn+1 i denotes the effective global tangent stiffness matrix

Kn+1 i =
∂Rn+1 i

∂Un+1 i

. (4.53)

The above iterative procedure can be aborted when the residual Rn+1 i gets sufficiently
small. In the special case of linear elasticity, one step of the iterative scheme is sufficient to
find the solution Un+1. If the explicit time integration scheme of section 4.4.1 is conducted,
the resulting system gets uncoupled and its solution can be done locally in one step.

However, within nonlinear implicit simulations, the global Newton-Raphson scheme makes
up the main driving computational cost, which can further be split in two parts. First, the
construction of system (4.52), and second, its solution. Concerning the construction, the
tangent stiffness matrix has to be computed. In the field of Correspondence Peridynamics,
this tangent matrix is usually approximated as a secant via Finite Differences, which is costly
and results, according to BROTHERS ET AL. (2014), in the majority of the computation time
in implicit peridynamic analyses. With the general shape function based notation of the PG
methods, the much faster consistent linearization becomes less challenging, as the shape
function approach decouples the nodal displacements and the displacement-independent
shape functions. Therefore, also Automatic Differentiation tools can be applied. In the
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subsequent sections, the different techniques are described in detail.

As a second part, the solution of the resulting linear system (4.52) has to be performed.
Thereby, standard direct or iterative solvers and preconditioners can be chosen, as e.g. the
direct solvers of the PARDISO package (SCHENK ET AL., 2001) or the iterative biconjugate
gradient stabilized method (BiCGSTAB, SLEIJPEN ET AL. (1994)) combined with a Jacobi
or incomplete LU preconditioner. Note, that the Petrov-Galerkin formulations lead to a
non-symmetric tangent matrix which restricts the choice of appropriate solvers. Whether the
construction or solution of the system dominates the computational cost depends on several
factors. The part of the cost for the construction grows with increasing complexity of the
constitutive relations or less efficient construction techniques (Finite Differences). On the
other hand, a larger number of global degrees of freedom and an unsuitable choice of the
linear solver increase the relative cost of the second part.

4.6.1 Finite Difference approximation
The Central Finite Differences can be utilized to numerically approximate the tangent stiff-
ness matrix (see e.g. LITTLEWOOD (2015)). In doing so, each particle has to be perturbed
in every dimension in positive and negative direction. The change in the residual of influ-
enced particles has to be computed and inserted into the global stiffness matrix. Note, that
the resulting tangent matrix is sparse, as in the definition of the local residual (4.46) only
the nodal displacements of the collective families of each neighbor particle are present (i.e.
within two times the horizon for spherical families). The concerning entry of the residual
change of particle k in x-direction due to perturbation of particle i in y-direction states

K (k + x, i+ y) ≈
Rk
x

(
U + εiy

)
−Rk

x

(
U− εiy

)
2ε

, (4.54)

whereby the perturbation size ε should be chosen as small as possible to get the best approx-
imation, but not too small such that numerical errors decrease the accuracy. LITTLEWOOD

(2015) suggests a value of about 10−6 times the particle spacing. Note, that despite the low
efficiency of the FD approximation in contrast to a consistent linearization, it is very flexible
in the sense that it can be implemented independent on the constitutive relations or the form
of the residual.

4.6.2 Consistent linearization
While in the branch of nonlocal material models, which are directly dependent on a defor-
mation state measure, also the consistent linearization based on modulus states is a common
technique since SILLING (2010), in the correspondence theory, the numerical approximation
is usually adopted within implicit analysis. However, with the Galerkin-type shape function
approach of the actual and virtual deformation gradient (4.11) and (4.12), the linearization
of the weak form can be done analogously to the FEM (see WRIGGERS (2008)). Therefore,
the starting point is the linearized weak form
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L{δUh}
∣∣∣∣
u=ū

= ¯δUh + ∆ ¯δUh . (4.55)

The goal is now, to eliminate the global vector of virtual displacements on the left and the
actual displacements on the right, to end up in the separated form of the increment of the
weak form

∆ ¯δUh = δU ·K ·U , (4.56)

where K denotes the effective global tangent stiffness matrix of equation (4.53). With the
assumption of non-changing connectivity within a load step, the global tangent matrix can
be assembled from particle-wise or family-wise contributions:

K =
np

A
k=1

{
Kk
}
. (4.57)

Exemplarily, the linearization is performed in detail for the PPG1 correspondence formula-
tion within appendix A. Assuming displacement-independent loads, the particle-wise tan-
gent stiffness matrix for the static case can be expressed as

Kk =
Nk∑
j=1

Nk∑
i=0

(
Gji

1 1 + Mji
1

)
+

Nk∑
j=1

Nj∑
i=0

(
Gji

2 1 + Mji
2

)
(4.58)

where it is split into the pairwise geometric parts

Gji
1 = −V j ∂N

kji
u

∂X
· S̄kj · ∂N

jjk
δu

∂X
and Gji

2 = V k ∂N
jki
u

∂X
· S̄jk · ∂N

kkj
δu

∂X
. (4.59)

and the substantial parts in Voigt notation

Mji
1 = −V jF̄kj·

(
BjjkT

δu · D̄kj ·Bkji
u

)
·F̄kjT and Mji

2 = V kF̄jk·
(
BkkjT

δu · D̄jk ·Bjki
u

)
·F̄jkT .

(4.60)
Analogously, the particle-wise tangent stiffness matrices of the PPG2 and PBG formulations
can be derived.

4.6.3 Automatic Differentiation
Both the efficiency of the consistent linearization and the flexibility of the FD approxima-
tion can be joined by means of Automatic Differentiation (AD) (see KORELC (2009), KO-
RELC & STUPKIEWICZ (2014) and KORELC & WRIGGERS (2016)). The software AceGen
combines expression optimization (KORELC, 1997) and AD with the symbolic notation of
Mathematica and can compute element or family-wise residual and tangent contributions
of arbitrary size. Compatible with FE environments, as e.g. AceFEM, Ansys and Abaqus,
AceGen provides a relatively easy way of implementing the PG methods into existing FE



42 CHAPTER 4. PERIDYNAMIC GALERKIN METHODS

software. Thereby, the family contribution of the weak form or a (pseudo) potential in the
form of Table 4.1 is differentiated with respect to the collective nodal displacements within
the family:

RH
k
0 =

δ̂δUk
h

δ̂δuH
k
0

or rather RH
k
0 =

δ̂Uk
h

δ̂uH
k
0

∣∣∣∣
δ̂h

δ̂u
=0 , δ̂ü

δ̂u
= δ̂b

δ̂u
=
δ̂(P·A)

δ̂u
=0

, (4.61)

where δ̂ denotes the computational derivative. The family-wise tangent stiffness matrix is
computed from the second derivative:

KH
k
0 =

δ̂RH
k
0

δ̂uH
k
0

∣∣∣∣
Dh
DF

=−A−1· δ̂Q
δ̂F

. (4.62)

In case of an internal Newton iteration (like for equations (4.41)), the computational deriva-
tive directly leads to the algorithmic tangent and therefore leads to a quadratic convergence
of the global Newton method. By adding the differentiation exception of equation (4.62)
the local tangent A of the converged local system can be used to improve the efficiency
of the optimized code generation (KORELC, 2009). When AD tools are used that are not
able to efficiently deal with the derivation with respect to a vector of unknown length,
the chain rule can be applied to separate the differentiation process in two parts without
loss of generality in the chose of constitutive models. One material dependent AD part up
to the deformation gradient and one correspondence formulation dependent self-derived part.

4.7 Local conservation properties
In section 4.5 it was demonstrated that due to the particle discretization, the local residual of
the corresponding weak form is equivalent to the direct discretization of the original strong
form. As a result, the linear momentum is preserved locally between each two particles. This
can be seen from the momentum exchange DI

Dt
between two particles k and j:

DIkj

Dt
=
(
tkj − tjk

)
V kV j = −

(
tjk − tkj

)
V jV k = −DIjk

Dt
. (4.63)

While the local preservation of linear momentum is fulfilled independent on the structure of
t, the local preservation of angular momentum is not a priori fulfilled. Therefore, it has to be
shown, that for a specific formulation of t, the resulting moment of the force state vanishes,
cf. BONET & LOK (1999) and SILLING ET AL. (2007):

Nk∑
j=0

∆xkj × tkjV j = 0 . (4.64)

In the discrete setting of the PPG1 and PPG2 formulations, equation (4.64) does not generally
hold. However, for the PBG formulation (equation (4.30)), the preservation can be proofed.
By insertion of the correspondence formulation in the discrete index form of condition (4.64),
the net moment vanishes, provided that the test and trial functions coincide:
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Nk∑
j=0

εABC∆xkjB t
kj
C V

j =
Nk∑
j=0

εABC∆xkjB

Nk∑
i=0

V i

V jV H
k
0

P ki
CD

∂Nkij
δu

∂XD

V j

=
Nk∑
i=0

V i

V H
k
0

εABCP
ki
CD

Nk∑
j=0

∆xkjB
∂Nkij

u

∂XD

=
Nk∑
i=0

V i

V H
k
0

εABCP
ki
CDF

ki
BD

=
Nk∑
i=0

V iJki

V H
k
0

εABCσ
ki
BC = 0 ,

(4.65)

with the Levi-Civita symbol εABC . In the second line a reordering was performed
and the test and trial shape functions substituted, in line three the discrete deformation
gradient of equation (4.11) was inserted and in line four the reference of the first Piola-
Kirchhoff stress was pushed forward and the symmetry of the Cauchy stress tensor exploited.
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Chapter 5

The role of shape functions

In the general presentation of the PG methods in chapter 4, the shape function approaches
of the actual and virtual deformation gradient equations (4.11) and (4.12) were conducted
without a specific choice of shape functions. In fact, the choice of shape functions for
the test and trial functions is a crucial point that defines the numerical properties of the
resulting methods. Among other characteristics, it can decide over rank deficiency, stability,
robustness, the accurate imposition of Dirichlet and Neumann boundaries or the conver-
gence rate. Also, special linear shape function choices reduce the general PG methods to
the classical peridynamic correspondence formulation or the total Lagrangian corrected SPH.

Howsoever, the freedom in the choice of shape functions should be used to gain the most
desirable properties for which the following strategy is adopted. In a first step, certain
criteria have to be isolated that ensure the requested properties. These requirements on the
shape functions are prepared in section 5.1. Second, section 5.2 reviews existing meshfree
shape functions and checks them on the fulfillment of the aforementioned criteria. Further,
the concept of Weighted and Moving Least Squares is derived from an integral formulation
of the regression of peridynamic states and extended towards a Moving Taylor series
expansion, leading to interpolating shape functions. Finally, two modification procedures
are presented in section 5.3 that restore those requirements that are generally not met a priori.

5.1 Requirements on test and trial shape functions
For the examination of shape function conditions, some technical terms are introduced,
before the conditions are elaborated. It is noted, that the nomenclature in literature is not
always the same and the defined terminology is used in the following. First, the repro-
ducibility of shape functions defines whether they can capture certain (polynomial) fields
accurately. In terms of shape functions resulting from a regression analysis, the underlying
basis space (the regression ansatz) will be reproducible, i.e. the error of the regression goes
to zero. In case of a polynomial basis, where a complete set of monomials up to an order n
is used, the resulting shape functions possess the completeness up to order n, which means,
the polynomial basis space is complete up to order n. Further, the shape functions posses

45
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the consistency, if its approximation of the underlying field is exact. Considering e.g. an
accurate approximation of any linear field, then the shape functions are called first order or
linearly consistent. Despite being consistent, a shape function approach may not be accurate
at the supporting points. If they are, the shape functions are of interpolating character.
Further, bond-conforming shape function derivatives ensure the precise mapping of bonds
into the approximated configuration, leading to a configurational consistency.

Even though first order consistent shape functions are used for the trial and test space, the
resulting discretization method is possibly not able to capture linear fields exactly. As a
consequence, suboptimal convergence rates or a convergence to an erroneous solution can
occur. The reason for this is, that the numerical integration of the shape functions is either
not accurate, or the ansatz space is not conforming. As a result, the Galerkin orthogonality
(error is orthogonal to solution space), is disturbed which would guarantee the reproducibil-
ity of the chosen shape function spaces. This reproducibility of the discretization method
up to an order n is denoted as Galerkin exactness or variational consistency of order n
and enables the fulfillment of the linear or n-th order polynomial patch test as well as the
convergence in optimal rates. Further, the criterion that has to hold to gain variational
consistency is termed integration constraint, also referred to as divergence criterion. In the
following subsections, the conditions, necessary to fulfill the above-mentioned properties,
are stated.

5.1.1 Consistency criteria
Referring to KRONGAUZ & BELYTSCHKO (1997), one key ingredient for convergence is
consistency of the trial functions. As mentioned earlier, linear or first order consistency of the
classical shape function approach (as in equation (4.8)), guarantees the exact approximation
of a linear function. Consider the scalar function f (X, Y ) = a0 +a1(X−Xk)+a2(Y −Y k)
in 2-D within familyHk

0 . Then any neighbor particle i holds the nodal value

f i = a0 + a1∆Xki + a2∆Y ki . (5.1)

If the shape function approximation is linearly consistent, it is able to approximate the linear
function f accurately. Therefore, the linearly consistent shape function approximation fkj =∑Nk

i=0 f
iNkji (see also equation (4.8)) can be expressed as

fkj = a0 + a1∆Xkj + a2∆Y kj . (5.2)

Inserting equations (5.1) and (5.2) into the shape function approach gives, cf. KRONGAUZ

& BELYTSCHKO (1997),

a0 + a1∆Xkj + a2∆Y kj =
Nk∑
i=0

a0N
kji + a1∆XkiNkji + a2∆Y kiNkji , (5.3)

A comparison of the coefficients of a0, a1 and a2 leads to the following expressions which
are the properties of the linearly consistent shape functions:
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Nk∑
i=0

Nkji = 1 ,
Nk∑
i=0

Nkji∆Xki = ∆Xkj and
Nk∑
i=0

Nkji∆Y ki = ∆Y kj . (5.4)

In the other way round, if the conditions (5.4) hold for the set of shape functions Nkji,
then the shape functions are linearly consistent. More generally, the following difference-
based criteria can be formulated for 3-D. Shape functions are called zeroth order consistent,
implying a reproducibility of constant fields, when

Nk∑
i=0

Nkji = 1 , (5.5)

also known as the partition of unity. Further, they are linearly consistent, meaning they can
reproduce linear fields, if, in addition to (5.5),

Nk∑
i=0

Nkji∆Xki = ∆Xkj . (5.6)

Analogously, the additional criterion for second order consistency states

Nk∑
i=0

Nkji∆Xki ⊗∆Xki = ∆Xkj ⊗∆Xkj . (5.7)

leading to a reproducibility of second order polynomials. Whenever the shape function ap-
proach is only used to approximate the derivatives of a field, as done in equation (4.11), the
fulfillment of the derivatives of the above criteria, i.e.

Nk∑
i=0

∂Nkji

∂X
= 0 , (5.8)

Nk∑
i=0

∆Xki ⊗ ∂Nkji

∂X
= 1 and (5.9)

Nk∑
i=0

∆Xki ⊗∆Xki ⊗ ∂Nkji

∂X
= 2∆Xkj ⊗ 1 , (5.10)

respectively, is sufficient to ensure an accurate approximation of the gradient field of a
constant, linear or quadratic function. Note, that in case the difference-based ansatz of
equation (4.11) is utilized, the fulfillment of equation (5.8) is no longer necessary.

5.1.2 Interpolation condition
In the preceding subsection, the accordance of nodal values and the shape function ap-
proximation was utilized for certain polynomial fields to derive the consistency criteria. In
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practice, the field that is to be approximated can be non-linear and even a consistent shape
function approximation does not generally match the nodal values. However, for an accu-
rate strong imposition of Dirichlet boundary conditions, this is necessary. According to the
principle of virtual displacements, only geometrically possible virtual displacements are al-
lowed, which means that the virtual displacement has to vanish on the Dirichlet boundary.
If the Dirichlet boundary conditions are further strongly imposed via nodal or rather particle
positions, the shape function contribution of those particles that are not part of the Dirichlet
boundary has to be zero. This can be ensured, by means of the Kronecker delta property

Nkji
δu = δji , (5.11)

also denoted as Lagrange property. A consequence of the Kronecker delta property is that
the shape function approximation (4.8) has an interpolative character, i.e. the approximation
function equals the nodal values at the nodal positions. Note that condition (5.11) is actually
more restrictive than necessary, as only the shape functions of inner particles would have to
be zero on the essential boundary. Furthermore, due to the particle integration in the present
method, the Kronecker delta property is implicitly assumed. Therefore equation (5.11) is
not a strict requirement since only shape function derivatives are needed.

5.1.3 Bond mapping criterion
Similar to the Kronecker delta property that ensures a shape function approximation to be
interpolating, a criterion can be defined that ensure an accurate mapping of the shape func-
tion derivatives. Although the deformation gradient, as a linear mapping operator, is only
supposed to map incremental distance vectors accurately from the initial into the current
configuration, it can be useful to enable them to map also vectors of finite length, particu-
larly the bonds. By means of an accurate mapping of the initial bond ∆Xkj to the deformed
bond ∆xkj via the deformation gradient Fkj , the collapsing of bonds can be prevented, pro-
vided that an appropriate constitutive law is used. With the discrete deformation gradient
(4.11), the accurate linear mapping can be ensured if the trial shape function derivatives
fulfill the following bond mapping criterion

∆xkj = Fkj ·∆Xkj =
Nk∑
i=0

∆xki ⊗ ∂Nkji
u

∂X
·∆Xkj, ∀∆xki,∆xkj ∈ Rndim . (5.12)

Considering the description of the deformation of a family in Figure 4.2, a state of bond-
conforming deformation gradients leads to a reversible bijective mapping. Hence, the shape
functions can be termed configurationally consistent, meaning that any actual deformation
lies in the trial function space of the family. This is likely the reason why an increased
stability in dynamic and updated Lagrangian simulations can be observed when criterion
(5.12) holds for linearly consistent shape functions. However, the bond mapping criterion
generally contradicts the consistency criteria of orders higher than one. Hence, criterion
(5.12) can be seen as an improvement only of linearly consistent shape functions and one
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can decide either for a bijective mapping of the non-local kinematics or a higher order
consistency allowing higher convergence rates. Higher order configurational consistency
that does not affect the consistency itself could be obtained via higher order mappings,
including not only the deformation gradient, but also higher order derivatives.

