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A spontaneous missense mutation in the chromodomain helicase DNA-binding protein 8 (CHD8 )

gene: a novel association with congenital myasthenic syndrome

Aims: Congenital myasthenic syndromes (CMS) are char-

acterized by muscle weakness, ptosis and episodic apnoea.

Mutations affect integral protein components of the neu-

romuscular junction (NMJ). Here we searched for the

genetic basis of CMS in female monozygotic twins. Meth-

ods: We employed whole-exome sequencing for mutation

detection and Sanger sequencing for segregation analy-

sis. Immunohistology was done with antibodies against

CHD8, rapsyn, b-catenin (bCAT) and golgin on fibro-

blasts, human and mouse muscle. We recorded superres-

olution images of the NMJ using 3D-structured

illumination microscopy. Results: We discovered a spon-

taneous missense mutation in CHD8 [chr14:

g.21,884,051G>A, GRCh37.p11 | c.1732C>T, NM_0011

7062 | p.(R578C)], the gene encoding chromodomain

helicase DNA-binding protein 8. This is the first missense

mutation affecting Duplin, the short 110 kDa isoform of

CHD8. It is known that CHD8/Duplin negatively regu-

lates bCAT signalling in the WNT pathway and plays a

role in chromatin remodelling. Inactivating CHD8 muta-

tions are associated with autism spectrum disorder and

intellectual disability in combination with facial dysmor-

phism, overgrowth and macrocephalus. No muscle-

specific phenotype has been reported to date. Co-im-

munostaining with rapsyn on human and mouse muscle

revealed a strong presence of CHD8 at the NMJ being

located towards the sarcoplasmic side of the rapsyn clus-

ter, where it co-localizes with bCAT. Conclusion: We

hypothesize CHD8 to have a role in the maintenance of

the structural integrity and function of the NMJ. Both

patients benefited from treatment with 3,4-diaminopy-

ridine, a reversible blocker of voltage-gated potassium

channels at the nerve terminal that prolongs the action

potential and increases acetylcholine release.
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Introduction

Congenital myasthenic syndromes (CMS) are a hetero-

geneous group of mostly autosomal-recessive disorders

affecting the structural integrity of the neuromuscular

junction (NMJ). Clinical features comprise muscle hypo-

tonia, increased muscle fatigability, ptosis and episodes

of apnoea. Further characteristics are muscle weakness,

especially of the ocular, bulbar and proximal limb mus-

cles. The disease manifests early, often perinatally or

during early childhood. Several genes are known to be

implicated in CMS. Most of them encode essential struc-

tural components of the NMJ such as (i) subunits of

the presynaptic proteins involved in neurotransmitter

release and recycling, (ii) proteins of the synaptic basal

lamina and (iii) proteins of the postsynaptic acetyl-

choline receptor (AChR) clusters [1]. The CMS can be

subclassified into presynaptic, synaptic and postsynaptic

forms, as well as into ubiquitous forms caused by defi-

cient glycosylation of NMJ components. Myasthenic

symptoms may also be caused by antibodies against

proteins of the NMJ through transplacental acquisition

in transient myasthenia of the neonate or through

autonomous production in myasthenia gravis [2]. The

diagnostic workup of patients with suspected CMS

involves, beyond genetic testing, clinical examination,

electromyography and the search for antibodies against

AChR or the muscle-specific kinase (MuSK). CMS ther-

apy is aimed to control the symptoms by improving

neuromuscular transmission.

Here, we report 14-year-old monozygotic twins with

myasthenia-like symptoms in whom we found a spon-

taneous heterozygous missense mutation in CHD8. This

gene encodes the Chromosomal helicase domain pro-

tein 8 which, due to alternative splicing exists in two

long 290 kDa (NM_001170629) and 262 kDa (NM_

020920) [3], and several shorter isoforms; among

them a C-terminally truncated isoform without the

helicase domain, a protein called Duplin (for axis dupli-

cation inhibitor) [3,4]. CHD8 belongs to the CHD family

of ATP-dependent chromatin remodelling enzymes that

are responsible for regulation of DNA accessibility and

thus for gene expression [5]. CHD8 is implicated in

transcriptional regulation of the canonical WNT path-

way [3,5-7]. Depending on the cellular receptor reper-

toire, WNT signalling can be categorized as canonical

or noncanonical and is implicated in cell proliferation,

morphology, motility, axis formation and organ devel-

opment [8]. In canonical WNT signalling, extracellular

WNT proteins bind to the membrane receptor frizzled,

activate dishevelled, which in turn inhibits b-catenin
(bCAT) phosphorylation by glycogen synthase kinase

