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Abstract
Model-	informed	precision	dosing	(MIPD)	is	a	quantitative	dosing	framework	that	
combines	prior	knowledge	on	the	drug-	disease-	patient	system	with	patient	data	
from	therapeutic	drug/	biomarker	monitoring	(TDM)	to	support	individualized	
dosing	in	ongoing	treatment.	Structural	models	and	prior	parameter	distributions	
used	in	MIPD	approaches	typically	build	on	prior	clinical	trials	that	involve	only	
a	limited	number	of	patients	selected	according	to	some	exclusion/inclusion	cri-
teria.	Compared	to	the	prior	clinical	trial	population,	the	patient	population	in	
clinical	practice	can	be	expected	to	also	include	altered	behavior	and/or	increased	
interindividual	variability,	the	extent	of	which,	however,	 is	typically	unknown.	
Here,	we	address	the	question	of	how	to	adapt	and	refine	models	on	the	level	of	
the	model	parameters	to	better	reflect	 this	real-	world	diversity.	We	propose	an	
approach	for	continued	learning	across	patients	during	MIPD	using	a	sequential	
hierarchical	Bayesian	framework.	The	approach	builds	on	two	stages	to	separate	
the	update	of	the	individual	patient	parameters	from	updating	the	population	pa-
rameters.	Consequently,	it	enables	continued	learning	across	hospitals	or	study	
centers,	because	only	summary	patient	data	(on	the	level	of	model	parameters)	
need	 to	 be	 shared,	 but	 no	 individual	 TDM	 data.	 We	 illustrate	 this	 continued	
learning	approach	with	neutrophil-	guided	dosing	of	paclitaxel.	The	present	study	
constitutes	an	important	step	toward	building	confidence	in	MIPD	and	eventu-
ally	establishing	MIPD	increasingly	in	everyday	therapeutic	use.

Study Highlights
WHAT	IS THE CURRENT KNOWLEDGE ON THE TOPIC?
Current	strategies	to	model-	informed	precision	dosing	(MIPD)	assume	a	“perfect	
model	scenario”	(i.e.,	the	prior	model	is	not	adapted	or	improved	as	new	patient	
data	are	observed).
WHAT	QUESTION DID THIS STUDY ADDRESS?
How	could	the	underlying	model	used	in	MIPD	be	continuously	improved	and	
adapted	to	the	target	clinical	setting?
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INTRODUCTION

Model-	informed	precision	dosing	(MIPD)	is	a	quantitative	
framework	for	dose	individualization	based	on	modeling	
and	 simulation	 of	 exposure-	response	 relationships	 inte-
grating	 patient-	specific	 data.1–	3	 The	 underlying	 models	
are	developed	based	on	clinical	 trial	data	typically	using	
a	nonlinear	mixed	effects	(NLME)	framework	to	describe	
the	pharmacokinetics	(PK)	or	pharmacodynamics	(PD)	of	
the	drug	and	the	variability	between	patients.4	These	PK/
PD	models	allow	to	forecast	important	aspects	of	the	ther-
apy	outcome	based	on	patient	characteristics	(a	priori	pre-
dictions).	Therapeutic	drug/biomarker	monitoring	(TDM)	
allows	to	further	individualize	model	predictions	(a	poste-
riori	predictions)	and	subsequently	to	adjust	dosing.

When	 PK/PD	 models	 are	 used	 for	 MIPD,	 a	 “per-
fect	model	 scenario”	 is	generally	assumed,	 in	which	 the	
model	 represents	 the	 drug-	patient-	disease	 system	 suffi-
ciently	well,	 the	variability	of	the	outcome	is	adequately	
described	and	the	prior	study	population	(used	to	develop	
the	 model)	 is	 representative	 of	 the	 target	 individual	 pa-
tient	(to	which	the	model	will	be	applied).	A	certain	model	
misspecification	or	population	shift	can,	however,	be	ex-
pected	due	to	the	limited	amount	of	data	the	models	were	
built	 on.	 Specifically,	 the	 data	 from	 clinical	 trials	 only	
involve	a	 limited	number	of	patients,	 selected	according	
to	 strict	 inclusion/exclusion	 criteria	 within	 a	 restricted	
time	 frame.1,5,6	Therefore,	models	underlying	MIPD	will	
inevitably	 be	 confronted	 with	 deviating	 data	 in	 clinical	
routine,	 such	 as	 differences	 related	 to	 pathophysiology7	
or	 the	patient	population	(comorbidities,	comedications,			
or	special	characteristics,	e.g.,	morbidly	obese,	pregnant,	or			
rare	genotypes).1,5,8–	10

In	 this	 “imperfect	 model	 scenario,”	 the	 benefits	 of	
MIPD	approaches	may	not	reach	their	full	potential.	It	is	
therefore	prudent	 to	also	 improve	the	associated	models	
as	clinical	routine	data	on	the	observed	patient	population	
becomes	available.

For	 a	 given	 drug-	disease-	patient-	system,	 there	 are	
often	 numerous	 models	 available	 within	 the	 literature,	
often	based	on	different	patient	populations	(e.g.,	for	war-
farin,11,12	 vancomycin7,13	 or	 cyclosporin).14	 In	 addition,	
adjustments	 to	 the	 model	 used	 in	 an	 MIPD	 framework	

were	 necessitated	 after	 treatment	 of	 the	 first	 patient	 co-
hort15	or	in	retrospect.16,17	As	an	example	of	high	clinical	
relevance,	we	focus	on	paclitaxel	causing	neutropenia	as	
the	 most	 frequent	 and	 life-	threatening	 toxicity	 in	 oncol-
ogy.	 Models	 describing	 paclitaxel-	induced	 neutropenia	
build	 the	 basis	 for	 neutrophil-	guided	 MIPD	 to	 individu-
alize	 chemotherapy	 dosing.18–	21	 Since	 the	 publication	 of	
the	gold-	standard	model	 for	neutropenia,22	many	model	
variants	 have	 been	 developed,	 which	 differ	 not	 only	 in	
parameter	estimates,23–	26	but	also	in	their	structure.17,27–	29

The	 challenge	 to	 choose	 between	 competing	 models	
is	 often	 approached	 via	 model	 averaging	 or	 model	 se-
lection.13	 In	 model	 averaging,	 all	 candidate	 models	 are	
used,	 weighting	 the	 model	 predictions	 with	 the	 TDM	
data.	 In	 contrast,	 in	 model	 selection,	 a	 single	 model	 is	
selected	 based	 on	 a	 retrospective	 external	 evaluation	 on	
independent	 data	 collected	 previously	 in	 the	 intended	
setting	(from	the	same	hospital	and	patient	population)6	
and	prospective	fit-	for-	purpose	verification.7	None	of	the	
approaches,	 however,	 integrates	 the	 new	 data	 collected	
during	routine	application	of	MIPD	into	the	initial	mod-
els	underlying	MIPD.	Yet,	continued	learning	approaches	
based	on	an	ever-	growing	amount	of	data	have	enormous	
potential	to	improve	the	predictive	capabilities	of	MIPD	in	
clinical	practice.