5.1.4 Integration constraints

While in conforming FE methods, the linear consistency of the trial and test functions,
together with an accurate Gauß integration is sufficient to pass the linear patch test, this is
generally not the case for meshfree particle methods with overlapping supports. The reason
for this lies in the fact that the numerical integration of the mostly non-linear meshless shape
functions is inaccurate, destroys the smoothness or is based on local approximation spaces
that are globally non-conforming. As a consequence, the Galerkin orthogonality is disturbed
and the computed coefficients or rather nodal displacements U do not belong anymore to
the quasi-best Galerkin approximation (see CÉA (1964)). In KRONGAUZ & BELYTSCHKO

(1997) and BELYTSCHKO ET AL. (1998) an integrability condition on the test functions,
later termed integration constraint and Galerkin exactness, was presented, which has to
be fulfilled to satisfy the linear patch test. Later, CHEN ET AL. (2013) generalized it to
conditions for variational consistency (VC) of n-th order, which is the counterpart to the
consistency of the trial functions.

Concerning the VC of the discrete general weak forms of Table 4.1, the zeroth order is
automatically fulfilled, as a constant displacement field (i.e. rigid body modes) leads to
vanishing stresses and thus no internal forces are acting on any particle. However, first and
second order Galerkin exactness are not generally met. For the first order VC, consider
a linear displacement field leading to a constant stress field Pkj = P. This leads, with
b
k

= ük = 0, for the PPG1, PPG2 and PBG correspondence formulations to the local
residuals

PPG1 : Rk
u =

Nk∑
j=0

V jP · ∂N
jjk
δu

∂X
−

Nk∑
j=0

V kP · ∂N
kkj
δu

∂X
−P ·Ak = 0 , (5.13)

PPG2 : Rk
u =

Nk∑
j=0

V kP · ∂N
jjk
δu

∂X
−

Nk∑
j=0

V jP · ∂N
kkj
δu

∂X
−P ·Ak = 0 and (5.14)

PBG : Rk
u =

Nk∑
i=0

N i∑
j=0

V iV j

V H
i
0

P · ∂N
ijk
δu

∂X
−

Nk∑
i=0

Nk∑
j=0

V kV j

V H
k
0

P · ∂N
kji
δu

∂X
−P ·Ak = 0 , (5.15)

respectively. As P can be arbitrary, it reduces to the test shape function requirement for first
order VC or rather the peridynamic integration constraint
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PPG1 :
Nk∑
j=0

V j ∂N
jjk
δu

∂X
−

Nk∑
j=0

V k ∂N
kkj
δu

∂X
=

{
0 on Ω\∂Ω
Ak on ∂Ω

,

(5.16)

PPG2 :
Nk∑
j=0

V k ∂N
jjk
δu

∂X
−

Nk∑
j=0

V j ∂N
kkj
δu

∂X
=

{
0 on Ω\∂Ω
Ak on ∂Ω

and

(5.17)

PBG :
Nk∑
i=0

N i∑
j=0

V iV j

V H
i
0

∂N ijk
δu

∂X
−

Nk∑
i=0

Nk∑
j=0

V kV j

V H
k
0

∂Nkji
δu

∂X
=

{
0 on Ω\∂Ω
Ak on ∂Ω

, (5.18)

where the second sum in the PPG1 and PBG formulation vanish, provided that the test shape
functions fulfill additionally the zeroth order consistency condition of equation (5.8). Anal-
ogously, for second order VC a quadratic displacement field can be considered which results
in the range of linear elasticity to a linear stress distribution. Originating at particle k, the
stress inHk

0 ,Hi
0 orHj

0 computes

Pkj = Pij = Pk + Gradk P ·∆Xkj and

Pjk = Pk .
(5.19)

With the corresponding volume force ρ0V
kb

k
= −V k Divk P, the insertion into the local

residuals results in

PPG1 : Rk
u =

Nk∑
j=0

V kPk · ∂N
kkj
δu

∂X
−

Nk∑
j=0

V jPk · ∂N
jjk
δu

∂X

−
Nk∑
j=0

V j Gradk P ·∆Xkj · ∂N
jjk
δu

∂X
− V k Divk P + Pk ·Ak = 0 ,

(5.20)

PPG2 : Rk
u =

Nk∑
j=0

V jPk · ∂N
kkj
δu

∂X
−

Nk∑
j=0

V kPk · ∂N
jjk
δu

∂X

+
Nk∑
j=0

V j Gradk P ·∆Xkj · ∂N
kkj
δu

∂X
− V k Divk P + Pk ·Ak = 0 and

(5.21)
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PBG : Rk
u =

Nk∑
i=0

Nk∑
j=0

V kV j

V H
k
0

Pk · ∂N
kji
δu

∂X
−

Nk∑
i=0

N i∑
j=0

V iV j

V H
i
0

Pk · ∂N
ijk
δu

∂X

+
Nk∑
i=0

Nk∑
j=0

V kV j

V H
k
0

Gradk P ·∆Xkj · ∂N
kji
δu

∂X

−
Nk∑
i=0

N i∑
j=0

V iV j

V H
i
0

Gradk P ·∆Xkj · ∂N
ijk
δu

∂X
− V k Divk P + Pk ·Ak = 0 .

(5.22)

Since both Pk and Gradk P are arbitrary constants, equation (5.20) leads in addition to the
first order constraint, to the condition for second order VC, written in Einstein notation as

−∂
kPAB
∂XC

Nk∑
j=0

V j∆Xkj
C

∂N jjk
δu

∂XB

= V k ∂
kPAB
∂XB

= V k ∂
kPAB
∂XC

1BC , (5.23)

or rather symbolically

PPG1 :
Nk∑
j=0

−V j∆Xkj ⊗ ∂N jjk
δu

∂X
= V k1 , (5.24)

which has to hold for all interior and surface particles. The conditions for second order VC
of the PPG2 and PBG formulation can be derived analogously. They state

PPG2 :
Nk∑
j=0

V j∆Xkj ⊗ ∂Nkkj
δu

∂X
= V k1 and (5.25)

PBG :
Nk∑
i=0

Nk∑
j=0

V kV j

V H
k
0

∆Xkj ⊗ ∂Nkji
δu

∂X
−

Nk∑
i=0

N i∑
j=0

V iV j

V H
i
0

∆Xkj ⊗ ∂N ijk
δu

∂X
= V k1 , (5.26)

where the first term in the condition for the PBG formulation vanishes with zeroth order
consistent test shape functions.

5.2 Specific meshfree shape functions
In isoparametric FE methods, the shape functions are constructed on a reference element,
having both a defined shape and a fixed number of nodes. In contrast, meshfree shape
functions usually have to deal with an arbitrary number of arbitrarily distributed nodes
which makes the fulfillment of above defined requirements more challenging.
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One class of shape functions that is compatible with an arbitrary number of nodes builds on
the barycentric coordinates (WACHSPRESS (1975) and WARREN (1996)), which underlies
a geometric description of a convex polygon. With MALSCH & DASGUPTA (2003),
FLOATER (2003) and HORMANN & FLOATER (2006) an extension to concave polygons
was introduced and also interior nodes were addressed (MALSCH & DASGUPTA, 2004). It
is distinguished, inter alia, between Wachspress, mean value, metric and natural neighbor-
based coordinates. An overview on their specific properties can be found in SUKUMAR

& MALSCH (2006). Further developments include the maximum entropy coordinates (see
SUKUMAR (2004) and SUKUMAR (2013)), the harmonic coordinates (JOSHI ET AL., 2007),
bi-harmonic coordinates (WEBER ET AL., 2012) and cubic mean value coordinates (LI

ET AL., 2013), to name a few.

Barycentric coordinates are usually based on a geometric construction, other meshfree
shape functions are defined only by nodal positions by means of an optimization problem.
For instance, the least square shape functions lead back to the least-squares (LS) method
of Gauss and Legendre and can be defined by a minimization of a least squared error
functional. In LANCASTER & SALKAUSKAS (1981) the approximation and interpolation
of curves and surfaces was discussed where the least squared errors were combined with
a weighting function. A continuous counterpart inspired by the wavelet theory consists in
the reproducing kernel shape functions used in the RKPM (LIU ET AL., 1995b). Further
developments on least square based interpolations include KUNLE (2001), PLENGKHOM &
KANOK-NUKULCHAI (2005), NETUZHYLOV (2008), GRECO & SUKUMAR (2013) and LI

& WANG (2016). In the Local Maximum Entropy (LME) approximants, cf. ARROYO &
ORTIZ (2006), as a local counter part of the maximum entropy coordinates with radial basis
functions, a constrained optimization problem is solved to gain the consistency.

While many meshfree shape functions fulfill the zeroth and first order consistency, the
other requirements of section 5.1 are more demanding. Most barycentric coordinate-based
shape functions, as well as the LME approximants, posses at least a weak Kronecker delta
property, i.e. on the convex boundary. Also the least square based shape functions can have
an interpolating character when combined with singular weighting functions. However,
the bond mapping criterion and the integration constraint are usually not met a priori.
Nevertheless, correction techniques of the shape function derivatives can be utilized to
obtain a posteriori bond-conforming and variationally consistent shape functions. Within
this thesis, the basis for these corrections consists in a special kind of least square based
shape functions. In the following subsection, an introduction to the LS concept is given
with an relation to the peridynamic reduction. Subsequently, the shape function derivatives
resulting from an interpolating LS approach are derived.

5.2.1 Shape functions of least square regressions

Weighted Least Squares (WLS) and Moving Least Squares (MLS) are fitting techniques
for arbitrary point clouds. Within these techniques, a field is approximated by a linear
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combination of basis functions, like for instance monomials. The coefficients are deter-
mined in such a way that the summed squared error is minimized. In case of WLS the
errors are weighted statically and in case of MLS dependent on the point of evaluation.
Further, specific WLS shape function states are derived with respect to continuous peri-
dynamic states, resulting from a regression of a peridynamic state. The classical discrete
formulation of WLS and MLS shape functions can e.g. be found in LANCASTER & SALKA-
USKAS (1981) and will be deduced as the discrete counterpart of the peridynamic regression.

Peridynamic regression

Now, consider a scalar state fk within family Hk
0 , spanned by the position vector state Xk

(see section 3.1 for state notation). The n-th order polynomial regression of fk is defined as

f̂k (X) = ak · p (X) , (5.27)

where p is a vector containing the complete set of polynomial monomials, e.g. p1 =
(1, X, Y, Z)T , up to order n, and ak denotes its coefficients. Since fk is not generally poly-
nomial, an error state εk can be computed, specifying the regression error field withinHk

0 :

εk = f̂k
(
Xk
)
− fk . (5.28)

According to the method of least-squares, the coefficients ak can be determined by mini-
mization of the positive weighted squared error integral

Ek =
(
ωεk
)
• εk . (5.29)

The minimization with respect to ak yields

min
(
Ek
)
→ ∂Ek

∂ak
= 2

∂εk

∂ak
∗ εk = 2pk ∗ εk = 0 . (5.30)

By inserting the error state (5.28) and the regression function (5.27) it rewrites

pk ∗ pk · ak − pk ∗ fk = 0 . (5.31)

Finally, the coefficients compute as the root of equation (5.31) to

ak = Mk−1 · pk ∗ fk , (5.32)

with the symmetric positive definite (higher order) shape tensor

Mk = pk ∗ pk . (5.33)

Therefore, the regression function (5.27) is now defined and, by insertion of the coefficients
ak, it can be rewritten analogous to the classical shape function approach in the continuous
state notation as

f̂k (X) = nk (X) ∗ fk with nk (X) = pk ·Mk−1 · p (X) . (5.34)
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Here, nk (X) denotes a specific shape function state that can be seen as kind of a double
state due to its dependency on the position X.

General peridynamic reduction

Analogous to the above derivation of the peridynamic regression, a vector or tensor valued
regression can be defined, whereby the order of the coefficient matrix increases. The deriva-
tive of this regression function can then be seen as a general peridynamic reduction. Hence,
an n-th order reduction of the vector state fk yields

nR{fk} (X) = fk ∗ pk ·Mk−1 · ∂p

∂X
. (5.35)

where the n-th order complete polynomial basis and a static weighting was implied. Note,
that the locally averaged deformation gradient from equation (4.3) which is used in the clas-
sical peridynamic correspondence formulation can be gained by the use of linear (difference-
based) regression (p = ∆X):

1R{∆xk} = ∆xk ∗∆Xk ·Kk−1 · 1 = F
k
. (5.36)

Discrete WLS and MLS shape functions

For its numerical usage within the PG methods, the peridynamic regression has to be dis-
cretized, to fit into the definition of the discretized actual and virtual deformation gradients
(4.11) and (4.12). Therefore, the regression function of equation (5.34) can be written in its
integral form, evaluated at the position of particle j:

f̂k
(
Xj
)

=

∫
H0

ω (X ′) pk (X ′) ·Mk−1 · p
(
Xj
)
f (X ′) dH0 . (5.37)

The application of the particle discretization of (4.1) leads then to

f̂k
(
Xj
)

=
Nk∑
i=0

ωkipki ·Mk−1 · pkjf iV i =
Nk∑
i=0

Nkjif i , (5.38)

where all data-independent quantities can be collected with the shape functions

Nkji
WLS = ωkipki ·Mk−1 · pkjV i . (5.39)

As outlined in section 4.2.2, k stands thereby for the family in which the regression is per-
formed and j denotes the evaluation point of the shape function that corresponds to node
i. The discrete (higher order) shape tensor, also called mass or moment matrix, follows
analogously:

Mk =
Nk∑
i=0

ωki pki ⊗ pkiV i . (5.40)
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Within equation (5.39), the weights ωki do not depend on the evaluation point Xj . Hence,
the regression function as well as its shape functions will generally be a polynomial of the
order of the basis ansatz. Since the shape functions arise from a weighted least squared error
functional, they are called WLS shape functions and in case of the constant weight ωki = 1
LS shape functions. With the choice of the weight function, the influence of the nodal values
can be regulated via their distances or rather bond lengths:

ωki =

{
1

∆Xki·∆Xki ∀ i 6= k
0 ∀ i = k

, (5.41)

In such a way, the regression function will fit nodal values near the master particle k more
precisely and in case of regular particle distributions, the locality of the weight function can
even be increased by potentiating the denominator. Further, the concept of MLS involves
a movement of this weight function perspective with the evaluation point Xj of the shape
functions:

ωji =

{
1

∆Xji·∆Xji ∀ i 6= j
0 ∀ i = j

, (5.42)

Thereby, the regression function becomes the form

Nkji
MLS = ωjipki ·Mkj−1 · pkjV i . (5.43)

Note, that due to the moving weight function, also the shape tensor becomes evaluation point
dependent:

Mkj =
Nk∑
i=0

ωji pki ⊗ pkiV i . (5.44)

Thanks to the particle discretization, only shape function derivatives occur in the discretized
weak forms of Table 4.1. Considering WLS shape functions, its derivative can be gained
simply by differentiation of the monomials:

∂Nkji
WLS

∂X
= ωkipki ·Mk−1 · ∂pkj

∂X
V i . (5.45)

Within the MLS shape functions, the coefficients ak are also a function of the position and
have to be taken into account. However, in the scope of collocation combined with singular
weight functions it can also be reduced to a differentiation of the basis, cf. LANCASTER &
SALKAUSKAS (1986):

∂Nkji
MLS

∂X
= ωjipki ·Mkj−1 · ∂pkj

∂X
V i . (5.46)

Note, that due to the collocation, the weight function also has to be evaluated at the respective
point, i.e. at the singularity. This fact causes numerical troubles (see LI & WANG (2016))
and can e.g. be treated by means of an augmentation of the denominator or (like above)
by an numerical exception that sets the weight to zero at the concerning particle. The latter
destroys the interpolative character and equation (5.46) is no longer valid. Therefore, the AD
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tool AceGen is further used to derive the shape function derivatives whenever MLS shape
functions are used:

∂Nkji
MLS

∂X
=
δ̂Nkji

MLS

δ̂X
. (5.47)

5.2.2 A Moving Taylor Expansion
To circumvent the ill-conditioning while using singular weight functions in a MLS approxi-
mation, one can define a reference position around which the regression is performed. When
moving this reference position, an interpolating function can be set up where the derivative
can be calculated directly from differences. Consider the following Taylor expansion with
the reference position Xj:

f̂k (X) = ak01 + ak∆ ·
(
X−Xj

)
+ · · · = ak01 + ak∆ · p∆

(
X−Xj

)
, (5.48)

where the difference-based monomials of order n > 0 are stored within the vector p∆ and
the corresponding coefficients in ak∆. Direct evaluation at the reference position Xj yields

f̂k
(
Xj
)

= ak01 + ak∆ · 0 = f j → ak0 = f j . (5.49)

where it was set to the nodal value to imply an a priori interpolation property. The remaining
coefficients can now be determined in a least square sense by minimizing the squared error

Ekj =
Nk∑
i=0

ωji
[
f i −

(
f j + ak∆ · p

ji
∆

)]2
V i . (5.50)

In analogy to equation (5.32), the remaining coefficients compute as

ak∆ =
Nk∑
i=0

ωjiMkj
∆

−1 · pji∆V
i∆f ji with Mkj

∆ =
Nk∑
i=0

ωjipji∆ ⊗ pji∆V
i . (5.51)

By insertion of the coefficients into the Taylor expansion (5.48), differentiation with respect
to X and elimination of the nodal values, the shape function derivatives can be computed as

∂Nkji
MTE

∂X
=

{
ωjiV ipji∆ ·M

kj−1

∆ · ∂pjj∆
∂X

∀ i 6= j

−
∑Nk

l=0,l 6=j
∂Nkjl

MTE

∂X
∀ i = j

, (5.52)

where the derivative of the shape function at the evaluation point is computed by means of
the zeroth order consistency condition (5.8). The derivatives (5.52) of the moved Taylor
expansion will further be denoted as the derivatives of Moving Taylor Expansion (MTE)
shape functions. Analogously, Weighted Taylor Expansion (WTE) shape functions can be
gained by setting the reference point statically to the position of the master particle Xk.