3b (GSK3b). Phosphorylated bCAT is degraded by the

proteasome, whereas WNT mediated inhibition of phos-

phorylation stabilizes bCAT, allowing it to accumulate

in the nucleus and stimulate transcription of WNT tar-

get genes [9]. In muscle cells, canonical WNT sig-

nalling reduces the expression of rapsyn, a protein that

anchors and clusters the AChR in the postsynaptic

membrane, thus being essential for the postsynaptic

maturation of the NMJ [10,11]. In complex with tran-

scription factor 4 (TCF4), bCAT serves as a transcrip-

tional coactivator [12]. CHD8/Duplin was initially

discovered as a direct interaction partner and negative

regulator of bCAT [3,6,13]. CHD8 inhibits the binding

of bCAT to TCF4, thereby repressing the transcription

of WNT3a- and bCAT-dependent genes [5,6]. The influ-

ence of CHD8 on WNT target genes seems to be tissue

dependent with negative regulation in non-neuronal

cells (e.g. muscle) and positive regulation in neuronal

progenitor cells [14].

Case history

All patients provided written informed consent accord-

ing to the Declaration of Helsinki for all aspects of the

study and for publication of the facial photographs.

The now 14-year-old female monozygotic twins are

the first children of healthy nonconsanguineous Ger-

man parents. Pre-eclampsia required Caesarean section

at 31 + 6 weeks of gestation. Neonatal complications

comprised respiratory distress, cardiorespiratory insta-

bility, jaundice, ptosis and muscle weakness. Macro-

cephalus with an occipito-frontal head circumference of

33 cm (z-score = 2.91) was already present at birth.

Head control and motor development were delayed

with free ambulation achieved at 2.5 years of age.

Walking improved at first but deteriorated later at

6 years with frequent falls and generally increased

muscle fatigability. At 11 years of age, both girls devel-

oped a rapidly progressive scoliosis, which was treated

with a corset. The parents reported frequent gastroin-

testinal problems with constipation starting in early

infancy.
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At the age of 11.6 years, the body height of both girls

was 165.5/170 cm (z-score = 1.94/2.54) and the head

circumference 60.5 cm (z-score = 4.82). Further symp-

toms comprised bilateral ptosis, hypomimia, hyper-

telorism, down-slanting palpebral fissures (Figure 1A)

and a weak voice. Eye movements were normal without

diplopia. Muscle reflexes were normal, but muscle force

in the legs was reduced to Medical Research Council

(MRC) scores 3-4 out of 5 [15], tending to worsen after

exertion or in cold weather. Both girls have a thora-

columbar scoliosis, valgus knee deformities and planus

feet. They have a waddling gait with inverted forefeet.

Repetitive electric stimulation of the median nerve did

not show a decrement in the adductor pollicis brevis

(A) (B) (C)

(D)

(E)

Figure 1. Ptosis in both twins (A) before and (B) 1 min after fractionated IV injection of 3 mg edrophonium chloride. Besides reduction

of ptosis, the patients reported self-perceived improvement of eye opening and manual force. The effect only lasted some minutes. (C)

Sanger sequencing electropherograms of the spontaneous CHD8 missense mutation [chr14:g.21,884,051G>A, GRCh37.p11], which was

only present in the twins, but absent in both parents. (D) Linear depiction of the protein-domain structure of the long (290 kDa) and the

short (110 kDa) isoform (Duplin). The p.R578C mutation affects both isoforms. Locations of the other published missense mutations are

marked as well. The numbers highlight crucial phenotypical characteristics of the patients. The various protein domains are marked by

colour and are drawn to scale. (E) Multispecies alignment of CDH8 homologs. The mutant amino acid and its sequence context are

conserved down to Caenorhabditis elegans. Accession numbers: Human, NP_001164100.1; Chimpanzee, ENSPTRG00000006124; Mouse,

