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Abstract Composite spatial data on administrative area level are often presented
by maps. The aim is to detect regional differences in the concentration of subpop-
ulations, like elderly persons, ethnic minorities, low-educated persons, voters of a
political party or persons with a certain disease. Thematic collections of such maps
are presented in different atlases. The standard presentation is by Choropleth maps
where each administrative unit is represented by a single value. These maps can
be criticized under three aspects: the implicit assumption of a uniform distribution
within the area, the instability of the resulting map with respect to a change of the
reference area and the discontinuities of the maps at the borderlines of the reference
areas which inhibit the detection of regional clusters.

In order to address these problems we use a density approach in the construction
of maps. This approach does not enforce a local uniform distribution. It does not
depend on a specific choice of area reference system and there are no discontinuities
in the displayed maps. A standard estimation procedure of densities are Kernel
density estimates. However, these estimates need the geo-coordinates of the single
units which are not at disposal as we have only access to the aggregates of some area
system. To overcome this hurdle, we use a statistical simulation concept. This can
be interpreted as a Simulated Expectation Maximisation (SEM) algorithm of Celeux
et al (1996). We simulate observations from the current density estimates which
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are consistent with the aggregation information (S-step). Then we apply the Kernel
density estimator to the simulated sample which gives the next density estimate (E-
Step).

This concept has been first applied for grid data with rectangular areas, see
Groß et al (2017), for the display of ethnic minorities. In a second application
we demonstrated the use of this approach for the so-called “change of support”
(Bradley et al 2016) problem. Here Groß et al (2020) used the SEM algorithm
to recalculate case numbers between non-hierarchical administrative area systems.
Recently Rendtel et al (2021) applied the SEM algorithm to display spatial-temporal
clusters of Corona infections in Germany.

Here we present three modifications of the basic SEM algorithm: 1) We introduce
a boundary correction which removes the underestimation of kernel density estimates
at the borders of the population area. 2) We recognize unsettled areas, like lakes,
parks and industrial areas, in the computation of the kernel density. 3) We adapt
the SEM algorithm for the computation of local percentages which are important
especially in voting analysis.

We evaluate our approach against several standard maps by means of the local
voting register with known addresses. In the empirical part we apply our approach
for the display of voting results for the 2016 election of the Berlin parliament. We
contrast our results against Choropleth maps and show new possibilities for reporting
spatial voting results.

Keywords Spatial data · Administrative areas · Choropleths · Kernel density
estimation · Voting atlases

Die Glättung räumlicher Datensätze auf administrativen Flächen
Eine Fallstudie mit Berliner Wahldaten

Zusammenfassung Räumliche Daten auf der Ebene administrativer Flächeneinhei-
ten werden häufig über Karten dargestellt. Das Ziel ist es dabei regionale Unterschie-
de für interessierenden Bevölkerungsgruppen aufzudecken. Dies betrifft beispiels-
weise ältere Personen, ethnische Minderheiten, Personen mit geringer Bildung aber
auch Wähler einer politischen Partei sowie Personen, die sich mit einer bestimmten
Krankheit infiziert habe. Die Zusammenfassung derartiger Karten wird in Atlanten
präsentiert. Eine Standarddarstellung benutzt Choroplethen, wo jede administrative
Einheit durch einen einzigen Wert repräsentiert wird. Diese Karten können unter drei
Aspekten kritisiert werden: Die implizite Annahme einer gleichmäßigen Verteilung
innerhalb der Fläche der Einheit, die Instabilität der Darstellung beim Wechsel der
administrativen Einheit sowie die Sprünge an den Grenzlinien der Einheiten, die das
Aufdecken von regionalen Clustern erschweren.

Um diese Probleme zu beseitigen, verwenden wir eine Kartenkonstruktion auf
der Basis von Dichten. Dieser Ansatz vermeidet eine zwangsläufige gleichmäßi-
ge Dichte innerhalb der Referenzflächen. Er ist unabhängig von der Wahl eines
spezifischen Referenzsystems und vermeidet Sprungstellen. Ein Standardverfahren
würde Kerndichteschätzer verwenden. Allerdings werden hierfür die Geokoordina-
ten der einzelnen Einheiten benötigt. Diese stehen aber nicht zur Verfügung sondern
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Kernel density smoothing of composite spatial data on administrative area level 27

lediglich die Aggregate der jeweiligen Flächeneinheit. Um diese Hürde zu umge-
hen, verwenden wir ein statistisches Simulationskonzept. Es kann als Simulierter
EM (SEM) Algorithmus von Celeux et al (1996) beschrieben werden. Auf Ba-
sis der gegenwärtigen Dichteschätzung simulieren wir Beobachtungen, die mit der
Aggregatsinformation konsistent sind (S-Schritt). Dann wenden wir den Kerndich-
teschätzer auf die simulierte Stichprobe an, die die nächste Dichteschätzung liefert
(E-Schritt).