Since the derivation of the WLS, MLS, WTE and MTE shape functions are based on the
minimization of a squared error potential, they guarantee consistency up to the order of
completeness of their basis ansatz. In other words, the error (5.50) minimizes to zero in case
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Table 5.1. Abbreviations of Weighted and Moving Least Square and Taylor Ex-
pansion shape functions and their exemplary polynomial basis in two
dimensions.

Abbreviation Exemplary basis for 2-D
MTE1 pji∆ = (∆Xji,∆Y ji)

T

MLS1 pji = (1,∆Xji,∆Y ji)
T

WTE1 pji∆ = pki∆ =
(
∆Xki,∆Y ki

)T
WLS1 pji = pki =

(
1,∆Xki,∆Y ki

)T
WTE2 pji∆ = pki∆ =

(
∆Xki,∆Y ki,∆Xki2,∆Xki∆Y ki,∆Y ki2

)T
WLS2 pji = pki =

(
1,∆Xki,∆Y ki,∆Xki2,∆Xki∆Y ki,∆Y ki2

)T
the nodal values can be represented by the basis. To ensure the invertibility of the shape
tensor it is necessary to have a sufficient large number of neighbor particles within each
dimensional direction. If, for instance, a linear basis is considered, the convex hull of all
family members has at least to be a simplex of the corresponding dimension. In the further
work, different combinations of the shape functions are utilized that can be summarized by
the exemplary set of basis listed in Table 5.1, combined with the static weights (5.41) (WLS
and WTE) or moving weights (5.42) (MLS and MTE).

5.3 Modification of shape function derivatives

In contrast to the consistency criteria and the Kronecker delta property, the bond mapping
criterion and integration constraints for the fulfillment of the configurational and VC are
not met by the previously derived shape functions. Therefore, correction techniques can
be designed to obtain these properties by manipulating the shape function derivatives. In
Bubnov-Galerkin formulations, the challenging aspect in achieving such shape function
derivatives is to preserve the other properties while doing the correction. In the following,
methodologies are presented in which the uncorrected shape functions N̂ are enforced to be
bond-conforming. In a second step, the variationally inconsistent functions Ñ are modified
to be variationally consistent.

5.3.1 Restoration of bond mapping

Considering a linear deformation field, the deformation gradient resulting from a first order
consistent shape function approximation is constant and accurate. Further, within this linear
deformation, the deformation gradient approximation maps any distance vector accurately
from the initial to the current configuration. Within a nonlinear deformation field, the defor-
mation gradient does not guarantee an accurate mapping of the bonds and the mapped bond
will generally deviate from the current bond. In BREITZMAN & DAYAL (2018), a correction
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of an averaged deformation gradient was presented in which it is modified only in the direc-
tion of the bond by removing the error of the homogeneous deformation assumption in the
direction of the bond ∆Xkj and adding the correctly mapped bond:

∆xkj = Fkj ·∆Xkj = ∆xkjpred −∆xkjpred + ∆xkj

= Fkj
pred ·∆Xkj − Fkj

pred ·∆Xkj + ∆xkj

= Fkj
pred ·∆Xkj − Fkj

pred ·∆Xkj

(
∆Xkj

|∆Xkj|
· ∆Xkj

|∆Xkj|

)
+ ∆xkj

(
∆Xkj

|∆Xkj|
· ∆Xkj

|∆Xkj|

)
=

[
Fkj
pred ·

(
1− ∆Xkj

|∆Xkj|
⊗ ∆Xkj

|∆Xkj|

)
+

∆xkj

|∆Xkj|
⊗ ∆Xkj

|∆Xkj|

]
·∆Xkj ,

(5.53)

where in the third line, the identity ∆Xkj

|∆Xkj| ·
∆Xkj

|∆Xkj| = 1 is exploited and reordered in line

four. The singular tensor
(

1− ∆Xkj

|∆Xkj| ⊗
∆Xkj

|∆Xkj|

)
removes the information of the predicted

deformation gradient, while ∆xkj

|∆Xkj|⊗
∆Xkj

|∆Xkj| adds the accurate mapping in the direction of the

concerning bond. This procedure can be shifted to a manipulation of shape functions, inde-
pendent on the deformation field which yields the following bond-conforming deformation
gradient

Fkj =
Nk∑
i=0

∆xki ⊗ ∂Ñkji

∂X

=
Nk∑
i=0

(
∆xki ⊗ ∂N̂kji

∂X

)
·
(

1− ∆Xkj

|∆Xkj|
⊗ ∆Xkj

|∆Xkj|

)
+ ∆xkj ⊗ ∆Xkj

|∆Xkj|2
.

(5.54)

Here, N̂kji are the uncorrected shape functions and

∂Ñkji

∂X
=

(
1− ∆Xkj

|∆Xkj|
⊗ ∆Xkj

|∆Xkj|

)
· ∂N̂

kji

∂X
+ δji

∆Xkj

|∆Xkj|2
(5.55)

denote the corrected ones. As the above procedure is driven by an error, it can be shown
that the linear consistency is preserved, even though the formal zeroth order consistency
condition of equation (5.8) is violated, which restricts the Galerkin-ansatz to the difference-
based form of equation (4.11). However, for higher order consistency, the approximated
deformation gradient at a neighbor particle does not necessarily have to map the distance
vector to it correctly and the high order consistency would be disturbed by the upper linear
bond mapping correction. Hence, the bond correction will further only be used in the case
of a linear basis. Alternatively, a higher order bond correction may be derived where also
the second order shape function derivatives would have to be considered.
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5.3.2 Restoration of variational consistency
The variational inconsistency of the PG methods stems from the inaccurate numerical
integration of the weak form. On the one hand, this comes from the non-conforming shape
of the meshfree particles and, on the other hand, from the predetermined integration point
positions due to the collocation. In order to regain the VC, the discrete shape function
derivatives can be modified to compensate the integration error and restore the Galerkin
orthogonality by fulfilling the integration constraints (see e.g. BONET & KULASEGARAM

(2000) in the context of SPH). In view of the peridynamic integration constraints of
equations (5.16), (5.17) and (5.18), such a correction has to be made on the global level,
since the pairwise local residual depends also on the shape functions of its neighboring
families. Note, that the globally coupled problem can be transferred to a set of larger local
problems as outlined in section 8.2. Further on, a correction is proposed that is structured
as follows: First, the correction approach is stated, based on a combination of correction
shape functions and correction factor unknowns. Then follows the derivation of preservation
conditions to maintain consistency and bond conformity. Further on, correction functions
are constructed that are in agreement with the prior defined preservation conditions. And
finally, the determination of the correction factors is addressed to solve the integration
constraints.

Correction approaches

As already mentioned, the local conditions for VC, derived in section 5.1.4, are globally
coupled due to the pairwise formulation. One way to perform a correction of the VC is
to define an additive ansatz for the corrected shape function derivatives and insert it in the
integration constraints. By using a linear combination of correction shape functions and
correction factor unknowns for each integration constraint, the resulting set of equations
form a linear system of equations that can be solved for the correction factor unknowns.
Starting with variationally inconsistent (though possibly bond-conforming) shape functions
Ñ, the correction ansatz can be written

∂N̂kji

∂X
=
∂Ñkji

∂X
+

ndim∑
d=1

αk1 dΦ
kji
d ed +

ndim∑
d=1

ndim∑
e=1

αk2 de∆X
kj
e Φkji

d ed . (5.56)

While linear VC can be obtained with the first correction term, for second order VC the
second one has to be added. Thereby, Φkji stands for the correction shape functions, ed is
the Cartesian basis and αk1 d and αk2 de denote the correction factor unknowns.

Preservation conditions

Within PPG formulations, the test and trial functions are generally independent on each
other, and whereas consistency is a matter of trial functions, the test shape functions are
suspect to the integration constraints. However, in case of PBG formulations or the mixed
methods introduced in chapter 6, the trial and test functions have to coincide. Therefore,
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the correction of VC must not interfere with the consistency criteria in these cases. This
can be ensured, by inserting the correction ansatz (5.56) into the consistency criteria (5.8),
resulting in preservation conditions on the correction shape functions. When considering the
VC correction of first order, the following constraints apply for a conservation of zeroth, first
and second order consistency, respectively:

Nk∑
i=0

Φkji = 0 ,
Nk∑
i=0

∆Xki ⊗Φkji = 0 and (5.57)

Nk∑
i=0

∆Xki ⊗∆Xki ⊗Φkji = 0 . (5.58)

Additionally, the linear configurational consistency (equation (5.12)) can be preserved if the
correction shape functions satisfy Nk∑

i=0

∆uki ⊗Φkji

 ·∆Xkj = 0 , ∀∆uki ∈ Rndim . (5.59)

Construction of correction functions

When setting up the correction shape functions, the similarity between the preservation con-
ditions (5.57) and (5.58) with the consistency conditions (5.1), (5.2) and (5.4) can be ex-
ploited. A straightforward choice in the scope of Petrov-Galerkin methods would be a con-
stant correction function (see e.g. CHEN ET AL. (2013)). By adding an exception at the
master particle, the zeroth order consistency can be restored:

Φkji
V 1 =

(
1− δkjNk

) ndim∑
d=1

ed . (5.60)

A second possibility consists in the usage of second order derivatives of linearly consistent
shape functions (cf. PUSO ET AL. (2008)), as e.g.

Φkji
V 2 =

∂2Nkji
WLS2

∂X2
, (5.61)

where this version conserves also the first order consistency which can be seen when dif-
ferentiating the derivatives of the consistency conditions (5.6). Further, a linearly consistent
shape function can be utilized for the correction of the derivatives. Therefore, to fulfill also
the zeroth order preservation condition, the Kronecker delta has to be subtracted, leading to
the correction function

Φkji
V 3 =

(
Nkki
MLS1 − δki

) ndim∑
d=1

ed . (5.62)

If the preservation of second order consistency (5.58) is needed for the correction of linear
VC, the same approach can be used with second order consistent shape functions as
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Φkji
V 4 =

(
Nkki
WLS2 − δki

) ndim∑
d=1

ed . (5.63)

Further, the approach (5.62) can be modified, analogously to (5.55), to conserve also the
accurate mapping of bonds. In this case, the correction function computes

Φkji
V 5 =

(
1− ∆Xkj ⊗∆Xkj

|∆Xkj|2

)
·
(
Nkki
MLS1 − δki

) ndim∑
d=1

ed . (5.64)

Calculation of correction degrees of freedom

With the definition of the correction ansatz (5.56) and the selection of suitable correction
shape functions, the global set of integration constraints can be assembled. Therefore, the
integration constraints of section 5.1.4 are treated as the residual

R̂β =

np

A
k=1

{
R̂k
β

}
, (5.65)

where R̂k
β denotes the local residual of the VC correction. In case of a correction of linear

VC (β = 1), the local residual for the PBG methods computes

R̂k
1 =

Nk∑
i=0

N i∑
j=0

V iV j

V H
i
0

∂N̂ ijk
δu

∂X
−

Nk∑
i=0

Nk∑
j=0

V kV j

V H
k
0

∂N̂kji
δu

∂X
−Ak (5.66)

and for second order VC (β = 2) additionally

R̂k
2 =

Nk∑
i=0

Nk∑
j=0

V kV j

V H
k
0

∆Xkj ⊗ ∂N̂kji
δu

∂X
−

Nk∑
i=0

N i∑
j=0

V iV j

V H
i
0

∆Xkj ⊗ ∂N̂ ijk
δu

∂X
− V k1 . (5.67)

Now, the correction factor unknowns have to be varied, such that the error in the integration
constraints goes to zero. Since the correction ansatz (5.56) is based on a linear combination
of correction factors and correction functions, the resulting system is linear. Hence, the
collective nodal unknowns can be determined by the solution of

∂R̂β

∂αβ

·αβ = −R̂β (5.68)

where R̂β is the error of the variationally inconsistent shape functions. Thereby, the tangent

matrix ∂R̂β

∂αβ
can be derived analogous to the tangent matrix of the weak form of section 4.6.

However, an eigen mode analysis of the resulting tangent matrix of equation shows that zero
eigen values can occur. In fact, for the correction of linear VC, as many zero eigen values are
present as consistency conditions are preserved in the correction. This means, independent
of the discretization, there exist e.g. 2 + 4 = 6 zero eigen values for the preservation of
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(a) Variationally inconsistent (b) Fixed correction factors at sur-
face

(c) Fixed correction factors perpen-
dicular to surface

Figure 5.1. On the left: Spurious surface approximations at interior nodes resulting
from variationally inconsistent test functions. On the right: The correc-
tion of VC forces the surface vectors to be zero apart from nodes on the
surface. The boundary conditions of the correction are represented by
green lines.

linear consistency in 2-D during the correction of linear VC.

Therefore, the solution of the concerning system needs particular consideration in the
application of boundary conditions such that the tangent matrix does not get singular, cf.
PUSO ET AL. (2008). A straightforward elimination of a certain number of zero eigen
modes would be the fixing of the same number of degrees of freedom at selected particles.
However, with increasing refinement, such boundary conditions act like a singularity which
decreases the condition of the correction system. A possibility to circumvent this issue
consists in the fixing of the degrees of freedom at the entire surface ∂Ω0, though as a
reaction, the normals at the according particles do not match those of Finite Elements
anymore. This is generally not a problem, but if the particles shall be coupled with Finite
Element nodes, the normals should match. Therefore, a feasible compromise is the fixing of
the correction factor only in normal direction at the surface by means of nodal Lagrangian
multipliers.

The effect of the resulting correction can be seen in Figure 5.1 where the nodal surface
normals are computed using the PPG1 first order VC criterion as in equation (4.33). The
nodal imposition of boundary conditions for the correction procedure is visualized by
green lines perpendicular to the fixed correction factor unknown. Whereas the uncorrected
test shape functions lead to erroneous normals, the variationally consistent ones produce
reasonable normals. Note, that within a total Lagrangian framework, the correction factors
do not change during the simulation and their computation and thus also the construction
of variationally consistent and bond-conforming shape functions can be done as part of the
preprocessing.



Chapter 6

Specific Peridynamic-Galerkin
formulations

With the different correspondence formulations presented in section 4.2 and the choice
of shape functions with their optional correction, various possible combinations arise. In
the following section, the most relevant displacement-based combinations are presented.
Further on, two techniques will be introduced that are directed towards the modeling within
the presence of volumetric geometric constraints: The construction of mixed displacement–
pressure–dilation approaches is addressed in section 6.2, whereupon the underintegration of
the weak form and its subsequent stabilization follows in section 6.3.

6.1 Displacement based formulations
The general peridynamic weak form (4.14) with (4.16) offers a wide scope for the design of
a specific formulation and therefore also the setting of its properties. By means of a Galerkin
approach, three different correspondence formulations were derived, leading to the weak
forms of the PPG1, PPG2 and PBG methods, which then still require a definition of shape
functions. On the one hand, the Petrov-Galerkin methods differentiate between trial and test
functions. This makes it easier to fulfill the conditions of both test and trial shape functions,
respectively. However, as a result, the tangent stiffness matrix is not anymore symmetric,
even in modeling a hyperelastic material response. The symmetry which is actually intrinsic
to conservative systems can be achieved through a Bubnov-Galerkin approach with an
equivalence of the trial and test functions. This, in turn, leads to a more cumbersome
treatment of the shape functions in order to satisfy their requested properties.

As for the trial functions, the consistency plays and important role for their expectable
convergence rate. A straightforward possibility to achieve optimal consistency with
respect to the number of basis monomials consists in the usage of n-th order WTE shape
functions for the approximation of the actual displacements. In this case, the same local
trial space is spanned as in n-th order triangle or rather tetrahedron elements and it will
further be denoted as an Un approach. The fully integrated Un PG formulations generally

63
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posses a full rank of the global stiffness matrix, independent on the number of neighbor
particles, which is due to its overlapping supports. Exceptions are the U1 formulations that
are suspect to global low-energy modes. In fact, the U1 formulations can be reduced to
the classical peridynamic correspondence formulation or the total Lagrangian corrected SPH.

Accompanied with an increase of the order of consistency, the neighborhood size has to
enlarge which increase both the number of integration points per family and the density of
the tangent stiffness matrix. An effective way in constructing a stable low-order formu-
lation consists in moving weight functions. Thereby, the linear basis of the MTE1 shape
functions can be used to construct nonlinear shape functions, which lead to Unl (nonlinear
displacement) formulations. Additionally, the bond-mapping correction (5.55) can enhance
the behavior of the trial space in correlating the deformation of each bond directly with a
strain energy and employing a bijective peridynamic reduction.

Within the scope of PBG formulations, the test and trial functions have to coincide.
Therefore, also the trial shape functions have to posses the linear VC to ensure a proper
convergence. To not disturb the consistency and bond-mapping properties, the shape
functions of the PBG Unl formulation can be constructed as follows: Starting with the
MTE1 shape functions and the bond-mapping correction (5.55), the correction of VC has to
be performed with the ΦV 5 correction shape functions (5.64). On the other hand, a PBG U2
formulation can be gained using WTE2 shape functions combined with the ΦV 4 correction
shape functions (5.63) in a linear VC correction. If second order VC is requested, a WLS3
basis for the correction function would be needed.

The chose of a Petrov-Galerkin method simplifies the treatment of the test functions, as
they generally do not have to be consistent and bond-conforming anymore, and they are
only once evaluated within the PPG1 and PPG2 correspondence formulations. Thus, the
correction of VC has to be performed only on the test shape functions, such that also
constant correction functions can be applied. Furthermore, it is possible to construct
arbitrary trial-test function combinations. Some possible combinations include the U2
formulations WTE2-WTE1 and WTE2-LME or the Unl formulations MTE1-WTE1 and
MTE1-LME. As already mentioned, the drawbacks of the PPG formulations are the
loss of symmetry of the tangent stiffness matrix, the violation of the local preservation of
angular momentum and the decreased robustness compared to its Bubnov-Galerkin relatives.

