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Abstract Döpking, Sandra

In the eld of heterogeneous catalysis, rst- principle-based microkinetic modeling has been
proven to be an essential tool to provide a deeper understanding of the microscopic interplay
between reactions. It avoids the bias of being tted to experimental data, which allows us to
extract information about the materials’ properties that cannot be drawn from experimental
data. Unfortunately, the catalytic models draw information from electronic structure theory
(e.g. Density Functional Theory) which contains a sizable error due to intrinsic approximations
to make the computational costs feasible. Although the errors are commonly accepted and
known, this work will analyse how signicant the impact of these errors can be on the
model outcome. We rst explain how these errors are propagated into a model outcome,
e.g., turnover-frequency (TOF), and how signicant the outcome is impacted. Secondly, we
quantify the propagation of single errors by a local and global sensitivity analysis, including
a discussion of their dis-/advantages for a catalytic model.
The global approach requires the numerical quadrature of high dimensional integrals as
the catalytic model often depends on multiple parameters. This, we tackle with a local and
dimension-adaptive Sparse Grid (SG) approach. SGs have shown to be very useful for medium
dimensional problems since their adaptivity feature allows for an accurate surrogate model
with a modest number of points. Despite the models’ high dimensionality, the outcome is
mostly dominated by a fraction of the input parameter, which implies a high renement in
only a fraction of the dimensions (dimension-adaptive). Additionally, the kinetic data shows
characteristics of sharp transitions between "non-active" and "active" areas, which need a
higher order of renement (local-adaptive). The eciency of the adaptive SG is tested on
dierent toy models and a realistic rst principle model, including the Sensitivity Analysis.
Results show that for catalytic models, a local derivative-based sensitivity analysis gives only
limited information. However, the global approach can identify the important parameters
and allows extracting information from more complex models in more detail.
The Sparse Grid approach is useful for reducing the total number of points, but what if
evaluating the point itself is very expensive? The second part of this work concentrates
on solving high dimensional integrals for models whose evaluations are costly due to, e.g.
being only implicitly given by a Monte Carlo model. The evaluation contains an error due



to nite sampling. To lower the error, we would have to increase computational eort for a
high number of samples. To tackle this problem, we extend the SG method with a multilevel
approach to lower the cost. Unlike existing approaches, we will not use the telescoping sum
but utilise the sparse grid’s intrinsically given hierarchical structure. We assume that not
all the SG points need the same accuracy but that we can double the points’ variance and
halve the drawn samples with every renement step. We demonstrate the methodology on
dierent toy models and a realistic kinetic Monte Carlo system for CO oxidation. Therefore,
we compare the non- multilevel adaptive Sparse Grid (ASG) with the Multilevel Adaptive
Sparse Grid (MLASG). Results show that ith the multilevel extension we can save up to two
orders of magnitude without challenging the accuracy of the surrogate model compared to a
non-mulitlevel SG.







Contents

List of Symbols 1

List of Abbreviations 5

1 Introduction 9

2 Parameter Uncertainty and Sensitivity Analysis 15
2.1 Parameter Uncertainty and rst-principles models . . . . . . . . . . . . . . . 16
2.2 Uncertainty Quantication . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.2.1 Local Sensitivity Analysis (LSA) . . . . . . . . . . . . . . . . . . . . . 25
2.2.2 Global Sensitivity Analysis (GSA) . . . . . . . . . . . . . . . . . . . . 27

3 Sparse Grid surrogate model 31
3.1 Problem formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Sparse Grids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.2.1 One-dimensional hierarchical basis functions . . . . . . . . . . . . . 34
3.2.2 High-dimensional Sparse Grid spaces . . . . . . . . . . . . . . . . . . 40
3.2.3 Sensitivity Indices . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.3.1 Renement Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.3.2 Dimension Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3.3 Local Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.4 Combination: Dimension and Local Adaptivity . . . . . . . . . . . . 54

3.4 Testing renement strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.4.1 Spherical edge test function . . . . . . . . . . . . . . . . . . . . . . . 58
3.4.2 Sigmoid function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.3 Continuous function . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.4 Oscillatory function . . . . . . . . . . . . . . . . . . . . . . . . . . . 67



3.4.5 Higher dimensional functions . . . . . . . . . . . . . . . . . . . . . . 68

4 Oxygen Evolution Model 75
4.1 Sparse Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2 Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.2.1 Total Sensitivity Index TSI . . . . . . . . . . . . . . . . . . . . . . . . 88
4.2.2 Higher Order Sensitivity Indices . . . . . . . . . . . . . . . . . . . . 92

4.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5 Multilevel Refinement 105
5.1 Parametric Monte Carlo Models . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.2 Multilevel idea . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.3 Sparse Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

5.3.1 Adaptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.4 Multilevel Adaptive Sparse Grid . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5 An Illustrative model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.5.1 2D-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
5.5.2 7D-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
5.5.3 7D-2D-case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.6 Test examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.7 Parametric Monte Carlo Model: CO oxidation model . . . . . . . . . . . . . 129
5.8 Global Sensitivity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6 Conclusion and Outlook 139

7 Appendix 173

8 Deutsche Zusammenfassung (German Summary) 187

9 Eidesstaliche Erklärung (Declaration) 189

10 Acknowledgements 191







Greek

List of Symbols

Greek

𝜑 . . . . . . . . . . . . . . . . . . . . . . . . . . basis function

𝜖 . . . . . . . . . . . . . . . . . . . . . . . . . . accuracy/threshold

[ . . . . . . . . . . . . . . . . . . . . . . . . . .overpotential

𝛾 . . . . . . . . . . . . . . . . . . . . . . . . . . local errors

a . . . . . . . . . . . . . . . . . . . . . . . . . .hierarchical surplus

𝛼 . . . . . . . . . . . . . . . . . . . . . . . . . .one dimension for the Sensitivity Analysis

Ω . . . . . . . . . . . . . . . . . . . . . . . . .domain

𝛽 . . . . . . . . . . . . . . . . . . . . . . . . . .position in the sites’ chain (lattice model

𝜌 . . . . . . . . . . . . . . . . . . . . . . . . . . random number

𝜎 . . . . . . . . . . . . . . . . . . . . . . . . . . standard deviation

Latin

A . . . . . . . . . . . . . . . . . . . . . . . . . ancestors, set of points

𝑉𝐿 . . . . . . . . . . . . . . . . . . . . . . . . . approximation space of level 𝐿

𝑐 . . . . . . . . . . . . . . . . . . . . . . . . . .user dened constant for noise input

C . . . . . . . . . . . . . . . . . . . . . . . . . . children, set of points

𝒞 . . . . . . . . . . . . . . . . . . . . . . . . . computational cost

Cov . . . . . . . . . . . . . . . . . . . . . . . . covariance

𝐶∗ . . . . . . . . . . . . . . . . . . . . . . . . .upper bound for the variance of the functions

1



Latin

evaluations

𝐷 . . . . . . . . . . . . . . . . . . . . . . . . .dimension

ΔΔ𝐸 . . . . . . . . . . . . . . . . . . . . . . . . energy error

Δ𝐸 . . . . . . . . . . . . . . . . . . . . . . . . . activation energy for process

e . . . . . . . . . . . . . . . . . . . . . . . . . .unit vector

E . . . . . . . . . . . . . . . . . . . . . . . . . . expected value

𝑓 , 𝑔 . . . . . . . . . . . . . . . . . . . . . . . . functions

ℎ . . . . . . . . . . . . . . . . . . . . . . . . . .Planck contstant

𝑊 . . . . . . . . . . . . . . . . . . . . . . . . .hierarchical dierence spaces

𝑖 . . . . . . . . . . . . . . . . . . . . . . . . . . count index

𝐼 . . . . . . . . . . . . . . . . . . . . . . . . . . integral

I . . . . . . . . . . . . . . . . . . . . . . . . . .hierarchical index set

𝑘 . . . . . . . . . . . . . . . . . . . . . . . . . . rate constant for process

𝑘𝐵 . . . . . . . . . . . . . . . . . . . . . . . . .Boltzman constant

𝐾 . . . . . . . . . . . . . . . . . . . . . . . . . equilibrium constant

𝑙 . . . . . . . . . . . . . . . . . . . . . . . . . . level index

𝐿 . . . . . . . . . . . . . . . . . . . . . . . . . .maximum level index

𝑀 . . . . . . . . . . . . . . . . . . . . . . . . .nite number of samples

N . . . . . . . . . . . . . . . . . . . . . . . . . set of natural numbers

R+0 . . . . . . . . . . . . . . . . . . . . . . . . . set of non negative real numbers

R . . . . . . . . . . . . . . . . . . . . . . . . . . set of real numbers

2



Latin

𝐴 . . . . . . . . . . . . . . . . . . . . . . . . . .matrix

𝑁 . . . . . . . . . . . . . . . . . . . . . . . . . sample size (spatial approximation)

𝑛(𝑙) . . . . . . . . . . . . . . . . . . . . . . . .number of the sparse grid point at level 𝑙

𝑠 . . . . . . . . . . . . . . . . . . . . . . . . . . articial noise

O . . . . . . . . . . . . . . . . . . . . . . . . .Landau Symbol

𝑝 . . . . . . . . . . . . . . . . . . . . . . . . . .probability density function

𝑃 . . . . . . . . . . . . . . . . . . . . . . . . . .probability

P . . . . . . . . . . . . . . . . . . . . . . . . .parents, set of points

𝑟 . . . . . . . . . . . . . . . . . . . . . . . . . . spatial approximation level

𝑅 . . . . . . . . . . . . . . . . . . . . . . . . . .highest spatial approximation level

𝑌 . . . . . . . . . . . . . . . . . . . . . . . . . . random variable

𝑆 . . . . . . . . . . . . . . . . . . . . . . . . . . Sensitivity Index

S . . . . . . . . . . . . . . . . . . . . . . . . . . set of points

𝑡 . . . . . . . . . . . . . . . . . . . . . . . . . . time

𝑇 . . . . . . . . . . . . . . . . . . . . . . . . . . temperature

𝑇𝑆 . . . . . . . . . . . . . . . . . . . . . . . . . transition state

𝑢 . . . . . . . . . . . . . . . . . . . . . . . . . . approximation constructed by a sparse grid