Dieses Konzept wurde erstmals für Gitterdaten auf Rechtecken zur Darstellung
von ethnischen Minderheiten angewendet, Groß et al (2017). Eine weitere Anwen-
dung fand dieser Ansatz beim sogenannten „Change of Support“ Problem, (Bradley
et al 2016). Hier nutzten Groß et al (2020) den SEM Algorithmus bei der Umrech-
nung von Fallzahlen zwischen nicht-hierarchischen Flächensystemen. Jüngst haben
Rendtel et al (2021) den SEM Algorithmus für die Darstellung räumlich-zeitlicher
Konzentrationen von Corona Infektionen in Deutschland verwendet.

Hier präsentieren wir drei Modifikationen des SEM Algorithmus: 1) Wir führen
eine Randkorrektur ein, die die Unterschätzung der Kerndichteschätzung an den
Grenzen der Population beseitigt. 2) Wir berücksichtigen unbewohnte Bereiche wie
Parks, Seen und Industriegebiete bei der Berechnung der Kerndichteschätzung. 3)
Wir passen den SEM Algorithmus für die Berechnung lokaler Prozentsätze an, die
insbesondere für Wahlanalysen interessant sind.

Wir evaluieren unseren Ansatz gegen verschiedene Standardkarten auf Basis ei-
nes lokalen Wählerregisters mit bekannten Adressen. Im empirischen Teil wenden
wir unseren Ansatz auf die Darstellung von Wahlergebnissen zur Wahl des Berliner
Abgeordnetenhauses 2016 an. Wir vergleichen unsere Ergebnisse mit Choroplethen-
karten und zeigen neue Möglichkeiten zur Berichterstattung räumlicher Wahlergeb-
nisse.

Schlüsselwörter Räumliche Daten · Administrative Flächeneinheiten ·
Choroplethen · Kerndichteschätzer · Wahlatlas

1 Introduction

Composite spatial data are often presented by maps. The purpose of these maps is
to display local clusters of subpopulations, like elderly persons, migrants, students,
low educated persons, unemployed persons, persons receiving social benefits, voters
of a special political party or, recently, the incidence rates of Corona infections.
In most cases these maps base on count numbers for administrative area levels
like federal states, counties, city districts, neighbourhoods, Zip districts or polling
districts in voting analyses. Collections of thematic maps are presented in atlases,

1 https://www.stadtentwicklung.berlin.de/planen/basisdaten_stadtentwicklung/monitoring/index.shtml
(Accessed 23.9.2021)
2 https://www.wahlen-berlin.de/wahlen/publikationen/wahlatlas/WAHLENBU_2017/atlas.html (Ac-
cessed 23.9.2021)
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see, for example, the Berlin Social Indicator Atlas1, the Berlin Voting Atlas2, the
German 2011 Zensus Atlas3 or the EU Regional Atlas4.

The standard maps are so-called Choropleths where the reference area is displayed
by a single value, see Kraak and Ormeling (2021) (p. 170) for a recent textbook.
With animated Choropleths it is possible to display additional information for the
area, for example, the results of previous ballots (Tagesspiegel Wahl-Spezial (2017)).
Despite its frequent use in public and scientific media Choropleth maps reveal some
problems:

� The uniform representation of the reference area by a one color, which represents
the area value, suggests a uniform distribution of the variable of interest within the
area. This is often an unrealistic assumption.

� For different levels of aggregation, i.e. choice of administrative level, one obtains
quite different maps which may lead to different conclusions.

� At the borderlines of the reference areas there are discontinuities which prevent
the identification of local clusters.

These problems can be addressed by smoothing techniques, for example by Krig-
ing, see Kriging (Oliver and Webster 2015). However, this approach uses distribu-
tional assumptions. In this paper we present a different smoothing approach which
is not linked to distributional assumptions, like in the Kriging framework. The main
tool is smoothing by kernel density estimation. In a first step we identify what a
map should display ideally: densities or ratios of densities. As we don’t observe
densities we have to estimate them by kernel density estimation. However, for the
kernel density estimation one needs the geo-coordinates of the units. Such infor-
mation is in most cases not at hand. For example, in voting analysis one knows
the geo-coordinates of the polling area at best. The exact address of the voters of a
political party is to be protected for obvious reasons. In the same direction act the
confidentiality rules if the data come from a survey or a register. Therefore we know
only aggregate values at some area level, say, a voting district in case of ballots or
an urban planning area in case of public data.

To overcome this hurdle, we use a statistical simulation concept. In an abstract
view it can be interpreted as the Simulated Expectation Maximisation (SEM) al-
gorithm of Celeux et al (1996). We simulate observations from the current density
estimates which are consistent with the aggregation information (S-step). Then we
apply the kernel density estimator to the simulated sample which gives the next
density estimate (E-Step). The algorithm is replicated for a prefixed number of iter-
ation after a burn-in period and the mean of the density estimates serves as the final
solution.