6.2 Mixed displacement–pressure–dilation approaches
Although the formulations presented in section 6.1 can obtain optimal rates of convergence,
provided that they are variationally consistent, they exhibit the phenomenon of volumetric
locking, which is known from displacement based Finite Elements. A classical technique
to circumvent this issue consists in the separate treatment of the isochoric and volumetric
parts in terms of a Hu-Washizu potential (see section 2.4.2). Thereby, only the isochoric
part of the deformation is handled by the mere displacement based approach via an isochoric
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strain energy function. The dilation and the resulting pressure are taken into account by
means of the additional potential (2.59), whereby the pressure and dilation are implemented
as degrees of freedom, leading to a mixed u–p–Θ formulation. The discretization of the
three field variational principle of equation (2.59) follows in the sense of the PPG and PBG
methods with equation (4.1) to

Πh =

np

A
k=1

{
Πk
}

with (6.1)

PPG: Πk = V k

[
K

4

(
Θk2 − 1− 2 ln Θk

)
+ pk

(
Jk −Θk

)]
or (6.2)

PBG: Πk =
V k

V H
k
0

Nk∑
j=0

V j

[
K

4

(
Θkj2 − 1− 2 ln Θkj

)
+ pkj

(
Jkj −Θkj

)]
, (6.3)

where for the PBG methods the inverse averaging, analogous to equation (4.24), was con-
ducted. Note here, that the additional Hu-Washizu potential of the PPG formulations can
be gained by a selective underintegration of the the additional PBG Hu-Washizu potential.
Within equations (6.2) and (6.3), the approximations for the family dilation, pressure and
Jacobian field have still to be specified which is suspect to the subsequent subsections. Inde-
pendent on the approximation, the additional family-wise residual and tangent contribution
due to the Hu-Washizu potential can be derived by analogy with equation (2.60) as

R
Hk0
Π =

δ̂Πk

δ̂pH
k
0

and K
Hk0
Π =

δ̂R
Hk0
Π

δ̂pH
k
0

with pH
k
0 =

[
uH

k
0
T
,pH

k
0
T
,ΘH

k
0
T
]T

, (6.4)

with the use of Automatic Differentiation and the collective unknowns pH
k
0 . The structure of

the resulting family-wise tangent matrix for weakly compressible and incompressible (Θ =
1) material behavior states

K
Hk0
Π =

 Kuu Kup 0
Kpu 0 KpΘ

0 KΘp KΘΘ

 or rather K
Hk0
Π =

(
Kuu Kup

Kpu 0

)
. (6.5)

In case of local pressure and dilation unknowns, the weakly compressible problem can be
statically condensed to the displacement degrees of freedom, cf. GUYAN (1965). This leads
to the effective displacement based tangent matrix

Keff = Kuu + Kup ·K−1
Θp ·KΘΘ ·K−1

pΘ ·Kpu . (6.6)

The separation of the isochoric and volumetric strain energy leads also to an additive split
of the pairwise force density into an isochoric and volumetric part (tkj = tkjiso + tkjvol). Since
the internal forces can be expressed with pairwise force densities, the preservation of the
local conservation of linear momentum is satisfied. In appendix B, the expression of the
volumetric correspondence formulations are derived which write
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PPG: tkjvol = − 1

V k
Pj
vol ·

∂N jjk

∂X
and (6.7)

PBG: tkjvol =
1

V jV H
k
0

Nk∑
i=0

V iPki
vol ·

∂Nkij

∂X
. (6.8)

that are in analogy to equations (4.21) and (4.30). Furthermore, the local preservation of
angular momentum is conserved within the Bubnov-Galerkin methods as the structure of
the pairwise force expression does not change (see equation (4.65)). In the following, some
classically used function spaces for the local displacement pressure and dilation field are
exploited for the use in the PG methods.

6.2.1 Constant pressure and dilation
First of all, a peridynamic analogon of the Q1P0 element of SIMO ET AL. (1985) is presented.
Therefore, the displacement field is set to be equivalent to the fully integrated stable Unl
formulation, i.e. it is interpolated with the MTE1 shape functions. In case of the PPG version,
the trial shape functions are bond-corrected, while the test shape functions are corrected to be
variationally consistent. For the PBG counterpart, the trial and test shape functions coincide
and both corrections are performed. The pressure and dilation field, on the other hand, are
approximated as constants within each family:

pkj = pk and Θkj = Θk . (6.9)

Since the family-wise pressure and dilation approximation do not directly depend on the
values at its neighboring particles, they can be treated as local unknowns. Hence, a static
condensation according to equation (6.6) eliminates the additional set of equations arising
from the pressure and dilation variation. The resulting formulation with a local nonlinear
displacement field (with linear basis) and constant pressure and dilation will further be
termed UnlP0. In case of incompressible material behavior, i.e. ν = 0.5, the dilation equals
one, which yields the IUnlP0 formulations, where the local pressures can not be eliminated
due to the vanishing Kpp term in the family stiffness matrix.

The behavior of the UnlP0 formulation shows, similar to the related Q1P0 or H1P0 Finite
Elements, no locking and great robustness. However, like in its FE counterparts, unphysical
pressure modes can occur which possibly result in certain situations in hourglass-like modes.
This can be explained for the PBG formulation by the violation of the inf-sup condition
and for the PPG formulation by the selective underintegration of the volumetric terms. This
intrinsic underintegration makes it impossible to profit from higher order approximations
of the pressure and dilation field within the PPG methods. However, within the PBG
potential all fields are evaluated at each neighbor particle and, therefore, the formulation of
higher order pressure and dilation approximations can be done to prevent spurious pressure
oscillations.
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6.2.2 Higher order approaches
In terms of second order displacement and linear pressure and dilation fields, two general ap-
proximation possibilities are present. First, a locally linear pressure field can be constructed
by means of a Taylor series expansion, and second, a linear approximation of a nodal field
via shape functions can be defined. In the former case, the pressure and dilation at a neighbor
particle j within familyHk

0 yields

pkj = pk +
∂kp

∂X
·∆Xkj and Θkj = Θk +

∂kΘ

∂X
·∆Xkj . (6.10)

Here, the pressure and dilation gradient ∂kp
∂X

and ∂kΘ
∂X

are considered as additional local un-
knowns that are eliminated on family-level. To satisfy the inf-sup condition, the displacement
field is usually set to be one order higher as the pressure space, since the derivative order in
the weak form is also one order higher. Therefore, the U2P1 formulation forms by combin-
ing the linear pressure and dilation field with the second order WTE2 shape functions for
the displacement approximation. The correction of at least linear variational consistency has
to be performed to enable a convergence for irregular particle patterns. To profit from the
second order displacement approximation in terms of higher convergence rates, the second
order variational consistency would be needed which is not addressed here. Alternative to
the treatment as unknowns, the pressure and dilation gradient in the Taylor series expansion
(6.10) can be computed via a WTE shape function approach:

∂kp

∂X
=

Nk∑
i=0

∆pki
∂Nkki

p

∂X
and

∂kΘ

∂X
=

Nk∑
i=0

∆Θki∂N
kki
Θ

∂X
(6.11)

with the differences ∆pki = pi− pk and ∆Θki = Θi−Θk. The shape functions for the pres-
sure and dilation approximation for this U2P1C formulation are chosen the same as those
for the displacements, but only once evaluated at the master particle: Nkki

p = Nkki
Θ = Nkki

u .
While in case of the U2P1 formulation the additional degrees of freedom can be statically
condensed, the U2P1C formulation leads to a larger global system of equations, i.e. u, p
and Θ instead of u at each particle. However, numerical observations show, in contrast to
their FE counterparts, that neither of the formulations prevent both locking and unphysical
pressure patterns. On the one hand, the U2P1 formulation exhibits volumetric locking and
on the other hand, the U2P1C formulation can produce unphysical pressure modes.

6.2.3 A bubble-enriched formulation
An alternative approach to circumvent volumetric locking by fulfilling the LBB condition
consists in the enrichment of the displacement field with a cubic bubble function, based on
an equal order approximation of the displacement, pressure and dilation field, called MINI
element (cf. ARNOLD ET AL. (1984)). A peridynamic reconstruction can be based on the
MTE1 shape functions for the interpolation of the displacement field, like in the Unl formu-
lation, and the same pressure and dilation approximation that is used in the U2P1C formu-
lation (equation (6.11)). As for each field a linear basis is used, the resulting formulation
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is expected to either lock or produce unphysical pressure patterns which can be numerically
verified. Therefore, the displacement space is locally enriched with a bubble-like function
which leads to the following approximations of the actual and virtual deformation gradient
that surrogate the definitions of equation (4.11) and (4.12):

Fkj =
Nk∑
i=0

∆xki ⊗ ∂Nkji
u

∂X
+ ukb ⊗

∂Nkj
b

∂X
and (6.12)

δFkj =
Nk∑
i=0

∆δuki ⊗ ∂Nkji
δu

∂X
+ δukb ⊗

∂Nkj
b

∂X
(6.13)

where ukb denote the additional local bubble-mode unknowns that can be statically condensed

and ∂Nkj
b

∂X
is the gradient of the bubble-like enrichment function. The construction of the

bubble function which is defined to be zero outside the scope of a particles neighborhood
has to be done carefully to not disturb the fulfillment of the linear patch test. Here, the
meshfree bubble-like function derivatives are directly constructed while taking into account
the following condition that is needed to preserve the variational consistency:

V k

V H
k
0

Nk∑
j=0

V j ∂N
kj
b

∂X
= 0 . (6.14)

A straightforward construction lies in the usage of bonds, i.e. the distance vectors

∂Nkj
b

∂X
= ∆Xcj = Xj −Xc , (6.15)

where the perspective, the barycenter Xc, ensures the fulfillment of equation (6.14):

Xc =
1

V H
k
0

Nk∑
j=0

V jXj . (6.16)

Within numerical tests, the resulting enriched Unl+P1C formulation showed to have
superior behavior against all other tested formulations regarding stability, robustness and
localization in the presence of volumetric constraints. In the range of solids, the global
pressure field is smooth and no volumetric locking could be observed. Nevertheless, due
to the shape function based pressure approximation, even for explicit time integration a
global system with the pressure and dilation as unknowns has to be solved. This is why,
further, two stabilized underintegrated formulations are also presented which have a reduced
computational cost, especially in explicit algorithms.

6.3 Underintegration and stabilization
When explicit time integration schemes are used, the evaluation of the plastic evolution
equations that requires a local Newton-Raphson procedure is the main driving computational
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cost in displacement based formulations as the solution of a global system is not needed.
Therefore, the computation time depends almost linearly on the number of evaluation points
within a neighborhood. A popular treatment of this lies in the concept of underintegration
which also hinders the volumetric locking to occur. Though efficient, an underintegration
leads to a decrease of detectable local deformation modes and hence to unphysical global
low-energy modes that manifest in hourglass-like particle oscillations. Hence, an additional
stabilization is needed which, on the other hand, can itself lead to volumetric locking.

In the PBG method, the underintegration of the virtual strain energy can be performed by
skipping the reverse averaging of equation (4.25), which can also be interpreted as a fully
integrated WTE1 approach. This leads to the underintegrated potential of the U1 formula-
tion that coincides, except from shape function corrections, with the classical rank deficient
peridynamic correspondence formulation:

Uh =
np

A
k=1

{
V kW kk +

[
ρk0V

k
(
ük − b

k
)
−Pk ·Ak

]
· uk
}
. (6.17)

To avoid the presence of spurious low-energy modes, the spurious modes have to be
stiffened, whereby the following aspects have to be considered: First, the stabilization
should not disturb the variational consistency such that the additional strain energy does
not effect the converged solution. Second, the locking behavior of the fully integrated
displacement based formulations should not be restored due to the stabilization. And finally,
the reduced computational cost due to the single evaluation of the local evolution laws
within each family should be maintained. Further, two stabilization schemes are presented
that mostly fulfill the above-listed requirements.

6.3.1 Full integration stabilization

In a first approach, the underintegrated strain energy is extended by a pseudo strain energy to
penalize the error of the linear displacement field approximation compared to the MTE1 in-
terpolation (see NADLER & RUBIN (2003), KRYSL (2015) and WRIGGERS ET AL. (2017)).
Thereby, the stabilization energy is integrated via the full Unl formulation and the underin-
tegrated stabilization energy is subtracted to ensure a convergence to the accurate solution.
The resulting potential for this U1SUnl formulation states

Uh =
np

A
k=1

V k(W kk − W̃ kk) +
V k

V H
k
0

Nk∑
j=0

V jW̃ kj +
[
ρk0V

k
(
ük − b

k
)
−Pk ·Ak

]
· uk
 ,

(6.18)
where the pseudo energy

W̃ kj = W kj
(
Ẽ, ν̃,hkk

)
(6.19)
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is computed with the plastic variables hkk of the underintegrated strain energy. In this way,
the local evolution laws have to be evaluated only once. To circumvent a volumetric lock-
ing of the stabilization pseudo energy and to trigger the plastic localization, the material
parameters are modified as

Ẽ = min
[
E,max

(
ηE,

∣∣∣σvM
α

∣∣∣)] and ν̃ = min (0.49, ν) (6.20)

with η = 10−3. On the one hand, in the case of elasticity with ν ≤ 0.49, the U1SUnl formu-
lation reduces to the Unl formulation. On the other hand, with an increasing refinement, the
displacement field in a family tends to be linear and the stabilization vanishes in the limiting
case. Thus, the converged solution is not affected. As a drawback, the correction of VC has
to be performed twice, for the WTE1 and MTE1 shape functions.

6.3.2 Stabilization with implicit gradients
Alternatively to the error between the WLS1 approximation and the MTE1 interpolation
of the displacement field, the curvature can be utilized to define a stabilization. Based on
this, an implicit gradient based natural stabilization, similar to the one used in HILLMAN &
CHEN (2016) for Stabilized Non-conforming Nodal Integration (SNNI) and combined with
a plastic localization trigger is presented. The starting point is a first order Taylor series
expansion of the actual and virtual deformation gradient with respect to the position and an
expansion of the first Piola-Kirchhoff stress with respect to the deformation gradient:

F
′
= Fk +

∂kH

∂X
·∆Xk′ ,

δF′ = δFk +
∂kδH

∂X
·∆Xk′ and

P
′
= Pk + Ãk :

(
F
′ − Fk

) (6.21)

with the difference vector ∆Xk′ = X
′ −Xk, the gradient of the actual and virtual displace-

ment gradient at the master particle ∂kH
∂X

and ∂kδH
∂X

, and the fourth order incremental material
tangent with respect to the deformation gradient:

Ãk =
∂k

2
W̃

∂F2

∣∣∣∣
∂h
∂u

=0

(6.22)

where only the elastic part of the tangent is considered for the sake of simplicity. Instead, to
improve the plastic localization, the same modification of the stabilization strain energy W̃
is used as as in the U1SUnl formulation (equation (6.19) and (6.20)). Inserting the Taylor
expansions in the integral form of the local virtual work (4.25) yields

∫
V k

P : δF dV k =

∫
V k

(
δFk +

∂kδH

∂X
·∆Xk′

)
:

(
Pk + Ak :

∂kH

∂X
·∆Xk′

)
dV k .

(6.23)
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A simplification in index notation excluding constant terms leads to

∫
V k
PAB : δFAB dV

k = V kP k
ABδF

k
AB + P k

AB

∂kδHAB

∂XC

∫
V k

∆Xk′

C dV k

+ δF k
ABAk

ABCD

∂kHCD

∂XE

∫
V k

∆Xk′

E dV k

+
∂δHk

AB

∂XE

Ak
ABCD

∂Hk
CD

∂XF

∫
V k

∆Xk′

E ∆Xk′

F dV k .

(6.24)

Under the assumption of spherical particle shapes with volume V k, the first order moments,
i.e. the second and third part on the right side, vanish. Therefore, the discretized local virtual
work of inner forces computes to∫

V k
P : δF dV k = V kPk : δFk + Skm : Mk

2 (6.25)

which can be interpreted as an U1 underintegration with an additional natural stabilization
where

Skm =
∂kδH

∂X
: Ãk :

∂kH

∂X
(6.26)

is a stabilization matrix spanned in the tangent room of the current configuration with a
modified elastic strain energy and

Mk
2 =

 Mk
xx 0 0
0 Mk

xx 0
0 0 Mk

xx

 with Mk
xx =

(
3
π

)2/3

10 · 21/3
V k5/3

(6.27)

is the second moment of volume of the spherically assumed particle. The gradient of the ac-
tual and virtual deformation gradient can be approximated via the following MLS approach:

∂kδH

∂X
=
∂kH

∂X
=

Nk∑
i=0

∆δuki ⊗ ∂2Nkki
MLS1

∂X2
(6.28)

with the modified weight function exception of 1000 times the particle spacing (see equation
(5.42)). The resulting U1SIG formulation is an efficient and very robust alternative for
explicit simulations in the range of finite elasto-plasticity as no global system of equations
has to be solved and the local iterative Newton-Raphson scheme is only processed at one
point per family. In case of implicit analyses, Ãk is frozen in the beginning of each time or
load step to preserve the Bubnov-Galerkin character.
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Chapter 7

Numerical illustrations, verifications and
examples

In the following chapter, the performance of the proposed PG formulations is investigated.
Therefore, it is first demonstrated that an improper choice of shape functions, like in other
meshfree methods, can lead in practice to poor or even useless solutions. Subsequently, a
selection of numerical tests is presented which isolate the reasons of failure in practice and
which served as a guideline in the development of the proposed formulations. The shape
function conditions of chapter 5 ensure the accurate solution of these tests and provide a
sound basis for the nonlinear benchmarks in which an extraordinary robustness of certain
PG formulations can be observed.

To distinguish between the presented formulations, a generative code is used which is
composed of the successive abbreviations of Table 7.1. Hereby, some abbreviations are
marked as default, meaning that they are always used whenever they are not specifically
analyzed in a numerical problem. Exemplarily, the code VCBCPBG V5sn Unl+P1C TL
stands for a total Lagrangian, variationally consistent and bond conforming Unl+P1C
formulation, while the fifth choice of correction functions combined with fixed normal
correction factors on the surface was used to restore the variational consistency. When
not distinguished between the presence of BC, the choice of the VC correction and the
reference frame, VCPBG Unl+P1C indicates the same formulation as the above mentioned.
The implementation of the presented numerical examples has mainly been done in the FE
environment AceFEM. For demonstration purposes, different visualization possibilities are
utilized: Single colored particles (Mathematica) and first order interpolations on the original
FE meshes of the particle distributions (AceFEM).