Var . . . . . . . . . . . . . . . . . . . . . . . .variance

x, i, l . . . . . . . . . . . . . . . . . . . . . . . .vectors

𝑤 . . . . . . . . . . . . . . . . . . . . . . . . .weight

𝑥 . . . . . . . . . . . . . . . . . . . . . . . . . . input parameter

3



Symbols

𝑍 . . . . . . . . . . . . . . . . . . . . . . . . . .partition distribution

Symbols

| · |∞ . . . . . . . . . . . . . . . . . . . . . . . . innity Norm

| · |1 . . . . . . . . . . . . . . . . . . . . . . . .𝐿1-Norm

𝐼 · 𝐼 . . . . . . . . . . . . . . . . . . . . . . . . statistical average

⊕,⊕ . . . . . . . . . . . . . . . . . . . . . . . tensor product

4



List of Abbreviations

List of Abbreviations

TOF Turnover Frequency

TST Transition State Theory

hTST harmonic Transition State Theory

TS Transition State

PES Potential Energy Surface

DFT Density Functional Theory

kMC kinetic Monte Carlo

PDF probability density function

SA Sensitivity Analysis

LSA Local Sensitivity Analysis

GSA Global Sensitivity Analysis

DRC Degree of Rate Control

QoI Quantity of Interest

OAT one-factor-at-a-time

STD standard deviation

SI Sensitivity Index

TSI Total Sensitivity Index

MD Molecular Dynamics

UQ Uncertainty Quantication

5



List of Abbreviations

MC Monte Carlo

QMC Quasi Monte Carlo

ME Master Equation

SG Sparse Grid

ANOVA Analysis of Variance

FG Full Grid

BF basis function

GSG Generalized Sparse Grid

LA local adaptivity

DA dimension adaptivity

NoP number of points

OER oxygen evolution reaction

CFD computational uid dynamics

ML Multilevel

MLMC Multilevel Monte Carlo

MLSG Multilevel Sparse Grid

SC Stocastic Collocation

MLQMC Multilevel Quasi Monte Carlo

PDE partial dierential equation

ASG adaptive Sparse Grid

MLASG Multilevel Adaptive Sparse Grid

6



List of Abbreviations

MIMC Multi-Index Monte Carlo

MISC Multi-Index Stochastic Collocation

MLQ Multilevel Quadrature

FSG Full Sparse Grid

CPU Central Processing Unit

EC equilibrium constant

7





1 Introduction

Since the introduction of heterogeneous catalysis in 1835, the eld has developed many
catalytic processes for the industrial appliance. The Oswald process to oxidise ammonia or
the Haber process to produce ammonia are a few of the famous examples. One application
we can nd in our everyday life is exhaust gas cleaning in cars. It puries the gas by reducing
the major toxins, e.g. carbon monoxide, nitrogen dioxide and hydrocarbons. Therefore, the
three-way catalyst enables the toxins’ conversion into a non-toxic product, e.g. water, carbon
dioxide and nitrogen. Consisting of multiple reactive centres, the signicant reactions always
happen on the surface [1]. This is only one of the many applications, but it describes how a
heterogeneous catalyst works. The system consists of a catalyst and reactants in two dierent
phases, mostly a solid catalyst and a gaseous or liquid phase of reactants. Although the
reaction is theoretically possible in a purely gaseous phase, the reaction has a very high
energy barrier that needs to be overcome so that the reaction happens on a very long unfea-
sible timescale. To increase the conversion (number of reactions per time), the catalysator
enables or supports the reaction by lowering the energy barrier through weakening bonds
between atoms or increasing the local concentration of the educts. The catalyst itself does
not take place in the reaction and therefore stays unchanged. This is a signicant advantage
over homogeneous catalysts. The separation of the catalyst and the products is easy in a
heterogeneous setting, as well as the processing and cleaning. On the contrary to this, the
surface area of a solid catalyst is limited, which gives a natural limit to the conversion. Many
approaches have been developed to increase eciency, like modifying the catalyst surface
to provide more active centres. Others rely on a molecular understanding of the catalytic
system or selectivity of all available reaction paths [2, 3].
Historically, these catalytic processes have been developed primarily by trial and error. Fun-
damental studies directed at a basic understanding of single processes or the chemistry were
added later on, e.g. by Langmuir or Hinshelwood [4]. They added fundamental kinetics
and thermodynamic concepts of surface reactions to provide a molecular-level explanation
of how they function. This also includes detecting key reactants that are only active at a
rarely formed construction of the catalyst or further understanding specic reactions, like
dissociative adsorption. This evolved in the 20th century toward better characterisation of the
catalyst by experimental or theoretical methods or the improved study of reaction pathways
leading to more eective and more complex catalysts or catalyst systems [5, 6]. Nowadays, the
requirements of catalysts grow more complex, the challenges increase, and eectiveness also
includes the aim for minimal waste and an environmentally friendly solution. To tackle these
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1 Introduction

challenges, we need a more extensive knowledge of molecular details on an experimental and
theoretical base [2].
Some of today’s innovations in the eld of heterogeneous catalysis aim to increase the e-
ciency of the chemical reaction network. The problem with this is that the conversion on the
macroscopic scale depends not only on the outer parameters like pressure and temperature
but also on the microscopic processes happening on the surface. Optimising the external
parameters reaches a limit of improvement when lacking understanding on the microscopic
level.
Therefore chemical kinetic models have been developed to provide insights into the exper-
imental behaviour and address questions that cannot be answered solely by experimental
data [7–9]. Kinetic models map the macroscopic physical and chemical state to rates of
formation on a mesoscopic scale. In general, there are two types of kinetic models. First,
the phenomenological model captures the essential features of observed rates and does not
provide chemical details. Second, the models are based on elementary steps, like microkinetic
models. They are aligned with the underlying elementary chemical steps. Elementary step
kinetic models can be further distinguished between top-down and bottom-up approaches
that either rely on experimental data to obtain kinetic parameters and molecular insights or
rely on molecular-level information to construct kinetic parameters used for simulations to
match their prediction to experimental observations. Nowadays, models are often constructed
by a combined approach of bottom-up and top-down [9, 10]. The knowledge derives from an
interplay of theory, prior chemical knowledge, experimental observation and modelling [11]
In this work, we will concentrate on the bottom-up models, but all approaches have gained
usage caused by the expanded capabilities, and predictive accuracy of them [9, 12–17]. Their
ability to account for individual catalytic sites’ structure and composition eects produce a
qualitative or even semiquantitative agreement with experimental observations. Unfortu-
nately a lot of these models also carry uncertainties. The model inaccuracies emerge from two
types of errors, either a deciency of the model itself or of the underlying physics or computa-
tions, which we will elaborate on in this work. These approaches use energetic information on
adsorption energies and reaction barriers derived from predictive quality electronic structure
theories to simulate elementary reaction mechanisms. Within this framework, these models
avoid relying on resource-intensive experiments and give mechanistic insights without the
bias of tting to experimental data. [18–22]
Besides all the advantages of rst-principle models, the used energetic information is in-
herently inaccurate. Electronic structure theories computationally rely on intrinsic approxi-
mations to make the computational cost feasible. Consequently, the energetics used by the
model contain errors that aect the model outcome. For models of heterogeneous catalysis,
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the energetics are mostly provided by Density Functional Theory (DFT) in the generalised
gradient approximation since the data is most accurate at a feasible computational eort.
While this error typically is around 10% for reaction barriers and adsorption energies, it can
have a tremendous impact on the outcome of the kinetic model leading to uncertainties of
orders of magnitude for the activity at typical operation temperatures [23, 24]. Nevertheless,
the error of a single energy are often gured with ≈ 0.2eV [7]. While this size of the error is
commonly agreed on, the discussion about the impact of such an error is limited [24–27]. We
shortly display the impact of the error for a known model, the CO oxidation on RuO2(110)
[28–30]. Our example shows that an energetic error of ≈ 0.2eV causes the models’ input
parameter to be wrong by a factor of around 2 000. The uncertainty can be fully propagated
to the model outcome, e.g. the Turnover Frequency (TOF), which leaves us with the question
of how much information we can actually draw from these numbers.
Furthermore, we want to address how we could decrease the overall uncertainty in our model
outcome. Therefore, we need to know which of our model’s input parameter errors has the
highest contribution to the outcome’s total variance. Assuming that only a fraction of all
input parameters is important, it would allow for a selective renement with, e.g. employing a
more accurate, higher-level electronic structure theory [31, 32] for these parameters without
producing unfeasible costs. Information like this enables identifying critical factors for the
materials’ performance and further insights into microscopic catalytic performance.
Dierent methods of Sensitivity Analysis (SA) address the selective impact of single input
parameters on the model outcome. The most common approach is the derivative-based Local
Sensitivity Analysis (LSA). It analyses the model response derivatives with respect to the
input parameters [33–35]. Although the LSA is a very intuitive and low-cost approach, it often
identies incorrect importances quantitatively and qualitatively. Its underlying assumption
of linear behaviour does not apply to the kinetic data that we are working with. Kinetic data
often exhibits rapid jumps between non-active and active areas, which are highly non-linear.
A more promising approach is a Global Sensitivity Analysis (GSA), based on a Analysis of
Variance (ANOVA) decomposition [36, 37]. Approaches like these, and also anchored ANOVA
or multibody-expansion [38] try to represent the model’s response as a sum of minimal low-
dimensional functions. The method intrinsically implies that only the important dimensions
are included in the representation. It has the advantage to take the uncertainty domains into
account so that the results can be interpreted as an induced uncertainty. Such non-derivative
based methods are also applicable to models for which parameter derivatives can only be
estimated at very high computational costs, e.g. by a kinetic Monte Carlo (kMC) simulation
[39].
For the GSA, we need to solve high dimensional integrals. Although many methods, like
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1 Introduction