This concept has been first applied for grid data with rectangular areas, see
Groß et al (2017), for the display of ethnic minorities. In a second application
we demonstrated the use of this approach for the so-called “change of support”
(Bradley et al 2016) problem. Here Groß et al (2020) used the SEM algorithm

3 https://atlas.zensus2011.de/ (Accessed 23.9.2021)
4 https://www.destatis.de/Europa/EN/Publications/General-regional-statistics/ST_Regional_yb.html (Ac-
cessed 23.9.2021)
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to recalculate case numbers between non-hierarchical administrative area systems.
In the application they transferred student case numbers from Zip areas to urban
planning district numbers. Recently Rendtel et al (2021) applied the SEM algorithm
to display spatial and temporal clusters of Corona infections in Germany.

Here we present three adaptation of the SEM-algorithm:

� The borderline of the population area is an intrinsic problem of kernel density es-
timation as the standard estimates overlap the borderlines to some extent. Here we
suggest to restrict the kernel functions near the borderline in an adequate fashion.

� Similarly, within a big town like Berlin there are large unsettled areas like lake,
parks, industrial areas, etc. which are not settled. The simulations should respect
these non-settled areas.

� Finally, ratios, like the percentage of voters for a special party, can be defined by
the ratio of two densities. In this case the simulation of the samples has to be done
sequentially: First the sampling of voters and then the voters of a certain party
from the sample of voters.

All three adaptations are realized in the R-Package kernelheaping which is freely
available, Groß (2021).

There are rare situations where a true realistic density is at hand to evaluate the
bias and the MSE of different maps. For our analysis we got access to the geo-
coordinates of the Berlin voting register. From this information we could estimate
a density of eligible voters, which serves as a reference value for alternative map
constructions. On the basis of the register data we constructed for different aggre-
gation levels 6 different maps (two Choropleths, two naive kernel density estimates
and two versions of the SEM algorithm). We then compared the density values with
the values of the reference density on a fine grid over the entire area.

Finally, we applied our approach to the results of the 2016 election of the Berlin
parliament and compare it with the standard Choropleth maps. As our approach
generates results which are independent from reference areas, new possibilities for
spatial voting analysis arise. For example, we can compare the number of voters for
a party per pixel or we can determine a highest density region for a party vote. With
respect to percentages of votes we calculate the local winner at each pixel of the
town.

The article is organized as follows: In Sect. 2 we introduce the density approach
for the construction of maps. We then display in detail the SEM algorithm and its
extensions in Sect. 3. Section 4 is devoted to the comparison of the maps in the
presence of a reference density from the voters register. Finally, Sect. 5 presents the
empirical analysis of the 2016 Berlin elections. Section 6 concludes.
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2 A density approach for the construction of maps

2.1 Densities as the limit of area-normed Choropleths

Let the areas be indexed by a D 1; :::; A. For each area a the total Na of the variable
of interest is known. The total number of cases in the population N is given byPA

aD1Na Furthermore, let �a be the size of area a.
A naive version of a Choropleth maps uses the value Na as area value. However,

this version has the severe disadvantage that large areas are regularly over-repre-
sented, see Kraak and Ormeling (2021). A better solution is the use of Na=�a as
area value, which is the number of observation per area unit. We call it an area-
normed Choropleth. Here the integral over the Choropleth map results in the total
number of cases N over the entire region. If we decrease the size of the reference
areas the limit 1=N � Na=�a will become the density f of the variable of interest at
the spot x D .x1; x2/

0 where the area a is concentrated. Thus the density f .x1; x2/

is the natural generalisation of the area-normed Choropleth map. Note, that maps
which display levels of the density f .x1; x2/ are independent from aggregation lev-
els. There is no build-in discontinuity and if the density is constant over a certain
region, then the distribution of the variable of interest is uniform within that region.
Thus the use of densities solves the above mentioned problems of Choropleth maps.

Of course we do not know the density f and therefore we have to estimate it. A

well-known estimator is the kernel density estimator bf (Härdle 1991):

bf .x/ D 1

N jH j
X

k2U

K
�
H �1.xk � x/

�
; (1)

where K is the kernel function, H is a symmetric positive definite bandwidth matrix
and j � j denotes the determinant. The selection of the bandwidth is important for
the performance of the kernel density estimator (1). However, as the main focus
here is not on the selection of bandwidth we use the plug-in approach proposed by
Wand and Jones (1994) and set H D diag.h1; h2/ with suitably chosen smoothing
parameters h1 and h2. A common choice for K, used in this paper, is the Gaussian
Kernel function K.x/ D 1p

2�
exp.� 1

2x0x/.
To compute the kernel density estimate it is necessary to know the geo-coordinates

of units. This unrealistic assumption will be relaxed in the next section.

2.2 The estimation of local proportions

Often Choropleth area counts are normed by a second variable, for example, the
number of voters for a party among all voters. In this case the Choropleth converges
to a ratio of two densities, the density of voters of a party and the density of voters.

To see this, let fV be the density of voters. Correspondingly let fP be the density
of voters of party P. Furthermore, let NV be the total number of voters and let
NP the total number of voters for party P. The expected number of voters at an
rectangle of size �x1 � �x2 at coordinate x D .x1; x2/

0 is approximately given by
NV � fV .x1; x2/ � .�x1 � �x2/. Similarly, the expected number of voters for party P
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at coordinate x D .x1; x2/
0 is obtained by NP � fP .x1; x2/ � .�x1 � �x2/. Hence, the

ratio

r.x1; x2/ D NP

NV

fP .x1; x2/=fV .x1; x2/

has the interpretation of a local percentage of voters for party P, which corrects the

population average NP

NV
to the local level.

