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Abstract In molecular simulations, the identification of suitable reaction coordinates is central to both the analysis and
sampling of transitions between metastable states in complex systems. If sufficient simulation data are available, a number
of methods has been developed to reduce the vast amount of high-dimensional data to a small number of essential degrees
of freedom representing the reaction coordinate. Likewise, if the reaction coordinate is known, a variety of approaches
has been proposed to enhance the sampling along the important degrees of freedom. Often, however, neither one nor the
other is available. One of the key questions is therefore, how to construct reaction coordinates and evaluate their validity.
Another challenges arises from the physical interpretation of reaction coordinates, which is often addressed by correlating
physically meaningful parameters with conceptually well-defined but abstract reaction coordinates. Furthermore, machine
learning based methods are becoming more and more applicable also to the reaction coordinate problem. This perspective
highlights central aspects in the identification and evaluation of reaction coordinates and discusses recent ideas regarding
automated computational frameworks to combine the optimization of reaction coordinates and enhanced sampling.

1 Reaction coordinates and rare events – Analysis and
sampling

Molecular dynamics (MD) simulations have become an in-
dispensable tool in the study of dynamical processes on the
atomistic level. Over the years, tremendous progress has been
achieved regarding the optimization and parallelization of
MD algorithms on massively parallel supercomputers, en-
abling exceptionally large-scale simulations with up to a bil-
lion atoms [1, 2]. Furthermore, the calculation of accurate
energies and forces for complex systems at affordable com-
putational costs is continuously advanced, with machine learn-
ing (ML) potentials becoming increasingly popular [3–8].
Another challenge faced in MD simulations is the sampling
and analysis of rare or infrequent events. Rare events are
characterized by transitions between metastable states in phase
space that require the system to overcome sizeable free en-
ergy barriers. As a consequence, the system spends most of
the time within the metastable states whereas the actual tran-
sitions themselves take place on much shorter timescales.
These transitions constitute, however, often the process of
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interest in a wide range of areas from chemistry and physics
to materials science and biology, and for a multitude of sys-
tems from single molecules to condensed phase systems.
Typical examples include conformational changes, protein
folding, ion dissociation, nucleation, phase transformations,
and defect diffusion in solids, to name a few. The limited
timescales accessible in MD are, however, not the only chal-
lenge. Even if it were possible to extensively sample rare
events directly with MD simulations, the analysis of the vast
amount of data in the high-dimensional phase space remains
far from trivial.

In order to analyze and sample rare events, the concept
of a reaction coordinate (RC) is extremely useful. The terms
reaction coordinate, collective variable (CV), and order pa-
rameter (OP) are not always used consistently throughout
the literature. In general, these represent low-dimensional
projections of the phase space. Similar to Peters [9], we
refer here to any function of the full phase space coordi-
nates as collective variable, an order parameter is a CV or
combination of CVs that can distinguish between different
metastable states, and a reaction coordinate is a function
of CVs that accurately captures the progress of the transi-
tion between two states. The definition of RCs is essential
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for reaction-rate theories [10]. Within transition state the-
ory [11, 12], an estimate of the rate constants for transitions
between metastable states relies on the identification of a
suitable RC, and the analysis of both the mechanisms and
the kinetics of rare events can be greatly impacted by the
choice of the RC.

A number of methods has been developed to facilitate
the sampling of rare events that can be grouped roughly into
two classes: (i) with and (ii) without applying a bias along
a given set of CVs. The latter include accelerated MD ap-
proaches [13–18], replica exchange MD [19], and the fam-
ily of path-based methods [20–30], which yield an ensem-
ble of true dynamical trajectories of the transition. Methods
that use a bias to enhance the sampling include umbrella
sampling [31], metadynamics [32–35], hyperdynamics [36],
adaptive biasing force [37], and (driven) adiabatic free en-
ergy dynamics [38–40] or temperature accelerated molecu-
lar dynamics [41], often employed to estimate free energy
profiles. Approaches applying a bias can be very efficient,
but rely on an a priori knowledge of a suitable reaction coor-
dinate. Except for the simplest cases, an intuitive definition
of an appropriate RC is, in general, highly error-prone. On
the other hand, if sufficient sampling of the process of inter-
est has been obtained, several methods, as discussed in this
perspective, have been proposed to extract collective vari-
ables and assess their validity as RC. As noted in an earlier
review on reaction coordinates [42], this interplay between
sampling and analysis constitutes a chicken-and-egg prob-
lem that still poses a major challenge to the rare event com-
munity.