Monte Carlo (MC) or Quasi Monte Carlo (QMC) have proven to be eective in high dimen-
sions, the GSA includes multiple functional approximations. Each Sensitivity Index has to be
approximated separately, which is only computational feasible if the number of MC points
are limited [36]. Such MC and QMC methods scale unfavourably with the number of input
parameters so that they become quickly computationally unfeasible, especially if singular
evaluations are already costly. Therefore, we use an adaptive SG approach that constructs
a surrogate model whose evaluations are cheaper than the model evaluations. SGs show
a high convergence rate for medium dimensional cases. Although kinetic models are high
dimensional, the dependence on only a fraction of the parameter implies an intrinsic lower-
dimensional problem. The classical Full Sparse Grid (FSG) approach for a high dimensional
problem would not suer from the curse of dimensionality. However, it would produce a lot of
unnecessary points, which we can avoid with adaptive renement. In our case, we know the
typical behaviour of kinetic data. In the logarithmic settings, the kinetic data mostly behaves
linearly with localised areas of rapid jumps between "non-active" and "active" regimes. Both
regimes can be active by denition, but the jump indicates a high dierence in conversion
rates.
We use a combined technique of dimension adaptivity to avoid unimportant renement of pa-
rameter domains and local adaptivity for the kinetic data’s local non-linear behaviour. Based
on the piecewise-linear basis function, we can approximate the areas of linear behaviour
with a minimal amount of points and produce only a high density of points in important
dimensions and areas of non-linearity. Jakeman and Roberts rst introduced the combined
method we use in this work [40]. We modify it to allow for larger numbers of parallel kinetic
model evaluations.
Being based on an expansion of piecewise linear basis function, the SG constructs a surrogate
model we can use for the GSA method to analyse a Sensitivity Index (SI), such as the Total
Sensitivity Index (TSI) or the second-order sensitivity indices. While the TSI gives us an
overall impact of one specic parameter, the second-order sensitivity indices give us an idea
of which parameters are interacting toward the model outcome. With these measurements,
we can achieve a very detailed picture of the microkinetic behaviour.
In this work, we will use both kinds of Sensitivity Analysis’, LSA and GSA, for a rst-principles
based model, the Oxygen evolution on Co3O4 [32] to show their dierence and limitations.
The results underline that both methods can identify the most important parameters. Still,
the LSA tends to underestimate the amount of non-trivial parameters and overestimate the
impact of these parameters on the outcome. The GSA, on the other hand, can identify all
important parameters for the whole uncertainty domain. We perform the SA at dierent
regimes of the model to provide an accurate picture of the results at non-active areas and
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active areas. In the end, we want to give a theoretical idea of the eect a prior GSA can have
on the accuracy of the model outcome.
In the second part of this work, we will tackle the problem when the single reduction of
points for the SG is still too little and constructing a surrogate model comes with an increased
computational cost. Like in many applications of uncertainty quantication, nance or molec-
ular simulations, the integrands for the integrals are only implicitly given and a signicant
source of computational costs. In our kinetic modelling case, the integrands are provided by a
kMC model, whose function evaluation comes with an additional error caused by the nite
sampling. To lower the evaluation error, we would have to increase the number of samples
with an increased computational eort. Although the SG reduces the number of possible
expensive function evaluations, it does not provide a measure of how accurate the function
evaluations have to be. This leads to the question of how much eort should be spent on
every data point and whether we should spend the same eort for every point.
A popular method to tackle this problem is a Multilevel (ML) approach which balances the
simulation with the quadrature error [41]. The idea consists of utilising a hierarchy of numer-
ical approximations of the underlying model and construct the nest approximation just by
the sum of the lowest level approximation and the dierences between consecutive levels.
The general ndings show that most simulations are performed on the lowest approximation.
Only decreasing numbers of simulations are performed for increasing approximation accuracy,
which lowers the overall costs. Two commonmethods are the Multilevel Monte Carlo (MLMC)
and the Multilevel Quasi Monte Carlo (MLQMC). The latter is especially often used in the
eld of uncertainty quantication, e.g. for the treatment of partial dierential equations with
random input [42–44]. The multilevel idea was also adapted for stochastic collocation with
SG [45, 46]. In recent years, the classical ML idea was extended with a Multi-Index idea that
uses dierent spatial approximations for dierent dimensions, allowing for only using the
most eective mixed dierences. Examples for MIMC and MISC can be found in references
[47, 48]. Most of this work wants to approximate expected values. In the case of uncertainty
quantication, this means solving integrals. In our case, we want to apply GSA to our kinetic
model that does not include expected values but not linear functionals. That is why we want
to construct a surrogate model with a multilevel approach.
In 2001 Heinrich addressed a ML Monte Carlo method to construct an interpolation of a
parametric Monte Carlo model [49]. He tackles the question, whether MC is still an option
if we want to approximate whole functions. The function evaluations are approximated by
a MC algorithm. He shows that one spatial approximation of the function domain gives a
computational cost of O(𝑛𝑀), where 𝑛 describes the density of the spatial grid and 𝑀 the
number of Monte Carlo samples. With extending the one spatial grid to multiple spatial grids
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of dierent resolutions, he can adapt the MC samples for every grid and lower the number of
the total MC samples 𝑀 ; thus, the computational cost only scales with 𝑀,O(𝑀). Unfortu-
nately for high dimensions, like for kinetic data, this can become very costly, especially if not
all dimensions require the same resolution of the grid. For the lower intrinsic dimensionality
of the kinetic data, we need a method to lower the overall points for the spatial approximation
and balance the computational eort for each grid point.
To tackle this problem, we introduce a Multilevel Adaptive Sparse Grid (MLASG) method
that utilises the intrinsic multilevel structure of the SG to determine the sampling eort of
the kMC model. Therefore we will shortly explain the classical ML approach combined with
SGs and that with a stochastic sampling error, the classical method will only produce random
renement for the SG. Then we will continue with the explanation on how to utilize the
intrinsic multilevel SG structure. Analog to the SG construction before, we use the piecewise
linear basis function. Still, we only use local adaptivity to predene the variance of single
points and nd that we can halve the sampling eort with every renement step without
challenging the surrogate model’s accuracy. For the kinetic model, we can save up to a factor
of 200 of the computational costs with the multilevel extension of the model. Although other
approaches can be ecient for approximating the high-dimensional integrals, the surrogate
model of the MLASG can be used for further analysis, such as GSA.
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2 Parameter Uncertainty and
Sensitivity Analysis

Parameter uncertainty has appeared in many dierent elds over time. One of the early
ones, the papers of Heckman and Meyers, Meyers and Schenker, contains the eld of risk
management [50, 51] and both papers dealing with aggregated losses. While they articially
add uncertainty to parameters to get a better understanding of the model, nowadays, a lot of
scientic computational models suer from uncertain input parameters [52] .
Problems in chemistry or physics are highly complex and can hardly be formalised without
approximations, or the use of experimental data [23]. This simplies the problem in such
a way that a model performs with a reasonable computational eort. However, within this
simplication lies the source of the parameter uncertainty. These uncertainties can have
dierent reasons, whether the model uses data for parameters of varying models or the
model’s data is limited or includes an approximation error of the underlying high-delity
model. Most approximations imply an error propagated to the model outcome; thus, most
models in engineering and science are subject to parameter uncertainty. Unfortunately, most
of the work on these models neglect such uncertainty, although its impact on the model
results is not negligible [26, 27]. How much these uncertainties play a role depends mainly
on the problem settings. For instance, the simulation of a laminar ow of water carries only a
small error due to the uncertainties in the transport and thermochemical coecients because
these have experimentally been determined with high accuracy. In contrast, chemical kinetic
models which have been parametrised with quantum chemical methods carry signicant
parameter uncertainties due to the inherent approximations in quantum-chemical methods.
In this case, propagated input parameter uncertainties can cause variances of two or more
orders of magnitude in the model output[23, 24].
We want to examine the problem of uncertainty propagation in rst-principles quantum
chemistry-basedmodels (in the future just termed rst principles-model) and show amethod to
identify the input parameters with the highest impact on the model outcome. First-principles
models are often utilised for modelling surface reactivity by using energetic information
from electronic structure calculations. These models provide detailed insights on catalytic
behaviour without using experimental data. Unfortunately, the electronic structure theory
calculations rely on intrinsic approximation to perform at feasible computational costs. There-
fore, the energies contain errors that are propagated into the model outcome. In the long run,
the approach of identifying the important parameters has the potential to reduce the overall
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computational eort and to provide more insights into the catalytic mechanism. An initial
identication enables to spend more computational eort on fewer parameters for higher
accurate data, and problems like the rate-determining step can be tackled [23, 24].
This chapter rst demonstrates the uncertainty propagation in the case of rst-principles
models and its impact on the model outcome to a point where the information of the model is
minimal. Secondly, two of the most commonways to quantify the propagation of particular pa-
rameter uncertainties are introduced, the Local Sensitivity Analysis (LSA) and variance-based
Global Sensitivity Analysis (GSA), with a discussion about their use for rst-principles models.

2.1 Parameter Uncertainty and first-principles models

In the eld of heterogeneous catalysis, rst-principles based kinetic models have received
increasing interest for modelling surface reactivity [7]. These approaches use energetic
information on adsorption energies and reaction barriers derived from predictive-quality
electronic structure theories to simulate elementary reaction mechanisms. Since these models
do not rely on experimental data, we can predict material’s properties, like the Turnover
Frequency (TOF), a measure for the eciency of a catalyst, or coverages of the surface and
allows the addressing of questions that can not be answered just by experimental data.[18–22].
The predictive quality of these approaches and the provided further understanding of surface
chemistry cause their high popularity.
Besides all the advantages of rst-principles models, the used energetic information is inher-
ently inaccurate. Electronic structure theories rely on intrinsic approximations to achieve
feasible costs. The resulting energetics for Density Functional Theory (DFT) in the generalized
gradient approximation typically contain a large approximation error of around 0.2 eV or
more [24–27]. To underline the impact of the energy errors on the rst-principles model
outcome, we will briey explain how a rst-principles kinetic Monte Carlo (kMC) [53] model
uses the DFT-binding-energies. Therefore we will briey elaborate on dening rate constants
based on Transition State Theory (TST).
To model the chemical kinetics on a mesoscopic scale, we have to coarse grain the continuous
molecular motion and dene chemical reactions that describe the transition of one metastable
state of the system to another. Considering a heterogeneous catalytic model, we dene uid
reactants, whose reactions include adsorption/desorption, diusion of the catalytic surface
and the reaction as shown in gure 2.1. Such a state i of gure 2.2 describes a metastable
state of the system, which is the currently occupied local minimum of the Potential Energy
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2.1 Parameter Uncertainty and rst-principles models

Figure 2.1: Description of the four considered kinds of elementary reactions : I) Ad-/Desorption of
reactants (blue and red balls) on the surface II) Diusion of a reactant over the surface and III) Reaction
of two reactants, including a desorption of the surface.

Surface (PES). We want the sequence of chemical reactions for modelling, so the evolution of
meso-states visited by the system. Next to the state-changing reactions, we also have vibra-
tional motion in the basin around every minimum, which does not change the system’s state.
Every trajectory is signed to a certain meso-state and at time 𝑡 and will leave the assigned area
at a dierent time. These details are not available in a coarse-grained description, so that we
can not dene a sequence of meso-states where we know which meso-state followed the last
one. Instead, we need to decide which information are needed to describe the evolution of the
mesoscopic state with a limited number of simulations on the microscopic scale. In our case,
the reactions steps are rare events compared to the underlying motions that do not change the
system. The vibrational motion happens on a shorter timescale than the elementary reaction
caused by the higher energy that needs to be overcome to leave the meso-state. This means
there are many oscillations before the next rare event happens. The elementary reactions
happen on a shorter timescale compared to the timescale of an unchanged meso-state. The
time between consecutive events can be magnitudes longer [13]. Hence, the system forgets
the former meso-state, and the subsequent transition is only based on the current state. Based
on that, the evolution and the transition of one meso-state to another can be described as a
Markov process [54]. Since most catalytic reaction models do not adsorb atoms at random
positions, but at certain adsorption sites, we examine a lattice structure of theses sites on
the surface, as it is shown in gure 2.1. This gives us a vector of 𝑛 sites, dened as a state

17
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i = (𝑖1, 𝑖2, . . . 𝑖𝑛) with dierent congurations 𝑖𝑛 , whether a species is adsorbed or the site
is empty. The main idea of modeling surface reactions is to describe the evolution of the
states visited by the system, hence, a sequence of elementary processes, that changes the
conguration of the surface.
Since the detailed information about which process is happening next or at what point of
time 𝑡 it is happening is not available, only the probability of nding the surface in state i at
time 𝑡 is given by 𝑃 (i, 𝑡). Based on the fact that we are dealing with Markov processes, the
probability obeys the Master Equation (ME) [30, 55].
The kMC algorithms provides a numerical solution to the chemical ME

𝜕𝑃 (i, 𝑡)
𝜕𝑡

=
∑︁
j
𝑘 ij · 𝑃 (j, 𝑡) −

∑︁
j
𝑘 ji · 𝑃 (i, 𝑡) (2.1)

that describes the dynamic system evolution by averaging over the shorttime dynamics and
and only considering the rare events, which allows for times scales longer than seconds.
𝑘 ij are the rate constants for every possible transition out of state i and 𝑘 ji for the reversed
reaction.
The multiple numbers of states cause the ME to be too high-dimensional to solve it analyti-
cally. Therefore kMC-methods provide a numerical solution by generating an ensemble of
trajectories. It is based on the fact that the ME describes the dynamics of jump processes,
and the expected values are obtained by statistical averaging over these trajectories. Each
trajectory propagates the system from state to state so that with averaging over the entire
ensemble yields probability functions 𝑃 (i, 𝑡) for all states i. The sequence of transitions,
precisely the selection of processes, and the transition times are randomly selected based on
the transition probability, which is contained in the rate constants 𝑘 ji.
In detail, there are dierent kMC methods to tackle dierent problems, e.g. o-lattice vs
on-lattice problems or null event algorithms vs rejection-free algorithms. A good overview
of the dierent kMC methods is given by Chatterjee and Vlachos [56]. Overall the kMC
algorithm provides a sequence of time steps when the conguration is updated. In the case of
a null event algorithm, it allows for events where the conguration stays unchanged, making
the connection of the time-step to real-time complicated. On the other hand, we work with a
rejection-free algorithm that adjusts the time step so that one reaction happens at each time
step. In the following, we will shortly recap the algorithm.
It starts with a conguration of the catalytic surface i. Then every possible elementary process
to leave the state i is considered and normalized by determining the total rate 𝑘𝑡𝑜𝑡 =

∑
j=1 𝑘 ij

of all possible processes. In practice the kMC uses a random number 𝜌1 ∈ [0, 1[ to select the
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2.1 Parameter Uncertainty and rst-principles models

process of all 𝑅 processes with

𝑟−1∑︁
𝑗=1

𝑘 𝑗 ≤ 𝜌1 · 𝑘𝑡𝑜𝑡 ≤
𝑅∑︁
𝑗=𝑟

𝑘 𝑗 (2.2)

with a timestep Δ𝑡 = − 𝑙𝑛(𝜌2)𝑘𝑡𝑜𝑡
.