A standard nonparametric estimator of local ratios r.x/ is the Nadaraya-Watson
estimator brN W , see (Härdle 1991). The estimator can be shown to be the ratio of
two kernel density estimates with an equal smoothing factor. To see the equivalence
in our example let UV be the universe of voters and NV total number of voters.
Similarly we obtain for party P voters UP and NP . Let Pk denote the a dummy
variable, which indicates whether voter k is a voter of party P (Pk D 1) or not
(Pk D 0). The Nadaraya-Watson estimatorbrN W is then given by:

brN W .x/ D
1

NV

P
k2UV

1
jH jK

�
H �1.x � Xk/

�
Pk

1
NV

P
k2UV

1
jH jK .H �1.x � Xk/

D NP
bf P .x/

NV
bf V .x/

(2)

where the last line is the scaled ratio of the kernel density estimates of the density
of the party and the density of voters.

As the number of voters for a party is smaller than the number of voters it is
reasonable to select the smoothing factor of the party distribution which is generally
somewhat larger than the corresponding value of the voters distribution.

3 The SEM algorithm for the estimation of densities

3.1 The baseline SEM algorithm

Now we describe the SEM algorithm for the estimation of the kernel density estimate
bf .

To keep things numerically tractable we generate x-coordinates only on a fine grid
of geo-coordinates and we evaluate the resulting density estimate only on these grid-
points. Let xg .g D 1; :::; G/ be the geo-coordinate of the G grid points. Then the
set G D fxg jg D 1; :::; Gg can be separated into A subsets Ga , where all members
belong to area a. The double indexed xg;a displays the geo-coordinate of grid point
g belonging to area a. We assume that the area centroids ya are known for all units
k in the universe Ua of area a.

The basic SEM algorithm may be formulated as follows:

Step 1 Compute an initial kernel density estimate bf .0/.
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� Use x
.0/

k
D ya for all k 2 Ua.

� Set the smoothing parameters h
.0/
1 and h

.0/
2 to sufficiently large values such that

no spikes occur in the density estimate.
� Calculate bf .0/.x/ for all x D xg;a for all g D 1; :::; G and all a D 1; :::; A.

Step 2 Draw a stratified sample s.n/ from fxg;ajg D 1; :::; GI a D 1; :::; Ag.
� The strata sizes are Na .a D 1; :::; A/.
� The sampling is with replacement. The sampling weights are proportional to

bf .n�1/.xg;a/ as size variable.
� The sampling size in the stratum of area a is Na.

Step 3 Recalculate bf .n/ from the sample s.n/.

� Determine the smoothing parameters h
.n/
1 and h

.n/
2 by the plug-in estimator of

Wand and Jones (1994). Note that other selectors for the bandwidth matrix H
can be also applied.

� Calculate bf .n/.x/ for all x D xg;a for all g D 1; :::; G and all a D 1; :::; A.

Step 4 Repeat Steps 2 and 3 B times for a burn-in phase and R times for replication.
Step 5 The final density estimate bf .x/ is:

bf .x/ D 1

R

RX

rD1

bf .BCr/.x/:

This algorithm can be realized with the R-Package kernelheaping (Groß 2021).

3.2 The boundary correction for unsettled areas

25% of the area of Berlin are lakes, forests, parks, industrial areas which are not
settled. So the kernel density estimate should not cover these areas5. A straightfor-
ward approach to this problem is to restrict the kernel function to the settled area
and to rescale it to a probability function by a suitable constant, see Jones (1993).
Note, that the rescaling factor varies for each point on the grid.

The rescaling approach basically controls which part of the kernel function lies
within the settlement area S. For this purpose one has to compute for every coordi-
nate x the weight:

wx D
Z

S

1

jH jK
�
H �1.x � y/

�
dy: (3)

Note, that the weight wx depends on the smoothing parameters h1 and h2.

5 This should also hold for Choropleth maps. Although it is quite simple to exempt unsettled areas from
these maps it is not practised in voting analyses, see Amt für Statistik Berlin-Brandenburg (2016).
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The rescaled kernel density estimate bf rs.x/ at geo-coordinate x is then given
by:

bf rs.x/ D 1

N jH j
X

k2S

1

wx

K
�
H �1.x � xk/

�
: (4)

In the discrete setting of the grid G the grid points which lay inside S are denoted
by GS . Furthermore, let �G be the area between four neighboring grid points. Then,
the weight wx at coordinate x can be approximated by

wx �
X

z2GS

1

jH jK
�
H �1.x � z/

�
�G : (5)

In the case of a Gaussian Kernel we obtain:

wx D �Gp
2�

1

h1h2

X

.z1;z2/2GS

exp

�

�0.5

�
.x1 � z1/

2

h1
C .x2 � z2/

2

h2

��

; (6)

and wx is computed for every x 2 GS . As the number of grid points increases in a
quadratic fashion with the grid length, the computation of the wx may turn out to be
computer intensive as the weights wx have to be recalculated in every iteration step
of the SEM algorithm because they depend on the bandwidth matrix H. The modified
SEM algorithm which computes the rescaled kernel density estimate bf rs can be
found in the Appendix A. It is also implemented in the R-package kernelheaping
(Groß 2021).