7.1 Errors in practice
In the following, the 2- and 3-D Cook’s membranes serve as a first example to demonstrate
the importance of the choice of shape functions in Galerkin methods. Thereby, Cook’s
membrane (see e.g. WRIGGERS ET AL. (2017)), a tapered cantilever beam as depicted

73
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Table 7.1. Overview of used abbreviations
Abbreviation Description

Shape function VC first order variational consistency is restored
corrections VC2 first and second order variational consistency are re-

stored, based on PPG2 formulation
BC Bond correction is performed, equation (5.55) (de-

fault for all first order formulations)
Method PPG/PBG/FEM Peridynamic Petrov-/Bubnov-Galerkin and Finite El-

ement Method
VC correction V1 Φkji

V 1, equation (5.60)
function V2 Φkji

V 2, equation (5.61)
V3 Φkji

V 3, equation (5.62) (default for PPG)
V4 Φkji

V 4, equation (5.63)
V5 Φkji

V 5, equation (5.64) (default for PBG)
Boundary p Correction factor fixed at selected particles
conditions for s Correction factor fixed at all surface particles
VC correction sn Correction factor fixed in normal direction at all sur-

face particles (default)
Formulation Unl Displacement based, nonlinear first order MTE shape

functions (with BC)
UnlP0 Mixed approach, nonlinear first order MTE shape

functions (with BC) for displacements, constant pres-
sure and dilation

U2 Displacement based, second order WTE shape func-
tions

U2P1 U2 with local linear pressure and dilation field as de-
grees of freedom

U2P1C U2 with local linear pressure and dilation field as
shape function approximation

Unl+P1C Unl with bubble-like enrichment and linear pressure
and dilation field as shape function approximation

U1SUnl Underintegration with stabilization of Unl
U1SIG Underintegration with implicit gradient stabilization
T1/O1 2d/3d Finite Element with linear displacement field
Q1/H1 2d/3d Finite Element with bi-/tri-linear displacement

field
Q1P0/H1P0 Q1/H1 with local constant pressure
H2 3d Finite Element with tri-quadratic displacement

field
Reference TL Total Lagrangian description (default)
configuration UL Updated Lagrangian description
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in Figure 7.1, is clamped on the left and loaded at the right. The block is modeled as a
neo-Hookean solid with the Lame constants µ = 40 N

m2 and λ = 100 N
m2 , according to a

Young’s modulus of E = 108.571 N
m2 and a Poisson’s ratio of ν = 0.357. Its spatial particle

discretization is generated by the collocation of a regularly structured Finite Element mesh
(see section 4.1). In order to increase the effect of improper shape functions, the connectivity
is made up of a relatively large number of at least N = 50 nearest particles. The clamping
on the left is imposed by fixing the displacement of all particles at X = 0 and the line
load on the right end is applied via the x-components of the particle-wise surface normals,
computed via integration constraint (5.18). Within an implicit quasistatic simulation, the
load is applied in 10 load steps to decrease the path dependency of the unstable solutions.

48mm
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Figure 7.1. Geometry, material data and boundary conditions of 2-D Cook’s mem-
brane benchmark.

The final configuration of the PBG Unl formulation is visualized in Figure 7.2 for different
sorts of original shape functions and correction techniques. Each particle is represented by
a filled circle while the x-y-component of the deformation gradient is colored. Using WLS1
shape functions, the PBG Unl formulation coincides with the common peridynamic corre-
spondence formulation or rather the total Lagrangian corrected SPH. Severe displacement
oscillations can be observed which are a result of spurious low-energy modes. As will be
shown in an eigen mode analysis later on, the low-energy modes are a consequence of a
linear shape function approximation or rather underintegration where the deformation of a
family is averaged to a constant deformation gradient. The mere movement of the weighting
function by means of MLS1 shape functions remedies the presence of spurious modes in
the interior. However, in the absence of low-energy modes, inaccuracies along the surface
become apparent, especially at the displacement and force boundary. The more localized
interpolating MTE1 shape functions alleviate these issues, but still are suspect to slight
oscillations, stemming from the inaccuracy in the integration constraint near the surface.
Both the correction of variational and configurational consistency improve the solution,
while both are necessary to ensure a good behavior at the weak singularity in the upper
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(a) PBG Unl, WLS1 (U1) (b) PBG Unl, MLS1 (c) PBG Unl, MTE1

(d) VCPBG Unl, MTE1 (e) BCPBG Unl, MTE1 (f) VCBCPBG Unl, MTE1

Figure 7.2. Impact of different original shape functions and subsequent correction
techniques on the solution of the 2-D Cook’s membrane problem with
the PBG Unl formulation.



7.1. ERRORS IN PRACTICE 77

q0= 4
N

m
2

44
m

m

16
m

m

16
m

m

10
m
m

48mm

X

Y
Z

N
m= 40

m
2

N
l= 100

m
2

(a) Model problem (b) Discretization

Figure 7.3. On the left: Geometry, material data and boundary conditions of the
three dimensional Cook’s membrane problem. On the right: Particle
discretization consisting of free moving (green), fixed (purple) and force
applied (red) particles in case of the regular distribution into 72×72×18
free moving particles.

left edge and near the force transmission. Note, that in practice the number of neighboring
particles should be chosen smaller and the resulting error may not be as apparent, such that
even the MLS1 shape functions can lead to acceptable solutions in certain situations.

Nevertheless, also smaller families can suffer from inappropriate shape functions as will
be demonstrated next. Therefore, the convergence behavior of a 3-D Cook’s membrane is
examined by a series of regular and distorted (-d) particle discretizations. In this example,
instead of a collocated Finite Element mesh, the particle discretization is made up of the
centroids of H1 elements which is also a common technique (cf. MADENCI & OTERKUS

(2016a)). As no particles lie directly on the surface, an additional layer of particles is
used to model the wall on the left and to impose the force at the right (see Figure 7.3).
In a single load step, an area load of q = 4 N

m2 is exerted in positive z-direction. For
the study, the PPG UnlP0 formulation is combined with different weighting functions
ωjin = 1/ (∆Xji ·∆Xji)

n. The von Mises stress is colored exemplarily for the finest
regular and distorted discretization on the deformed configuration for ω2 in Figure 7.4. In a
convergence study, depicted in Figure 7.5, the vertical displacement of the upper right front
corner is compared to regularly structured H1P0 Finite Elements. Although the macroscopic
behavior exhibits overall a smooth stress field and the rate of convergence is comparable to
those of Finite Elements, a discrepancy in the edge displacement can be observed even for
about 100000 particles. Only the highly localized weight function ω5 leads to an accurate
converged solution which is impractical for irregular particle distributions. This inaccuracy
is mainly caused by the variational inconsistency of the test functions which leads to an
erroneous surface approximation.



78 CHAPTER 7. NUMERICAL ILLUSTRATIONS, VERIFICATIONS AND EXAMPLES

(a) np = 101726 (b) np = 95904 (c) Legend

Figure 7.4. Deformed configuration of the Cook’s membrane for the finest irregular
and regular discretization using np particles. The contours of the von
Mises stress in Newton per square meter are depicted by the particle
colors.

7.2 Isolation of pitfalls and verifications
The failures that can happen in practical PG simulations, as demonstrated in the previous
section, are strongly influenced and can be lead back to the choice of shape functions. In
order to study the influence of shape functions and to construct shape functions leading
to an accurate solution, it is useful to define certain numerical test cases that differ their
specific properties. Petrov-Galerkin formulations are well suited for this investigation, as
manipulations can be done separately on the test and trial functions. In the further section,
the stability is first addressed in terms of an eigen mode analysis. Subsequently, the patch
tests and convergence analysis are exploited to examine the variational consistency. Further,
a comparison of a total Lagrangian and updated Lagrangian description is used to show the
influence of an accurate bond mapping. Finally, a numerical inf-sup test is performed to as-
sess the behavior of certain formulations within the presence of incompressibility constraints.

7.2.1 Eigen mode analysis
The stability of a discretization scheme is, along with consistency, important for the
convergence properties, cf. BELYTSCHKO ET AL. (2013). To investigate the stability of
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Figure 7.5. Convergence study: The vertical displacement at the upper right front
edge of Cook’s membrane is plotted over the number of nodes. Differ-
ent discretizations and weight functions of the PPG UnlP0 formulation
are compared to the mixed H1P0 Finite Elements.

a specific discretization, an analysis of the eigenvalues of its tangent stiffness matrix can
be performed. In the context of Finite Elements, such an analysis can be done on element
level which gives precise information which element deformation modes are associated with
internal energy (see e.g. WRIGGERS (2008)). Concerning the PG methods, it is generally
possible to construct the global stiffness matrix by assembling particle-wise or family-wise
contributions in several ways, resulting in rectangular (equation (4.58)) or even quadratic
(equation (4.62)) local tangent contributions.

However, although quadratic local matrices can be used for a local eigen mode analysis,
their practical relevance is limited as they do not fully represent the stiffness of a discrete
region. In fact, an increased number of zero eigenvalues in a local family stiffness matrix,
i.e. more than the rigid body modes, does not necessarily lead to unphysical global modes.
In any 2-D family, all presented PG formulations posses three zero eigen values – two
translational and one rotatory rigid body mode. The number of eigenvalues with associated
strain energy counts three in case of the U1 formulation and nine in case of the U2 and
U1SIG formulations that both contain a complete second order polynomial trial space. All
formulations that are based on moving weights, as the Unl formulations, occupy no further
zero eigen values apart from the rigid body motions, independent on the size of its family.

As already mentioned, the eigen modes of the global discretization are more relevant in
practice, since the overlapping coupling of the families leads to the fact that a rank deficiency
of family stiffness matrices does not have to be inherited from the global stiffness matrix.
Therefore, the global tangent stiffness matrix ix exemplarily analyzed for an unloaded free
moving 2-D block of 20 mm length and 10 mm height with a Young’s modulus of 100 N

mm2

and a Poisson’s ratio of ν = 0.4. The block is discretized into 20 × 10 elements and
collocated to get the particle discretization, while the connectivity is generated from the
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Figure 7.6. The eigen values of the global tangent stiffness matrix of a free moving
bloc are plotted in ascending order for several PG and FEM formula-
tions.

original Q1 mesh. Next to three rigid body modes, which are present to all formulations, the
smallest 200 eigen values of the global tangent stiffness matrices are depicted in Figure 7.6
in ascending order for several formulations. While the U1 formulation which is known to
suffer from spurious oscillations exhibits plenty of eigen modes with low associated energy,
the other formulations are in good agreement to the FEM Q1 eigen values in the range of
low stiffness. Note, that the enlargement of the family size to 3.01 times the nodal spacing
in the VCPBG Unl formulation shows a very small effect on its eigenvalues. In Figure
7.7, the eigen modes of lowest stiffness are visualized for several PG formulations which
show a reasonable shape. In case of the variationally consistent classical correspondence
formulation, the two lowest and first physical mode (which is the 100-th) are displayed.

7.2.2 Patch tests

Although not always necessary, the ability to exactly reproduce a linear or even higher
order polynomial field is an important condition for a discretization method to achieve
convergence. The fulfillment of this condition can be verified by means of a patch test.

Linear patch test

Regarding the linear patch test, the reproducibility of a linear displacement field by the dis-
cretization method has to hold, which was the basis for the derivation of the linear variational
consistency criterion. Following CHEN ET AL. (2013), an isotropic linear elastic material
with a Young’s modulus E = 100 kN

m2 and a Poison’s ratio of ν = 0.3 is subject to the linear
displacement field
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(e) FEM Q1

Figure 7.7. First three non-zero eigen modes of a free moving bloc for different
proposed formulations.
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plane strain
linear elasticity

(a) Illustration (b) PPG Unl (c) VCPPG Unl (d) Legend

Figure 7.8. The resulting shear stress field is colored over the deformed particle
configuration. Whereas the classical PG methods fail the patch test, it
is passed by their variationally consistent counterparts.

u =

(
0.1X + 0.3Y
0.2X + 0.4Y

)
with

∂u

∂X
=

(
0.1 0.3
0.2 0.4

)
(7.1)

in {X × Y } ∈ {[−1 m, 1 m]× [−1 m, 1 m]}. At the left, bottom and right edge Dirichlet
boundary conditions and at the upper edge Neumann boundary conditions are applied that
are consistent with the displacement field (see illustration in Figure 7.8), i.e.

P =

(
0.2µ+ 0.5λ 0.5µ

0.5µ 0.8µ+ 0.5λ

)
(7.2)

where the Lame parameters λ and µ are computed from E and ν. Therefore, the nodal
displacements on the Dirichlet boundary are directly prescribed according to equation (7.1)
and the surface forces on the Neumann boundary are applied via the equivalent volume force
s̃ of equation (4.32). Figure 7.8 depicts the resulting shear stress field – which should be
constant – for an uncorrected and a variationally consistent PPG Unl formulation with 1345
irregularly distributed particles. The displacement and energy error norms

εL2 =

√∫
Ω0

||u− uh||22 dΩ0 and

εH1 =

√√√√∫
Ω0

∑
i,j

∣∣∣∣∣∣∣∣∂ (u− uh)i
∂Xj

∣∣∣∣∣∣∣∣2
2

dΩ0

(7.3)

are displayed in Table 7.2 where uh stands for the discrete displacement field. As expected,
the linear patch test is not fulfilled for the uncorrected PG formulations but is accurate for
each of the VC corrected PPG formulations. Concerning the mixed displacement–pressure–
dilation and PBG formulations, only the first order consistency preserving correction
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Table 7.2. Error norms in L2 and H1 for the linear patch test
Method εL2 εH1

PPG Unl 9.532 ∗ 10−2 2.336 ∗ 10−1

VCPPG V1sn Unl 2.146 ∗ 10−15 2.330 ∗ 10−14

VCPPG V2sn Unl 7.596 ∗ 10−16 8.125 ∗ 10−15

VCPPG V3p Unl 9.602 ∗ 10−17 1.013 ∗ 10−15

VCPPG V3s Unl 7.629 ∗ 10−17 9.868 ∗ 10−16

VCPPG V3sn Unl 6.489 ∗ 10−17 9.974 ∗ 10−16

PPG UnlP0 8.557 ∗ 10−2 2.513 ∗ 10−1

VCPPG V1sn UnlP0 6.040 ∗ 10−3 2.299 ∗ 10−2

VCPPG V2sn UnlP0 1.652 ∗ 10−15 1.353 ∗ 10−14

VCPPG V3sn UnlP0 4.370 ∗ 10−14 4.117 ∗ 10−13

PBG Unl 8.563 ∗ 10−3 1.284 ∗ 10−1

VCPBG V5sn Unl 2.518 ∗ 10−14 1.154 ∗ 10−12

functions lead to a fulfillment of the patch test.

Quadratic patch test

Analogously to the linear patch test, a quadratic one can be set up on the basis of a quadratic
displacement field (CHEN ET AL., 2013):

u =

(
0.12X + 0.14Y + 0.16X2 + 0.18XY + 0.2Y 2

0.11X + 0.13Y + 0.15X2 + 0.1XY + 0.21Y 2

)
with

∂u

∂X
=

(
0.12 + 0.32X + 0.18Y 0.14 + 0.18X + 0.4Y

0.11 + 0.3X + 0.1Y 0.13 + 0.1X + 0.42Y

)
.

(7.4)

The same domain and material parameters are chosen as in the linear case which lead, for
linear elasticity, to a linear stress field with

PXX = λ (0.25 + 0.42X + 0.6Y ) + µ (0.24 + 0.64X + 0.36Y )

PY Y = λ (0.25 + 0.42X + 0.6Y ) + µ (0.26 + 0.2X + 0.84Y )

PXY = PY X = µ (0.25 + 0.48X + 0.5Y ) .

(7.5)

Consistent with the stress field, a source term is needed which computes

ρ0b = −
(

0.42λ+ 1.14µ
0.6λ+ 1.32µ

)
. (7.6)

Again, Dirichlet boundary conditions are applied at the left, bottom and right edge while
there are Neumann boundaries at the top. The resulting shear stress distribution is colored
in Figure 7.9 on the deformed configuration of an uncorrected, a first and a second order
variationally consistent PPG formulation. Table 7.3 shows the error norms in L2 and H1.
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Table 7.3. Error norms in L2 and H1 for the quadratic patch test
Method εL2 εH1

PPG Unl 1.757 ∗ 10−1 3.658 ∗ 10−1

VCPPG V3sn Unl 5.950 ∗ 10−4 1.861 ∗ 10−2

VC2PPG V1s U2 6.674 ∗ 10−16 1.075 ∗ 10−14

(a) PPG Unl (b) VCPPG V3sn Unl (c) VC2PPG V1s U2 (d)
Legend

Figure 7.9. The resulting shear stress field is colored over the deformed particle
configuration. Even if only the second order corrected test functions
lead to the passing of the quadratic patch test, the linearly corrected one
produces reasonable results and a smooth stress field.

As expected, second order variational consistency with a trial function of second order
basis is needed to pass the quadratic patch test. However, the first order correction already
improves the performance of the patch test and yields reasonable macroscopic behavior.
Due to the increase of degrees of freedom for the second order correction, the generally
larger neighborhood and the complexity to construct a second order variationally consistent
PBG formulation, it is proposed to stick to the first order VC correction until more efficient
local correction techniques are available.

7.2.3 Convergence in a manufactured 2-D problem

Next, the convergence rates resulting from the choice of the correction shape functions and
correction boundary conditions are investigated. Therefore, the manufactured solution of
HILLMAN ET AL. (2019) with the following displacement field is utilized:

u =

(
sin
(
π
2
X
)

cos
(
π
2
Y
)

cos
(
π
2
X
)

sin
(
π
2
Y
) ) . (7.7)

in {X × Y } ∈ {[−1 m, 1 m]× [−1 m, 1 m]}with Dirichlet boundary conditions at the entire
surface. Considering the linear elastic regime, with E = 100 kN

m2 and ν = 0.3, the consistent
body force writes
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(a) N = 4 (b) N = 16 (c) N = 64

σxx [
N

m2
]

0

100000

200000

300000

(d) Legend

Figure 7.10. On the left: Refining discretizations for the manufactured 2-D solution
in the initial configuration. On the right: the normal stress in x-direction
is colored over the deformed configuration.

ρ0b = − E (1− ν) π2

2 (2ν2 + ν − 1)

(
sin
(
π
2
X
)

cos
(
π
2
Y
)

cos
(
π
2
X
)

sin
(
π
2
Y
) ) . (7.8)

For a series of refining discretizations with N + 1 particles per meter in each dimension the
displacement and energy error norms are computed. Figure 7.10 depicts the undeformed
configuration for N = 4 and N = 16 and the deformed configuration with N = 64 of a
variationally consistent formulation with colored normal stress.