So the crucial requirement is the denition of a set of possible processes and their rate
constants. This means for every atom or molecule interacting with the surface the rate
constants for every single reaction step have to be calculated.
Some reaction rate theorymethods use only the underlying potential energy surface properties
to derive the rate constant. It only requires static total energy calculations and avoids
dynamical simulations.
As previous work shows, the TST with its harmonic approximation is sucient to describe
highly active catalytic surface processes [13, 57, 58]. The basic idea behind the TST is to
determine the rate constants by examining the interactions of atoms, given by the PES.
A reaction path, as it is described in gure 2.2, from an initial state i, to a nal state j is
characterised by a transition state, which is often a saddle point of the PES. It separates
the two minima of the i and the j and denes a barrier that has to be overcome for the
reaction path. Further details on the TST and the harmonic Transition State Theory (hTST)
can be found in [59]. The important feature of the hTST is the reduction of information to
the activation energy that denes the dierence between the minimum of state i and the
transition state, which requires relatively few evaluations of the PES. In the hTST theory rate
constants are generally dened as

𝑘 =
𝑘𝐵 𝑇

ℎ

𝑍𝑇𝑆
𝑍𝑖

exp

(
Δ𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠

𝑘𝐵 𝑇

)
(2.3)

where Δ𝐸 is the potential energy dierence between state i and the TS. Furthermore, 𝑍𝑇𝑆
and 𝑍𝑖 are the harmonic vibrational partition function in the TS and the initial state i, 𝑘𝐵
the Boltzmann constant and 𝑇 the surface temperature. Although in detail rate constants
equations for dierent processes dier in their dependencies [57], all rate constants have the
same general dependency on the activation barrier and follow the form of

𝑘𝑝𝑟𝑜𝑐𝑒𝑠𝑠 ∝ exp (Δ𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠
𝑘𝐵 𝑇

), (2.4)

which resembles the form of the Arrhenius equation denition 𝑘 = 𝐴 exp
( Δ𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑘𝐵 𝑇 ) (with 𝐴 as

a preexponetial factor), but uses rst-principles instead of experimental data to determine
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Figure 2.2: Energy diagram of a reaction from state i to state j , including the description of the TS
as the sattlepoint of the PES. The system has to overcome the energy barrier Δ𝐸ij for the foreward
reaction and Δ𝐸ji for the backward reaction
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𝑇

ΔΔ𝐸
0.1 eV 0.2 eV 0.3 eV

293 K 52.5 2755.0 144605.3

400 K 18.2 331.0 6023.3

600 K 6.9 47.9 331.0

800 K 4.3 18.2 77.6

Table 2.1: Factor 𝑘error, caused by the energy error
ΔΔ𝐸 𝑘 ∝ 𝑒 (

Δ𝐸process±ΔΔ𝐸
𝑘𝐵 𝑇

) resulting a parameter vari-
ation of 𝑘 = [ 𝑘0

𝑘error
, 𝑘0 · 𝑘error] with 𝑘error = 𝑒 (

ΔΔ𝐸
𝑘𝐵 𝑇

) .
The eect of the error uncertainties lowers with
increasing temperature, so high temperature mod-
els are less inuenced by the eect. With most
models performing between 500K-600K the ef-
fect on each rate constant is at least one order of
magnitude dierence.
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Figure 2.3: Model output of the CO oxidation
on RuO2 model for 𝑇 = 298.15 K. The conversion,
measured as log10(TOF × 𝑠), is plotted over the
CO adsorption rate constant 𝑘CO,ads. For nominal
values of all input parameters the conversion is
displayed as the blue dots. The green shaded area
describes the standard deviation of log10(TOF×𝑠)
by assuming uniformly distributed DFT-errors in
range of [- 0.2, 0.2] eV.

the rate constants. For the last step to calculate the rate constants the activation energies
Δ𝐸𝑝𝑟𝑜𝑐𝑒𝑠𝑠 are required . As mentioned before, a common method in the electronic structure
theory community is the DFT to calculate these energies. Former studies have shown that
the underlying approximations cause an error of 0.2 eV-0.3 eV [6, 60] in the energies, with
absolute values of 0.1 eV-5 eV, depending on the functional and the chemical substance [57,
61]. By propagating these errors to the rate constants, depending on the temperature, we can
observe a factor of up to 6 orders of magnitude in variation in the rate constants, as displayed
in table 2.1. The eect of the error propagation is decreased with rising temperature, but with
most models performing at 500K-600K the factor is at least one order of magnitude. Never-
theless, these variations have an even higher eect on the model outcome. An increase in the
complexity of the model often implies an increasing amount of erroneous input parameters.
In that context, the model uncertainty can reach up to 5 orders of magnitude even for high
temperatures, so we are faced with the question: How reliable are these results?
Figure 2.3 shows schematically the impact of an error = 0.2 eV on the result of a simplied
kMC for the CO oxidation on RuO2 surface. [29, 30, 55]. The model has 7 input parameters 𝑘 ,
all containing an energy error ΔΔ𝐸 =0.2 eV. The blue dots indicate the logarithm of the TOF
at nominal values of 𝑘 , plotted over one input parameter 𝑘CO,ads and the green shaded area the
standard deviation of log10(TOF) caused by the DFT error calculated with 1e5 Monte Carlo
points. It shows that the nominal value of the TOF varies by multiple orders of magnitude
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making it dicult to extract information.
In the following chapters, we will discuss how we can eciently identify which uncertainty
input parameter has the most signicant impact on the outcome and how we can extract the
most information from the error-prone data regardingmechanical insights or rate-determining
steps.

2.2 Uncertaintyantification

The topic of Uncertainty Quantication (UQ) deals with the translation of the uncertainty of
input parameters into the corresponding uncertainty in model outputs and to analyse the
relative importance of sources of uncertainty. To tackle this problem, we use a Sensitivity
Analysis (SA) to quantify the propagation of the uncertain input parameter into the quantity
of interest (TOF, coverages). By doing so, we are able to extract qualitative information about
the reaction network, like identifying important elementary reactions in a complex kinetic
model that provides the potential for a reduced model with equivalent predictive power [29,
30, 62]. The objectives of an SA can be numerous. It provides a deeper understanding of the
model with respect to the input parameter, which corresponds to the elementary steps of the
catalytic system. The SA gives us the rate determine step/s that is responsible for the overall
conversion. A step further are relations between elementary steps, given by higher-order SA,
which provides a picture of a reaction network. On the other hand, it also provides a good
characterisation of input parameters that can be neglected. This could mean an enormous
dimension reduction for complex chemical systems, providing additional information and
reducing the computational eort. The model can be reconstructed with only a fraction of
the dimension. This becomes very important if single input parameters are very expensive
like DFT-calculations. A SA enables the possibility to start with a model that has insucient
input data and analyse the dependencies. With the reduced amount of dimensions, we can
increase the accuracy of the input data, which are important for the model. This will keep the
computational eort as low as possible.
There are multiple methods for a SA, and the most common general topics are the LSA
and GSA. We will introduce both methods in detail later on, and we will explain why the
derivative-based LSA is no alternative for the variance-based GSA we use. Compared to the
LSA, which only considers small input perturbations around the nominal value, the GSA
considers the whole variations of the inputs [63]. In general, there are many dierent GSA
approaches depending on the underlying problem. The application range from analysing
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the input of genetic parameters for a crop model prediction [64, 65] to the most signicant
input for an aircraft infrared simulation model [65, 66]. So over time, multiple methods, like
heuristic, graphic tool or Monte Carlo techniques, have been developed [67–71]. Most of
them were developed for models with independent input parameters, but often they were
extended with dependency between components [72–79].
One of the topics is screening methods which are qualitative methods for studying sensitiv-
ities. These are often applied to models with a high amount of input parameters because
the discretisation of inputs in levels allows for fast exploration of code behaviour. The most
substantial eect of these methods is the minimal amount of points used for non-inuential
inputs. This makes the method suitable for an early stage of the SA to exclude dimensions
before applying a more costly method. In detail, there are many methods to achieve this
exploration, but the most common one is the Morris method, where initial model evaluations
are randomly selected over the whole domain [80]. From these nominal points, one grid
jump at a time is performed, with a size according to the renement level and the dimension
randomly selected. The change of the output is then analysed to dene a rank of input
parameters. A second widespread approach is the importance measure. These can be divided
into a linear models approach and a functional decomposition of variance models. The linear
approach comes in handy when the size of samples is limited so that the evaluations are tted
to a linear model that can then be analysed. In this case, the sensitivity measures vary from
a Standard Regression Coecient to a Pearson correlation coecient [65]. If the model is
non-linear and non-monotonic, we can use the functional decomposition of variance, which
is the idea we use in this work and will be explained in detail later on. This method is based
on representing the correlation between the input parameter and the output as a sum of
elementary functions [81]. Under the assumption that variables are mutually independent,
the functional decomposition of the variance is available so that singular contributions of the
specic input parameter to the variance can be determined.
These are only two examples, but in [65] Iooss and Vlachos give a good overview of the stan-
dard methods, including deep methods or methods for multiple outputs [82–85]. Furthermore,
Rocquigny et al. provide a good intention when to use which method in [68].
The job of the SA is to characterise the relation between the uncertain input parameter and
the model output and to analyse which input parameter aects the model outcome the most
[86]. This information can be used to decrease the Quantity of Interest (QoI)-variance by
decreasing the uncertainty of the single input parameter, e.g. in the case of DFT-calculations
by using a higher-level electronic structure theory or turning to experimental data. Further-
more, the input parameters have an atomistic interpretation in the microscopic model, whose
importance classication gives us a detailed insight into a reaction network and a possibility

23



2 Parameter Uncertainty and Sensitivity Analysis

to identify descriptors in material’s screening [23].
Before we can apply any SA, we start with a priori generic input-output relation, that can
either be an explicit function 𝑦 or a relation only implicitly given by a computational model
for more complex problems . In both cases the general relation is similar and we can write a
model response for the deterministic model as 𝑓 : R𝐷 → R

𝑦 = 𝑓 (x) = 𝑓 (𝑥1, 𝑥2, ..., 𝑥𝐷), (2.5)

where 𝑦 represents the output and x = (𝑥1, ..., 𝑥𝐷) the input with 𝐷 parameters, each contain-
ing an individual uncertainty Δ𝑥𝑖 .
LSA methods, mostly derivative based, are the straightforward approach of the sensitivity
concepts. Their inexpensive computational costs and direct chemical interpretation of the
impact of one parameter 𝑥𝑖 makes it favorable for a lot of engineering models. Unfortunately
such methods are only eective if the model is linear and the parameter uncertainties are
rather small. That is why variance based approaches can be more eective.
In such cases of the SA, the methods require a model for the parameter variation to dene
whether initial relations between parameters are known or singular parameter are more likely
than others, i.e. a joint probability distribution on the 𝐷- dimensional parameter domain [23].
This is usually given in terms of a probability density function (PDF) 𝑝 : R𝐷 → R+0 ,

𝑝 (𝑥1, ...𝑥𝐷). (2.6)