3.3 The estimation of local proportions

As shown above, the Nadaraya/Watson estimator can be computed as the ratio
of the two kernel density estimates of the party voters and the voters. For the
simulation of the corresponding densities we have to consider that the party voters
are a subset of the voter. Hence the selection of the sample of party voters—and
their coordinates—has to be taken from the sample of voters.

The corresponding algorithm can be found in Appendix B and it is implemented
in the R-package kernelheaping (Groß 2021).

4 Evaluation study

In this section we present results of a validation study for assessing the performance
of the proposed SEM algorithm and alternative map presentations. The aim is to
investigate the ability of the proposed SEM algorithm to deal with aggregated in-
formation and hence provide more accurate estimates than alternative standard map
presentations. The evaluation of the proposed algorithm is based on a list of all ad-
dresses in Berlin in December 2016 which is 3 month after the election of September
2016 which we analyze in Sect. 5. In Fig. 1 every dot represents a valid address in

K



34 K. Erfurth et al.

Fig. 1 Distribution of addresses in Berlin

Berlin. The white areas represent unsettled areas. Now, a number of eligible voters
lives at every address. This number can change considerably between addresses.
For privacy reasons the true number of eligible voters has been slightly changed
by adding a small random component by the data provider. With this information
we estimated a kernel density function—which respects the boundaries of unsettled
areas and of Berlin—on a 100m � 100m grid. Figure 2 displays this reference/true
density in the evaluation study. The colors are scaled to the number of eligible voters
per 100m � 100m. This area corresponds to a pixel of the screen representation.

In order to assess the performance of the proposed algorithm we aggregate the
eligible voters at their addresses according to 8 different (aggregation) area levels.
The highest level BEZ (Bezirke), is defined by 12 Berlin city districts. The next lower
levels PRG (Prognoseräume) are 60 major prediction areas followed by 96 ORT
(Ortsteile) city parts. The next stages are given by 136 BZR (Bezirksregion) district
areas, 192 PLZ (Postleitzahl) Zip code areas and 447 PLR (Planungsräume) planning
areas. The most fine area systems are closely related to the voting regulations. The
voters have the possibility to vote by letter or to go to a place where they can put
their vote into a bin, the urn. In Berlin there are 600 BWB (Briefwahlbezirke) postal
voting districs and 1779 UWB (Urnenwahlbezirke) ballot voting districts. Figure 3
displays the granularity of these area systems. Note, that these area systems not not
hierarchically ordered.
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Fig. 2 Distribution of eligible voters in Berlin (December 2016)

We compare 6 different map representations with the reference/true density in
Fig. 2. The first two are linked to Choropleth representations. In the first version the
area value of the Choropleth is given by the number of voters in the area6 (denoted by
Choropleth Simple). The second version of Choropleth maps divides the area count
numbers by the size of particular area7 (denoted by Choropleth AreaNorm). Both
versions are normalized by a constant to a density such that the results can directly
be compared to the reference/true density in Fig. 2. However, the interpretation of
the scaled Choropleths remains unchanged.

Furthermore, we use two non-iterative kernel density estimators (with different
smoothing parameters) in the simulation. In both versions the centroid of the area is
used as the geo-coordinate for the estimation. In the first version we use the smooth-
ing parameter which is derived from the reference/true densitydensity (denoted by
KDE Naive Optimal TRUE). As the true density is in general unknown we use in the
second version the optimum smoothing parameter for the current sample (denoted
by KDE Naive Optimal Sample).

6 Note, that we did not group these numbers into intervals. Thus results for these Choropleth maps are
somewhat more informative compared to its grouped version.
7 Note, that we use here only the settled area. This makes the map more realistic than the standard use
which ignores unsettled areas.
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a b c

d e f

g h

Fig. 3 Comparison of the granularity of 8 area systems in Berlin. a City districs—BEZ. b Prediction
areas—PRG. c City parts—ORT. d District areas—BZR. e Zip areas—PLZ. f Planning areas—PLR.
g Postal voting districs—BWB. h Ballot voting districs—UWB

Fig. 4 Comparison of MSE and variance of the kernelheaping procedure for different aggregation levels
and iterations
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Fig. 5 Comparison of mean MSE for 6 map constructions and 8 aggregation levels

The remaining two map presentation are based on the proposed SEM algo-
rithm.The most sensitive parameter for the SEM algorithm is the number of it-
erations after the burn-in phase. As shown in Fig. 4 the mean MSE is quite sensitive
with respect to the selected area level: the lower the area level the lower is the mean
MSE. However, the number of iterations after the burn-in phase has a low impact
on the mean MSE. This is due to the small size of the variance component8, which
amounts only a factor 10�3 of the MSE, see Fig. 4 in the right panel. Thus, the
main contribution of the MSE is the bias component. For the comparison of the
MSE with the other maps we use two versions of the SEM algorithm. In the first
version we use a constant number of replications, which is set to R = 27 (denoted
by Kernelheaping 27 Iterations). In the second version the number of replications
is optimized such that the MSE is minimized (denoted by Kernelheaping Optimal
MSE).