The	problem	of	transferability	is	a	well-	known	problem	
in	 the	 machine-	learning	 literature;	 often	 called	 lifelong	
learning,	 continual	 learning,30,31	 transfer	 learning,32,33	 or	
domain	adaptation.34	Contrary	to	typical	machine-	learning	
applications	with	direct	access	to	big	data,	sensitive	patient	
data	may	not	be	accessible	and	available	to	this	extent	across	
different	sources.	Consequently,	current	approaches	based	
on	pooling	of	data	are	not	an	option	in	this	case,	because	
they	 require	 direct	 access	 to	 TDM	 data	 of	 all	 patients.35	
Hence,	there	is	a	need	for	approaches	for	continued	model	
updating	 that	 are	 based	 on	 summary	 information	 of	 the	
data	that	is	extracted	locally	and	can	be	shared.

In	 this	 article,	 we	 propose	 an	 approach	 building	 on	
a	 sequential	 hierarchical	 Bayesian	 framework36,37	 for	
continued	 model	 learning.	The	 underlying	 prior	 model	
used	within	MIPD	is	improved	as	new	data	from	the	tar-
get	patient	population	are	assimilated.	 Importantly,	 the	
approach	 separates	 inference	 of	 the	 individual	 model	

WHAT	DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We	propose	a	continued	learning	approach	building	on	a	sequential	hierarchical	
Bayesian	framework	to	improve	the	model	while	MIPD	is	applied.
HOW	 MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
The	approach	bears	the	potential	to	increase	the	applicability	of	MIPD	by	adapt-
ing	models	retrieved	from	literature	to	a	target	clinical	setting.
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parameters	 during	 a	 patient’s	 therapy	 from	 the	 update	
of	population	parameters	across	patients.	The	proposed	
approach	 is	 based	 on	 ideas	 from	 Bayesian	 integration	
of	meta-	analyses.36,37	First,	we	demonstrate	how	a	mis-
match	 between	 the	 model	 and	 data-	generating	 process	
could	affect	MIPD	in	an	in	silico	trial	setting	in	terms	of	
model	 parameters	 and	 structural	 misspecifications.	 We	
focus	in	the	present	article	on	how	to	adapt	a	model	on	
the	 level	of	 the	 typical	model	parameters	and	 the	mag-
nitude	 of	 the	 inter-	individual	 variability.	 The	 proposed	
approach	 aims	 at	 bridging	 the	 gap	 between	 population	
analyses	in	model	development	and	application	of	MIPD	
in	therapeutic	use.

METHODS

MIPD framework

In	 MIPD,	 a	 Bayesian	 framework	 is	 used.	 Here,	 we	 very	
briefly	 summarize	 the	 approach,	 for	 details	 see	 refs	 [20	
and	21].	Inference	for	a	given	(i-	th)	patient	is	based	on	a	
prior	 distribution	 p( ⋅ |�̂TV, Ω̂)	 and	 the	 likelihood	
L( ⋅ |yi) = p(yi| ⋅ )	 of	 TDM	 data	 yi = (yi1,…, y1ni )

T,	 result-

ing	 in	 the	 posterior	 p( ⋅ |yi, �̂TV, Ω̂)	 of	 the	 individual	 pa-
rameters	�i	with

The	prior	distribution	in	Equation 1	is	based	on	prior	
population	 analyses	 leading	 to	 the	 following	 statistical	
model:

with	 �̂TV	denoting	 the	estimates	of	 the	 typical	values	 (TV)	
and	Ω̂	the	estimated	magnitude	of	interindividual	variability	
(IIV).	We	assume	in	the	following	a	normal	distribution	for	
p( ⋅ |�̂TV, Ω̂),	which	can	typically	be	established	via	transfor-
mation	 (e.g.,	 log-	transformation	 in	 case	 of	 the	 log-	normal	
distribution).	Note	that	it	is	possible	to	consider	a	covariate	
dependent	model,	but	we	restrict	ourselves	to	a	more	fixed	
parametrization	of	the	model	parameters	̂�TV.	The	likelihood	
is	based	on	structural	and	observational	models	as	follows:

with	state	vector	xi = xi(t)	 (e.g.,	drug	and	neutrophil	con-
centrations)	 and	 rates	 of	 change	 f (xi; �i, di)	 for	 given	
doses  di.	 The	 initial	 conditions	 x0(�i)	 are	 given	 by	 the	

pretreatment	 levels	 (e.g.,	 baseline	 neutrophil	 concentra-
tion).	 A	 statistical	 model	 links	 the	 observables	
hij(�i) = hi(tij)	 (i.e.,	model	quantities	that	are	measurable	
at	 time	 points	 tij),	 to	 observations	 (tij, yij)	 for	 j = 1,…,ni	
taking	 into	 account	 measurement	 errors	 and	 potential	
model	 misspecifications.	 This	 specifies	 the	 likelihood	 in	
Equation  1;	 a	 common	 likelihood	 is	 defined	 by	 the	
following:

for	 j = 1,…,ni.	 For	 ease	 of	 notation,	 we	 do	 not	 explicitly	
state	the	dependence	on	hij	and	Σ	in	p(yi|�i).

In	the	simulation	study,	we	considered	the	parameters	in	
log-	space	and	consider	neutrophil-	guided	dosing	(i.e.,	based	
on	the	observed	neutrophil	concentration).	From	the	lowest	
neutrophil	concentration	within	a	treatment	cycle	(nadir),	
the	neutropenia	grade	of	a	chemotherapy	cycle	is	inferred,	
ranging	from	no	neutropenia	(grade	0),	mild	(grade	1),	mod-
erate	 (grade	 2),	 to	 severe	 (grade	 3),	 and	 life-	threatening	
(grade	4).	We	used	an	MIPD	approach	based	on	data	assim-
ilation	(DA)	to	forecast	the	neutropenia	time	course,	called	
DA-	guided	dosing,	as	presented	in	detail	in	refs.	20,	and	21.	
In	short,	a	particle	filter	is	used	to	approximate	the	posterior	
distribution	 (Equation  1)	 at	 dose	 selection	 time	 points	 tc	
(start	of	cycle	c),	integrating	data	from	the	i-	th	patient	up	to	
tc	(i.e.,	(tij, yij)	with	tij ≤ tc,	via	a	sample	approximation):

It	is	based	on	an	ensemble	of	weighted	particles	(sam-
ples)	i =

{
�
(m)
i
,w

(m)
i
:m = 1, . . . ,M

}
	 comprising	param-

eter	 values	�(m)
i

	 and	 importance	 weights	w(m)
i

.	 The	 used	
particle	 filter	 included	 a	 resampling	 and	 rejuvenation	
step,	see	ref.	[20].	Solving	the	structural	and	observational	
model	(Equation 3	+	Equation 4)	for	each	particle	(sam-
ple)	allows	to	compute	the	a	posteriori	probabilities	of	all	
neutropenia	 grades.	 The	 optimal	 dose	 is	 determined	 by	
minimizing	 the	 weighted	 joint	 probability	 of	 life-	
threatening	grade	4	 (Pgrade	4)	and	subtherapeutic	grade	0	
neutropenia	(Pgrade	0)	for	the	next	cycle,	i.e.,:

The	 weighting	 factors	 were	 chosen	 as	 λ1  =  2/3	 and	
λ2  =  1/3	 to	 penalize	 the	 risk	 to	 expose	 a	 patient	 to	 life-	
threatening	 infections	 (grade	 4)	 more	 severely	 than	 the	
risk	 to	 expose	 a	 patient	 to	 a	 subtherapeutic	 outcome	
(grade	0).	The	latter	has	been	associated	with	reduced	me-
dian	overall	survival.38,39

(1)p(�i|yi, �̂TV, Ω̂) ∝ p(yi|�i)p(�i|�̂TV, Ω̂).