The information provided by the PDF is critical since it can signicantly inuence the SA.
Although in practice, uncertain parameters are often correlated, the common approach is to
assume uncorrelated parameters. On the one hand, most of the time, the correlation is not
previously known or not easy to formulate and on the other hand, a large set of SA methods
do not work with correlated parameters, e.g. Sobol’s method [87], FAST [88], or methods
based on the correlation ratio [89].
In the case of experimental data, the PDF 𝑝 might represent statistical errors in the parameters
that are originated from the experiment. If the data is obtained from independent experiments,
the PDF is often taken as a product of Gaussian distributions with means and standard
deviations tted to experimental ndings [90]. The errors in electronic structure theory, e.g.
DFT, behave systematically and not statistically. Thus, a repetition of the calculation implies
no improvement on the parameter estimates [23].
For our case, the PDF has to reect the information about the parameters and possible
outcomes. Since only the individual errors Δx of the input parameters are known but no
further information about initial relation or the probability distribution, we have to assume the
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worst case scenario. Based on the limited knowledge we dene the parameters as uniformly
distributed over the hypercube Ω = x𝑛𝑜𝑚 + [−Δx, +Δx], centered at the nominal parameters
setting value x𝑛𝑜𝑚 ,

𝑝 (x) =



1

(2Δx) if x ∈ Ω

0 else.
(2.7)

Among all PDFs which obey the bound constraints, this PDF maximises the entropy and
minimises the information content. As mentioned above, also in the case of DFT-calculation,
errors of dierent material classes or underlying correlation, e.g. Brønsted-Evans-Polanyi
correlation, can change the shape of the PDF [6]. Unfortunately, without further information,
we can not employ anything else than the general bounds.
Since we want to employ SA methods, that are based on the variance and variance decom-
position, we need to dene the expected value E(𝑦) and the parameter uncertainty induced
variance Var(𝑦) of the QoI. With the PDF denition we can specify

E(𝑦) =
∫
Ω
𝑓 (x)𝑝 (x)𝑑𝑥𝐷 (2.8)

Var(𝑦) =
∫
Ω
(𝑓 (x) − E(𝑦))2𝑝 (x)𝑑𝑥𝐷 , (2.9)

over the 𝐷-dimensional hypercube Ω. Even though we want to concentrate on variance based
methods for the SA, there are dierent ways to perform an SA and to explore the parameter
domain, spanned by the individual uncertainties. Especially analyzing the dependence of
the QoI on the input parameter is a critical characteristics for dierent methods. Therefore
we will introduce two common methods to tackle the uncertainty propagation problem for
rst-principles kinetic models which are essentially dierent in computational complexity
and information content: the LSA and the GSA.

2.2.1 Local Sensitivity Analysis (LSA)

The LSA is the most prevalent approach, especially in the applied engineering eld, due to
its straightforward and inexpensive calculations providing a quantity of information[33–35].
The concept of the LSA is to analyse how sensitive the model output 𝑦 is to small perturbation
in the input value vector x = (𝑥1, . . . , 𝑥𝐷). The general Sensitivity Index (SI) 𝑆 consists of
estimating the rst order derivatives 𝜕𝑦

𝜕𝑥𝑖
(𝑥1, ..., 𝑥𝐷), which is mostly normalized with the

means or the standard deviations 𝜎 of 𝑦 and 𝑥𝑖 [86].
Therefore, the LSA quanties the eect of one single input parameter 𝑖 , while the rest of the
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2 Parameter Uncertainty and Sensitivity Analysis

input parameters are xed to the nominal value x𝑛𝑜𝑚 . Methods that only look at one factor
isolated are called one-factor-at-a-time (OAT) methods and require linear relation of the data
to be eective. Furthermore, identication of interactions between parameters is not possible
with an LSA. Nonetheless, local approaches have a high variety of applications, e.g. solving
inverse problems, parametric sensitivity or eciently exclude non-important parameters to
reduce models [86]. Depending on the structure of the model, the derivative based methods
can give rather limited information. For example, for an additive model

∑𝐷
𝑖 𝑎𝑖 · 𝑥𝑖 , with

𝑎𝑖 = 𝑐𝑜𝑛𝑠𝑡 ., the derivative based LSA would show an equal dependence on every parameter
[91], without taken the uncertainty range into account. So these methods work eectively
only for models with a small uncertainty range.
In our case, we have further knowledge about the parameter, i.e. a known range of uncertainty
which can enter the LSA. The idea is similar to the so-called sigma normalised derivatives,
where the derivatives are weighted with the parameter uncertainty factor to produce a
ranking within the sensitivities. So will concentrate on the variance and its decomposition
into contributions by individual input uncertainties. Such a decomposition gives an explicit
relation on which parameter inuences the QoI the most. Since every parameter pertains to
an elementary reaction, the decomposition gives us an insight on which microscopic aspects
control the catalytic reactivity under the assumption that the parameters carry uncertainties
[23].
If we expect that the parameters are statistically independent we could assume a linear
dependence of the response 𝑓 (𝑦) on the input x and the PDF resolves in the product form
𝑝 (𝑥1, ..., 𝑥𝐷) = (𝑝1 × 𝑝2 × ... × 𝑝𝐷). With this, the output variance Var(𝑦) decomposes into
contribution of dierent input parameter

Var(𝑦) =
𝐷∑︁
𝑖

𝑆𝑖,LSA with 𝑆𝑖,LSA =

���� 𝜕𝑦𝜕𝑥𝑖 (x𝑛𝑜𝑚)
����
2

Var(𝑥𝑖), (2.10)

with Var(𝑥𝑖) as the variance of 𝑥𝑖 . This local sensitivity denition has a adequate, statistical
interpretation. The 𝑆𝑖,LSA measures the variance contribution and therefore the importance of
a single input parameter uncertainty. So if the derivative and the uncertainty with respect to
𝑥𝑖 is small or large, the 𝑆𝑖,LSA will be equally small or large, symbolizing the importance of
that input parameter. In any other case, the balance between the local dependence of 𝑓 (x)
on 𝑥𝑖 and the error induced uncertainty will dene the 𝑆𝑖,LSA. Despite the overall success of
LSA, microkinetic models are usually highly non-linear and the parameter uncertainties are
far from being small. Thus, derivative based approaches, which assume linear behaviour, are
likely to assign incorrect importances to single parameters. Furthermore, the linear sensitivity
can change from zero to a sizable value within reasonable variations of the input parameter,
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2.2 Uncertainty Quantication

as recent studies have shown [26, 35].
According to this, a global sensitivity analysis would be more suitable for kinetic models.

2.2.2 Global Sensitivity Analysis (GSA)

While the LSA provides information close to the nominal value, the GSA takes the whole
parameter variation into account [37]. Numerous derivative-based approaches have been
extended towards larger parameter spaces, like the Morris method of 1991 [80], which parti-
tioned the domain in equally big intervals and performs path simulations for the SI, whose
mean value can be considered as a global sensitivity measure. However, this does not easily
overcome the problem of non-linearity of the underlying model or the diculty if the deriva-
tives are not easily accessible, e.g. for kMC models. Furthermore, the SI do not display the
induced uncertainty directly.
Therefore, we need a model-free approach and focus on variance-based methods that are
suitable for complex non-linear and non-additive models [91]. One drawback can be the higher
computational cost, but it allows for parameter interaction and interpretation of sensitivity
measures in terms of an induced uncertainty with a readily comprehensible relation between
the LSA and the GSA. Furthermore, it can provide not only dependencies of the single input
parameter but also of combination with one another, resulting in a dependency network.
In the non-linear settings of the model, the equivalent of the decomposition Eq. (2.10 )
is the so-called Analysis of Variance (ANOVA) decomposition [36]. The idea is based on
the functional decomposition scheme, where the original function is decomposed in mul-
tiple lower order functions, which can reconstruct the original function. The decomposi-
tion is a feature to achieve further understanding on identity of the constituent compo-
nents, reecting physical processes. It the context of SA and based on the product PDF
𝑝 = (𝑝1, ..., 𝑝𝐷) = (𝑝1 × 𝑝2 × ... × 𝑝𝐷), we can decompose our model response 𝑓 (x) into
summands of increasing dimensions

𝑓 (𝑥1, ..., 𝑥𝐷) = 𝑓0 +
𝐷∑︁
𝑖=1

𝑓1,𝑖 (𝑥𝑖) +
∑︁

1≤𝑖< 𝑗≤𝐷
𝑓2,𝑖 𝑗 (𝑥𝑖, 𝑥 𝑗 ) + · · · + 𝑓𝐷 (𝑥1, ..., 𝑥𝐷). (2.11)

In total, the number of terms increases exponentially with the dimension 𝐷 , 2𝐷 , and can
get computational expensive for large 𝐷 . Eq. (2.11) is also known as the Hoeding decom-
position, with the requirement of 𝐷 statistically independent parameters x = (𝑥1, ..., 𝑥𝐷)
and a pairwise orthogonality of the terms 𝑓0, 𝑓1,𝑖, 𝑓2,𝑖 𝑗 , etc. with respect to the scalar product
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2 Parameter Uncertainty and Sensitivity Analysis

(𝑓 , 𝑔) =
∫
𝑓 𝑔 𝑝 𝑑𝑥𝐷 . Therefore the unicity condition for Eq. (2.11) is given by

∫ 1

0
𝑓1,2,...,𝑠 (𝑥1, 𝑥2, ..., 𝑥𝑠) 𝑑𝑥𝑖 = 0, with 1 ≤ 𝑠 ≤ 𝐷. (2.12)

𝑓0 is themean and all other 𝑓1,𝑖, 𝑓2,𝑖 𝑗 , etc. have amean value of zero. The functions 𝑓1,𝑖, 𝑓2,𝑖 𝑗 , . . . , 𝑓𝐷
are obtained from

𝑓0 = E(𝑦)
𝑓1,𝑖 = E𝑥∼𝑖 (𝑦 |𝑥𝑖) − 𝑓0
𝑓2,𝑖 𝑗 = E𝑥∼𝑖,∼𝑗 (𝑦 |𝑥𝑖, 𝑥 𝑗 ) − 𝑓1,𝑖 − 𝑓1, 𝑗 − 𝑓0 (2.13)

and so on for higher orders, with the convention that 𝑥∼𝑖,∼ 𝑗 indicates the expected value over
the whole parameter domain except for the parameter in the subset (𝑖, 𝑗).
The orthogonality of the functions also implies the ANOVA decomposition, which was shown
by Sobol in 1990 [92]; thus, the total variance Var(𝑦) can be partitioned similar to the function
decomposition Eq. (2.11)

Var(𝑦) =
𝐷∑︁
𝑖

Var𝑖 +
∑︁

1≤ 𝑗< 𝑗≤𝐷
Var𝑖, 𝑗 + · · ·Var𝐷 , (2.14)

where the contributions Var1,𝑖,Var2,𝑖 𝑗 ,, etc. are the partial variances to the corresponding
function terms 𝑓1,𝑖, 𝑓2,𝑖 𝑗 , etc.

Var𝑖 = Var(𝑓𝑖 (𝑥𝑖)) = Var𝑥𝑖 (E𝑥∼𝑖 (𝑦 |𝑥𝑖))
Var𝑖 𝑗 = Var(𝑓2,𝑖 𝑗 (𝑥𝑖, 𝑥 𝑗 )) (2.15)

= Var𝑥𝑖 ,𝑥 𝑗 (E𝑥∼𝑖,∼𝑗 (𝑦 |𝑥𝑖, 𝑥 𝑗 )) − Var𝑥𝑖 (E𝑥∼𝑖 (𝑦 |𝑥𝑖)) − Var𝑥 𝑗 (E𝑥∼𝑗 (𝑦 |𝑥 𝑗 )) .