ENSMUSG00000053754; Chicken, XP_025001761; Frog, XP_018115294.1; Zebrafish, ENSDARG00000075543; Fruitfly, XP_

016022893.1; Worm, XP_003090036.1. [Colour figure can be viewed at wileyonlinelibrary.com]
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muscle action potential amplitudes. Muscle biopsy speci-

mens were not available for analysis. Motor and sen-

sory nerve conduction velocities were normal. The

intravenous edrophonium chloride test was positive (Fig-

ure 1A,B) with a short and also self-perceived improve-

ment, of eye opening and grip force. We excluded in both

patients the presence of auto-antibodies against PQ-type

voltage-gated calcium-channel, AChR, MuSK and Titin

as known causes of or being associated with myasthenic

syndromes. For differential diagnosis of the overgrowth,

we investigated bone age and hormone status (IGF1,

IGF1-BP3, fT4, TSH), which were all normal, as were

the results of cMRI, echocardiography, ECG and chromo-

some analysis.

Both girls attend the seventh grade of a normal

school with average performance. Intelligence was

assessed with the Kaufman Assessment Battery for Chil-

dren II and yielded average results for both girls in the

scales Sequential/Gsm (short-term memory) and Simul-

taneous/Gv (visual processing). Results for Learning/Glr

(long-term retrieval) and Planning/Gf (fluid reasoning)

were slightly below average. Both girls are well inte-

grated at school and do not have difficulties of social

communication/interaction or establishing eye contact

and do not show restricted or repetitive behaviour,

which excludes an autism spectrum disorder (ASD).

We initiated pyridostigmine treatment (8 mg/kg BW/

day) with only minor improvement of the gait pattern.

Salbutamol (0.04 mg/kg BW/day) was added after

6 weeks, but both drugs had to be discontinued due to sev-

ere gastrointestinal symptoms and vertigo. A clear and per-

sistent improvement of gait pattern, muscle weakness and

fatigability was only achieved with 3,4-diaminopyridine

(3,4-DAP; 0.5 mg/kg BW/day for the past 14 months),

which enabled the patients to walk for more than 1 h,

climbing stairs, carrying and lifting shopping bags. 3,4-

DAP is a reversible blocker of voltage-gated potassium

channels at the nerve terminal, which increases the dura-

tion of the action potential allowing a greater ACh release.

Under 3,4-DAP therapy, a single-fibre electromyography

(EMG) yielded normal results (Figure S1).

Materials and methods

Whole-exome sequencing

DNA was isolated from peripheral leucocytes. Whole-

exome sequencing (WES) was done only in one twin,

after monozygosity had been established by multiple

microsatellite marker analysis. Exonic sequences and

flanking intronic regions were captured using the

SureSelect� human all exon V5 kit (Agilent Technolo-

gies, Santa Clara, California, USA) and sequenced on

an Illumina HiSeq 4000 machine yielding 53.4 Mio

paired-end FASTQ reads. These were aligned to the

human GRCh37.p11 genomic reference with BWA-

MEM v0.7.1 [16]. 99.1% of the SureSelect� V5 posi-

tions were covered >109, and 97.8% >209. After fine-

adjustment, the raw alignments were called for devia-

tions from the reference sequence in all coding exons

and 50 bp flanking regions using GATK v3.8 [17]. The

resulting VCF file was analysed with MutationTaster2

[18] to assess potential pathogenicity of all variants.

For the recessive inheritance model, we removed vari-

ants that occurred >109 in homozygous state in the

ExAC database (homozygote frequency >1.7E-04) and

looked for homozygous or compound heterozygous

mutations. For the dominant inheritance model, we

removed variants that occurred >109 in heterozygous

state in the ExAC database (MAF >8.3E-05).