In this perspective, some fundamental aspects of how to
construct and evaluate reaction coordinates in complex sys-
tems will be discussed. The ultimate method of choice does
not only depend on the investigated problem, but also on
the intended usage of the RC: should the RC provide physi-
cal insight into the mechanism, is it needed for sampling, is
the free energy profile of interest, or can the transition state
ensemble be inferred. Furthermore, ML based or supported
approaches that are becoming increasingly accessible and
applicable to the RC challenge will be discussed, as well
as some recent ideas regarding an automated sampling and
RC optimzation, before finishing with some concluding re-
marks.

2 What constitutes a good reaction coordinate?

Whether or not a reaction coordinate is considered useful
depends, to a certain degree, on the question that is being
asked. To obtain, for example, mechanistic insight and in-
fer kinetic trends, a physically meaningful reaction coor-
dinate is most helpful. However, reaction coordinates de-
rived from intuition alone already assume specific mecha-
nisms and require extensive knowledge about the system of

Fig. 1 Both energy landscapes on the top yield the same free energy
profile and presumed transition state q∗ when projected onto q1 (bot-
tom graphs). For the energy landscape on the left, q1 represents a good
RC and configurations at q∗ are representative of the transition state.
On the right energy landscape, however, configurations with q1 = q∗

and small values of q2 are fully committed to state A, whereas config-
uration with large q2 values are committed to B.

interest. Even in seemingly obvious cases, an intuitive RC
might not capture all important degrees of freedom, as was
shown for ion pair dissociation in water more than 20 years
ago [43]: here, the distance between the two ions does not
provide an accurate RC, but additional solvent degrees of
freedom need to be included to fully characterise the disso-
ciation mechanism. On the other hand, mathematically de-
rived RCs can be very accurate in describing the progress of
a transition, but are often difficult to interpret.

The danger of projecting a high-dimensional space onto
a single or a few CVs is often exemplified with the 2D en-
ergy landscapes shown in Fig. 1. When projected onto the
coordinate q1, both landscapes result in the same free energy
profile, F(q1), with a maximum at q∗ marking the presumed
transition state (TS) for the transition between states A and
B. For the energy landscape on the left, this is a suitable rep-
resentation and configurations with q1 = q∗ constitute the
transition state ensemble. On the right energy landscape,
however, configurations with q1 = q∗ and small values of
q2 lie in the basin of attraction of state A, whereas configu-
rations with large q2 values are committed to state B. Cor-
respondingly, configurations at q∗ do not comprise the tran-
sition state ensemble and q1 would clearly be an ill-chosen
RC.

To ensure that an RC is suitable to describe the progress
of a transition between two states, three criteria were pro-
posed in Ref. [9]: (i) the RC is a function of only the instan-
taneous point in configuration space; in this definition, the
velocities are not included in the RC; (ii) the value of the
RC should change monotonically between two states and
the corresponding isosurfaces yield a set of non-intersecting
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dividing surfaces in configuration space; (iii) a free energy
profile can be projected along the RC and the reduced dy-
namics along this RC are still consistent with the dynamics
in the full phase space. These criteria are generally applica-
ble to systems with different dynamics, ranging from over-
damped to inertial dynamics.

3 The committor

The committor pB(r) is defined as the probability that a tra-
jectory initiated at point r in configuration space will reach
state B before A. It provides a statistical measure of the
progress of a transition between two states and, naturally,
represents an ideal reaction coordinate [44–46]. The concept
has been introduced as early as the 1930s [47] and has also
been termed splitting or commitment probability or pfold in
the case of protein folding. A brief historical recapitulation
is, for example, given in Ref. [48].