(2)Θi ∼ p( ⋅ |�̂TV, Ω̂)

(3)dxi
dt
(t) = f (xi(t); �i, di), xi(0) = x0(�i)

(4)hi(t) = h(xi(t), �i)

(5)p(yij|�i) = hij(�i) + �ij; �ij∼iid�(0,Σ)

(6)p(�i|yi1:tc ) ≈
M∑

m= 1

w(m)
i
1{

�
(m)
i

=�i

}.

(7)d∗ = argmin
d∈�

{
�1Pgrade4 + �2Pgrade0

}
.
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Simulation study framework

Paclitaxel-	induced	neutropenia	models

We	considered	a	model	for	paclitaxel-	induced	neutropenia	
which,	in	ref.	[17]	had	been	investigated	for	model	appli-
cability,	re-	estimated,	and	structurally	modified	after	new	
patient	 data	 were	 observed	 in	 the	 clinical	 trial	 “Central	
European	Society	for	Anticancer	Research	(CESAR)	study	
of	 Paclitaxel	 Therapeutic	 Drug	 Monitoring	 (CEPAC-	
TDM)”	 ClinicalTrials.gov	 Identifier:	 NCT01326767.40	 A	
schematic	 representation	 of	 the	 models,	 corresponding	
parameter	 estimates,	 and	 typical	 model	 predictions	 are	
shown	 in	Figure 1.	 In	Supplementary	Material	Table	S2,	

we	list	additional	models	proposed	for	paclitaxel-	induced	
neutropenia,	 which	 illustrates	 the	 challenge	 of	 choosing	
a	 suitable	model	 for	MIPD	 in	practice.	The	 initial	model	
(hereafter	 gold- standard)	 builds	 on	 the	 structure	 of	 the	
gold-	standard	model	for	chemotherapy-	induced	neutrope-
nia22	with	parameter	values	estimated	using	a	pooled	data	
set	of	two	prior	studies,25,41	including	patients	with	ovarian	
cancer,	non-	small	cell	 lung	cancer	(NSCLC),	and	various	
solid	tumours.26	Paclitaxel	was	given	either	as	monother-
apy	or	in	combination	with	carboplatin.	The	CEPAC-	TDM	
study	 included	 only	 patients	 with	 NSCLC	 and	 paclitaxel	
was	given	in	combination	with	carboplatin	or	cisplatin	over	
six	treatment	cycles.	It	was	observed	that	the	gold-	standard	
model26	 overestimated	 the	 neutrophil	 concentration	 at	

F I G U R E  1  Paclitaxel-	induced	neutropenia	models.	(a)	Parameter	estimates	of	the	three	considered	models	with	relative	standard	errors	
in	brackets	(if	available	in	literature).	(b)	Schematic	model	representation	with	the	PK	model	for	paclitaxel	(on	the	left);	gold-	standard	PK/PD	
model	in	black	and	extension	for	cumulative	neutropenia	in	black/blue.	(c)	Time	course	of	neutrophil	concentrations	for	the	typical	patient	
in	the	CEPAC-	TDM	study	during	six	cycles	of	chemotherapy	(3	weeks	each,	with	drug	administration	on	day	1)	for	the	two	model	structures	
(black:	gold/standard	model	trajectory;	blue:	extended	gold-	standard)	and	different	parameter	values	(dark/light	black).	Abbreviations:	
ANC0 = Circ0:	absolute	neutrophil	concentration	at	baseline	or	circulating	neutrophils	(Circ)	at	baseline;	BILI,	bilirubin	concentration;	BSA,	
body	surface	area;	CEPAC-	TDM,	Central	European	Society	for	Anticancer	Research	(CESAR)	study	of	Paclitaxel	Therapeutic	Drug	Monitoring;	
CV,	coefficients	of	variation;	ftr,	fraction	of	input	in	the	compartment	of	proliferating	cells	(Prol)	via	replication;	IIV,	interindividual	variability;	
MTT,	mean	transit	time;	PD,	pharmacodynamic;	PK,	pharmacokinetic;	RUV,	residual	variability;	Slope,	linear	drug	effect	parameter;	TV,	typical	
values;	γ,	feedback	exponent.	More	detailed	information	on	the	models	is	provided	in	Supplementary	Material	Section	S1.

(a)

(b)

(c)
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later	 cycles	 because	 the	 model	 does	 not	 account	 for	 cu-
mulative	neutropenia	(i.e.,	an	aggravation	of	neutropenia	
over	multiple	cycles,17	see	Figure 1c);	a	phenomenon	that	
has	 been	 reported	 previously.42	 The	 parameters	 were	 re-	
estimated	 (gold- standard R)	 based	 on	 the	 CEPAC-	TDM	
data,	and	finally	the	structure	was	modified	to	account	for	
bone	 marrow	 exhaustion	 (BME),	 see	 Figure  1.	 Here,	 we	
focus	 our	 analyses	 on	 the	 more	 challenging	 PD	 models,	
whereas	we	considered	the	PK	model	to	be	given,	with	pa-
rameter	values	 inferred	previously	based	on	the	CEPAC-	
TDM	study	data,17	see	Supplementary	Material	Section	S1.

Model	adaptation	scenarios

A	 model	 adaptation	 may	 be	 needed	 on	 the	 level	 of	 the	
structural	model	(3)+(4),	prior	parameter	distribution	(2)	
and/or	likelihood	(5).	In	this	article,	we	consider	two	types	
of	scenarios	where	model	adaptations	may	be	beneficial:

Structural differences
A	divergence	in	the	structural	model	(e.g.,	due	to	the	man-
ifestation	of	phenomena	in	the	target	patient	population	
that	have	not	been	observed	in	the	prior	studies)	is	consid-
ered.	To	study	such	a	scenario,	we	used	the	BME	model17	
to	generate	TDM	data,	whereas	we	used	the	gold-	standard	
model26	 for	MIPD.	The	 latter	model	 lacks	 the	structural	
feature	of	cumulative	neutropenia.

Differences in parameters
Differences	in	the	parameter	distribution	(e.g.,	the	distri-
butional	 assumption	 [normal,	 log-	normal,	 etc.])	 as	 well	
as	 the	 estimated	 hyperparameter	 values	 for	 a	 given	 dis-
tribution	are	potential	examples.	Here,	we	only	focus	on	
the	latter	(i.e.,	the	type	of	distribution	is	the	same,	but	the	
hyperparameters	differ).	To	study	parameter	changes,	we	
used	the	gold-	standard	R	model43	to	generate	TDM	data,	
whereas	 we	 used	 the	 gold-	standard	 model26	 in	 MIPD.	
Both	rely	on	the	same	structural	model,	whereas	the	pa-
rameter	 values	 of	 the	 former	 were	 re-	estimated	 to	 the	
CEPAC-	TDM	data.