Potentially disease-causing variants were further

assessed for their pathogenicity using the additional

information provided by MutationTaster2 at http://

www.mutationtaster.org (accessed April 2019) and

visually inspected using the IGV software downloaded

from http://www.broadinstitute.org/igv/. Relevant vari-

ants were tested for segregation in the family by auto-

matic Sanger sequencing using the BigDye�
Terminator v3.1 chemistry (Applied Biosystems,

Waltham, Massachusetts, USA) on the ABI 3500

Genetic Analyzer. For verification of the CHD8 variant

(Figure 1C) and for segregation testing, we used the

oligonucleotide primers FW 50-TTC ATG AAA ATT

TTG GAG TAG AAT C-30, REV 30-GGA ATC TCT CGA

GCC TCG GA-50. We additionally tested a variant in

SH2B1 [chr16:g.28,880,618A>T, CRCh37p.11 |

c.215A>T ENST00000538342] using the oligonu-

cleotide primers FW 50-TTC ATG AAA ATT TTG GAG

TAG AAT C-30 and REV 30-CAT TCG ACA TTT GAG

TTT ACT AAA GT-50.

Immunohistology

CHD8/golgin co-immunostaining of patient and control

fibroblasts: Patient and control fibroblasts were cultured

in DMEM supplemented with 15% foetal calf serum to
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semiconfluency, fixed with 4% buffered paraformalde-

hyde, permeabilized with 0.1% Triton X-100 and

quenched with 0.1 M glycine and blocked with 10%

goat serum. The fibroblasts were labelled with primary

antibodies against CHD8 (ab114126; Abcam, Cam-

bridge, UK, 1:50 dilution, the antibody recognizes

amino acids 604–629 of human CHD8, NP_

001164100.1) and against golgin (sc-73619, 1:100

dilution; Santa Cruz Biotechnology, Dallas, Texas, USA)

at 4°C overnight and subsequently with appropriate

secondary fluorescently labelled antibodies (AlexaFluo-

r488, AlexaFluor568). Nuclei were labelled with DAPI

(Vector Laboratories, Burlingame, California, USA).

Images were recorded by epifluorescence and confocal

imaging using a Leica DMI 4000B inverted microscope

and a CARVII (Becton Dickinson, Franklin Lakes, New

Jersey, USA) spinning disk scan head.

CHD8/rapsyn/bCAT co-immunostaining of control

muscle sections and on isolated muscle fibres. Muscles

and single-muscle fibres were derived from DmdEGFP

mice [19], which express dystrophin-EGFP fusion pro-

tein from the endogenous locus. Therefore, GFP stain-

ing corresponds to/detects dystrophin. Single-muscle

fibres were prepared according to Pasut et al. [20].

Quadriceps muscle cryosections or single-muscle fibres

isolated from extensor digitorum longus muscles were

fixed with 4% or 2% buffered paraformaldehyde, respec-

tively, incubated in preheated 0.01 M citric acid pH 6.0

for 15 min at 80°C for antigen retrieval, and permeabi-

lized with 0.1% Triton X-100. The muscle section/fibres

were then quenched with 0.1 M glycine, blocked with

5% normal goat serum, and labelled with primary anti-

bodies against GFP (A01694, 1:250; GenScript Biotech,

Piscataway, New Jersey, USA), CHD8 and rapsyn (sc-

58585, 1:30 dilution; Santa Cruz) or bCAT (610153,

1:30 dilution; BD) at 4°C overnight and subsequently

with appropriate secondary fluorescently labelled anti-

bodies (AlexaFluor�488, �568, �647). Nuclei were

labelled with DAPI. Samples were mounted in Pro-

longGlass Antifade Mountant (ThermoFisher Scientific,

Waltham, Massachusetts, USA).

3D structured illumination microscopy

3D three colour structured illumination microscopy

(SIM) images were acquired using the 488, 568 and

642 nm laser lines, standard filter settings and

125 nm z-sectioning of the OMX V4 Blaze (GE

Healthcare, Chicago, Illinois, USA) system. 100 nm flu-

orescent beads (Tetraspeck, T7284, Thermo Fischer

Scientific) were used for registration of the detection

channels, achieving <40 nm registration error for all

three channels. 3D-rendering, image- and movie export

was done with Arivis Vision4D and ImageJ [21].