Conceptually, the committor fulfils all criteria of an op-
timal RC, and configurations on the isocommittor surface
with pB(r) = 0.5 constitute the transition state ensemble, as
these configurations have an equal probability to either pro-
ceed to the final state B or return to the initial state A. From a
practical or computational point of view, however, the com-
mittor is not quite as optimal. It lacks any direct connec-
tion to physical observables and is, thus, difficult to inter-
pret. Furthermore, to obtain the committor, a large number
of MD simulations need to be performed for each configu-
ration r, rendering this approach computationally rather de-
manding [22]. Still, the committor is extremely useful in the
validation as well as in the identification of suitable RCs and
is central to several approaches discussed in this perspective.

4 Evaluation of reaction coordinates

Since the committor is the ideal RC, any collective variable
that represent a suitable RC must exhibit a strong correla-
tion with the committor. More precisely, all configurations
with the same CV value must lie on the same isocommit-
tor surface. The quality of any given CV q(r) as RC can be
evaluated by computing the committor distribution [22, 23]

P(p̂B|q̂) =
〈δ (pB(r)− p̂B)δ (q(r)− q̂)〉

〈δ (q(r)− q̂)〉
, (1)

where δ (x) is the Dirac delta function and 〈. . .〉 denotes
an ensemble average. If q̂ = q∗ marks the transition state,
the committor distribution should be sharply peaked around
p̂B = 0.5. For the projection of the energy landscape onto q1
in the left graph of Fig. 1, this would be the case, whereas
the committor distribution for the presumed transition state
q∗ on the right would yield two peaks around p̂B = 0.0 and
1.0 for small and large q2 values, respectively.

The committor can also be used to quantitatively com-
pare the quality of different RCs and identify the optimal
RC from a given set of CVs. The first systematic approach to
achieve this was based on genetic neural networks (GNN) [46].
Here, the input to the NN is a set of CVs and the output is
the predicted pB value of a given configuration. The cor-
responding loss function to train the NN is the root mean
square (RMS) error in the predicted pB. A genetic algo-
rithm was employed to find the optimal combination of CVs,
where again the RMS error in the predicted pB determines
the fitness of the population in each generation. With this
approach, a large number of trial CVs could be compared
quantitatively to identify the best approximation to the RC.
The training of the NN does, however, require the computa-
tion of the committor for a large number of configurations
spanning the entire range of pB values. A variation of the
method was recently suggested where, instead of the com-
mittor, the NN predicts atomic coordinates of configurations
along the transition [50]. In order to improve the fitting, a
second genetic algorithm was employed in an initial step to
optimize the architecture of the NN.

Another approach to obtain optimal RCs is based on
likelihood maximization [51, 52]. The basic idea in maxi-
mum likelihood estimation (MLE) is to find a model that
best describes the observed data by maximizing the likeli-
hood function. The data are, in this case, obtained from aim-
less shooting transition path sampling (TPS) simulations [51–
53], and the model is a function that represents the com-
mittor, usually a sigmoid function of the RC in the range 0
to 1. In aimless shooting, a new transition path is created
by selecting a configuration close to the TS from the cur-
rent trajectory, randomizing the velocities, and integrating
forward and backward in time. The corresponding shooting
point can thus be considered as an instantaneous evaluation
of the committor, and the likelihood for the shooting point
data is given by [45, 51]

L = ∏
xi→B

p̃B(rc(xi)) ∏
xi→A

(1− p̃B(rc(xi))) , (2)

where the product runs over all shooting points xi leading to
states B and A, respectively, and p̃B is the committor mod-
eled by a sigmoid function. The reaction coordinate was ini-
tially approximated as a linear combination of CVs, rc(x) =
∑αiqi(x) + α0, and the parameters αi were optimized by
maximizing the likelihood. The combination of CVs that
maximizes the Bayesian information criterion (BIC) [54],
taking into account added benefit due to increasing model
complexity with larger numbers of variables, represents the
best RC.