Figure 5 compares the mean MSE of the 6 map constructions over the 8 different
levels of aggregation. With the exception of the simple Choropleth map all maps
improve if a lower level of aggregation is chosen. The area-normed choropleth map
performs reasonably well at a very low aggregation level. Remember, however, that
the MSE for all Choropleth versions is too optimistic as we ignored the grouping
of area values and the standard ignorance of unsettled areas in applications. The
naive kernel density estimate with a fixed smoothing parameter which is selected
by knowledge of the true density performs well for low aggregation. The SEM
algorithm performs best at all levels and the MSE is quite robust against the number
of replications.

Having assessed the mean MSE of the different map representations we inves-
tigate the visual impression of the corresponding maps. Therefore, the Figs. 6 and
7 display the resulting maps for the simple Choropleth map and the kernelheaping
map for a high (138 district areas BZR) and a low (1779 ballot voting districts
UWB) level of aggregation. Additionally, we display the over- (Color Red) and

8 The low absolute size of this component is also due to the fact that we displayed here variances instead
of standard deviations.
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Fig. 6 Density estimates, bias and MSE (top down) of the simple Choropleth map for two different levels
of aggregation: district area (BZR, left panel) and ballot voting district (UWB, right panel). Blue under-
estimation of reference/true density. Red over-estimation of reference/true density

under-estimation (Color Blue) of the true density. In the third row the local MSE
values are displayed. In order to ease comparisons, the scale of the figures for the
Choropleth map and the kernelheaping map are identical.

The Choropleth maps in Fig. 6 do by no means reflect the structure of the voter
population in Berlin. Even at the smallest possible level of aggregation (UWB
level—right panel) one has the impression that the voters are equally spread over
the city, with the exception of the unsettled areas. On the contrary, the kernelheaping
maps in Fig. 7 reflect well the dense voter belt which surrounds the center of the
town. This is seen even at a fairly high aggregation level (BZR level—left panel). The
impression becomes even more informative when we go to the lower aggregation
level (UWB level—right panel).
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Fig. 7 Density estimates, bias and MSE (top down) of the Kernelheaping map for two different levels
of aggregation: district area (BZR, left panel) and ballot voting district (UWB, right panel). Blue under-
estimation of reference/true density. Red over-estimation of reference/true density

Note the high resolution of the reference/true density which displays even larger
streets. Of course, such specific features will be ignored by the Choropleth maps
and even by the kernelheaping maps and therefore for these areas the resulting map
over-estimates the voter density. One might object that such a high resolution is not
the object of a substantive voting analysis.

Finally, if we compare the second with the third row of Figs. 6 and 7 we see that
the regional distribution of the MSE is determined to a large extent by the regional
bias.
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5 Application to Berlin voting data

5.1 Number of voters per pixel

We display the application of the technique of simulated geo-coordinates for the
results of the general election of the Berlin regional parliament in 2016. The data
are freely available under the link https://www.wahlen-berlin.de/Wahlen/BE2016/
afspraes/download/download.html. Special emphasis is given to the results for the
AfD, a new right wing party in the spectrum of German political parties. At this
election the overall percentage for the AfD was 14.1%.

In a first step we look for the regional distribution of AfD-voters. The densities
for the distribution of voters are normalized to a volume of 1 under their surface. In
order to make them comparable they should be multiplied by the absolute number
NP of voters for party P. If we multiply the densities with the area of the pixels of
the maps, which is 140 � 140m2 in our case, we end-up with a scale which can be
interpreted as the number of voters of party P per pixel.

Figure 8 compares for the AfD the results of the re-scaled density maps with
the Choropleth representation. Both maps exclude unsettled areas of Berlin. There
are striking differences in the regional distribution suggested by the maps. Even
with the exclusion of the unsettled areas of Berlin the Choropleth representation
suggests a strong AfD frequency in the south east of Berlin which is not confirmed
by the density representation. According to the density map there is a sizeable
concentration of AfD voters in the very east of Berlin. The map also indicates
reasonable concentrations of AfD voters in the former West-Berlin part of the town.
This is not recognized from the Choropleth map.