Results

Mutation screening

In the WES data set we discovered a novel variant in

CHD8 [chr14:21,884,051G>A, GRCh37.p11 | c.1732C>T, NM_

001170629 | p.(R578C)] exchanging an evolutionary

highly conserved arginine for a cysteine in the glu-

tamine-rich domain of CHD8. As the parents were unre-

lated, we applied two different filter models, one

assuming dominant inheritance and one assuming

recessive inheritance. The recessive model revealed only

a single variant in SLAIN1 affecting an exon that is not

transcribed in most transcripts. The dominant model

yielded 10 candidate variants that caused an amino acid

change and had a low allele frequency in the gnomAD

database (Table S2). Two variants, one in CHD8 and one

in SH2B1, were shortlisted due to the cellular functions

of these genes, a loss of which might serve as explanation

for our patients’ phenotype. The SH2B1 variant was

excluded because it was present in the healthy father.

The CHD8 variant was absent in both parents and we

opted for this spontaneous mutation as the most likely

disease gene candidate. The CHD8 variant fulfils the

PS2, PM2 and PP3 criteria of the American College of

Medical Genetics and Genomics [22] placing it in the

‘likely pathogenic’ category.

Immunohistology

Immunofluorescent staining of fibroblasts from patients

and controls showed a diffuse cytoplasmic distribution of

CHD8 with clear enrichment around the Golgi appara-

tus, which was verified by co-immunostaining with anti-

CHD8 and antigolgin antibodies. We did not find any

difference in the subcellular distribution of CHD8 in

fibroblasts between patients and controls (Figure S2).

Due to the myasthenic symptoms of our patients, we

investigated single-isolated mouse muscle fibres (Fig-

ure 2), as well as cryosections from murine (Figure 2)

and human muscle (Figure S3) for the presence of
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CHD8, especially in the vicinity of the NMJ that was

marked with antirapsyn antibodies. A muscle biopsy of

the patients was unfortunately not available for investi-

gation. In healthy muscle fibres, CHD8 was diffusely

distributed in the sarcoplasm with high enrichment in

the subsarcolemmal region. Superresolution 3D-SIM

confirmed a strong CHD8-signal at the NMJ, and pro-

vided a better resolution in the z-plane; the CHD8-

signals were located below the rapsyn layer where they

could be visualized in close proximity to the bCAT sig-

nals (Figure 3; Video S1; Figure S5).

Discussion

We describe a dominant spontaneous mutation in

CHD8 in identical twins who presented with

Figure 2. (A) CHD8/rapsyn/dystrophin and (B) CHD8/b-catenin (bCAT)/dystrophin co-immunostaining of isolated murine EDL muscle

fibres and of quadriceps muscle cross sections. (A,B) The green CHD8/Duplin signal was scattered throughout the sarcoplasm, but highly

enriched at the neuromuscular junction (NMJ), which is marked by the red rapsyn signal. The anti-CHD8-antibody recognizes AA 604-629

at the vicinity of the mutation in the N-terminal domain of CHD8/Duplin. The dystrophin signal (magenta) delineates the sarcoplasmic

membrane and is also enriched at the NMJ. (B) bCAT co-localizes with CHD8/Duplin at the NMJ. Beyond that, the here employed anti-

bCAT antibody recognizes bCAT located in the nuclei (B, lower panel). Nuclei are stained with DAPI and are blue on the overlays. [Colour

figure can be viewed at wileyonlinelibrary.com]
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myasthenia, muscle weakness, ptosis, macrocephalus

and overgrowth. Myasthenia has to date not been

reported in association with CHD8 mutations. The clin-

ical phenotype of patients with CHD8 mutations does

vary, but macrosomia, macrocephalus, ASD [14,23,24]