In Figure 7.11, the error norms with the averaged convergence rate are plotted for different
PG formulations and correction shape functions. Due to the refinement, the actually
variationally inconsistent formulations still exhibit a stable convergence behavior, as the
error in the integration constraint decreases steadily. However, the optimal rates of 2 in the
L2 norm and 1 in the H1 norm for linear basis are not reached. While the correction of
VC reduces the error in each tested case, the stability of the rate with increasing refinement
differs. The V3 and V5 correction functions perform most reliable for the PPG and PBG
methods and restore the expected rates. In case of the convergence in energy norm, even
slightly higher rates can be observed. For the VC correction of mixed formulations, the same
behavior can generally be observed, where it is noted, that also for the PPG formulations,
the shape functions should maintain the trial function consistency (which is not the case for
V1).

7.2.4 Comparison of total and updated Lagrange
Meshfree methods are oftentimes used in situations where large deformations would oth-
erwise require a remeshing. Instead of a remeshing, a neighbor search in the deformed
configuration is performed in meshfree methods. The updated Lagrangian perspective in
which the weak form of the momentum equation is stated is then based on the last dynamic
equilibrium or, in case of explicit time integration, updated every nu time steps. Along with
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Figure 7.11. Convergence of the displacement and energy error norms with increas-
ing refinement for different correction shape functions and correction
boundary conditions with displacement based and mixed formulations.
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Figure 7.12. Vertical displacement response of the upper right corner of the dynamic
Cook’s membrane problem for different combinations of shape function
correction within the total and updated Lagrangian PBG Unl formula-
tion.

the necessary re-computation of shape functions, a numerical tensile instability oftentimes
arises (see e.g. BELYTSCHKO ET AL. (2000)), even for small deformations. To ensure a
reliable update in extreme deformations, the comparison of a total Lagrangian and updated
Lagrangian simulation can reveal inconsistencies arising from such an update. Therefore,
a dynamic Cook’s membrane problem similar to the one in CIHAN ET AL. (2020) is used
to examine the influence of the Lagrange update on the transient behavior for the satisfac-
tion of different shape function corrections in the PBG Unl formulation. The geometry and
Dirichlet boundary are used as in Figure 7.1 with a Young’s modulus of E = 210 GPa and
a Poisson’s ratio of ν = 0.3. Being initially at rest, the load is dynamically applied on the
right hand side with

q (t) = 10000
kN

mm
· sin

(
π t

0.01 ms

)
for 0 ms ≤ t ≤ 0.02 ms . (7.9)

With Newmark time integration, the response within 0.12 ms is computed in a number of
500 time steps. To trigger a possible tensile instability, an updated is performed in every
time step for the updated Lagrangian (UL) simulations. The deformed configuration of
selected frames is exemplarily visualized in Figure 7.13 for the VCBCPBG UL formulation.
The displacement of the upper right edge is displayed in Figure 7.12. While the difference
resulting from the VC and BC corrections is marginal in case of the total Lagrangian
(TL) descriptions, for UL formulations it has an important effect. Indeed, the PBG UL
formulation crashes at about 0.08 ms and the mere correction of VC shows still a visual
deviation in time. The configurational consistency, established by the BC correction,
removes this discrepancy and yields a very good agreement to the TL response.
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(a) t = 0.012 ms (b) t = 0.018 ms (c) t = 0.0288 ms

(d) t = 0.0384 ms (e) t = 0.0648 ms (f) t = 0.0744 ms

(g) t = 0.0912 ms (h) t = 0.12 ms

Fxy

-0.2

-0.1

0

0.1

0.2

(i) Legend

Figure 7.13. Deformed configuration of selected frames of the dynamic Cook’s
membrane problem for the case of VCBCPBG UL, colored x-y-
component of the deformation gradient.
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7.2.5 Numerical inf-sup test
In mixed FE methods, the inf-sup or Ladyzhenskaya-Babuška-Brezzi (LBB) condition en-
sures together with the ellipticity condition the existence, uniqueness and stability of the
regarding discretization. For nearly incompressible material behavior in linear elasticity, the
inf-sup condition (see FORTIN & BREZZI (1991)) states

inf
ph∈Ph

sup
uh∈Uh

∫
Ω0
ph Div uh dΩ0

||ph||L2 ||uh||H1

≥ β > 0 , (7.10)

where Ph and Uh are finite dimensional spaces of trial pressure and displacement fields,
respectively. Due to the complexity of meshless shape functions, an analytical proof whether
the condition is satisfied is difficult to state. However, CHAPELLE & BATHE (1993) proposed
a numerical test which can give a prediction for the satisfaction (see also QUAK ET AL.
(2011) for the application to meshfree methods). Therefore, a bloc of material with the
applied essential boundaries as shown in Figure 7.14(a) is discretized by a series of refining
regular and distorted particle distributions consisting of N × N particles or elements with
N = {2, 4, 8, 16, 32} (see Figures 7.14(b) and 7.14(c)), where a family is build up by all
particles within a radius of 2.51 times the particle spacing. As the inf-sup condition deals
with the trial spaces, no variational consistency correction is used. The limit β of the inf-
sup condition of equation (7.10) can be computed from the following generalized eigenvalue
problem:

Th ·Uh = λSh ·Uh , (7.11)

where Uh is the global vector of nodal displacements. Matrix Sh results from the H1 norm
of the discrete displacement field

||uh||2H1
= Uh · Sh ·Uh (7.12)

and Th corresponds to the discrete pressure projection:

||ph||2L2
= Uh ·Th ·Uh . (7.13)

For the numerical evaluation, the following procedure can be adopted to take profit from
existing implicit frameworks. In case static condensation can be used to reduce the degrees
of freedom at family level to only displacement ones, Th can simply be computed as the
global tangent stiffness matrix in the static and unloaded initial configuration with a bulk
and shear modulus of K = 1 and µ = 0. Accordingly, Sh can be determined with K = 0
and µ = 1 with the modified strain energy density potential W = µ

2
tr
[
FT · F

]
− 3. If

a continuous pressure approximation is used, the condensation has to be performed on
the global level. Alternatively, β can more efficiently be calculated from the eigen value
problem with respect to the pressure space (cf. CHAPELLE & BATHE (1993)).

The inf-sup value of a particular resolution computes to the smallest non-zero eigenvalue of
the generalized eigenvalue problem defined in equation (7.11):

β̃ =
√
λk . (7.14)
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Plane strain

Unit thickness

(a) Model problem (b) Regular, N = 8 (c) Distorted, N = 8

Figure 7.14. On the left: Model problem for numerical inf-sup test. On the right: Ex-
emplary discretizations for regular and irregular particle distributions.
The Dirichlet boundary conditions are applied by an additional layer of
wall particles. The displacements of blue colored particles are fixed hor-
izontally and the purple particle is fixed in both horizontal and vertical
direction.

where k− 1 is the number of zero-eigenvalues. The number of spurious pressure modes can
be determined from

kpm = k − (nu − np + 1) (7.15)

with the number of global displacement and pressure degrees of freedom nu and np. Figure
7.15 depicts the inf-sup values of the model problem of Figure 7.14. For validation, the
curves for the Q1P0 and MINI Finite Element are computed which are in agreement with
those of CHAPELLE & BATHE (1993). Concerning the PBG formulations, it can be seen
that the fully integrated displacement based formulations exhibit volumetric locking, as
their inf-sup value decreases linearly in the log–log plot. In contrast, the inf-sup value of
the underintegrated U1 formulation is bounded from below and the number of spurious
pressure modes equals zero. Therefore, it passes the numerical inf-sup test which indicates
that the formulation is not suspect to volumetric locking or spurious pressure modes.
Hence, the numerical inf-sup test is not able to detect spurious modes resulting from an
underintegration. This gives also an explanation why, despite having pressure oscillations,
the volumetric underintegrated PPG UnlP0 formulation also passes the numerical inf-sup
test (see BODE ET AL. (2020b)). By doing a full integration also of the volumetric terms,
the resulting PBG UnlP0 formulation does not anymore fulfill the numerical inf-sup test
as pressure oscillations can occur. Further, the inf-sup test predicts the U2P1 and U2P1C
formulations not to fulfill the LBB condition. Solely the Unl+P1C formulation satisfies the
numerical inf-sup test as a fully integrated PBG formulation.

7.3 Numerical benchmarks
In the following section, the effectiveness of the proposed PG methods with a proper choice
of shape functions is demonstrated in a series of solid mechanics benchmark problems.
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Figure 7.15. Inf-sup values of the model problem of Figure 7.14, where the logarithm
of the inf-sup value is plotted over the logarithm of the inverse of the
number of particles in each dimension for regular and distorted particle
and node distributions, respectively.

First, the robustness is shown in a 2-D punch and a 3-D torsion test in the range of nonlinear
elasticity. Second, the convergence behavior is investigated for regular and irregular
particle patterns in a 3-D punch test and Cook’s membrane problem. Subsequently, three
elasto-plastic examples show the applicability in plastic localization, severely distorted
particle distributions and impact events. Finally, the usage of symmetry boundary conditions
and possible coupling with the FEM is shown on a 2-D plate with hole.

7.3.1 2-D punch problem

One of the difficulties in mesh-based methods lies in the need of a remeshing when elements
get non-convex or even of negative volume. In these situations, meshfree methods as the PG
methods are oftentimes less sensitive due to their overlapping connectivities. To generate a
situation that pushes the FEM to its limits, the 2-D punch test of WRIGGERS ET AL. (2017)
with modified boundary conditions is conducted. As depicted in Figure 7.16, a block of
material is compressed on the left side by adaptively decreasing ū → −1 mm until failure
of convergence. Using the same set of nodes originating from a regular mesh of 64 × 32
quadrilaterals, the maximal displacement in x-direction is plotted against the minimal
displacement in y-direction for the Q1 Finite Element and the variationally consistent PPG
and PBG Unl formulations with linear basis (see Figure 7.16). While the FEM simulation
crashes at a compression to 39% of the initial thickness, the PPG and PBG formulations
allow a compression up to 28% and 1.3%, respectively. The final deformed configurations of
the FEM and PBG simulation are displayed in Figure 7.17 where the material was squeezed
out to the right and around the applied Dirichlet boundary, resulting in self-penetrating
elements which cause the failure of convergence in the FEM.
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Figure 7.16. On the left: Geometry, material data and boundary conditions of the
two dimensional punch problem. On the right: Maximal displacement
in x-direction is plotted over the maximal negative displacement in y-
direction for the displacement based FE and PG methods with linear
basis.

(a) FEM Q1 (b) VCPBG Unl

Figure 7.17. Maximal compressed configurations of the two dimensional punch test.
The severe mesh distortion near the singularity at the right end of the
upper Dirichlet boundary causes the divergence in the FE simulation.
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(a) Initial configuration (b) PPG UnlP0 (c) FEM H1P0 (d) PPG UnlP0 (e) FEM H1P0 (f) Legend

Figure 7.18. On the left: Geometry of the torsion problem where particles underlying
displacement boundary conditions are colored purple and free moving
particles green. On the right: Exemplary configuration for a twisting
angle of 360 degrees with the mixed PPG UnlP0 and FEM H1P0 formu-
lations. The von Mises stress in Newton per square meter are colored.

7.3.2 Torsion of square hyperelastic prism

In FE methods, it is known that the usage of mixed displacement–pressure–dilation formu-
lations can considerably increase the robustness in terms of maximal possible step sizes
within an implicit simulation. The influence of different PG formulations on the maximal
step size is therefore demonstrated in a torsion test similar to the one in KADAPA ET AL.
(2016). A squared prism of dimensions 0.001 m × 0.001 m × 0.005 m is clamped at the
top and bottom and rotated at the top end (see Figure 7.18). As material parameters a bulk
modulus of K = 5 · 108 N

m2 and a shear modulus of µ = 1.61148 · 108 N
m2 are used. In Figure

7.18 the von Mises stress is exemplarily depicted for a rotation angle of 360 degrees both
for the PPG UnlP0 and FEM H1P0 solutions. The stress distribution looks very similar and
has a minimum in the center and maximal values in the middle of each side.

The particle discretization for the PPG formulations is gained as the centroids of the
elements with additional wall particles for the application of the Dirichlet boundary and a
horizon size of 1.51 times the particle spacing. The largest possible twisting angle within
one load step as well as the minimum number of load steps for a rotation of 360 degrees
are shown in Table 7.4 for a discretization into 16 × 16 × 5 · 16 original elements. Both
measures show that the superiority of the mixed formulations over the pure displacement
based approaches accounts in the PG methods similarly as in the FEM. The stabilized PBG
U1SIG formulation appears to have a relatively small maximal step size. However, the
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Table 7.4. Robustness study: Maximal converging angle in a single load step in
degrees and minimum number of load steps need for one full rotation
for displacement based and mixed PG and FE approaches.

Method Maximal step [◦] Steps/360◦

FEM H1 7 72
FEM H1P0 42 9
PPG Unl 17 60
PPG UnlP0 64 6
PBG Unl 12 72
PBG U2 4 90
PPG UnlP0 54 7
PBG U2P1 58 7
PBG U2P1C 47 8
PBG Unl+P1C 49 8
PBG U1SIG 4 90

formulation is especially efficient for explicit schemes which reduces the significance of this
limitation.

7.3.3 3-D Punch problem
To verify the convergence within nonlinear deformations and the behavior in near incom-
pressibility, a punch into a block of solid material as shown in Figure 7.19 (cf. WRIGGERS

(2016)) is analyzed. The block has the dimensions 0.1m × 0.1m × 0.05m and a Young’s
modulus of E = 4.8293 N

m2 . The convergence or rather locking behavior is investigated
for two different Poisson’s ratios of ν = {0.4, 0.49999}. For the PPG formulations, the
particles are generated by means of the centroids of regularly structured Finite Elements.
A load of q = 9 N

m2 is applied in negative z-direction on an additional layer of particles
(red). To prevent localization problems due to the force boundaries in the deformed
configuration, the horizontal positions of the concerning particles are fixed. At the bottom,
an additional layer of wall particles (purple) is used to model a wall where the z-direction
is constrained. Free moving particles are colored green. The PBG discretizations, on the
other hand, are as the collocated nodes of an FE mesh, where the boundary conditions are
directly imposed at the surface particles. When applying the load, the block undergoes
large deformations. In Figure 7.19 the final configuration as well as a cross section is
exemplarily depicted for an incompressible PPG IUnlP0 formulation for a discretization
into 24948 particles. The displacement in z-direction is colored, see legend in Figure 7.19(d).

The convergence of the minimal displacement in z-direction is analyzed by a series of
regular discretizations with decreasing particle spacing. Figure 7.20 depicts the convergence
behavior for the different PG formulations compared to FEM overkill solutions which are
visualized as the horizontal black lines. Thanks to the regular particle distribution, the error
in the integration constraints decrease with an increasing number of particles and also the
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(a) Initial configuration (b) Final configuration (c) Cross section (d)
Legend

Figure 7.19. On the left: Geometry and boundary conditions of the punch problem.
Dirichlet boundary conditions are prescribed for purple particles and
external forces are applied to the red particles. On the right: Exemplary
deformed configuration and cross section for an incompressible PPG
IUnlP0 formulation. The vertical displacement in meter is colored.

variationally inconsistent formulation observe a convergence in about the same rate as the
H1 Finite Element for the case of ν = 0.4. Concerning the range of near incompressibility,
an over-stiff behavior of the displacement based formulations can be observed which is
demonstrated by means of the VCPBG Unl formulation. The mixed UnlP0 formulations
do not show a locking behavior, but the two finest VCPBG UnlP0 simulations crashed at
about 90% of the applied load. This is probably caused by the violation of the inf-sup test
leading to unphysical pressure patterns and could be improved by a stronger localization of
the weight function or by using irregular particle patterns as will be shown in the following
example. However, the mixed PBG Unl+P1C formulation shows very good results in the
incompressible limit even for a very low number of particles.

7.3.4 Cook’s membrane

One of the promising applications of meshfree particle methods include the modeling of
large deformations including phase changes (see e.g. WESSELS ET AL. (2018)). A key
condition for the accurate simulation of such processes that require a Lagrange update con-
sists in the capability to converge with arbitrarily distributed particle distributions resulting
from the large deformation. To test this, the 3-D Cook’s membrane problem of section 7.1
is again conducted with a series of irregular particle distributions converted from tetrahedral
FE meshes by means of collocation. The resulting displacement in z-direction of the right
upper front corner for different displacement based and mixed formulations is displayed
in Figure 7.21 (a) - (b) for the material parameters of Figure 7.3 and a modified Poisson’s
ratio of ν = 0.4999999. The black horizontal lines denote overkill FE solutions. As already
mentioned, a deviation from the Finite Element solution or even unstable behavior can be
observed for irregular particle patterns with the variationally inconsistent PG formulations.
On the other hand, the VC corrected counterparts converge to the FE benchmark, where the
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(b) ν = 0.49999

Figure 7.20. Convergence study: The minimal vertical displacement is plotted over
the number of nodes. Different approaches of the PPG method are com-
pared to the mixed H1P0 Finite Element for two different Poisson’s ra-
tios.

PBG formulations generally exhibit a softer response and faster convergence but with a less
monotonic convergence in comparison to the irregular FEM O1 solutions.

The computational time needed for the VCPBG Unl and FEM O1 simulations, using the
Conjugate Gradient method for the solution of the global linear system in the Newton
Raphson method, is visualized in Figure 7.21 (c) - (d). Whereas in the range of fewer
degrees of freedom the assembling of the system plays the major role for the computational
time, for larger numbers of particles the solution of the linear system dominates. Hence, the
increase of computational time for smaller systems is caused by an increased number of
evaluations of the constitutive equations and for larger systems by the less sparse tangent
matrix resulting from overlapping families. For the finest discretization into 1.2 million
degrees of freedom, the total computation time of the PG simulation is about 56% larger
compared to the corresponding FE simulation. However, the deviation of the edge displace-
ment from the FE overkill solution amounts only 23% of the deviation of the FE O1 solution.