The likelihood in Eq. (2) is valid for systems with diffu-
sive dynamics. For inertial dynamics, not only the value of
the RC, but also the velocity along the RC will impact the
probability to commit to the final state. The inertial likeli-
hood maximization approach [55] extends the previous idea
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Fig. 2 Free energy during nucleation in Ni projected from the reweighted path ensemble: projection in the nfcc,ns plane together with the optimized
string RC (left), projection onto nfcc (middle), and projection onto ns (right); the increase in free energy associated with the initial formation of the
precursor is not captured by the projection onto nfcc. Adapted with permission from Reference [49]. Copyright 2018 American Chemical Society.

by also including the velocities in the likelihood expression.
The RC, however, is still only a function of configuration
space since the particle velocities solely enter through their
projection onto the RC.

The use of data from the aimless shooting algorithm in
Eq. (2) restricts the analysis of the RC to the TS region,
whereas in complex systems information along the entire
transition process might be needed to unravel the mecha-
nism. In addition, a nonlinear approximation to the RC might
be necessary instead of a simple linear combination of CVs.
Both aspects can be addressed by combining maximum like-
lihood estimation with data from the reweighted path ensem-
ble (RPE) and a projection onto a string in CV space that
approximates the RC [56, 57]. The string connects states A
and B and its position in CV space is optimized during the
likelihood maximization. Again, the BIC is used to deter-
mine the best combination of CVs and string representation
and identify the optimal RC.

An illustrative example of how a quantitative evalua-
tion of proposed RCs can provide insight into the transi-
tion mechanism is nucleation from supercooled liquids. A
maximum likelihood analysis of RCs describing solidifica-
tion in Ni revealed that the number of solid particles in the
growing cluster ns is a much better RC than the number of
face-centred cubic (fcc) particles nfcc [49], even though the
bulk phase crystallises in an fcc structure. The reason for
this is that in the initial stage of the nucleation process a
precursor is formed in the supercooled liquid from which
the crystalline phase emerges, which is not captured by nfcc.
This precursor formation is associated with a sizeable en-
ergy barrier. Consequently, the free energy profile projected
onto nfcc yields a nucleation barrier that is much too low
as it does not incorporate the initial pre-ordering in the liq-
uid. The 2D projection of the free energy in the nfcc,ns plane
together with the optimized string RC and the projections
onto the individual coordinates are shown in Fig. 2. This
also demonstrates that a poor RC does not necessarily in-
crease the apparent free energy barrier of the process, but the
projection might also result in a barrier that is too low. The

same effect was observed for a completely different system,
examining the free energy barrier for the phosphodiester hy-
drolysis reaction catalyzed by the RNase H enzyme [58].
Some other examples, where a committor analysis or like-
lihood maximization was used to find optimal RCs, include
Refs. [59–72].

The methods discussed in this section can evaluate the
quality of RCs constructed from a set of proposed CVs by
correlating them with the committor. If, however, an impor-
tant degree of freedom cannot be captured within the pro-
vided set of CVs, it will also not appear in the analysis and
will be missed.

5 Constructing reaction coordinates

There are essentially two ways to construct possible RCs:
(i) inferred from physical intuition and/or prior knowledge
about the process or similar systems; and (ii) inferred from
analyzing extensive simulation data of the process. Some of
the central ideas are highlighted below.

5.1 Intuition-based reaction coordinates

The main advantage of intuition-based RCs is that these are
usually simple and have a well-defined physical interpreta-
tion. For instance, conformational changes in molecules can
often be described in terms of dihedral angles, the number
of native contacts is often used in protein folding, changes
in local coordination or symmetry for structural transforma-
tions in solids, or cluster sizes to describe nucleation. As
discussed, a CV can essentially be any function of configu-
ration space and multiple CVs can be combined into a reac-
tion coordinate. If the CVs comprising the RC are to be used,
however, in enhanced sampling simulations, they need to be
differentiable with respect to the particle positions. Another
aspect to be considered when deriving intuition-based RCs
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for enhanced sampling is the computational cost of obtain-
ing the derivatives. Since forces are needed in every simu-
lation step, expensive calculations of additional derivatives
will substantially slow down the simulation. Even though
useful and suitable for many systems, intuition-based RCs
are always trial-and-error and their validity needs to be care-
fully scrutinized for every new problem.