Terms for the higher order and the ANOVA decomposition itself (Eq. (2.14)) hold for inde-
pendent parameters. In our case this is implied by the product PDF, but extensions of the
ANOVA decomposition exist towards dependent parameters. [73, 75, 78, 93–95]. Nevertheless,
the function (Eq. (2.11)) and the variance decomposition (Eq. (2.14)) allow us to explicitly
address the impact of individual parameters on the model output. Only the terms 𝑓1,𝑖, 𝑓2,𝑖 𝑗 , etc.,
where 𝑖 appears are inuenced by the parameter 𝑥𝑖 , thus only the corresponding variances
Var1,𝑖,Var2,𝑖 𝑗 , etc. are aected by the parameter uncertainty. The contributions Var1,𝑖 are
called the rst order index or the main eect with respect to 𝑥𝑖 and take the isolated impact

28



2.2 Uncertainty Quantication

of one input parameter into account [96]

𝑆𝑖 = Var𝑖 = Var𝑥𝑖 (E𝑥∼𝑖 (𝑦 |𝑥𝑖)) . (2.16)

In other words, 𝑆𝑖 denes the expected reduction of the overall variance Var(𝑦), if 𝑥𝑖 can be
xed and does not contain an uncertainty [96]. Higher-order terms consider interactions
between dierent input parameters, whereby the second-order index Var2,𝑖 𝑗 displays ameasure
for the interactions of parameters 𝑖 and 𝑗 [96]. 𝑆𝑖 describes the main eect by one parameter,
and the second-order indices describe the impact that cannot be explained by an isolated
singular parameter but by a coupling eect of parameters. They do inuence not only the
overall output but also the importance of other input parameters.
If all contributions higher than the rst-order index are zero, the function 𝑓 (x) can be
represented by set of one-dimensional functions similar to the decomposition of LSA. If the
underlying function 𝑓 (x) is linear, the Sensitivity indices for the local and the global approach
are equal.
The number of terms for the ANOVA increases exponentially (in analogy to the growth of
function terms) with the dimensionality, producing an enormous quantity of information
given by the myriad of SI-numbers. This makes it dicult to produce a clear interpretation
of all the parameters. That is why we want to limit the amount of SI-numbers. Overall,
we are interested in the eective impact of individual input parameters 𝑥𝑖 . However, using
the isolated rst order SI does not provide this information, because a signicant portion of
the output variation can be assigned to interactions of higher order. In fact, the rst order
sensitivity can be zero, although the parameter has a big impact. If we now consider all the
contributions in which 𝑥𝑖 appears, we will account for all possible interactions. Summing
over these terms leads to the Total Sensitivity Index (TSI)

𝑆𝑇,𝑖 = Var1,𝑖 +
∑︁
𝑗≠𝑖

Var2,𝑖 𝑗 + · · · + Var𝐷 , (2.17)

which captures the expected value of the total variance if all input parameters are xed except
for 𝑖 . One way to interpret this relation is to consider it as the dierence of the total variance
and all the rst order eects of all input parameter except for 𝑥𝑖 ,

𝑆𝑇,𝑖 = Var(𝑦) − Var𝑥∼𝑖 (E𝑥𝑖 (𝑦 |𝑥∼𝑖)) = E𝑥∼𝑖 (Var𝑥𝑖 (𝑦 |𝑥∼𝑖)) . (2.18)

Due to the known identity Var(𝑦) = Var𝑥∼𝑖 (E𝑥𝑖 (𝑦 |𝑥∼𝑖)) + E𝑥∼𝑖 (Var𝑥𝑖 (𝑦 |𝑥∼𝑖)) the 𝑆𝑇,𝑖 can be
reformulated as the expected variance, that would be left, if all parameters except for 𝑥𝑖 are
xed [97].
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These denitions dier from the common SIs and their rst denition by Homma and Saltelli
[98] since we omit the normalisation with the total variance Var(𝑦). In our context, we want
to analyse and compare the LSA and GSA sensitivity indices under the aspect of an induced
uncertainty. The denition of TSI as the expected variance of the uncertainty of 𝑥𝑖 allows us
the targeted interpretation of the induced uncertainty. Var𝑥𝑖 (𝑦 |𝑥∼𝑖) describes the variance
caused by varying 𝑥𝑖 , while all other parameters are xed, which is the non-linear analogon
to the LSA-SI. So the TSI 𝑆𝑇,𝑖 is the variance induced by 𝑥𝑖- uncertainty, averaged over all
other parameters. The TSI is not a decomposition of the total variance in a general non-linear
setting, as their sum can be larger. Only under the circumstances that the target function 𝑓
is a sum of one-dimensional functions, the TSIs would sum up to the total variance. Then
the rst order 𝑆𝑖 and the TSI will agree and in that case the same will be true for the 𝑆𝑖,𝐿𝑆𝐴
and 𝑆𝑇,𝑖 if the underlying function is linear[23].In this context, it should be mentioned that
although the LSA and GSA agree if the function 𝑓 (𝑥) is linear, the opposite argument is not
valid.
For our purpose, we want to apply the SA to highly complex systems, which often contain
numerous uncertain parameters. Unlike the linear case, the variance and the TSI need to be
obtained by averaging over the parameter distribution. For complex reaction networks with
numerous elementary reactions, this requires the approximation of functionals, including the
solution of multiple high dimensional integrals.
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3 Sparse Grid surrogate model

The need for an eective operating on functions over high dimensional domains arises in
dierent elds not only in the eld of Uncertainty Quantication (UQ) [99], but also in other
scientic, engineering, and socio-economic elds. Besides UQ, it is a big topic in nance [100]
or molecular simulations [101]. Often today’s problems can consist of multiple dimensions, so
that the approximation of integrals can be very costly. The quadratures have to be performed
numerically as analytical solutions are not available, or simulations only implicitly give the
response. In such cases, the evaluation of the integrand causes signicant computational costs
so that the high accuracy of the approximation needs to be reached with a limited number of
evaluations. The high dimensionality arises, e.g., from small-time steps in time discretizations
or - as in the eld of stochastic reactivity models - from numerous state variables. Each of
them carries an uncertainty, which causes the need for a parametrical integration over the
model output for the UQ [23, 52]. In nance, the integrals often occur in the context of option
pricing, like Asia options, zero-coupon bonds, and collateralized mortgage obligations, to
approximate the price of the functional derivatives [100]. For problems of high dimensional
integrals, Monte Carlo (MC) or Quasi Monte Carlo (QMC) can be a solution without a high
computational cost.
For the Global Sensitivity Analysis (GSA), the use of the classical approaches is more dicult
when the single evaluation is at a high computational cost. MC and QMC can estimate the
sensitivity indices for all dimensions, but with a high number of function evaluations, which
makes it less suitable for a model with only a fraction of important dimensions. This worsens
if we also want to estimate higher-order sensitivity indices. We need a surrogate model whose
characteristics correspond to the kinetic model and whose evaluation is cheap to tackle this
problem. With this, we have a function approximation and can perform the GSA without
high computational costs.

3.1 Problem formulation

As a starting point, we consider a function 𝑓 : Ω → R with Ω ∈ R𝐷 whose domain Ω is
dened as a hypercube Ω = [0, 1]𝐷 . To perform a GSA we need an eective surrogate model
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of
𝑓 (𝑥1, 𝑥2, ..., 𝑥𝐷) (3.1)

in a medium to a high dimensional domain, i.e., 𝐷 is larger than 5. In the context of just
approximating the high dimensional integrals,

𝐼 =
∫
Ω
𝑓 (𝑥)𝑑𝑥𝐷 (3.2)

classical numerical integration methods, often based on the product of one -dimensional rules
[102], are suering from the curse of dimensionality [103, 104]. Hence, the computational eort,
strongly correlated to the points 𝑁 , for a predened accuracy 𝜖 increases exponentially with
the dimension 𝐷 , 𝜖 (𝑁 ) = O(𝑁 −𝑟/𝐷), for functions with bounded total derivatives of order 𝑟
[104, 105] . This quickly becomes unfeasible for higher dimensions unless the function shows
a certain smoothness, which is usually not fullled. One of the famous approaches that does
not fall under the curse are the MC methods, where the sample points are chosen randomly
from a uniform distribution on Ω [106]. Despite the advantage of being independent on the
dimensionality of the problem, the convergence rate of 𝜖 (𝑁 ) = O(𝑁 −1/2) with an increasing
number of points 𝑁 , i.e., the number of the function evaluation, is often considered to be
infeasibly slow [107, 108]. For instance, to decrease the error by a factor of 10, 100 times as
many sampling points 𝑁 are needed. This caused the necessity of methods that show a higher
convergence rate than MC like QMC or Sparse Grid (SG) methods [104, 109]. Both of them
are deterministic schemes and depend less strongly on the dimensionality than comparable
methods [107, 110] which makes them most eective for medium dimensional problems. The
QMC scheme achieves a convergence rate of O((log𝑁 )𝐷/𝑁 ) or even better for a suciently
smooth 𝑓 and the Sparse Grid scheme has a convergence rate of O(𝑁 −𝑟 (log𝑁 )𝑟 (𝐷+1) for
bounded mixed derivatives of order 𝑟 , with 𝑟 depending on the integrand and the basis
function [40]. While the QMC method works exactly like the MC approach, except that the
QMC uses pre-described sampling points rather than randomized ones, the SG approach
constructs a surrogate model based on a basis set expansions.
The Sparse Grid approach recently reached popularity in the eld of uncertainty propagation
and sensitivity analysis, mainly in the context of partial dierential equations [111–113].
Still, its foundation was already built in the nineties [114–116] and similar ideas date even
further back to the sixties [117]. By taking the smoothness of a function and the lower
intrinsic dimensionality into account, the SGs avoid the curse of dimensionality and achieve
a faster convergence rate. This makes the approach very suitable for the eld of uncertainty
quantication, where not every dimension shows the same importance [118].
In this work, we concentrate on the Sparse Grid (SG) approach to solve the high-dimensional
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3.1 Problem formulation

integrals and benet from the key features of the SG. Under the purpose of using it for
sensitivity analysis and estimating an Analysis of Variance (ANOVA) decomposition

𝑓 (𝑥1, ..., 𝑥𝐷) = 𝑓0 +
𝐷∑︁
𝑖=1

𝑓1,𝑖 (𝑥𝑖) +
∑︁

1≤𝑖< 𝑗≤𝐷
𝑓2,𝑖 𝑗 (𝑥𝑖, 𝑥 𝑗 ) + · · · + 𝑓𝐷 (𝑥1, ..., 𝑥𝐷) (3.3)

Var(𝑦) =
𝐷∑︁
𝑖

Var𝑖 +
∑︁

1≤ 𝑗< 𝑗≤𝐷
Var𝑖, 𝑗 + · · ·Var𝐷 , (3.4)

previous research showed that the MC and QMC approach scale unfavourably with the
dimension [36, 119]. Each of the variance terms in Eq. 3.4 requires multiple MC simulations
andwith increased dimensionality this results in unfeasible for ,e.g. kineticMonte Carlo (kMC)-
models, where a single evaluation is already expensive [120].
If we extend the idea of Sensitivity Analysis (SA) to multiscale modelling where we couple
the catalytic results to computational uid dynamics (CFD) simulation of a ow stream in a
reactor, the importance of an accurate but cheaper function evaluation rises. Here we would
couple a low-delity-kMC model with high-delity-CFD simulations. Therefore, we need
an accurate function approximation, which is not possible with the classical MC and QMC
approach, but with an SG approach [104]