We	 compared	 the	 performance	 of	 MIPD	 in	 the	 pres-
ence	of	structural	or	parameter	bias	to	(i)	MIPD	based	on	
an	 unbiased	 model	 (unbiased	 model	 scenario),	 and	 (ii)	
standard	 dosing	 (i.e.,	 200  mg/m2	 body	 surface	 area),	 in-
cluding	a	dose	reduction	of	20%	if	grade	4	was	observed	
based	on	the	neutrophil	measurement	at	day	15.43

TDM	sampling	scenarios

The	effect	of	a	potential	mismatch	between	prior	model	
and	the	(new)	data-	generating	process	of	MIPD	depends	

on	the	amount	of	available	TDM	data	per	patient	to	adapt	
the	model.	Therefore,	we	considered	different	TDM	sam-
pling	schemes:

1.	 Sparse sampling:	 Neutrophil	 measurements	 at	 day	 1	
and	day	15	of	each	cycle	(sampling	design	of	CEPAC-	
TDM	 study).

2.	 Intermediate sampling:	 Weekly	 neutrophil	 measure-
ments	(as	in	ref.	[25]).

3.	 Rich sampling:	Neutrophil	measurements	taken	every	
third	day.

Although	the	 first	 sampling	scheme	corresponds	 to	a	
common	outpatient	setting,	the	third	is	standard	in	a	fully	
inpatient	 setting	 and	 also	 mimics	 the	 prospective	 grow-
ing	availability	of	point-	of-	care	devices	for	an	outpatient	
setting	 (e.g.,	HemoCue	WBC	Diff	 for	measuring	neutro-
phil	counts44),	foreseeing	richer	sampling	for	monitoring	
patients.

Hierarchical	Bayesian	model

To	 continuously	 update	 and	 learn	 population	 param-
eters,	we	considered	additional	hyper	priors	on	the	pop-
ulation	 parameters	 of	 the	 NLME	 models	 described	 in	
Section	 MIPD framework.	 The	 hierarchical	 structure	
of	fully	Bayesian	population	models	thus	comprises	three	
stages,45,46	 see	 Figure  2:	 (i)	 the	 statistical	 model	 for	 the	
TDM	 data	 given	 by	 Equation  5	 describes	 the	 deviations	
between	the	individual	model	predictions	and	the	obser-
vational	data;	(ii)	the	distributional	assumption	for	inter-	
individual	variability,	Equation 2	describes	the	differences	
between	 individuals;	 (iii)	 the	 distributional	 assumption	
for	 (hyper)	 population	 parameters,	 p

(
�TV

)
,	 p (Ω)	 de-

scribes	the	uncertainty	in	the	population	parameters.
Population	 analyses	 are	 typically	 performed	 in	 a	 fre-

quentist	 NLME	 setting,	 reporting	 maximum	 likelihood	
estimates	 (MLEs)	 of	 the	 population	 parameters	 jointly	
with	their	relative	standard	errors	(RSEs)	or	coefficients	of	
variation.	 This	 leaves	 the	 problem	 of	 how	 to	 determine	
suitable	 hyper	 prior	 distributions	 of	 the	 population	 pa-
rameters.	We	considered	a	normal	distribution	for	the	typ-
ical	parameters	(on	log-	scale)	and	an	inverse-	Wishart	for	
the	variances,	as	suggested	in	ref.	[47].	We	chose	�TV	to	be	
normally	distributed	with	mean	�TV	identical	to	the	MLE	
�̂TV	and	variance	S�TV	identical	to	the	(appropriately	trans-
formed)	 squared	 standard	 error	 (SE�TV)

2,	 i.e.	
�TV ∼�

(
�̂TV,

(
SE�TV

)2 ),	 see	 also	 ref.	 [48].	 The	 inter-	
individual	variability	matrix	Ω	was	assumed	to	be	inverse-	
Wishart	 distributed	 ℐ𝒲(Ψ, �)	 and	 diagonal	 with	
parameters	Ψ, �	such	that	the	population	estimate	equaled	
the	 mean	Ψ∕(� − nΩ − 1),	 i.e.,	Ψ = (� − nΩ − 1)Ω̂,	 where	
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nΩ	 is	 the	number	of	 random	effect	parameters	and	with	
degrees	of	freedom	�	still	to	be	chosen.	The	distributions	
of	 the	 typical	and	variability	values	were	assumed	 to	be	
independent.

Continued learning across patients

To	 learn	 and	 improve	 a	 model	 across	 patients,	 the	 in-
formation	 provided	 by	 the	 patient-	specific	 TDM	 data	
have	 to	 be	 included	 into	 the	 hierarchical	 model.	 In	
mathematical	terms,	we	are	interested	in	the	marginal	
posterior:

with	the	joint	posterior:

determined	from	a	full	hierarchical	Bayesian	procedure.	A	
sample	approximation	to	the	joint	posterior	in	Equation 9	
allows	 for	 a	 straightforward	 approximation	 of	 the	 mar-
ginal	in	Equation 8.	In	the	context	of	particle	filter-	based	
inference,	this	can	be	realized	by	augmenting	the	particle	
state	as	well	as	the	parameter	space	by	the	population	pa-
rameters	(�TV,Ω).	This	approach,	however,	has	two	major	
drawbacks:	 (i)	 it	 is	 computationally	 expensive	 and	 thus	
limits	real-	time	inference	during	the	patient’s	therapy;	and	
(ii)	direct	access	to	the	individual	patient	data	is	required	
to	 update	 the	 population	 parameters	 yet	 data	 protection	

laws	and	 logistical	 reasons	often	prohibit	 this.	These	are	
major	limitations	for	a	practical	application,	in	particular	
across	different	clinics.

Therefore,	we	propose	a	two-	level	sequential	Bayesian	
approach;	it	is	based	on	previous	ideas	on	Bayesian	infer-
ence	 for	 meta-	analyses.36,37	 Importantly,	 this	 approach	
does	not	change	the	inference	on	the	individual	level	(see	
Algorithm	1	for	pseudo-	code):

1.	 Individual level:	Estimate	individual	parameters	of	the	
ith	 patient.

for	example,	using	a	particle	filter,	sampling	importance	
resampling	or	a	Markov	chain	Monte	Carlo	approach.20	
A	particle	filter	('DA'	for	data	assimilation	in	the	pseudo-	
code	)	is	used	in	our	analysis,	as	it	was	shown	to	be	best	
suited	 for	 the	 underlying	 setting.20	 This	 gives	 rise	 to	 a	
sample	 representation	

{
�
(m)
i
,w(m)

i
: m = 1,…,M

}
	 of	 the	

posterior	 p(�i|yi, �TV,Ω),	 summarizing	 the	 information	
provided	by	the	data	of	the	ith	patient.	This	step	is	iden-
tical	to	the	inference	step	in	MIPD	without	continuous	
learning,	see	Equation 1.