5.2 Dimensionality reduction

The search for an adequate RC is essentially a dimension-
ality reduction problem from the high-dimensional phase
space to a low-dimensional space of a few collective vari-
ables. The underlying assumption in applying dimension-
ality reduction schemes to identify RCs is, that the con-
figurations relevant to the process can be found on a low-
dimensional manifold embedded in the high-dimensional space.
A number of ML based methods has been used to obtain
RCs through linear and nonlinear dimensionality reduction.
Several comprehensive reviews with extensive lists of ref-
erences can be found in Refs. [42, 48, 73–76]. Here, we
will only briefly mention frequently used approaches. The
oldest and probably simplest linear dimensionality reduc-
tion method is principle component analysis (PCA), which
aims to find a linear combination of variables that optimally
captures the variance of the dataset. Several dimensionality
reduction techniques determine a low-dimensional space in
such a way that pairwise distances between points projected
in the low-dimensional space reproduce the pairwise dis-
tances in the high-dimensional space. In multidimensional
scaling (MDS) [77], Euclidean distances are used in the high-
dimensional space. Nonlinearity is introduced by employing
nonlinear functions of Euclidean distances in kernel PCA [78]
or geodesic distances in Isomap [79]. Sketch-maps [80] ap-
ply a nonlinear transformation to both the distances in the
high- and low-dimensional space, and can thus focus on a
particular range of distances. A dynamical distance measure
is used in diffusion maps [81] defining a diffusion distance
in the high-dimensional space.

The coordinates obtained from dimensionality reduction
are well-defined. There is, however, one major drawback:
these coordinates are not directly connected to any physical
variable which makes it difficult to analyse or infer mech-
anisms. Similar to the committor, an interpretation is often
attempted by correlating a set of physically meaningful CVs
with the identified coordinates that comprise the optimal RC
space.

5.3 Path collective variables

A path collective variable S(r) defines the progress along a
given initial trajectory or sequence of n states in configura-

tion space [82]

S(r) =
1

n−1
∑

n
i=1(i−1)exp(−λD(r(i),r))

∑
n
i=1 exp(−λD(r(i),r))

, (3)

where D(r(i),r) is a distance metric between the reference
configuration r(i) and the instantaneous configuration r. In
addition, the function Z(r)

Z(r) =− 1
λ

ln

(
n

∑
i=1

exp(−λD(r(i),r))

)
(4)

describes the distance from the reference path. S(r) increases
monotonically from 0 to 1 along the path and the hyper-
surfaces with a constant value of S(r) are locally perpen-
dicular to the path. Path CVs can be used together with en-
hanced sampling schemes to explore the free energy surface.
The function Z(r) can either be used to promote sampling
perpendicular to the reference path or to restrain the sam-
pling close to the proposed path.

In the original formulation [82], the distance D(r(i),r)
was defined as the mean square displacement, but other met-
rics might be more suitable depending on the investigated
system. Recently, an approach to optimize the distance met-
ric based on a weighted combination of a set of CVs was
proposed [83]. Alternatively, a reference path can also be
defined in CV space, resulting in a path CV that effectively
provides a nonlinear combination of CVs along the transi-
tion [84, 85]. It was furthermore shown, that an efficient
sampling of the free energy can already be achieved by con-
sidering only the end-points of the path [86] in Eq. (3). In
this case, just two reference configurations are needed, one
in each of the metastable states.

Path CVs are particularly useful if no suitable RC can be
readily defined, but an initial guess of a trajectory describing
the transition can be obtained. Together with the exploration
of the free energy landscape, a good approximation of the
free energy is achieved even if the initial path is not optimal.