𝑢 (𝑥) ≈ 𝑓 (𝑥). (3.5)

The Sparse Grid approach constructs such a surrogate model based on a product of one-
dimensional basis function by omitting the higher order cross terms and the corresponding
grid points, which do not signicantly increase the accuracy of the model.
As we want to perform a GSA we expect for models introduced in section 2.1, a hierarchy of
importance regarding the dimensions since not every parameter has the same impact on the
model outcome. A fraction of the elementary steps are rate-determining and, therefore, will
inuence the overall conversion of the kinetic model so that only a fraction of the dimension
need a grid with a high resolution. With a dimension-adaptive approach, we can omit unnec-
essary points in dimensions with no impact and reduce overall cost. Furthermore, the kinetic
data shows only locally features that need a higher resolution. The local features are phase
transitions of a non-active surface to an active surface and vice versa. With a local adaptation
of the SG, we can approximate the overall domain with a few grid points and increase the
resolution in areas of this phase transitions. This means that the SG surrogate model needs a
varying spatial resolution, which is achieved by adaptive renement and ensures a reduction
of expensive model evaluations.
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3.2 Sparse Grids

A full grid approach constructs a 𝐷-dimensional integrand on a regular grid with equidistant
points as a product of one-dimensional basis functions. With increasing dimensions, this
quickly becomes unfeasible without the right choice of basis function. In contrast, the sparse
grid employs hierarchical basis functions to construct a surrogate model and omits basis
functions with a negligible contribution to the overall interpolation. In the following chapter,
we start with the one-dimensional quadrature rule and the basis functions. Based on this, we
construct the 𝐷-dimensional SG with some necessary notation for the dierent renement
strategies, which follow in section 3.3 and show some examples.

3.2.1 One-dimensional hierarchical basis functions

First, we consider a function 𝑓 : Ω → R, dened on the domain Ω = [−0.5, 0.5]. We might
not know the closed form of 𝑓 but we can evaluate 𝑓 at certain spatial points. To construct
an interpoland of the function 𝑓 , we have to discretize the spatial domain Ω. For a full grid
approach, we would choose a regular grid with equidistant points of a mesh width of ℎ𝑙 := 2−𝑙 ,
at which we can evaluate function 𝑓 [121]. With increasing 𝑙 , the mesh grid becomes ner
which results in a higher accuracy of the interpoland and higher number of points such that
𝑙 can be dened as the renement level. Based on a choice of basis function (BF) 𝜑 and the
one-dimensional interpolation rule, we can construct the interpolation 𝑢 (𝑥) with

𝑓 (𝑥) ≈ 𝑢 (𝑥) =
∑︁
𝑖

a𝑖𝜑𝑖 (𝑥) (3.6)

𝑢 (𝑥𝑖) = 𝑓 (𝑥𝑖) (3.7)

where the expansion coecients a are determined by the interpolation requirement Eq. (3.7)
for the grid points 𝑥𝑖 . With adjusting the renement level, we can control the accuracy of the
interpolation and thus the amount of points 𝑁 . If we extend the full grid to the 𝐷-dimensional
case we have to deal with not 𝑁 , but 𝑁𝐷 points, which easily suers from the curse of
dimensionality [104, 122]. Although a full grid can be constructed with the right choice of
basis functions, displaying the function characteristics with the minimal amount of points,
with increasing dimensions the number of points will become unfeasible. In contrast, the
sparse grid idea omits the basis function, which contributes little to the accuracy of the
surrogate model, primarily the higher-order cross terms.
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The sparse grid approach employs a hierarchical decomposition of the underlying spatial
approximation and uses hierarchical basis functions for equation (3.6) to ensure an adaptive
interpolation. The idea behind hierarchical basis functions is to start with a coarse resolution
of the interpolation, constructed with a minimal amount of points. Then only more BFs are
added if we nd the function not well represented. Then we keep the old BFs and add new
points, whose BF interpolate the dierence between the old coarse and the newly rened
interpolation. This procedure is repeated until the interpolation dierence is reasonably small
so that the new added BFs have only a small contribution to the overall interpolation. With
this, the method ensures that only necessary BFs are included.
Since the SG approach wants to use a limited amount of BFs (and the corresponding grid
points), the choice of BFs is very important. Depending on the characteristics of the underlying
function 𝑓 , dierent kinds of BFs can be more or less ecient. The most common choice are
piecewise linear functions or spline basis function [112, 123, 124] , but the SG approach is
not restricted to them and employs other basis functions such as polynomial [123], wavelets
[125] or prewavelets [104].
Our purpose is to construct a surrogate model for kinetic data, but it can be applied to
problems with similar characteristics. To explain the characteristics of the underlying data,
we illustrate the dependence of an observable, in this case, the Turnover Frequency (TOF),
on the uncertainty of an input parameter, in gure 3.1. This is a schematic example of the
reduced model for the CO oxidation on Rutheniumdioxide(110) from Gelß et al., where we
displayed the TOF dependence over the adsorption rate of CO over a range of [107, 1010]
s−1. As the gure shows, the TOF does not have an overall linear dependence on the reaction
coordinate. It can instead be described as an interplay between almost linear behaviour and
rapid local changes. This local non-linear behaviour corresponds to the phase transitions
between domains with varying catalytic surface activity.
Using piecewise linear, locally supported basis functions seems to be the most promising
approach based on the kinetic characteristics. If we considered higher-order splines as BFs
for these characteristics, we would produce overshoots at the local non-linearities, which
requires further renement points to correct these. We are testing both sets of BFs for a rather
extreme example of a target function 𝑔 with two discontinuities at 𝑥 = ±0.2 and a constant
function elsewhere.

𝑔(𝑥) =


0 for 𝑥 ≤ −0.2 or 𝑥 ≥ 0.2

1 for − 0.2 < 𝑥 < 0.2.
(3.8)

Figure 3.2 shows the two dierent interpolation schemes for the spline BFs of order 𝑝 = 2

and the piecewise linear basis function. Even though the discontinuity is a drastic case of
the rapid local changes, the spline interpolation shows the problem of approximating sharp
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Figure 3.1: This is the CO oxidation on Rutheniumdioxide(110) dependent on the adsorption rate of
CO. The logarithm of the Turnover frequency (TOF) behavior plotted over the reaction coordinate,
which spans the uncertainty of one system parameter. Along the reaction coordinate the TOF values
highly variate and show areas of linear behaviour and also of non linear behavior .
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Figure 3.2: Sparse Grid Interpolation for locally discontinuous function 𝑔(𝑥) with splines of
dierent orders for level 𝑙 = 2. Left panel : Interpolation of 𝑝 = 2 order splines, with signicant
overshoots towards the discontinuity. Right panel Interpolation of 𝑝 = 1 order splines, with a closer
adaptation of the characteristics of the underlying function.
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changes with higher-order splines. While the linear basis functions in the right panel adapt
the constant characteristics accurately and only need additional basis functions in the area of
the discontinuities, the overshoot of the spline basis functions in the left panel produces an
error in the area of the constant function. This would need further renement to compensate
for the deviation. Because of this, we choose piecewise linear basis functions, which are
depicted in gure 3.3 and are dened by

𝜑𝑙,𝑖 =



1 for 𝑙 = 0

max(1 − 2𝑙 |𝑥 − 𝑥𝑙,𝑖 |, 0) for 𝑙 > 0,
(3.9)

with a level index 𝑙 and a count index 𝑖 [126, 127]. The basis functions have a local support and
are centered at grid points 𝑥0,0 = 0, 𝑥1,0/1 = ∓0.5, 𝑥2,0/1 = ∓0.25, and 𝑥𝑙,𝑖 = 𝑥𝑙−1,b𝑖/2c− (−1)𝑖/2𝑙 ,
which are the evaluation points for the interpolation of 𝑓 . The level index describes the
hierarchical order of the basis function belonging to the hierarchical decomposed space,
whereas the count index 𝑖 lets us uniquely identify a BF in a hierarchical dierence spaces. By
dening a hierarchical index set

I𝑙 =


{𝑖 ∈ N : 0 ≤ 𝑖 ≤ 2𝑙 − 1} for 𝑙 = 0, 1

{𝑖 ∈ N : 0 ≤ 𝑖 ≤ 2𝑙−1 − 1} for 𝑙 > 1
(3.10)

we obtain hierarchical dierence spaces

𝑊 𝑙 = span{𝜑𝑙,𝑖 |𝑖 ∈ I𝑙 }, (3.11)

which are used to construct the approximation space 𝑉𝐿 of the function 𝑓 as a direct sum of
𝑊 𝑙

𝑉𝐿 =𝑊 0⊕𝑊 1 ⊕ · · · ⊕𝑊 𝑙 =
⊕
𝑙≤𝐿

𝑊 𝑙 , (3.12)

based on a full grid [118]. 𝐿 denes the maximum renement level, thus the accuracy of the
surrogate model, whereby the surrogate model (the interpolant) of 𝐿 → ∞ converges against
𝑓 .
The piecewise linear basis functions and the connection to the hierarchical subspaces𝑊 𝑙

are displayed in the left panel of gure 3.3 for the renement levels 𝑙 = 0 to 𝑙 = 3. This
underlines, why the level index 𝑙 is called renement level. For 𝑙 = 0 the subspace𝑊 0 is
spanned by a single constant basis function, whose local support spans over the whole domain
Ω = [−0.5, 0.5]. With increasing level index, the amount of basis function increases while the
local support decreases, resulting in a higher resolution. Starting with the coarsest resolution
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Figure 3.3: Illustration of the hierarchical interpolation in one dimension with increasing level index.
Left Panel: Basis functions added at the corresponding levels 𝑙 . Middle Panel: The original function
f(x) and the hierarchical interpolation 𝑢 (𝑥) Right Panel: Illustration of the contribution of the basis
functions added at each level a𝑙,𝑖𝜑𝑙,𝑖 . The contributions decrease with increasing level, and, at the nest
level, only those basis functions close to the sharp non-linearity still have signicant contributions to
the interpolation.
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𝑊 0, the space𝑊 𝑙+1 spanned by the BFs added in the (𝑙 + 1)th renement step is considered
as the renement of the space𝑊 𝑙 spanned by the BFs of the previous renement step. Note
that the BFs from the same subspace have disjoint supports of the same size, which union
equals Ω all BF [122].
In general, the subdomain for piecewise linear basis functions covered by one basis function
can be dened as

Ω𝑙,𝑖 =




[𝑥𝑙,𝑖 − 0.5, 𝑥𝑙,𝑖 + 0.5] for 𝑙 = 0

[𝑥𝑙,𝑖, 𝑥𝑙,𝑖 ± 0.5] for 𝑙 = 1

[𝑥𝑙,𝑖 − 2−𝑙 , 𝑥𝑙,𝑖 + 2−𝑙 ] for 𝑙 > 1.

(3.13)

which displays the decreasing support with increasing 𝑙 . In the context of renement and
consecutive levels, the relationship of parents and children plays an important role. By
denition children rene the interpolation area spanned by their parents. he children of a
BF 𝜑𝑙,𝑖 are BFs of 𝑙 + 1 with an overlapping support. For the one dimensional case these two
BFs are 𝜑𝑙+1,2𝑖 and 𝜑𝑙+1,2𝑖+1. BFs from 𝑙 − 1 with an overlapping support Ω𝑙,𝑖 are then called
parents of 𝜑𝑙,𝑖 Eq. (3.14) and Eq. (3.15) describe the sets of points, dened as children or parents
[40, 118].