One of the most powerful features of the kernel density approach is the character-
ization of clusters by high density areas. Figure 9 displays the high density area for
AfD voters. The displayed area covers 20% of all AfD voters based on the proposed
SEM algorithm. Within these clusters the density is larger than 12 voters per pixel.
The area is split into single regional clusters. Most of the clusters represent city

a b

Fig. 8 Number of voters for party AfD in regional elections 2016 in Berlin. Absolute number displayed
by simple Choropleth on the level of (postal) voting districts (a) and the number of voters per pixel (D
140 � 140m2) via kernelheaping map (b)
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Fig. 9 High density area covering 20 percent of AfD voters

quarters with tower building flats from the 70-s to the 90-s of the last century. This
does not only hold for the former East-German settlements in the district Marzahn-
Hellersdorf but also for the former West-Berlin settlements Gropius-Stadt in the
south of the district Neukölln and the Märkisches Viertel in the east of the district
Reinickendorf. Such an identification of regional clusters is a good starting point for
an analysis of voting behaviour. Note, that these clusters cannot be identified from
the Choropleth map of Fig. 8.

A different attractive feature is the comparability of the re-scaled densities for
different parties. So one can display for each point the party which achieves the
highest number of voters per pixel. Figure 10 displays the best areas per pixel for
the Christian-Democrats (CDU in dark blue), the Social-Democrats (SPD in red),
the GREEN party (Grüne in green), the Left-Wing Party (Linke in purple) and the
already mentioned AfD (AFD in light blue).

5.2 The analysis of local percentages

If we switch to the estimation of local percentages we first have to estimate the
distribution of the voters. Figure 11 displays a density estimate of the distribution of
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Fig. 10 The winner with respect to the highest number of voters per pixel (D 140 � 140m2)

voters9 per pixel. This density varies considerably within Berlin which is the reason
why the Choropleth maps of absolute figures are misleading in this case.

Figure 12 compares the local proportions of AfD voters via density estimation
with the proposed SEM algorithm with the percenatges in (postal) voting districts.
There is a high coincidence of results between the two maps, displaying high per-
centage numbers in the south-east and the north-east of Berlin. However, the map of
the percentages in single voting districts is more erratic and exhibits adjacent voting
districts with low and high percentages.

With the local percentage it is possible to create two versions of high percentage
areas. The first version asks for the area where a prefixed limit is exceeded. Such an
area is shown in Fig. 13 for a limit of 10 percent for the AfD. It displays for broad
regions a substantial support of the AfD.

The second possibility to display high percentage areas is to keep the percentage
of the covered area fixed, say 20 percent of the Berlin area, and to ask for the limiting
percentage which defines the borderline of this area. Such a display is convenient
for comparisons between different parties. Figure 14 compares the high percentage
areas for the six parties which became elected into the parliament. For each party the

9 In the evaluation section we analyzed the distribution of eligible voters while we here analyze the distri-
bution of persons who really voted.
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Fig. 11 The number of voters per pixel (D 140 � 140m2)

a b

Fig. 12 Percentage of AfD-Voters: Proportions in voting districts (a) and local proportions via densities
(b)

covered part of the settled area of Berlin is 20 percent. However, the party specific
areas cover quite different parts of Berlin. For example, the right wing AfD and left
wing LINKE are almost entirely concentrated on the former East-Berlin. Also the
limit values, which define the borderline of the areas, vary substantially. Table 1
compares these limit values with the average percentages of the party at the Berlin
level. By definition the limit value is higher than the average over Berlin. However,
the difference between these baseline figures are small for the SPD and the GRÜNE
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Fig. 13 High percentage areas: Percentage for AfD is larger than 10%

a b c

d e f

Fig. 14 High percentage areas for 6 parties: a CDU (dark blue), b SPD (red); c Linke (purple), d Grüne
(green), e AfD (light blue), f FDP (yellow). Covered area is 20% of the settled population
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Table 1 Comparison of the
limit values of high percentage
areas and the average percentage
over the Berlin area for different
parties

Party Limit value of area Average value Berlin

CDU 27.3 17.3

SPD 23.7 21.6

LINKE 22.5 15.6

GRÜNE 16.8 15.2

AfD 20.9 14.2

FDP 10.0 6.7

a b

Fig. 15 The winner of the voting districts (a) compared to the local percentage winner (b)

party and they are much bigger in the case of the other parties. This indicates that
the results for the SPD and the GRÜNE party are more homogeneously distributed
than for other parties.

Finally, local percentage maps offer the possibility to display at each point of the
city the party with the highest percentage. Because of the smooth shape of the local
percentages their maximum is also smooth. Figure 15 compares a map of the local
majority derived from the densities (right) with a Choropleth which displays for each
voting district the color of the party with the maximum percentage in the district
(left). Despite the different construction the two maps give a similar impression
where the respective parties have a local majority.

6 Concluding remarks

It is the aim of a spatial analysis to link information on local concentrations with
regional information from other sources. In the previous examples we used infor-
mation about the former division of Berlin into East- and West-Berlin. We also used
information about the settlement structure of Berlin. Such additional information can
be displayed by background maps which can be combined with the density maps.
Such an enrichment of maps with information is the general aim of GIS-software,
see the textbook of Mitchell (2005) on Spatial Measurement and Statistics.
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The approach presented here can be applied to any composite spatial data on
administrative levels. In our example we used official voting records at different
aggregation levels. Often the local aggregates can be accessed via an open data
portal; for example, the open data portal of Berlin may be reached via the link
https://daten.berlin.de/. Rendtel and Ruhanen (2018) used spatial demographic data
from the open data platform to construct a map of child density and compared the
density of children with the allocation of kindergardens and pediatrists in Berlin to
assess the local fit of needs and offer.