5.4 Machine learning based classification

The dimensionality reduction schemes discussed in Sec. 5.2
require extensive simulation data along the entire transition,
which is not always readily available. However, if the end-
states of a process are known, sampling within these metastable
states is often feasible. The data can then be used in super-
vised ML approaches for classification to learn the decision
boundary between the two states and the decision function
of the classifier serves as a collective variable.

In Ref. [87], support vector machines (SVM), logistic
regression (LR), and neural networks (NN) were used for
classification. The trajectory data from each state are first
projected onto a set of CVs that serves as the input fea-
ture vector for the ML classification. The list of CVs can
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Fig. 3 Schematic representation of constructing a path CV based on local structure classification: for each atom i, a set of local descriptors G is
fed into an NN that classifies the local structural environment. The local environments y(i)k are combined into global classifiers Yk and transitions
are sampled along a path CV S(Y) in the global classifier space.

be rather exhaustive as during the optimization the ML algo-
rithms can automatically reduce the complexity of the model
and highlight important features. Since the resulting RC is
a combination of all input CVs, biasing along the RC will
simultaneously enhance all important degrees of freedom. It
should be noted that for the approach to work with enhanced
sampling, analytical derivatives with respect to the atomic
coordinates need to be available. Consequently, the SVM
output itself was not suitable, but instead the distance to the
SVM’s hyperplane was used as RC. For LR and NN, the
probability output can be employed directly. The approach
was also extended to multiple stable states using a multiclass
SVM model.

Similarly, linear discriminant analysis (LDA) has been
employed to classify metastable states and construct a reac-
tion coordinate [84]. The performance was not entirely satis-
fying, but could be improved by using the harmonic instead
of arithmetic average of the covariance within each state to
define the scatter matrix. This was rationalised by the nature
of the data for metastable states of rare events, as states with
smaller fluctuations should be less easy to enter and exit and
should therefore have a larger weight in computing the dis-
criminant. The LDA approach is suitable for a rather small
number of input CVs and only provides a linear combination
of the CVs. To alleviate these limitations, the approach was
further combined with an NN [88]. A large set of physical
CVs is fed into the NN which performs a nonlinear transfor-
mation of the data and reduces the dimensionality. LDA is
then performed on the final layer of the NN and the RC is
constructed from a projection of the NN final layer onto the
LDA eigenvector.

In condensed phase systems, a local classification for
each atom can also be used, for example, to describe trans-
formations between different crystalline structures. The in-
formation for each atom can then be combined into global
classifiers that characterize the state of the entire system. In
Ref. [85], an NN was used for local structure classification,
where the NN input features are local descriptors for each
atom and the output is the probability that a given local en-
vironment corresponds to any of the investigated bulk crys-
talline phases. As for the other approaches discussed in this

section, only trajectory data from the metastable states, in
this case the bulk phases, are needed to train the NN. The
global classifiers were chosen as the average over the NN
output of each atom, effectively corresponding to a phase
fraction. In principle, the global classifiers could directly be
used as CVs in enhanced sampling. However, in this case,
the global classifiers were not independent and individually
biasing each component turned out to be inefficient. Instead
a path CV, Eq. (3), was defined in the global classifier space
to capture the transition. A schematic representation of con-
structing a path CV based on local structure classification is
shown in Fig. 3.

In all approaches discussed in this section, it is still nec-
essary to define descriptors as input to the ML classification
method. However, these can be many and are combined in a
nonlinear fashion by the ML algorithms. The resulting RC
might not necessarily represent the optimal one, but is suit-
able to sample the transition between the metastable states,
even though it is constructed from data obtained only within
the metastable states. Additional data acquired from sam-
pling the transition can subsequently be used to further re-
fine the RC with the corresponding approaches discussed
above.