2.	 Population level:	Update	population	parameters	by	sam-
pling	iteratively	from	the	joint	posterior	p(�i, �TV,Ω|y1:i)	
via	 a	 Metropolis-	Hastings-	within-	Gibbs	 sampling	
scheme,36,48	 (i.e.,	 sampling	 from	 the	 full	 conditionals	
[see	 Section	 S2.1	 for	 a	 detailed	 derivation]):

(8)p(�TV,Ω|y1:i) ∝ ∫ p(�i, �TV,Ω|y1:i)d�i

(9)p(�i, �
TV,Ω|y1:i) ∝ p(yi|�i)p(�i|�TV,Ω)p(�TV,Ω|y1:i−1)

p(�i|yi, �TV,Ω) ∝ p(yi|�i)p(�i|�TV,Ω),

(10)p(�TV|�i,Ω, y1:i) ∝ p(�i|�TV,Ω)p(�TV|Ω, y1:i−1)

F I G U R E  2  Hierarchical	Bayesian	model	framework	with	separation	between	the	inference	on	the	individual	level	and	the	inference	
on	the	population	level.	The	standard	population	analyses	typically	used	to	build	the	prior	knowledge	based	on	population	estimates	�̂TV,	Ω̂	
is	shown	in	dark	blue.	To	update	the	prior	population	estimates,	the	population	parameters	are	seen	as	random	variables	with	parametric	
probability	distributions	parametrized	with	hyperparameters	�TV,	S�

TV

	,	Ω	and	�.	A	sample	representation	of	the	individual	posterior,	
{
�
(m)

N+1

}M

m = 1
	

is	used	to	update	the	hyperparameters	of	the	population	parameter	distributions	(red	arrow).	On	the	right	the	corresponding	probability	
distributions	are	given	for	the	different	levels	of	the	hierarchical	model.	TDM,	therapeutic	drug	monitoring
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Sampling	from	Equation 12	is	achieved	via	a	Metropolis-	
Hastings	 step,	 using	 as	 proposals	 the	 posterior	 samples	
generated	 on	 the	 individual	 level	{�(m)

i
}M
m=1

,	 which	 are	
drawn	according	to	weights	w(m)

i
.

To	 ensure	 that	 sampling	 in	 Equations  10	 and	 11	 can	
be	 performed	 in	 closed-	form,	 at	 the	 end	 of	 assimilating	
data	of	the	i-	th	patient,	a	parametric	approximation	by	a	
normal-	inverse-	Wishart	distribution	is	used:	

with	hyperparameters	as	stated	in	Algorithm	1.	Then,	sam-
pling	in	Equations 10	and	11	corresponds	to	sampling	from	
a	normal	and	inverse-	Wishart	distribution,	respectively,	see	
Supplementary	Material	Section	S	2.2.

Importantly,	 through	 the	 parametric	 approximation	
in	 Equation  13,	 y1:i−1	 are	 represented	 implicitly	 via	 the	
updated	priors	 for	 the	 i-	th	step,	while	yi	enters	 implicitly	
through	the	sample	approximation.	In	no	case,	the	original	
patient	data	is	needed.

(11)p(Ω|�i, �TV, y1:i) ∝ p(�i|�TV,Ω)p(Ω|�TV, y1:i−1)

(12)p(�i|�TV,Ω, y1:i) ∝ p(yi|�i)p(�i|�TV,Ω)
(13)

p(𝜃TV,Ω|y1:i) ≈𝒩

(
𝜃TVi, S

𝜃TV

i

)
⊗ℐ𝒲((𝜈i − nΩ − 1)Ωi, 𝜈i),

Algorithm 1 Two-level sequential hierarchical Bayesian learning in MIPD

1: Input: θ̂TV,SE
θ̂TV , Ω̂, ν0, (yi,1:ni

only for individual level)

2: Set hyper prior parameters θTV
0 := θ̂TV,SθTV

0 := (SE
θ̂TV)2, Ω̄0 := Ω̂, ν0

3: for i = 1 : NTDM do
4: � Individual level
5: Initialize particle ensemble {(θ(m)

i0 , x
(m)
i0 , w

(m)
i0 )}M

m=1 based on p(θ|θTV
i−1, Ω̄i−1)

6: for j = 1 : ni do
7: {(θ(m)

ij , x
(m)
ij , w

(m)
ij )}M

m=1 ← DA yij , {(θ(m)
ij−1, x

(m)
ij−1, w

(m)
ij−1)}M

m=1
)

8: end for
9: � Population level

10: Initialize Markov chain θTV
i

(0) = θTV
i−1,Ω

(0)
i = Ω̄i−1 and θ

(0)
i sampled from p(θ|θTV

i−1, Ω̄i−1)
11: for l = 1 : L do
12: � Gibbs sampling part
13: Draw θ

TV(l)
i from p(θTV|θ(l−1)

i ,Ω(l−1)
i ) � Eq. 10

14: Draw Ω(l)
i from p(Ω|θ(l−1)

i , θTV(l)) � Eq. 11
15: � Metropolis-Hastings part
16: Draw proposal θ

∗(l)
i from {θ

(m)
ini

}M
m=1 according to {w

(m)
ini

}M
m=1 and add rejuvenation

17: Accept proposal with probability

α =
p(θ∗(l)

i |θTV(l)
i ,Ω(l)

i )/p(θ∗
i |θTV

i−1, Ω̄i−1)

p(θ(l−1)
i |θTV(l)

i ,Ω(l)
i )/p(θ(l−1)

i |θTV
i−1, Ω̄i−1)

, (14)

18: end for
19: Parametric approximations of posterior (hyper prior for next individual):
20: p(θTV|y1:i) ≈ N (θTV

i ,SθTV

i ) with

θTV
i =

1
L

L∑

l=1

θ
TV(l)
i , SθTV

i =
1

L − 1

L∑

l=1

(θTV(l)
i − θTV

i )(θTV(l)
i − θTV

i )T (15)

21: p(Ω|y1:i) ≈ IW((νi − nΩ − 1)Ω̄i, νi) with

Ω̄i =
1
L

L∑

l=1

Ω(l)
i , νi = νi−1 )61(1+

22: end for
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The	continued	learning	approach	was	sequentially	applied	
to	NTDM = 100	virtual	patients	with	available	TDM	data	over	
six	 treatment	cycles	depending	on	 the	considered	sampling	
scheme.	For	the	analysis,	the	continuous	learning	approach	
was	repeated	10	times	to	account	for	statistical	variability	in	
the	individual	patient	parameters	considered	for	the	update.	
To	demonstrate	the	effect	of	a	mismatch	between	model	and	
data-	generating	process,	we	also	applied	MIPD	alone	without	
continued	 learning	 (DA-	guided	 dosing).	 On	 the	 individual	
level,	 model	 parameters	 MTT,	 Slope,	 and	 ANC0	 were	 esti-
mated.	We	restricted	the	population	updates	 to	“MTT”	and	
“Slope”	as	for	“ANC0”	the	baseline	method	B2	described	in	
ref.	[49]	was	used	(i.e.,	no	typical	parameter	was	estimated	but	
the	baseline	value	was	used	to	initialize	the	[empirical	Bayes]	
prior).	In	addition,	we	consider	a	setting	which	includes	in	the	
individual	level	inference	as	the	value	differs	across	the	mod-
els.	In	this	study,	we	neither	estimated	the	residual	variability	
σ	on	the	individual	level	nor	on	the	population	level.	The	val-
ues	for	σ	used	to	generate	the	TDM	data,	however,	differed	
from	those	that	the	models	in	the	“imperfect	model	scenarios”	
assume.	The	considered	hyper	priors	(i.e.,	 the	distributional	
assumptions	for	the	population	parameters),	are	summarized	
in	Table 1.	Because	no	RSEs	are	available	for	the	gold-	standard	
model,26	the	values	reported	in	ref.	[25]	(one	of	the	two	pooled	
studies)	were	chosen	as	conservative	choice.	The	degrees	of	
freedom	�	was	chosen	here	to	balance	confidence	in	the	esti-
mated	value	while	still	enabling	adaptation.	The	simulation	
study	was	performed	in	MATLAB	2019b	and	the	code	is	avail-
able	under	https://doi.org/10.5281/zenodo.5504309.