and gastrointestinal problems [25-37] appear to be

constant features [29,38]. Some reports mention mus-

cle hypotonia, however, in cases of microdeletions it

often remains unclear, whether a certain symptom

might be caused by CHD8 deficiency per se or by

derangement of neighbouring genes [25]. The majority

of disease-associated variants are de novo microdeletions

[25,33,38] and frameshift mutations [29,35,38]. So

far, only one other missense mutation (p.R1797Q) and

two deletions of one amino acid (p.K2287del;

p.H2498del) have been published along with pheno-

type descriptions [29]. Four more mildly affected

patients with missense mutations (p.N873D, p.R910Q,

p.T976K, p.G1710V) have been published, however,

without detailed phenotype description [29,39]. The

(A) (B)

(D)(C)

Figure 3. 3D structured illumination microscopy of the neuromuscular junction (NMJ) in isolated murine muscle fibres. Superresolution

images were taken after triple-immunostaining with the same protocols as for Figure 2. The 3D rendered z-stacks are depicted in panels A,C

[CHD8/rapsyn/dystrophin] and B,D [CHD8/b-catenin (bCAT)/dystrophin]. The boundary box displays the scale in micrometres (lm). The

single channels of the decomposed images A,B are depicted on Figure S5. The nonrendered maximum intensity z-projections of C,D are

depicted on Figure S4. To get a better rendition of the 3D structure from all sides, we provide Videos S1 and S2. (A) The zoom into the NMJ

clearly demonstrates the CHD8 layer (green) to be located beneath the rapsyn layer (red) towards the sarcoplasm. Dystrophin is depicted in

blue. (B) bCAT (red) and CHD8/Duplin (green) are in close proximity in the same layer beneath the sarcoplasmic membrane, as highlighted

by dystrophin (blue). We did not detect any presynaptic CHD8/Duplin. [Colour figure can be viewed at wileyonlinelibrary.com]
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location of these alterations and the corresponding phe-

notypes are depicted on Figure 1D and in Table S1.

The following muscle symptoms were mentioned in

four individuals out of 66 patients with CHD8 muta-

tions (Raphael Bernier, personal communication): mus-

cle hypotonia (n = 2), abnormal muscle tone (n = 1),

reduced muscle strength in the arms (n = 1). The loca-

tion of the p.R578C variant at the N-terminus of the

protein is of special interest as this mutation is the only

one that affects both the short Duplin isoform as well

as the full-length isoforms (Figure 1D). Mutations asso-

ciated with ASD are mostly inactivating mutations that

affect the helicase domain, which is known to play a

role in chromatin remodelling. The short Duplin iso-

form still contains the nuclear localization signal and

the bCAT-binding site, making it an active inhibitor of

the WNT signalling pathway [4]. The anti-CHD8 anti-

body we used in this study does recognize both Duplin

and the long isoforms.

For the following reasons, we think the c.1732C>T

CHD8 variant to be disease causing: (i) the variant

occurred spontaneously and is absent in the gnomAD

database, (ii) the mutant codon (CGC>TGC, p.Arg578)

is highly conserved on the DNA-level with a PhyloP

score of 5.2 (range �14 to +6) and a PhastCons score

of 1 (range 0 to 1) [40,41] as well as on the amino

acid level in vertebrates. The exchange of an arginine

for a cysteine replaces a positively charged side chain

with one with a thiol-group marked by a high Gran-

tham score of 180 (range 0 to 215) [42]. While the

mutation does not cause subcellular mislocalization of

CHD8 as shown by immunohistology of patient and

control fibroblasts (Figure S2), protein folding and

interaction with binding partners might be affected, (iii)

our patients’ phenotype with macrocephalus and over-

growth overlaps with key features of previously pub-

lished patients with CHD8 mutations from the ASD

spectrum. (iv) We have excluded mutations in other

genes (Supporting Information) that might be responsi-

ble for a CMS or overgrowth phenotype. Analysis of

the panel of n = 35 genes associated with CMS only

yielded one heterozygous variant in AGRN, analysis of

the ‘overgrowth panel’ yielded none. According to the

Standards and Guidelines for the Interpretation of

Sequence Variants developed by the American College of

Medical Genetics and Genomics, the c.1732C>T variant

can be classified as a ‘likely pathogenic’ sequence varia-

tion, because it occurred spontaneously in the patients

and was absent in the parents (PS2), and in controls

from the gnomAD database (PM2), the affected gene is

known to cause a large part of the phenotype if

mutated (PP4), and computational evidence supports a

deleterious effect of the mutation on the gene (PP3)

[22].