6 Automated sampling and reaction coordinate
optimization

The sampling of rare events and the identification of suit-
able RCs are strongly interdependent. For new systems, for
which neither sampling data nor a good approximation to
the RC are available, the initial exploration often requires
significant human input based on trial-and-error and iter-
ative sampling, data analysis, and RC improvement. Very
recently, a few approaches have been proposed that auto-
matically perform the sampling and optimize RCs. Two of
the methods discussed in the following use autoencoders to-
gether with biased sampling in an iterative manner, the third
one is based on ML predicted committors and transition path
sampling. In particular for ML-based approaches, the avail-
ability of sufficient and representative data is crucial. How-
ever, for sampling rare events, data are generally sparse and
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have to be generated in the first place. The approaches out-
lined in this section aim to iteratively sample rare events and
train ML models to facilitate sampling, thus successively
providing more and more data. An important aspect in these
methods is the critical assessment of the convergence of the
iterative workflow.

6.1 Molecular enhanced sampling with autoencoders

The central idea in molecular enhanced sampling with au-
toencoders (MESA) [89, 90] is an automated framework that
iteratively employs an autoencoder to extract CVs from the
available data and accelerated sampling in the correspond-
ing CV space. The initial data can, for example, be taken
from an initial unbiased simulation. The autoencoder op-
timizes the low-dimensional projection into the bottleneck
layer which is used as CVs. The number of nodes in the bot-
tleneck layer determines the dimensionality of the CV space
and needs to be optimized as well. Using the trained autoen-
coder, the trajectory data are projected into the CV space de-
fined by the bottleneck nodes to identify the region with non-
vanishing probability density. This region is subsequently
divided into a number of cells and umbrella sampling is per-
formed in each cell. The new sampling data are again fed
into the autoencoder and a new set of CVs is determined.
The process is repeated until convergence is reached. It was
recently remarked that the data obtained from biased simu-
lations should be properly reweighted before being passed
to the autoencoder again [91].

Some care must be taken when preparing the input data
for the autoencoder from cartesian coordinates: translational
and rotational invariance must be removed or the rotational
invariance must be build into the NN architecture, respec-
tively. Alternatively, for molecular systems, which were the
focus of the current studies, internal degrees of freedom could
be used. In condensed phase systems, additional challenges
arise in the representation of the input data, as permutational
invariance needs to be considered as well. Another concern
are CVs that are intrinsically periodic as they increase the
dimensionality of the bottleneck region. In this case, it was
suggested to employ circular activation functions for pairs of
coupled bottleneck nodes [90]. As in other dimensionality
reduction schemes, one drawback is the interpretability of
the obtained CVs. This still needs to be performed by hand,
for example, by correlating physically meaningful CVs with
the low-dimensional projection of the autoencoder.

6.2 Reweighted autoencoded variational Bayes for
enhanced sampling

In its original formulation, the reweighted autoencoded vari-
ational Bayes for enhanced sampling (RAVE) approach [92,

93] employed a variational autoencoder to project trajectory
data onto a single latent space coordinate. Instead of biasing
directly along this coordinate, a trial RC is proposed as a
linear combination of a set of CVs (as in the MLE approach,
Sec. 4). The corresponding coefficients are optimized by
matching the probability distribution of the trajectory data
along the bottleneck coordinate and the trial RC. From the
probability distribution, a bias potential is constructed along
the RC and sampling is performed on the biased energy
landscape. The obtained simulation data are unbiased before
being used as input to the variational autoencoder in a next
iteration, and a new trial RC and biasing potential are con-
structed. Iterations are continued until convergence of the
desired properties is obtained.

RAVE was extended by estimating the predictive infor-
mation bottleneck (PIB), which is then associated with the
RC [94, 95]. Here, the encoder projects data at a time t onto
the bottleneck coordinate, whereas the decoder predicts the
data at a time t+∆ t. In this respect, the RC is the coordinate
that is maximally predictive of a trajectory’s future evolution
based on the current configuration. The encoder was chosen
as a simple linear combination of the input values, so that
the bottleneck coordinate is directly interpreted as the RC
being a linear combination of the input CVs. The decoder
was implemented as a stochastic deep NN, which allows for
enough flexibility in the ML model to evaluate the useful-
ness of various input features. The iterative scheme remains
the same, a bias potential is constructed from the probabil-
ity distribution which is then used in enhanced sampling to
produce a new set of data.