RESULTS

Current MIPD approaches may not be 
beneficial in the presence of model bias

For	a	performance	analysis,	we	generated	TDM	data	(in-
cluding	residual	variability)	on	day	1	and	day	15	of	each	

cycle	 (sparse	 sampling	 as	 in	 the	 CEPAC-	TDM	 study).	
Figure 3	illustrates	the	performance	of	MIPD	with/with-
out	model	bias	in	comparison	to	standard	dosing	(median	
and	90%	confidence	intervals	[CIs]).	The	aim	of	individual	
dose	adaptations	is	to	ensure	that	in	each	cycle,	the	nadir	
concentration	stays	within	 the	 two	horizontal	 lines	 (i.e.,	
representing	the	target	range	of	grades	1–	3	neutropenia).

The	 left	 column	 illustrates	 the	 scenario	 of	 parameter	
deviation	(i.e.,	the	structural	model	and	the	class	of	prior	
distributions	 is	 identical	 to	 the	 data-	generating	 process,	
but	hyperparameter	values	differ).	In	this	case,	MIPD	per-
formed	comparably	 to	 standard	dosing	 (top	 left,	median	
trajectory,	 and	 90%	 CI),	 also	 in	 terms	 of	 occurrence	 of	
grades	4	and	0	neutropenia	(bottom	left).	For	reference,	in	
the	corresponding	model	scenario	without	mismatch,	the	
MIPD	approach	clearly	reduced	the	occurrence	of	grades	
4	and	0	(bottom	and	middle	panel).	It	is	worth	mention-
ing	that	the	CIs	in	all	panels	showed	a	certain	“skewness”	
toward	 higher	 neutrophil	 concentrations	 (lower	 neutro-
penia	grade),	because	grade	4	is	penalized	more	strongly	
than	grade	0	in	Equation 7.

The	right	column	illustrates	the	more	challenging	sce-
nario	 of	 structural	 changes	 (i.e.,	 a	 model	 structure	 dif-
fering	from	the	data-	generating	process).	Of	note,	in	this	
case,	 both	 standard	 dosing	 and	 MIPD	 performed	 much	
worse	 than	 in	 the	parameter	bias	 scenario	 (bottom	pan-
els).	In	three	out	of	six	cycles	(cycles	2–	4),	MIPD	resulted	
in	even	 larger	occurrences	of	grade	4	compared	 to	stan-
dard	dosing.	The	gold-	standard	model	underestimated	the	
drug	 effect	 on	 neutrophil	 concentrations	 (see	 Figure  1)	
and	too	high	doses	were	selected,	especially	 in	 the	pres-
ence	of	cumulative	neutropenia.	Despite	relying	on	an	in-
appropriate	structural	model,	DA	was	able	to	correct	this	
initial	mismatch	on	the	parameter	level	over	the	course	of	
a	patient’s	therapy	by	integrating	TDM	data,	which	lead	to	
a	decrease	in	incidence	of	grade	4	neutropenia	in	later	cy-
cles.	For	reference,	in	the	corresponding	unbiased	model	
scenario,	the	MIPD	approach	clearly	and	very	quickly	re-
duced	the	occurrence	of	grades	4	and	0	(bottom	and	mid-
dle	 panel).	 In	 comparison	 to	 the	 parameter	 adaptation	
scenario,	 the	 occurrence	 of	 grades	 4	 and	 0	 neutropenia	
was	even	further	decreased,	which	might	be	related	to	the	
smaller	RUV	parameter,	see	Figure 1a.

In	summary,	 if	 the	underlying	model	 is	not	consistent	
with	the	observational	data,	MIPD	might	not	be	beneficial	
compared	to	standard	dosing	that	solely	relies	on	TDM	data	
(“model-	free”).	As	outlined	in	the	 introduction,	necessary	
model	 adaptations	 can	 be	 expected	 if	 MIPD	 is	 applied	 in	
clinical	routine,	and,	therefore,	the	top	panels	might	better	
reflect	clinical	reality	than	the	middle	panels.	Here,	model	
adaptation	during	clinical	practice	is	necessary.	Most	MIPD	
approaches,	 however,	 do	 not	 exploit	 the	 wealth	 of	 TDM	
data	used	during	MIPD	to	learn	and	update	their	models.

T A B L E  1 	 Hyper	priors	for	the	gold-	standard	model	used	in	the	
simulation	study

Parameter Distribution Hyperparameters

TV	parameters

log(MTT) � �TV0 = log (2.6),	S�
TV

0 = 0.0013

log(Slope) � �TV0 = log (141),	S� TV0 = 0.016

IIV	parameters

�2
MTT

ℐ𝒲 ΨMTT = 0.6561 = (12 − 2 − 1) 0.0729,		
�0 = 12

�2
Slope

ℐ𝒲 ΨSlope = 1.8144 = (12 − 2 − 1) 0.2016,		
�0 = 12

Abbreviations:	IIV,	interindividual	variability;	MTT,	mean	transit	time.

https://doi.org/10.5281/zenodo.5504309
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F I G U R E  3  MIPD	in	presence	of	a	mismatch	between	model	and	data-	generating	process.	Neutropenia	time-	courses	were	simulated	
for	NTDM = 1000	virtual	patients	using	MIPD	approaches	with	different	underlying	models	and	the	standard	dosing	approach	for	paclitaxel	
(200 mg/m2	with	20%	reduction	if	grade	4	neutropenia	is	observed	in	the	previous	cycle).	TDM	data	were	simulated	for	day	1	and	day	15	
of	each	cycle	(sparse	sampling	scenario),	including	residual	variability.	Left	column:	TDM	data	were	generated	using	the	gold-	standard	R	
model.	Right	column:	TDM	data	was	generated	using	the	bone	marrow	exhaustion	(BME)	model.17	Top	panel:	“Imperfect	model	scenario”	
(i.e.,	the	MIPD	approach	uses	the	gold-	standard	model),	while	the	data	was	generated	with	the	gold-	standard	R	model	(left)	or	BME	model	
(right).	Middle	panel:	“Perfect	model	scenario”	(i.e.,	the	MIPD	approach	uses	also	the	data-	generating	model).	The	median	time-	course	is	
shown	along	with	its	90%	confidence	interval	(CI).	Bottom	panel:	occurrence	of	life-	threatening	grade	4	neutropenia	and	subtherapeutic	
grade	0	neutropenia	for	the	different	scenarios.	Note	that	grade	4	neutropenia	is	penalized	more	(λ1 = 2/3)	compared	to	grade	0	neutropenia	
(λ2 = 1/3)	in	Equation (7).	This	is	accounted	for	in	the	scale	of	the	bottom	panels,	which	allows	to	interpret	the	length	of	the	total	bars.	
MIPD,	model-	informed	precision	dosing;	TDM,	therapeutic	drug	monitoring
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Continued learning MIPD can adapt 
parameters— depending on the 
sampling scheme