Mutations affecting CHD8 are strongly associated

with ASD and macrocephalus. ASD was notably absent

in our patients and their cognitive abilities were within

the normal range. This was surprising as ASD and

intellectual disability were considered defining key fea-

tures to be associated with CHD8 mutations.

The presence of ptosis and other myasthenic symp-

toms in our patients broadens the phenotypic spectrum

and highlights CHD8 or its short isoform Duplin as a

protein relevant for muscle function, especially at the

NMJ. Due to its manifold functions in gene expression

and regulation of WNT signalling, we hypothesize

CHD8/Duplin to have a dual role at the NMJ by (i) reg-

ulating expression of NMJ-relevant genes and by (ii)

being involved in its structural integrity. During NMJ

formation the presence of densely clustered AChRs in

the postsynaptic membrane is a basic requirement

[43,44]. This clustering is highly controlled by various

pre and postsynaptic factors. In the developing myo-

tome, binding of WNT to the muscle-specific tyrosine

kinase (MuSK) and the lipoprotein receptor-related-pro-

tein 4 (LRP4) at the postsynaptic membrane initiates

formation of AChR microclusters [45-47] at the centre

of the muscle fibre, to where axons are guided. The

neuron-derived signalling molecule agrin then binds to

postsynaptic LRP4 and MuSK facilitating the formation

of fully sized AChR clusters of the mature muscle [48-

51]. These clusters are anchored in the membrane by

the protein rapsyn [52]. On the sarcoplasmic side, rap-

syn interacts with bCAT to connect the complex via

bCAT with the cytoskeleton [53]. This interaction is

highly dynamic with respect to removal or insertion of

new AChRs [54]. Muscle-derived WNT3a signals

through frizzled 8 and bCAT/GSK3b, thereby reducing

rapsyn expression. This directly opposes agrin-mediated

AChR clustering [10]. A fine balance of AChR cluster-

ing dynamics seems to be pivotal for synaptic integrity

(Figure 4).

CHD8 is ubiquitously expressed with higher levels in

brain and neuronal tissue (Human Protein Atlas)

[55,56]. However, the effects of mutations may be tis-

sue-specific due to interaction with other tissue-specific
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proteins. CHD8 insufficiency alters the expression of

many genes as demonstrated by RNA-sequencing fol-

lowing siRNA-mediated knockdown in human neural

progenitor cells [57]. Among them were also genes rel-

evant for the NMJ such as CHRNB4, CHRNA7, as well

as LRP4. CHRNB4, CHRNA7 encode the b4- and b7-
subunits of the nicotinic AChR. Mutations of LRP4 are

associated with CMS type 17 (MIM #616304). A fur-

ther gene that is differentially expressed upon CHD8

knockdown is NRG1, encoding for neuregulin 1.

Neuregulin 1 modifies AChR clustering at the NMJ via

its interaction with MuSK. At the same time, it acti-

vates local gene transcription [58] leading to an

increase in mRNA-copies for CHRNE. This gene

encodes the b-subunit of the AChR that replaces the b-
subunit (CHRNG) of the AChR during development

[59]. Mice with a heterozygous Nrg1 deletion had

myasthenic symptoms and the amount of mRNA cod-

ing for AChR subunits was decreased [60].