7.3.5 Cylindrical necking
Next, the localization of the proposed formulations is examined in a practical problem.
Therefore, the quasistatic necking of a cylinder is performed in accordance with HUDO-
BIVNIK ET AL. (2019). Figure 7.22 depicts the model problem and inital discretization,
where the cylinder is clamped at both sides and elongated at the right by a displacement
of ū = 5 mm in x-direction. Its material parameters state E = 206.9 kN

mm2 , ν = 0.29,
σy0 = 0.45 kN

mm2 , σy∞ = 1.165 kN
mm2 , H = 0.13 kN

mm2 and δ = 16.93. The discretization is
made up of the nodes of a refining collocated FE mesh, where each element of the original
mesh is divided into N × N × N elements. To trigger the plastic necking, the radius is
reduced to dc = 0.99d at the center of the cylinder. Without further shifting of nodes, the
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(a) Displacement based approaches, ν ≈ 0.36
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(b) Mixed u-p-Θ approaches, ν = 0.4999999
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(c) Computational time for two load steps using Conjugate Gradient method

Figure 7.21. Convergence study: The displacement in z-direction of the upper right
front corner of Cook’s membrane is plotted over a series of 18 irregular
particle distributions. A Finite element comparison is performed with
a displacement based tetrahedral mesh with the same node distribution
and a regular refining H1P0 Finite Element mesh.
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Figure 7.22. On the left: Geometry and boundary conditions of the quasistatic cylin-
drical necking problem. On the right: Initial collocated FE mesh for
discretization N = 1.

volume of the surface particles is simply scaled such that the collective particle volume
exactly matches the cylinder’s one.

The residual force at the left clamping over the displacement at the right end is plotted at
the top of Figure 7.23 for N = 6. Until the plastic localization manifests in a necking which
reduces the applicable force, all curves lie on top of each other. While the necking continues,
the volumetric locking of some of the formulations restricts the further localization. Whereas
the Unl+P1C formulation is in the best agreement to the H1P0 FEM solution, the UnlP0
and underintegrated stabilized formulations lead also to good results. Figure 7.24 displays
the accumulated plastic strain at the final configuration. The inaccurate force displacement
curve of the U2P1 formulation is here explained, as the localization did not take place in
the center, but almost simultaneously at two places. Furthermore, the U2P1C formulation
aborted, likely due to pressure oscillations. Note, that even though the force displacement
curve of the Unl+P1C and UnlP0 formulation lie above the FEM H1P0 curve, the maximal
accumulated plastic strain is stronger localized. The maximal residual force for a series of
refining discretizations is shown at the bottom of Figure 7.23. The superior convergence
of the PG solutions can be explained by the simple volume scaling of the surface particles
which accounts for the exact volume of the curvilinear cylinder.

7.3.6 Dynamic torsion of square elasto-plastic prism

The robustness towards strongly irregular particle distributions is one of the major advan-
tages of meshfree methods. Therefore, the implicit dynamic response of a twisted square
prism with the geometry as in section 7.3.2 is evaluated for the proposed formulations
with two distorted original meshes, while Newmark time integration is applied. In Figure
7.25, the geometry of the squared specimen is depicted, as well as the cross section of the
two discretizations and, as a benchmark, the FEM H1P0 solution with 320000 regularly
structured elements. The prism, initially at rest, is clamped at the bottom and rotated at the
top with a speed of one rotation per 10µs. Its material parameters are the same as those
of the previous example with an initial density of ρ0 = 7.85 g

cm3 . The two discretizations,
consisting of 1715 elements, are distorted by perturbing the interior nodes in each direction
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Figure 7.23. At the top: The residual force at the left clamping is plotted over the
applied displacement on the right end. At the bottom: Convergence of
maximal residual force at the left clamping for various formulations.
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(a) VCPBG Unl, ēpmax = 1.95 (b) VCPBG U2, ēpmax = 2.23

(c) VCPBG UnlP0, ēpmax = 5.30 (d) VCPBG U2P1, ēpmax = 2.07

(e) VCPBG U2P1C, ēpmax = 2.10 (f) VCPBG Unl+P1C, ēpmax = 6.09

(g) VCPBG U1SUnl, ēpmax = 2.94 (h) VCPBG U1SIG, ēpmax = 2.37

(i) VCPPG UnlP0, ēpmax = 2.94

ēp
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(j) Legend

Figure 7.24. The accumulated plastic strain for quasistatic cylindrical necking prob-
lem is colored on the deformed configuration for the presented formula-
tions. The maximal accumulated plastic strain of the comparative FEM
H1P0 solution is ēpmax = 3.71
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Table 7.5. Maximal accumulated plastic strain as a measure for the plastic local-
ization within irregular particle patterns and failure angle for the highly
irregularly discretized squared prism for all presented approaches.

Formulation Maximal accumulated plastic Failure angle in degree (D2)
strain at 360 degrees (D1)

VCPBG Unl 0.92 1076.7
VCPBG U2 0.91 641.5
VCPBG UnlP0 1.97 1150.0
VCPBG U2P1 1.29 872.9
VCPBG U2P1C 2.32 460.0
VCPBG Unl+P1C 10.86 1364.2
VCPBG U1SUnl 1.24 1351.6
VCPBG U1SIG 1.3 2119.1
VCPPG Unl − 2.9
VCPPG UnlP0 1.52 45.1
FEM H1 1.05 11.0
FEM H1P0 1.33 97.2
FEM H1P0, fine regular mesh 18.81

randomly by a value in the interval (−0.25, 0.25) (D1) or (−0.5, 0.5) (D2) times the particle
spacing, respectively. By means of collocation, the particle positions and volumes are then
determined.

First, with the moderately distorted discretization (D1), a twisting up to 360 degrees is
performed and the visual deformation (see Figure 7.26) as well as the maximal accumulated
plastic strain (see Table 7.5) are examined. As can be seen, all formulations except the PPG
Unl converge, but the localization of the plastic deformation, which should accumulate at the
outer top, varies. The best matching results, compared to the FE benchmark, can be gained
via the enriched Unl+P1C approach, followed from the other mixed formulations. Due to
a slight locking of the stabilization, the localization of the underintegrated approaches is
disturbed, but the visual deformations are still agreeable. In a second step, for the highly
distorted discretization (D2), the rotation is continued until the adaptive time stepping could
not converge for a further rotation of 0.1 degrees. The maximal rotation angle is displayed in
Table 7.5. While the mesh-based FEM H1P0 solution already fails at 97.2 degrees, the PBG
approaches can deal with rotations up to 15 times as large. Especially the underintegrated
stabilized U1SIG formulation exhibits an excellent robustness. Furthermore, the mere
displacement based PBG formulation with linear basis outperforms its FE counterpart by a
factor of almost 100.

7.3.7 Taylor anvil impact benchmark
Subsequently, the classical Taylor anvil benchmark for impact simulations of KAMOULAKIS

(1990) is implemented. Thereby, a copper rod with an initial velocity of 227 m
s

is shot
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Figure 7.25. Geometry, discretization of collocated irregular meshes and benchmark
solution with 360 000 H1P0 Finite Elements of the dynamic torsion
problem with the same color legend as in Figure 7.26.
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(a) VCPBG Unl (b) VCPBG U2 (c) VCPBG UnlP0 (d) VCPBG U2P1 (e) VCPBG U2P1C

(f) VCPBG Unl+P1C (g) VCPBG U1SUnl (h) VCPBG U1SIG (i) VCPPG UnlP0
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Figure 7.26. The accumulated plastic strain for the problem of the dynamic torsion
of a square prism is colored on the deformed configuration for the pre-
sented formulations.
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Figure 7.27. Geometry and initial conditions of the two versions of the Taylor anvil
benchmark.
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Figure 7.28. On the left: Final mushroom radius at the impacting end over number
of particles. On the right: Final length in the center of the specimen
over number of particles.

against a rigid, frictionless wall (see Figure 7.27(a)). The material parameters are set to
be E = 117.0 kN

mm2 , ν = 0.35, σy0 = 0.4 kN
mm2 , σy∞ = 0.4 kN

mm2 , H = 0.1 kN
mm2 , δ = 0 and

ρ0 = 8.93 g
cm3 . With the impact of the bar, an elastic and plastic wave start to propagate from

the bottom of the rod and form a characteristic mushroom-like deformation. Classically, the
final length, the radius of the mushroom at the bottom and the maximal accumulated plastic
strain at a time of 80µs after impact when most of the initial kinetic energy dissipated
are taken for comparison. Here, a series of refining discretizations is used for each of the
presented PBG formulations, where the Unl, UnlP0, U1SUnl and U1SIG approaches are
temporally explicitly integrated with the central difference method, and the U2, U2P1,
U2P1C and Unl+P1C formulations utilize the Newmark-beta method with 1000 time steps.
The contact zone at the bottom is simplified as a Dirichlet boundary condition which is, in
case of the explicit integration, adopted to apply only compressive forces.
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Table 7.6. Comparison of final length, mushroom radius and maximal total equiv-
alent plastic strain of the literature and selected PBG approaches (ex-
tension of KUMAR ET AL. (2019)).

Final Mushroom ēpmax
length [mm] radius [mm]

KAMOULAKIS (1990), FEM 21.47− 21.66 7.02− 7.12 2.47− 3.24
ZHU & CESCOTTO (1995), FEM 21.26− 21.49 6.89− 7.18 2.75− 3.03
CAMACHO & ORTIZ (1997), FEM 21.42− 21.44 7.21− 7.24 2.97− 3.25
BELYTSCHKO ET AL. (2000), EFG 21.46 7.13 3.33
KUMAR ET AL. (2019), OTM 21.45 6.84 2.69
CIHAN ET AL. (2021), VEM H1JP 21.36− 21.45 6.99− 7.01 3.15
CIHAN ET AL. (2021), VEM VOJP 21.56− 21.65 7.17− 7.18 4.06
VCPBG Unl 21.32 6.47 2.81
VCPBG U2 21.44 6.85 2.94
VCPBG UnlP0 21.48 7.30 3.56
VCPBG U2P1 21.43 6.88 3.03
VCPBG U2P1C 21.31 6.70 2.49
VCPBG Unl+P1C 21.54 7.28 3.35
VCPBG U1SIG 21.45 7.26 4.46
VCPBG U1SUnl 21.52 7.16 3.73

The convergence of the mushroom radius and the final length of the copper rod against
the number of particles are displayed in Figure 7.28. Apparently, the Unl, U2 and U2P1
formulations are suspect to volumetric locking. While the underintegrated and stabilized
approaches U1SUnl and U1SIG also converge relatively fast, the best rates can be achieved
with the mixed UnlP0 and Unl+P1C formulations. The reference values of the finest
discretization are in agreement to those of previous literature (see Table 7.6). Figure 7.29
depicts the total equivalent plastic strain on the deformed configuration at a time of 80µs
for a discretization into 33361 particles. The locking behavior of some of the formulations
can be recognized by the shape of the plastified mushroom region. When comparing the
pressure field of the two best performing mixed approaches, an explanation for the outcome
of the numerical inf-sup tests becomes visible. The UnlP0 formulation which not passed the
inf-sup test shows checkerboard-like modes while the Unl+P1C formulation which satisfied
the inf-sup test exhibits a smooth pressure field.

To demonstrate the capability in modeling extreme events, KUMAR ET AL. (2019) adopted
the benchmark by increasing the initial velocity to 750 m

s
and decreasing the specimen length

to 12.8 mm and the simulation time to 15µs. Figure 7.31 shows the deformed configuration
of two intermediate, the final and extended 30µs configuration of the U1SIG approach
with explicit time integration and adaptive Dirichlet boundary conditions at the bottom. In
the cross section after 3µs, it can be seen, that a cavity forms during the formation of the
mushroom. This physically meaningful behavior could already be observed for high impact
velocities in an experimental setting of an aluminum rod (CHAPMAN ET AL. (2005)) or
numerically with a different geometry and speed with copper (FORDE ET AL. (2009)).
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(a) VCPBG Unl (b) VCPBG U2 (c) VCPBG UnlP0

(d) VCPBG U2P1 (e) VCPBG U2P1C (f) VCPBG Unl+P1C

(g) VCPBG U1SUnl (h) VCPBG U1SIG
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Figure 7.29. The accumulated plastic strain for the Taylor anvil benchmark is colored
on the deformed configuration for the presented PBG formulations.
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(a) VCPBG UnlP0 (b) VCPBG Unl+P1C
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Figure 7.30. The pressure distribution of the two best performing mixed PBG ap-
proaches is visualized on the deformed configuration.
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Figure 7.31. The accumulated plastic strain is colored on two intermediate configu-
rations, the final and extended configuration of the high velocity Taylor
anvil impact test using the VCPBG U1SIG formulation.

7.3.8 Coupling with Finite Elements and symmetry boundary condi-
tions

With the satisfaction of the patch test and the imposition of Dirichlet boundaries on a
single layer of particles directly at the surface, the coupling with Finite Elements and the
application of symmetry boundary conditions become straightforward. To demonstrate this,
a plate with a circular hole (cf. YAGHOOBI & CHORZEPA (2018)) is used to test these
possibilities. As depicted in Figure 7.32 the symmetry of the problem is utilized to model
only the bottom left quarter (see also geometry and material parameters). PPG particles
are used in the right area where high stresses are expected. The left part is modeled with
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Q1 Finite Elements to further reduce the computational cost. Both domains are coupled
simply by having the same nodes at the coupling interface. The FEM-PPG coupling is tested
using an uncorrected and a first order variationally consistent formulation, both with 73728
elements and 21857 particles. As a benchmark, a Q1 Finite Element solution with 1523712
elements is used. In Figure 7.33, the normal stress in horizontal direction is plotted along the
symmetry lines. For the variationally inconsistent formulation, strong oscillations occur near
the coupling zone and at the boundary. In contrast, the first order variationally consistent
version with fixed correction factors at the surface in normal direction agrees very well
with the FE solution. Further, in the displacement and stress contours, displayed in Figure
7.34, smooth distributions with strongly localized stresses at the expected areas are observed.

Figure 7.32. Geometry, material data and boundary conditions of the quarter of the
plate with hole.
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Figure 7.33. Normal stress in x-direction along the symmetry axis of the plate with
hole problem for the FEM coupled uncorrected and first order varia-
tionally consistent PPG method compared to a Finite Element reference
solution.
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Figure 7.34. Displacement and stress contours of the plate with hole problem for
the first order variationally consistent VCPPG V3sn Unl formulation,
coupled with Finite Elements.



Chapter 8

Conclusion and outlook

In the presented work, the PG methods were introduced as a class of meshfree formulations
based on particle discretizations as a generalization of the common peridynamic correspon-
dence formulation and the corrected SPH. The Galerkin type approach provides the basis
for developing more stable, robust, convergent and efficient correspondence formulations.
Petrov-Galerkin formulations were found to offer a convenient tool to analyze the specific
needs of shape functions and with which a set of crucial properties were identified. These
include the interpolation property, trial function consistency, configurational consistency
and variational consistency. Based on an essential inverse averaging, a powerful Bubnov-
Galerkin method can be designed when constructing shape functions that fulfill all the
mentioned conditions. Besides, with the option of full neighbor particle integration, it is
possible to derive higher order, mixed and enriched peridynamic analogons to those known
from FE technology. Noteworthy are on the one hand the VCPBG Unl formulation in
simulations without geometric constraints and the VCPBG UnlP0 and especially VCPBG
Unl+P1C approaches in the range of incompressibility and plastic isochoric flow within
implicit simulations. When physical phenomena require small time steps, the VCPBG
U1SIG formulation is a great alternative to utilize the central differences explicit time
stepping where no global system of equations has to be solved and the constitutive laws are
only once evaluated.

Compared to the FEM, the PBG method exhibits an extraordinary robustness against
severely distorted original meshes for the cost of increased computational time, depending
on the degree of non-locality. Its similar structure makes it possible to be implemented into
existing FE environments as e.g. AceFEM, where neighborhoods take the place of elements
and the particles are generated as collocated FE nodes. Compared, on the other hand, to the
common peridynamic correspondence formulation, next to an increased stability, accuracy
and convergence rate, a massive speed up can be realized for implicit frameworks which is
based on the presented consistent linearization options in contrast to the classical numerical
tangent approximation. However, the theory of the proposed PG methods is by no means
complete and a vast range of possible extensions require for extensive research. Next to the
volumetric locking that was addressed in chapter 6, other types of over-stiffening as e.g.
shear locking should be examined in future. The development of error estimates should
also be addressed to increase the reliability of the PG methods. Further, the extension to
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multi-field problems as e.g. a chemo-mechanical coupling (c.f. HAJIKHANI (2021)) could
be analyzed. In the following, two possible proceeding research fields are presented, namely
the modeling of fracture and fluid flows.

8.1 Back to the origin of peridynamics: Fracture
Although peridynamics originates with its integro-differential formulation from the model-
ing of discontinuities, the simple breakage of bonds gets less intrinsic and straightforward
when utilizing state-based correspondence material models, cf. SILLING (2016). Neverthe-
less, as it is possible to use constitutive laws from the local theory within a correspondence
framework, one can also incorporate continuum damage models like done in TUPEK ET AL.
(2013), LIU ET AL. (2018) and BEHZADINASAB & FOSTER (2019). Using the PG methods,
this technique can analogously pursued which is demonstrated in the following plate with
tho holes problem using the VCPBG U1SIG formulation and explicit central difference
time integration. Without going into further detail, the Johnson-Cook ductile damage and
fracture model of JOHNSON & COOK (1983) and JOHNSON & COOK (1985) was exploited,
where the thermal softening and rate dependency were neglected. As material parameters, a
density of ρ0 = 7830 kg

m3 , Young’s modulus of E = 200 GPa, Poisson’s ratio of ν = 0.29,
strength constants A = 792 MPa, B = 510 MPa and n = 0.26 and fracture constants
D1 = 0.05, D2 = 3.44, D3 = −2.12 and Dc = 0.3 were used as in BROUMAND & KHOEI

(2015). The geometry of the problem is depicted in Figure 8.1 (a) and is modeled in plane
strain. In the transient simulation, the steel plate is fixed at the bottom and pulled up at the
top with a constant speed of v̄ = 2000 mm

s
. As visualized in Figure 8.1 (b) - (f), the plate

starts to rupture in two places in the middle of the plate in the shear band. The crack paths
join and propagate towards the circular cutouts. Finally the two outer bridges tear apart
in a 45 degree angle to the tension direction. The force response at the bottom end and
stored elastic energy are plotted in Figures 8.1 (g) and (h). The strong dynamics lead to an
increase of force and energy which soon drops down in consequence of the failure. While
the residual force at the bottom clamping oscillates around the x-axis, the stored energy
decreases to an amount denoting the internal residual deformation.