If the data come from a survey we may either use the estimated totals for the
spatial areas at some level or we may use the survey data directly. In this case we will
have to use the survey weights. The procedure kde for the kernel density estimation
from the R-package ks which is used for the kernelheaping package can deal with
survey weights. However, there is no special input parameter for a vector of survey
weights in kernelheaping. This has to managed by the user of the kernelheaping
package.

A display of the precision of the densities and proportions is rarely found in
standard maps. If the aggregates come from registers and official sources there is
no need to do this because there is no statistical variation, at least theoretically.
However, the SEM-algorithm has a stochastic component: the repeated sampling
from the estimated densities. In this case the variance can be easily determined from
the variance of the replicates, see Groß et al (2020). However, a variance component
which is due to sampling is not jet covered by the kernelheaping package.

Appendix

The modified SEM Algorithm with boundary correction

Step 1 Compute the initial kernel density estimation bf
.0/
rs :

� Use x
.0/

k
D ya for all k 2 Ua: All units are supposed to lay in the settled

area S � U . Also the area centroids are supposed to lay in settled areas. The
computation of the centroids may be affected by the exemption of the unsettled
areas from the original areas.

� Set the smoothing parameters h
.0/
1 and h

.0/
2 to sufficiently large values such that

no spikes occur in the density estimate.
� Compute weights w

.0/
x for every x 2 GS , the set of gridpoints in the settled

area.
� Calculate bf .0/

rs .x/ for all x 2 GS .

Step 2 Draw a stratified sample s.n/ from GS .

� The strata sizes are Na .a D 1; :::; A/.
� The sampling is with replacement. The sampling weights is proportional to

bf .n�1/
rs as size variable.

� The sampling size in the strata of area a is Na.
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Step 3 Recalculate bf .n/
rs from sample s.n/.

� Determine the smoothing parameters h
.n/
1 and h

.n/
2 by the plug-in estimator of

Wand and Jones (1994). Note, that other selectors for the bandwidth matrix H
can be also applied.

� Determine adapted weights w
.n/
x for every x 2 GS .

� Calculate bf
.n/
rs .x/ for all x 2 GS .

Step 4 Repeat Steps 2 and 3 B times for a burn-in phase and R times for replication.
Step 5 The final density estimate bf rs.x/ is:

bf rs.x/ D 1

R

RX

rD1

bf .BCr/
rs .x/:

The algorithm for the computation of local proportions

Step 1 Initial kernel density estimation of the densities bf V and bf P :

� Use x
.0/

k
D yk for all k 2 UV and all k 2 UP .

� Set the smoothing parameters h
.0/
1 and h

.0/
2 to sufficiently large values such that

no spikes occur in the density estimate.
� Calculate the initial voters distribution by

bf .0/
V .x/ D 1

NV jH j
X

k2UV

K
�
H �1.x

.0/

k
� x/

	
:

� Calculate the initial party P distribution by

bf .0/
P .x/ D 1

NP jH j
X

k2UP

K
�
H �1.x

.0/

k
� x/

	
:

Step 2 Draw a stratified sample s
.n/
V of voters and a stratified sample s

.n/
P of party

P voters.
� The strata sizes are NV;a for the voters and NP;a for the party P voters.

� The sampling of voters is with replacement from the grid G with sample size

NV;a in area a. The sampling is proportional to size with bf
.n�1/
V as size vari-

able. This generates s
.n/
V .

� The sampling of party P voters is with replacement from s
.n/
V with sample size

NP;a in area a. The sampling is proportional to size with bf
.n�1/
P as size vari-

able. This generates s
.n/
P .

Step 3 Recalculate bf
.n/
V from the voter sample s

.n/
V and bf

.n/
P from the party

sample s
.n/
P .
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� Determine the smoothing parameters h
.n/
1 and h

.n/
2 by the plug-in estimator of

Wand and Jones (1994) from the party P sample. These smoothing parameters
will be used for the estimation of both density estimates.

� Calculate bf .n/
V .x/ for all x D xg;a .g D 1; :::; G/ and .a D 1; :::; A/.

� Calculate bf
.n/
P .x/ for all x D xg;a .g D 1; :::; G/ and .a D 1; :::; A/.

Step 4 Repeat Steps 2 and 3 B times for a burn-in phase and R times for replication.
Compute for each replication r the ratio

bf
.BCr/

P jV .x/ D
bf .BCr/

P .x/

bf .BCr/
V .x/

for all x D xg;a .g D 1; :::; G/ and .a D 1; :::; A/.

Step 5 Compute final ratio estimate bf P jV .x/:

bf P jV .x/ D 1

R

RX

rD1

bf
.BCr/

P jV .x/

for all x D xg;a .g D 1; :::; G/ and .a D 1; :::; A/.
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