The remaining human input in RAVE is the proposed
set of trial CVs that are combined into the RC. The main
advantage is that the results can be directly interpreted, in
particular, since the coefficients in the linear combination
indicate the importance of each CV. Furthermore, the input
CVs can incorporate any type of invariance inherent to the
system. The obvious disadvantage is that important degrees
of freedom might not be captured by the set of trial CVs.
An indication for this would be if the added bias potential
does not lead to any acceleration in the sampling of the rare
event, necessitating the introduction of additional trial CVs.

6.3 Concurrent transition path sampling and committor
prediction

In transition path sampling, an ensemble of unbiased tra-
jectories connecting two metastable states is created by a
Monte Carlo sampling in trajectory space. The efficiency
of the sampling hinges on the generation of new transition
paths (TP) from existing ones. Since the probability of sam-
pling a transition path is related to the committor [96], knowl-
edge of the committor can accelerate the generation of TPs [97].
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On the basis of this, an automated framework as been
proposed that learns both the committor and an optimized
sampling of TPs during the simulation [98, 99]. As in the
MLE approach (Sec. 4), the committor is modelled as a sig-
moid function of the RC and the likelihood of the shooting
points is given by Eq. (2). The negative logarithm of the like-
lihood is used as the loss function in training an NN, where
the input is a set of CVs and the output is the predicted pB
value. Training the NN on existing shooting point data yields
an optimal nonlinear combination of input CVs to represent
the RC. Furthermore, the trained NN can predict pB values
for any configuration, which is used to optimize the shooting
point selection for the generation of new TPs. As the sam-
pling progresses, the NN is concurrently retrained with new
shooting point data, but this is only necessary if the number
of generated and expected TPs based on the predicted pB
values differ significantly.

In order to regain physical interpretability of the opti-
mized RC, a sensitivity analysis of the NN was combined
with symbolic regression [98, 99]. The sensitivity analysis
filters out a small subset of CVs from all input variables to
the NN. Symbolic regression is then used to identify simple
mathematical expressions for this subset of CVs that best
represent the nonlinear transformations encoded in the NN.
Similar to RAVE, an important human input is the chosen
feature representation of the investigated system serving as
input CVs to the NN, which still requires a certain level of
physical intuition about important degrees of freedom.

7 Concluding remarks

The sampling and analysis of rare events continues to pose
a central challenge to the molecular simulation community.
The identification of reaction coordinates to both enhance
the sampling and facilitate the interpretation of transition
mechanisms is a key step in this endeavour. Ideally, the task
of an exhaustive sampling and analysis would be performed
by fully automated computational frameworks with mini-
mal human input. As machine learning and data-driven ap-
proaches become more and more accessible, considerable
efforts have been made in this direction. Still, we are not
yet at a point where we can simply provide an algorithm
with one or several snapshots of a system without any addi-
tional information, in particular regarding the representation
of configurations in terms of features that, for example, re-
flect certain symmetries and highlight important degrees of
freedom. Furthermore, to derive physical interpretations and
infer mechanistic trends, we generally rely on parameters
that have some sort of meaning within the physical model of
the investigated system. We can evaluate the importance of
each parameter in describing the process and we can opti-
mally combine them in linear and nonlinear ways, which is
critical for our understanding, but we still need to come up

with a set of trial parameters ourselves. Another aspect in
the era data-driven science that might become beneficial is
the setup of databases. Collecting information about impor-
tant CVs in a wide variety of systems could potentially be
used to propose sets of CVs for systems with similar char-
acteristics, guiding the selection of trial CVs beyond human
intuition.

Acknowledgements JR acknowledges financial support from the Deut-
sche Forschungsgemeinschaft (DFG) through the Heisenberg Programme
project 428315600.
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