Note, that the demonstrated simulation was performed in a total Lagrangian setting and the
connectivity of the lower and upper part of the plate are still connected. While in this aca-
demic test case this causes no harm, in a complex practical crash event, it may be preferable
to separating also the connectivity when a fracture zone occurs. This could be realized either
in a semi-total Lagrangian or an updated Lagrangian manner. Neighbor particles that move
away to far, meaning they are on the other side of the fracture, could be deleted from the orig-
inal family and the shape functions recomputed in the initial or current configuration in case
of semi-total and updated Lagrange, respectively. In the subsequent correction of variational
consistency, it must be noted that with the fracture a surface arises which has to be taken into
account. Since the computation of the VC correction requires the solution of a global system,
such an update should not be performed in each time step and only when needed as it would
otherwise ruin the computational speed of an explicit simulation. An alternative technique
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could consist in the use of local VC correction schemes which will further be explained in
section 8.2.

8.2 Fluid flows

Next to the simulation of solid mechanics problems, meshfree methods are often used
to model fluids in an updated Lagrangian description. To extend the PG methods for
simulating fluids, some prerequisites should be noted. One of it consists in the absence
of volumetric locking since many fluids behave almost incompressible. With respect to
this, several strategies have been pursued as fractional step schemes (see e.g. CUMMINS

& RUDMAN (1999) and NITHIARASU ET AL. (2006)) or pseudo divergence free shape
functions (cf. HUERTA ET AL. (2004b)), but also the mixed displacement–pressure–dilation
approaches can be used when fulfilling the LBB condition. To demonstrate this, in Figure
8.2, a 2-D Poiseuille flow was simulated using the VCPBG Unl+P1C formulation and
Newmark time integration. While initially at rest, the water-like Newtonian fluid (density
ρ = 103 kg

m3 , bulk modulus K = 2.08 GPa, dynamic viscosity η = 10−3 Pa s) underlies a
gravity of g = 2 · 10−4 m

s2 in horizontal direction (x-axis) and accelerates until a parabolic
velocity distribution between the upper and lower wall sets in. In contrast to the PBG Unl
formulation (where the water does not flow at all), no locking effects could be observed
here, which is in accordance with the numerical inf-sup test of section 7.2.5.

Nevertheless, in its present setting, the Unl+P1C formulation is still not applicable for com-
plex flow problems which can be seen in situations where the accurate approximation of the
pressure field becomes important. Therefore, in a second example, the classical dam break
problem is simulated as depicted in Figure 8.3 (a) with an inviscid water-like fluid. Again, the
VCPBG Unl+P1C formulation with Newmark time integration is used within a discretization
of 50 × 100 regularly distributed particles in a total Lagrangian simulation. Both the shape
of the water as well as the pressure distribution within it look reasonable at the selected time
frames in Figures 8.3 (b) - (g). However, when performing the same simulation using an
irregular particle distribution, severe oscillations would soon arise. The reason for this lies in
the fact, that the variational consistency correction is only performed with respect to the test
function of the displacements. Even though any linear displacement field can be captured
accurately, a linear pressure field may not. Hence, additional integration constraints have to
hold for the virtual pressure field. A global correction scheme was investigated to correct
this inconsistency, but seemed not to be appropriate due to a rank deficiency of the global
correction matrix that could not be eliminated as done in section 5.3.2. To circumvent the
issue of finding boundary conditions for the VC correction and to accelerate the correction
procedure, the development of local VC corrections as outlined below should be pursued.
Although the condition for first order VC of the displacement field is globally coupled, it can
be decoupled to a set of (larger) local conditions. By introducing a sum over volume frac-
tions on the right hand side of equation (5.18) (PBG), it rewrites considering zeroth order
consistency (i.e. no bond correction is performed)
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Figure 8.1. Plate with two hole ductile fracture test case: For the discretization a
collocated T1-FE mesh resulting into 27936 particles is used with the
inherited FE-connectivity.
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Figure 8.2. Geometry, discretization and dynamic response of the 2-D Poiseuille
flow using 100× 100 VCPBG Unl+P1C particles.
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N i∑
j=0

V iV j

V H
i
0

∂N ijk
δu

∂X
=


Nk∑
i=0

0 on Ω\∂Ω

Nk∑
i=0

V i

VH
k
0
Ak on ∂Ω

(8.1)

which is valid whenever for each neighbor particle i ∈ Hk
0 applies

N i∑
j=0

V iV j

V H
i
0

∂N ijk
δu

∂X
=

{
0 on Ω\∂Ω
V i

VH
k
0
Ak on ∂Ω

(8.2)

As equation (8.2) has to hold for each neighborhood in a global pairwise discretization, the
indices can be changed yielding

Nk∑
j=0

V j ∂N
kji
δu

∂X
=
V H

k
0

V H
i
0

{
0 i on Ω\∂Ω
Ai i on ∂Ω

∀i ∈ Hk
0 , (8.3)

which is a set of local conditions. At this point, a local correction ansatz can be introduced to
modify the test function derivatives in conformity with section 5.3.2. Thereby, either special
correction shape functions conditions or additional constraint equations have to be defined
such that the consistency properties listed in section 5.1.1 are preserved.



116 CHAPTER 8. CONCLUSION AND OUTLOOK

0
58

4m
.

0 292m.

u
y
=0

u
x
=

0

x

y

r = 10
3

K a= 2.08GP

g = 9.81
m

s 2

kg

m3

(a) t = 0 s (b) t = 0.1 s (c) t = 0.2 s

(d) t = 0.3 s (e) t = 0.4 s

(f) t = 0.5 s

-p [bar]

-0.030

-0.025

-0.020

-0.015

-0.010

-0.005

0

(g) Legend

Figure 8.3. Geometry, boundary conditions, material data and exemplary deformed
configurations of the dam break problem.



Appendix A

Exemplary derivation of the global
tangent stiffness matrix

Considering only displacement-independent loads and a non changing discretization, the
discretized weak form of equation (4.14) is linearized as follows:

∆δŪh =
np

A
k=1

∆

−V k

Nk∑
j=0

[
t̄kj − t̄jk

]
V j · δuk

 . (A.1)

Taking into account that the pairwise force densities are defined to be zero outside of Hk
0 ,

equation (A.1) can be rewritten analogously to equations (3.13) as

∆δŪh =
np

A
k=1

∆

V k

Nk∑
j=0

[
t̄kj − t̄jk

]
V j · δuj

 . (A.2)

It follows the particle-wise view under the assumption of constant initial particle volumes
and actual displacement independent virtual displacements:

∆δŪk
h = V k

Nk∑
j=0

∆
[
t̄kj − t̄jk

]
V j · δuj . (A.3)

By inserting the correspondence formulation of equation (4.21) (PPG1) it changes to

∆δŪk
h =

Nk∑
j=0

∆

[
−V jP̄kj · ∂N

jjk
δu

∂X
+ V kP̄jk · ∂N

kkj
δu

∂X

]
· δuj . (A.4)

Since the test functions are defined in the reference configuration and are therefore displace-
ment independent, it simplifies to

∆δŪk
h =

Nk∑
j=1

[
−V j∆P̄kj · ∂N

jjk
δu

∂X
+ V k∆P̄jk · ∂N

kkj
δu

∂X

]
· δuj . (A.5)
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Substituting the first Piola-Kirchhoff stress for P̄ = F̄ · S̄ and the linearized second Piola-
Kirchhoff stress for ∆S̄ = C̄ : ∆Ē yields via the product rule

∆δŪk
h =

Nk∑
j=1

[
−V j

(
∆F̄kj · S̄kj + F̄kj · C̄kj : ∆Ēkj

)
· ∂N

jjk
δu

∂X

+V k
(
∆F̄jk · S̄jk + F̄jk · C̄jk : ∆Ējk

)
· ∂N

kkj
δu

∂X

]
· δuj

= T1 + T2 + T3 + T4

(A.6)

with the fourth order material tangent C and the Green-Lagrange strain Ē = 1
2

(
F̄T · F̄− 1

)
.

The further breakdown of the above expression is separated into a geometric (T1 and T3) and
a substantial part (T2 and T4).

Geometric Part

Using the shape function approach of equation (4.11) and the derivative of the partition of
unity condition (bond correction is not considered here), the linearization of the deformation
gradient ∆F̄kj gets

∆F̄kj = ∆H̄kj =
Nk∑
i=0

∆uki ⊗ ∂Nkji
u

∂X
=

Nk∑
i=0

ui ⊗ ∂Nkji
u

∂X
. (A.7)

Thereby, the first geometric part writes

T1 =
Nk∑
j=1

Nk∑
i=0

−V jui ⊗ ∂Nkji
u

∂X
· S̄kj · ∂N

jjk
δu

∂X
· δuj . (A.8)

Rearranging this leads to

T1 =
Nk∑
j=1

Nk∑
i=0

δuj ·

(
−V j ∂N

kji
u

∂X
· S̄kj · ∂N

jjk
δu

∂X

)
1 · ui =

Nk∑
j=1

Nk∑
i=0

δuj ·Gji
1 1 · ui (A.9)

with the geometrical scalar

Gji
1 = −V j ∂N

kji
u

∂X
· S̄kj · ∂N

jjk
δu

∂X
. (A.10)

Analogously, the second geometric part T3 is treated by changing the indices of the linearized
deformation gradient (equation (A.7)):

T3 =
Nk∑
j=1

Nj∑
i=0

V kui ⊗ ∂N jki
u

∂X
· S̄jk · ∂N

kkj
δu

∂X
· δuj . (A.11)
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Again, a rearrangement leads to

T3 =
Nk∑
j=1

Nj∑
i=0

δuj ·

(
V k ∂N

jki
u

∂X
· S̄jk · ∂N

kkj
δu

∂X

)
1 · ui =

Nk∑
j=1

Nj∑
i=0

δuj ·Gji
2 1 · ui (A.12)

with

Gji
2 = V k ∂N

jki
u

∂X
· S̄jk · ∂N

kkj
δu

∂X
. (A.13)

Substantial Part

By using the linearized deformation gradient of equation (A.7) and considering the product
rule, the linearized Green-Lagrange strain can be written as

∆Ēkj =
1

2

(
∆F̄kjT · F̄kj + F̄kjT ·∆F̄kj

)
=

Nk∑
i=0

1

2

(
∂Nkji

u

∂X
⊗ ui · F̄kj + F̄kjT · ui ⊗ ∂Nkji

u

∂X

)
.

(A.14)
Inserting this into the first substantial part T2 leads to

T2 =
Nk∑
j=1

Nk∑
i=0

−1

2
V jF̄kj · C̄kj :

(
∂Nkji

u

∂X
⊗ ui · F̄kj

)
· ∂N

jjk
δu

∂X
· δuj

+
Nk∑
j=1

Nk∑
i=0

−1

2
V jF̄kj · C̄kj :

(
F̄kjT · ui ⊗ ∂Nkji

u

∂X

)
· ∂N

jjk
δu

∂X
· δuj .

(A.15)

Written in index notation and considering the symmetries of C̄, the two parts can be merged
as follows:

Nk∑
j=1

Nk∑
i=0

−1

2
V jF̄ kj

FAC̄
kj
ABCD

∂Nkji
u

∂XC

uiEF̄
kj
ED

∂N jjk
δu

∂XB

δujF
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Nk∑
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Nk∑
i=0

−1

2
V jF̄ kj

FAC̄
kj
ABCDF̄

kjT

DE u
i
E

∂Nkji
u

∂XC

∂N jjk
δu

∂XB

δujF

=
Nk∑
j=1

Nk∑
i=0

−δujFV
jF̄ kj

FA

∂N jjk
δu

∂XB

Ckj
BADC

∂Nkji
u

∂XC

F̄ kjT

DE u
i
E .

(A.16)

Rewriting this in matrix notation yields
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T2 =
Nk∑
j=1

Nk∑
i=0

δuj ·

[
−V jF̄kj ·

(
∂N jjk

δu

∂X
· C̄kj · ∂N

kji
u

∂X

)
· F̄kjT

]
·ui =

Nk∑
j=1

Nk∑
i=0

δuj ·Mji
1 ·ui

(A.17)
with the substantial matrix

Mji
1 = −V jF̄kj ·

(
∂N jjk

δu

∂X
· C̄kj · ∂N

kji
u

∂X

)
· F̄kjT . (A.18)

Utilizing the Voigt notation for equation (A.18), it can be written as

Mji
1 = −V jF̄kj ·

(
BjjkT

δu · D̄kj ·Bkji
u

)
· F̄kjT (A.19)

with the B matrix in 2-D

Bkji =

∂Nkji

∂X
0

0 ∂Nkji

∂Y
∂Nkji

∂Y
∂Nkji

∂X

 . (A.20)

Analogously to the first substantial part, the second one can be handled by changing the
indices k and j of the linearized Green-Lagrange strain tensor (equation (A.14)) and inserting
it into T4:

T4 =
Nk∑
j=1

Nj∑
i=0

1

2
V kF̄jk · C̄jk :

(
∂N jki

u

∂X
⊗ ui · F̄jk

)
· ∂N

kkj
δu

∂X
· δuj

+
Nk∑
j=1

Nj∑
i=0

1

2
V kF̄jk · C̄jk :

(
F̄jkT · ui ⊗ ∂N jki

u

∂X

)
· ∂N

kkj
δu

∂X
· δuj .

(A.21)

Note, that the inner sum operates on the family of particle j from the outer sum which leads
to a rectangular particle-wise stiffness matrix. Like before, a rearrangement in index notation
merges the two occurring terms:

T4 =
Nk∑
j=1

Nj∑
i=0

δuj ·

[
V kF̄jk ·

(
∂Nkkj

δu

∂X
· C̄jk · ∂N

jki
u

∂X

)
· F̄jkT

]
· ui =

Nk∑
j=1

Nj∑
i=0

δuj ·Mji
2 · ui ,

(A.22)
with the second substantial matrix

Mji
2 = V kF̄jk ·

(
∂Nkkj

δu

∂X
· C̄jk · ∂N

jki
u

∂X

)
· F̄jkT (A.23)

or in Voigt notation
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Mji
2 = V kF̄jk ·

(
BkkjT

δu · D̄jk ·Bjki
u

)
· F̄jkT . (A.24)

With the pairwise geometric and substantial parts, the particle-wise tangent stiffness matrix
can be assembled as in equation (4.58).
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Appendix B

Momentum preservation of mixed
approaches

The preservation of linear momentum is ensured by the concept of pairwise forces. As the
isochoric part of the strain energy is handled in the standard purely displacement based way,
the momentum preservation is automatically fulfilled and it remains to show that the volu-
metric part of the residual can also be written in terms of pairwise force densities. Thus,
starting from the local volumetric potential of equation (6.2) and (6.3), the residual contri-
bution to a neighbor particle l can be computed as the derivative with respect to the particles
displacement

PPG:
∂Πk

∂uj
= V kpk

∂Jk

∂Fk
:
∂Fk

∂uj
or (B.1)

PBG:
∂Πk

∂uj
=

V k

V H
k
0

Nk∑
j=0

V jpkj
∂Jkj

∂Fkj
:
∂Fkj

∂uj
(B.2)

where the chain rule is used. Inserting the deformation gradient approach (4.11) and switch-
ing to index notation yields

PPG:
∂Πk

∂ulA
= V kpkJkF k

BC

−T
Nk∑
i=0

∂uiB
∂ulA

∂Nkki

∂XC

or (B.3)

PBG:
∂Πk

∂ulA
=

V k

V H
k
0

Nk∑
j=0

V jpkjJkjF kj
BC

−T
Nk∑
i=0

∂uiB
∂ulA

∂Nkji

∂XC

. (B.4)

The resulting pull-back of the volumetric Cauchy-stress can be exchanged by the first Piola-
Kirchhoff stress tensor:
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PPG:
∂Πk

∂ul
= V kpkJkFk−T · ∂N

kkl

∂X
= V kPk

vol ·
∂Nkkl

∂X
or (B.5)

PBG:
∂Πk

∂ul
=

V k

V H
k
0

Nk∑
j=0

V jPkj
vol ·

∂Nkjl

∂X
. (B.6)

Analogous to the contribution to the nodal residual of particle j, the corresponding contribu-
tion to particle k follows

PPG:
∂Πk

∂uk
= V kPk

vol ·
∂Nkkk

∂X
= −

Nk∑
j=1

V kPk
vol ·

∂Nkkj

∂X
or (B.7)

PBG:
∂Πk
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V H
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V jPkj
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∂Nkjk

∂X
= − V k

V H
k
0

Nk∑
j=0

Nk∑
i=1

V jPkj
vol ·

∂Nkji

∂X
, (B.8)

utilizing the zeroth order consistency condition of equation (5.5). The internal force acting
on particle k can now be assembled from the potentials of its neighboring particles and
rearranged to

PPG: Rk
u vol =

Nk∑
j=1

[
V jPj

vol ·
∂N jjk

∂X
− V kPk

vol ·
∂Nkkj

∂X

]
= −V k

Nk∑
j=1

[
tkjvol − tjkvol

]
V j or

(B.9)

PBG: Rk
u vol =

Nk∑
i=1

 N i∑
j=0

V iV j

V H
i
0

Pij
vol ·

∂N ijk

∂X
−

Nk∑
j=0

V kV j

V H
k
0

Pkj
vol ·

∂Nkji

∂X

 , (B.10)

where the volumetric pairwise force densities state

PPG: tkjvol = − 1

V k
Pj
vol ·

∂N jjk

∂X
or (B.11)

PBG: tkjvol =
1

V jV H
k
0

Nk∑
i=0

V iPki
vol ·

∂Nkij

∂X
. (B.12)

As the inner forces acting on a particle can be expressed with pairwise force densities, the
linear momentum preservation holds.
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dung von teilräumen, die keinen randbedingungen unterworfen sind. In Abhandlungen aus
dem mathematischen Seminar der Universität Hamburg, volume 36, pages 9–15. Springer,
1971.

OGDEN R. Non-linear elastic deformations. Courier Corporation, 1997.

PLENGKHOM K. & KANOK-NUKULCHAI W. An enhancement of finite element method
with moving kriging shape functions. International Journal of Computational Methods, 2
(2005) (04): 451–475.



134 BIBLIOGRAPHY

PUSO M.A., CHEN J.S., ZYWICZ E. & ELMER W. Meshfree and finite element nodal
integration methods. International Journal for Numerical Methods in Engineering, 74
(2008) (3): 416–446.
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