The	proposed	continued	 learning	 framework	was	able	 to	
adapt	 the	 prior	 parameter	 distribution	 across	 TDM	 pa-
tients.	 Figure  4	 illustrates	 the	 sequential	 updates	 of	 the	
proposed	framework	for	the	posterior	distributions	of	the	
typical	 parameters	 of	 “Slope”	 and	 “MTT”	 across	 100	 pa-
tients	 for	 different	 sampling	 schemes.	 For	 the	 rich	 sam-
pling	scenario	(left),	the	posterior—	95%	highest	posterior	
density	(HPD)	area—	evolved	over	the	number	of	observed	
patients,	moving	away	from	the	prior	estimate	(grey	star)	
toward	the	value	used	to	generate	the	data	(black	star).	As	
more	patients	were	observed,	uncertainty	about	the	typical	
“Slope”	and	“MTT”	parameters	decreased,	as	indicated	by	
the	decreasing	 size	of	 the	HPD	area.	Thus,	 the	proposed	
framework	 successfully	 learned	 the	 TVs	 underlying	 the	
TDM	data	from	sample	representations	of	the	posterior	on	
the	individual	level.	Note	that	the	parameters	γ	and	σ	were	
not	estimated	although	different	values	were	used	to	gen-
erate	the	data,	which	has	the	effect	of	introducing	an	addi-
tional	bias.	The	results	including	γ	on	the	individual	level	
inference	are	shown	in	Supplementary	Material	Figure S1.

The	extent	to	which	the	continuous	learning	framework	
could	counteract	a	parameter	mismatch	depended	on	 the	
sampling	scheme	(see	Figure 4	middle	and	right	panel).	For	

the	intermediate	scheme,	the	posterior	distribution	moved	
toward	the	parameter	values	used	to	generate	 the	data.	A	
final	parameter	bias,	however,	remained.	A	potential	reason	
could	be	parameter	identifiability.	To	assess	practical	identi-
fiability,	we	investigated	the	log-	likelihood	and	log-	posterior	
on	the	individual	patient	levels,	see	Supplementary	Material	
Figure  S2.	 To	 exclude	 the	 possibility	 of	 unfavorably	 cho-
sen	 sampling	 time	 points	 in	 the	 intermediate	 scheme	
(weekly),	 we	 performed	 an	 optimal	 design	 analysis,	 see	
Supplementary	Material	Section	S3.	These	analyses	showed	
that	the	setting	is	not	ideally	chosen,	but	also	that	optimal	
design	 considerations	 might	 be	 patient-	specific.	 For	 the	
sparse	sampling	scheme,	the	TDM	data	were	not	sufficient	
to	adapt	the	model	appropriately.	Yet,	in	the	context	of	the	
rich	sampling,	the	data	was	indeed	informative	enough	to	
move	away	from	the	(biased)	prior	estimate	toward	the	data-	
generating	value,	resolving	the	practical	unidentifiability.

Continued learning in MIPD can 
substantially improve therapy outcome 
even for structural changes

Finally,	we	investigated	the	effects	of	continued	learning	
of	population	parameters	on	MIPD.	Here,	we	show	only	
the	more	challenging	structural	bias	scenario	(a	different	
model	used	for	data	generation	vs.	inference	in	MIPD);	for	

F I G U R E  4  Comparison	of	the	sequential	updates	of	the	hyper	prior	for	the	typical	MTT	and	Slope	value	for	different	TDM	scenarios.	
Grey	star:	prior	estimate	of	the	hyperparameters;	black	star:	true	hyperparameters	(i.e.,	the	values	used	to	generate	the	TDM	data).	Sparse	
sampling	consisted	of	measurements	on	days	1	and	15	of	each	cycle,	weekly	sampling	corresponds	to	an	intermediate	data	situation,	and	for	
rich	sampling	it	is	assumed	that	neutrophils	are	monitored	every	third	day.	Mean	(circle)	and	95%	highest	posterior	density	(shaded	ellipse)	
are	shown.	MTT,	mean	transit	time;	TDM,	therapeutic	drug	monitoring
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the	parameter	bias	scenario,	see	Supplementary	Material	
Figure  S5.	 The	 performance	 of	 the	 different	 approaches	
is	compared	in	Figure 5.	Standard	dosing	and	DA-	guided	
dosing	are	set	up	analogously	in	Figure 3,	except	for	the	
fact	they	are	trained	with	the	intermediate	sampling	de-
sign.	 It	becomes	clear	 that	 continued	 learning	 is	 signifi-
cantly	 more	 effective	 with	 more	 TDM	 data	 (see	 above).	
We	 also	 considered	 uncertainty	 with	 respect	 to	 the	 pa-
rameter	γ.

Data	assimilation-	guided	dosing	was	also	able	to	adjust	
to	some	extent	to	cumulative	neutropenia	over	time	(see	
Figure  5	 dark	 green).	 The	 “Slope”	 parameter	 increased,	
whereas	 parameters	 “Circ0,”	 and	 γ	 decreased	 over	 the	
course	 of	 the	 individual	 therapy,	 leading	 to	 a	 decrease	

in	 occurrence	 of	 grade	 4	 after	 cycle	 3	 and	 a	 substantial	
decrease	 in	 outcome	 variability.	 Effectively,	 when	 con-
sidering	the	data	points	one	at	a	time,	the	sequential	DA	
framework	allowed	to	account	for	changes	in	the	parame-
ters	over	time—	a	potentially	very	beneficial	property	(e.g.,	
in	disease	progression).	Although	this	might	be	very	desir-
able	for	MIPD	at	the	individual	patient	level,	it	could	be	
misleading	when	learning	across	patients.	When	the	final	
parameter	estimate	(after	6	cycles)	was	used	to	update	the	
population	 parameters	 (SlopeTV	 and	 MTTTV),	 this	 intro-
duced	a	bias	for	the	first	cycle	of	the	next	patient,	resulting	
in	high	occurrence	of	grade	0	for	the	first	cycle	(Figure 5	
bottom	 left).	 Continued	 learning	 was	 considered	 across	
the	 first	 100	 patients	 (blue-	green)	 as	 well	 as	 for	 some	

F I G U R E  5  Sequential	DA	allows	for	temporal	parameter	changes	within	the	course	of	a	patient’s	therapy.	The	TDM	data	were	
generated	using	the	BME	model	and	the	results	are	shown	for	the	intermediate	sampling	scheme	(sampling	timepoints	are	indicated	as	
grey	dots	in	the	right	panels).	The	median	temporal	parameter	evolution	over	the	course	of	therapy	was	computed	across	all	virtual	patients	
(NTDM = 10 ⋅ 100).	BME,	bone	marrow	exhaustion;	CI,	confidence	interval;	DA,	data	assimilation;	TDM,	therapeutic	drug	monitoring
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second	100	patients	(yellow)	after	learning	from	the	first	
100	 patients.	 It	 can	 be	 observed	 that	 the	 typical	 “Slope”	
parameter	 increased	 (green	vs.	blue-	green	vs.	 yellow)	as	
it	was	continuously	learned	across	patients	(initial	Slope	
value	at	t = 0	in	the	top	right	panel).