We hypothesize that the myasthenia-like symptoms

of our patients could be explained by a muscle-specific

function of CHD8/Duplin (Figure 4) either as (i) tran-

scriptional regulator or as (ii) structural component of

the NMJ (Figures 2 and 3): CHD8/Duplin directly inter-

acts with bCAT in an inhibitory manner to down-regu-

late the expression of bCAT target genes in the WNT

pathway [3]. However, bCAT does not only function as

a transcription co-activator. In muscle cells, it serves as

a structural component of the NMJ. Through interac-

tion with rapsyn it links the AChRs to the cytoskeleton

via bCAT (Figure 4) [53]. Muscles from bCAT knockout

mice showed enlarged NMJ areas, widely distributed

Figure 4. Illustration of the canonical WNT- and LRP4/MuSK mediated pathways at the postsynaptic side of the neuromuscular

junction. b-catenin (bCAT) accumulates in the cytoplasm and is phosphorylated and subsequently degraded by the proteasome. Binding

of WNT3a to frizzled 8 (FZD8) during canonical WNT signalling, activates dishevelled (DVL1), which in turn inhibits bCAT
phosphorylation by the glycogen synthase kinase 3b/APC-WNT signalling pathway regulator complex (GSK3b:APC). bCAT is then free to

translocate into the nucleus, where it acts as transcriptional co-activator for transcription factor 4 (TCF4) in the transcription of WNT-

dependent genes. Binding of agrin and WNT3a to the muscle-specific tyrosine kinase (MuSK) and the lipoprotein receptor related-protein

4 (LRP4) activates DLV1 and docking protein 7 (DOK7) which facilitates AChR clustering via rapsyn. Rapsyn connects the AChRs via

bCAT and bCAT to the F-actin filaments of the cytoskeleton. Expression of chromodomain helicase DNA-binding protein 8 (CHD8) in the

cytosol and its binding to bCAT would (i) reduce canonical WNT signalling to the nucleus and (ii) increase the CHD8/bCAT building

blocks for the AChR clusters. [Colour figure can be viewed at wileyonlinelibrary.com]
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AChR clusters, and motoneuron mislocation. Interest-

ingly, these mice did not only exhibit postsynaptic

alterations, but their presynaptic ACh neurotransmitter

release was disturbed, indicating defects in vesicle

fusion or exocytosis from the presynaptic nerve termi-

nal. The authors postulated that bCAT may play a role

in the presynaptic muscle differentiation through retro-

grade signalling [61]. These results would nicely fit

with our observation that 3,4-diaminopyridine, a phar-

macological substance allowing a larger ACh release

from the presynaptic nerve terminal would be beneficial

in our patients.

Experiments in myotubes of Rapsn�/� mice have

shown that rapsyn was indispensable for the bCAT
induced AChR clustering [62]. This interaction is fur-

ther enforced by agrin [62], which in turn is depen-

dent on bCAT to induce AChR aggregation [53]. Our

results from immunohistological co-localization studies

showed that CHD8 and rapsyn are located side-by-

side, which might suggest a role for CHD8/Duplin in

AChR receptor clustering as well, probably through

direct interaction with rapsyn-bound bCAT. The mis-

sense mutation in our patients might impede such

specific interactions. In this regard, CHD8/Duplin may

serve as a modulator during NMJ formation by (i)

nudging the system towards clustering of AChRs by

increased synthesis of rapsyn (through alteration of

the WNT/bCAT mediated transcription) and by (ii)

providing CHD8/bCAT building blocks for consolida-

tion of the AChR clusters. However, more research is

required into the interactions and dynamics of CHD8

expression at the NMJ.

In conclusion, we describe a heterozygous sponta-

neous mutation in CHD8, which we assume to cause

the myasthenia-like phenotype in association with

macrocephalus and overgrowth. However, more

patients with N-terminal CHD8/Duplin mutations have

to be found in order to delineate a specific genotype–

phenotype relation. The myasthenic symptoms of our

patients broaden the phenotypic spectrum of CHD8

mutations and suggest a role of CHD8/Duplin in NMJ

maintenance and function. Further molecular and elec-

trophysiological experiments should be conducted to

specify the muscular function of CHD8/Duplin. Patients

with CHD8 mutations should be specifically investi-

gated for neuromuscular symptoms and CHD8 should

be included into CMS panel diagnostics.
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neuromuscular junction of a single-mouse muscle fibre.
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