A	major	improvement	was	observed	for	the	continued	
learning	MIPD	approach,	which	reduced	the	occurrence	
of	 grade	 4	 substantially	 across	 all	 cycles	 compared	 to	
DA-	guided	dosing	or	standard	dosing.	The	results	for	the	
rich	sampling	scenario	were	comparable	(Supplementary	
Material	 Figure  S7);	 for	 the	 sparse	 sampling	 scheme,	
however,	 the	 benefits	 were	 not	 so	 clear	 (Supplementary	
Material	Figure S6).

DISCUSSION

We	proposed	a	sequential	hierarchical	Bayesian	approach	
to	 update	 the	 population	 parameters	 using	 posterior	
samples	as	a	means	to	exchange	 information	with	every	
treated	patient	so	that	the	model	better	reflects	the	target	
patient	population.	We	showed	that	the	approach	allowed	
to	 successfully	 learn	 the	underlying	population	parame-
ters	of	the	PK/PD	model	used	to	generate	the	patient	data.	
It	 is	important	to	note,	however,	that	the	results	depend	
on	 the	 sampling	 scheme.	 In	 addition,	 we	 showed	 that	
continued	 learning	has	potential	 to	 improve	MIPD	even	
in	the	presence	of	structural	changes,	again	depending	on	
the	informativeness	of	available	TDM	data.

The	 proposed	 approach	 has	 two	 levels	 and	 allows	 to	
learn	sequentially	over	patients	without	using	patient	data	
on	the	population	level.	Thus,	the	patient	data	themselves	
do	 not	 need	 to	 be	 stored	 or	 shared	 across	 centers,	 which	
is	a	crucial	advantage	compared	 to	pooling	approaches.35	
The	 proposed	 Bayesian	 approach	 is	 sequential	 in	 nature.	
We	propose	to	update	the	population	hyperparameters	with	
every	new	patient.	The	advantage	of	a	continued	learning	
approach	is	that	the	prior	hyperparameters	are	always	up-	
to-	date,	reflecting	the	current	knowledge,	and	that	no	deci-
sion	has	to	be	taken	as	to	when	to	perform	a	global	(pooled)	
update.	The	computational	time	on	the	individual	level	is	
not	impacted	by	the	population	level	update.	The	individ-
ual	level	computation	depends	on	the	number	of	particles	
used	in	the	particle	filter,	which	could	also	be	run	in	paral-
lel.	For	more	details,	see	ref.	[20].	The	population	level	up-
date	is	less	time	critical	and	can	be	done	in	the	background.

Thus,	 the	 approach	 builds	 a	 basis	 to	 develop	 more	 in-
formed	 models,	 integrating	 an	 ever-	growing	 database	 po-
tentially	better	reflecting	rare	covariates.	The	initial	model	
used	to	start	the	continued	learning	approach	could	be	se-
lected	 using	 a	 retrospective	 external	 evaluation	 based	 on	
historical	data	from	the	intended	clinical	setting.6	Model	se-
lection/model	averaging	approaches	do	not	adapt/improve	

the	underlying	model	across	patients;	the	a	priori	forecast	
remains	the	same	for	all	patients	(based	on	the	covariates).	
In	 addition,	 in	 their	 general	 form,	 these	 approaches	 are	
implemented	in	conjunction	with	MAP	estimation,	which	
provides	 potentially	 biased	 predictions	 in	 context	 of	 non-
linear	models.20	The	proposed	DA-	guided	dosing	also	natu-
rally	extents	to	model	averaging	and	this	extension	has	been	
considered	(on	the	individual	inference	level)	previously	in	
the	context	of	Bayesian	therapy	forecasting.50

In	the	context	of	cytotoxic	chemotherapy	with	neutro-
penia	as	dose-	limiting	toxicity,	we	show	how	population-	
based	 PK/PD	 models	 can	 be	 transferred	 to	 a	 different	
clinical	target	population,	which	is	often	a	crucial	appli-
cation	hurdle	of	MIPD	in	clinical	routine.	We	showed	that	
model	misspecification	might	severely	impact	MIPD,	and,	
therefore,	models	should	be	adapted	to	the	target	patient	
population.	The	used	DA-	guided	dosing	proved	to	be	able	
to	 adapt	 the	 model	 to	 some	 extent,	 but	 only	 improved	
MIPD	at	later	cycles,	when	a	certain	amount	of	TDM	data	
was	collected.	This	is	a	consequence	of	assimilating	data	
sequentially,	 thereby	 allowing	 to	 account	 for	 temporal	
changes	 in	 the	 parameters	 and	 thus	 adapting	 the	 gold-	
standard	model	to	some	extent	to	cumulative	neutropenia.

The	presented	analysis	revealed	that	an	important	as-
pect	for	practical	implementation	is	to	critically	assess	the	
quality	of	the	inference	on	the	individual	level.

For	rich	sampling,	the	continuous	learning	approach	
showed	 very	 promising	 performance.	 Even	 in	 the	 most	
challenging	case	of	structural	bias,	this	approach	clearly	
outperformed	 standard	 dosing	 and	 MIPD	 without	 con-
tinuous	learning.	Under	sparse	sampling	with	structural	
bias,	inference	of	hyperparameters	proved	more	difficult;	
further	 investigations	 are	 required	 in	 such	 a	 setting,	 as	
was	demonstrated	for	time-	dependent	parameters.	With	
the	 prospect	 of	 novel	 digital	 health	 care	 devices	 (e.g.,	
point-	of-	care	 devices),	 more	 frequent	 monitoring	 could	
become	clinical	reality.	Real-	world	data	 is	currently	un-
derutilized51	but	has	great	potential	to	improve	MIPD,	as	
shown	 in	 this	 study.	The	current	approach	 is	 limited	 to	
misspecifications	 or	 population	 shifts	 on	 the	 structural	
model	parameter	level.	A	model	change	on	the	structural	
level	(e.g.,	accounting	for	cumulative	neutropenia),	could	
be	corrected	 for	 to	 some	extent	on	 the	 level	of	parame-
ters.	 An	 important	 extension	 in	 the	 future	 would	 be	 to	
also	estimate	the	RUV	parameter	�,	as	an	increased	error	
in	 measurement	 precision	 or	 reporting	 can	 be	 expected	
in	clinical	 routine	compared	 to,	 for	example,	controlled	
clinical	 study	settings.	Currently,	 the	 IIV	parameters	�2	
captured	the	increased	RUV	of	the	data	to	some	extent,	
which,	 however,	 also	 increased	 the	 uncertainty	 on	 the	
individual	level,	see	Supplementary	Material	Figure S4.

The	approach	of	a	learning	model	(as	coined	in	ref.	
[1])	 for	 MIPD	 could	 be	 beneficial	 not	 only	 in	 clinical	
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practice,	but	also	during	drug	development,	where	new	
(clinical)	 study	 data	 are	 generated	 continuously	 and	
should	 be	 integrated	 into	 previously	 developed	 mod-
els.52	 The	 study	 is	 an	 important	 step	 toward	 building	
the	underlying	models	of	MIPD	on	a	growing	database	
and	thus	make	MIPD	fit-	for-	purpose	 in	everyday	ther-
apeutic	use.
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