C𝑙,𝑖 =
{(𝑚, 𝑗) | Ω𝑚,𝑗 ⊂ Ω𝑙,𝑖 with𝑚 = 𝑙 + 1

}
= {(𝑚, 𝑗) |𝑚 = 𝑙 + 1 ∧ 𝑗 = 2 𝑖 (+1)} (3.14)

P𝑙,𝑖 =
{(𝑚, 𝑗) | Ω𝑙,𝑖 ⊂ Ω𝑚,𝑗

}
= {(𝑚, 𝑗) | 𝑙 =𝑚 + 1 ∧ 𝑖 = 2 𝑗 (+1)} (3.15)

We call all BFs of a smaller renement level with an overlapping support the ancestors A𝑙,𝑖 (Eq.
3.16) and of higher renement level descendants D𝑙,𝑖 . Their indices are recursively dened
with Eq. (3.14) and Eq. (3.15).

A𝑙,𝑖 =
{
(𝑙, 𝑖) | Ω𝑙,𝑖 ⊂ Ω𝑙,𝑖, for all 𝑙 < 𝑙

}
. (3.16)

Figure 3.3 depicts the construction of the sparse grid surrogate model according to the
underlying function. The common Sparse Gridmethod assumes values of zero on the boundary
𝛿Ω; hence it does not consider points on the boundary [122]. Therefore, classical hat functions
are used [122]. In our case, we can not assure zero values on the boundary, which would cause
numerous renements with the classical hat functions. The zero value of the basis functions
(BF) induces a high error towards the boundary, including the necessity of renement and
an increased density of points. We chose the basis function for the rst level with centre
points directly on the boundary to avoid this. With this, we assure the correct values on the
boundary and avoid unnecessary renement points. [124]
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As depicted in the left panel of gure 3.3, the renement of the grid starts with a single grid
point 𝑥0,0 in the centre of the integration interval. Level 𝑙 = 1 adds those sparse grid points
located on the boundary and their corresponding BFs. If we want to rene the approximation
further, we add BFs of higher levels by adding additional nodes between the existing nodes
[122, 127].
Based on the BFs of the subspaces, the interpolation 𝑢 (𝑥) ∈ 𝑉𝐿 can be written as a one
dimensional interpolation

𝑢 (𝑥) =
∑︁

𝑙≤𝐿,𝑖∈I𝑙

a𝑙,𝑖𝜑𝑙,𝑖 (3.17)

where the hierarchical surplus a𝑙,𝑖 is uniquely indexed with the same index set (𝑙, 𝑖) as the
corresponding basis function. The middle panel of gure 3.3 shows the interpolation for the
target function using all the BFs up to the renement level 𝑙 . With increasing 𝑙 and the ner
resolution of the basis functions, the characteristics of the underlying function are eectively
adapted to the point at 𝑙 = 3, where only little dierences are visible between the interpolation
and 𝑓 . As expected, not all basis function in one hierarchical dierence space have the same
impact on the approximation. This can be seen in the right panel, where the contribution of a
single BF, denoted as a𝑙,𝑖 ·𝜑𝑙,𝑖 is shown. As the hierarchical structure implies, the contribution
of a single BF decreases with the renement level, such that the support of the 𝑙 = 3 BF
are only a fourth of the 𝑙 = 0 BF. Furthermore, the BFs in one dierence space may have
unequal contribution to the approximation. During the renement from 𝑙 = 1 to 𝑙 = 2, the
linear characteristics are already accurately approximated while the non-linear behavior
needs further renement. Therefore, 𝜑2,0 does not improve the approximation and can be
neglected. This eect is even stronger in the renement step from 𝑙 = 2 to 𝑙 = 3, where only
the BFs of 𝜑3,2 has an impact on the interpolation. Taking only BFs with a contribution above
a predened threshold into account is one of the main feature used for local renement.

3.2.2 High-dimensional Sparse Grid spaces

We can now extend the previously introduced interpolation method to a function 𝑓 that
is dened on a 𝐷-dimensional hypercube Ω = [−0.5, 0.5]𝐷 . The BFs are extended to the
𝐷-dimensional BFs via a tensor product approach,

𝜑 l,i(x) =
𝐷∏
𝛼=1

𝜑𝑙𝛼 ,𝑖𝛼 (𝑥𝛼 ) with 𝜑𝑙,𝑖 ∈ Ω (3.18)
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with l and i as the 𝐷-dimensional level index and count index indicating level and index
for each dimension.The denition 𝜑𝑙𝛼 ,𝑖𝛼 (𝑥𝛼 ) indicates the 𝛼 entry of 𝜑 l,i(x). In analogy to
eq.(3.18), the other notation can be transferred to the higher dimensional case. Based on the
subspaces𝑊 l

𝑊 l = 𝑠𝑝𝑎𝑛{𝜑 l,i | i ∈ I l} (3.19)

with I l =



{i : 0 ≤ 𝑖 𝑗 ≤ 2𝑙 − 1, for 𝑙 = 0, 1; 1 ≤ 𝑗 ≤ 𝑑}
{i : 0 ≤ 𝑖 𝑗 ≤ 2𝑙−1 − 1, for 𝑙 > 1; 1 ≤ 𝑗 ≤ 𝑑}

(3.20)

the sparse grid approximation space 𝑉𝐿 of (total) level 𝐿 of the univariate function can be
expressed as

𝑉𝐿 =
⊕

|𝑙 |1<𝐿,i∈Il

𝑊 l. (3.21)

A Sparse Grid approximation is then obtained by

𝑓 (x) ≈ 𝑢𝐿 (x) =
∑︁

|𝑙 |1=1,i∈Il

a l,i 𝜑 l,i +
∑︁

|𝑙 |1=2,i∈Il

a l,i 𝜑 l,i + · · · (3.22)

=
∑︁

|𝑙 |1≤𝐿,i∈Il

a l,i 𝜑 l,i (3.23)

employing only the BFs whose 𝐿1-norm of the level index l is not exceeding the predened
maximum renement level 𝐿 [23]. The hierarchical surplus a l,i for the high dimensional cased
are based on the same interpolation structure as Eq. (3.17) for the 1 dimensional case. So
a l,i for one BF is dened by the dierence between the function evaluation and the coarser
interpolation at xl,i

𝑓 (xl,i) = 𝑢𝐿 (xl,i) (3.24)
= 𝑢𝐿−1(xl,i) + a l,i 𝜑 l,i(xl,i) with 𝜑 l,i(xl,i) = 1

a l,i = 𝑓 (xl,i) − 𝑢𝐿−1(xl,i). (3.25)

This relation is based on our choice of BF, where we do not have an overlapping support
of BF in the same𝑊 l. Therefore the function is locally only interpolated by one BF per
renement step. The dierence between a SG approximation and a full grid approximation
can be explained in terms of eq 3.23. For a full grid, we would have to consider all subspaces
𝑊 l up to an 𝐿∞-norm of 𝐿, not the 𝐿1-norm. This would mean to include all combinations of
the one-dimensional basis functions, also the expensive high order cross term. By setting the
maximum renement level to an upper bound for all dimensions together, the SG approach
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Figure 3.4: Hierarchical dierence spaces for the 2D Sparse Grid Interpolation according to the
renement level. The top left and the top right row show the one dimensional basis function for
each dimension and level. In the inner diamond grid, the 2D tensor products of the one dimensional
functions are displayed. An interpolation constructed by the shown basis function has the maximum
level of 𝐿 = 2. For the SG, all hierarchical dierence spaces above the orange dotted line are
included, thus it consists of spaces with an 𝐿1-norm |𝑙 |1 ≤ 2. In comparison to that, a full grid includes
all spaces with a maximum norm |𝑙 |∞ ≤ 2, which includes also the spaces below the orange dotted
line .
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overcomes the curse of dimensionality. Note here that the SG in a one-dimensional case equals
an Full Grid (FG) approach. Figure 3.4 displays the construction of the higher dimensional
basis functions based on the one dimensional case. The two outer rows outline the 1D-BF
for 𝑙 = [0, 1, 2] and the tensor product of two BFs each is shown in the inner diamond mesh.
Each horizontal row describes a higher dimensional subspace according to the 𝐿1-norm of
the renement level. Assuming a maximum level 𝐿 = 2, the sparse grid would be spanned
by all BFs above the orange line, thus |𝑙 |1 ≤ 2. In contrast to that, a FG approach would also
include the functions below the orange line as the maximum norm has to be equal to 2.
The key concept for constructing the SG in the high dimensional case is the hierarchical
ordering of the sparse grid BFs in terms of parents and children. If the interpolation of the
parents is not sucient enough, the SG will locally add points in the subdomain spanned by
the parents. The additional points, called children, will interpolate the dierence between
the function evaluation and the results of the coarser interpolation. s in the one-dimensional
case, we call those BFs from Eq. (3.14) and Eq. (3.15) are the base for the high dimensional
case. The indices of the children Cm,j and the parents P l,i of a BF 𝜑 l,i are given by the sets

Cl,i = {(m, j) | ∃𝑑,𝑏 ∈ [1, 𝐷] : m = l + e𝑑 ∧ 𝑗𝑑 = 2 𝑖𝑑 (+1) ∧ 𝑗𝑏 = 𝑖𝑏 for 𝑏 ≠ 𝑑} (3.26)
P l,i = {(m, j) | ∃𝑑,𝑏 ∈ [1, 𝐷] : l = m + e𝑑 ∧ 𝑖𝑑 = 2 𝑗𝑑 (+1) ∧ 𝑗𝑏 = 𝑖𝑏 for 𝑏 ≠ 𝑑} . (3.27)

(3.28)

These sets display the renement relation between two consecutive levels which build the
base for any adaptive strategy. For further relations, the 1-dimensional case gives the idea of
ancestors of one BF in Eq. (3.16). Based on this and the Eq. (3.26,3.27 ) the ancestors in the
high dimensional case are recursively denedas the union of P l,i and ascendents of the BF
contained therein.

3.2.3 Sensitivity Indices

Based on equation (3.23) we can dene the quadrature and approximate the integral of function
𝑓 by using the SG interpolant

∫
Ω
𝑢𝐿 (x) 𝑑𝑥𝐷 =

∑︁
|𝑙 |1≤𝐿,i∈Il

a l,i𝑤 l,i (3.29)

with 𝑤 l,i =
∫
Ω
𝜑 l,i(x) 𝑑𝑥𝐷 (3.30)
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with 𝑤 l,i as the integration weight attributed to the BF 𝜑 l,i. With this, we can eciently
approximate the expected values and variances for the Total Sensitivity Index (TSI) over the
higher-dimensional space. The expected value equals the quadrature equation (3.29). For the
variance, we have to approximate the second moment

𝐸 (𝑦) ≈
∫
Ω
𝑢 (x) 𝑑𝑥𝐷 =

∑︁
|𝑙 |1≤𝐿,i∈Il

a l,i𝑤 l,i (3.31)

𝐸 (𝑦2) ≈
∫
Ω
𝑢 (x)2 𝑑𝑥𝐷 =

∫
Ω

(∑︁
l,i
a l,i 𝜑 l,i(x)

)2
𝑑𝑥𝐷 (3.32)

=
∑︁
l,i,l′,i′

a l,i a l′,i′𝑤 l,i,l′,i′ (3.33)

with 𝑤 l,i,l′,i′ =
∫
Ω
𝜑 l,i(x) 𝜑 l′,i′ (x)𝑑𝑥𝐷 . (3.34)

Since we use uniform distributed parameters, we can estimate the sensitivity index TSI from
Eq. (2.18) with respect to a parameter 𝑥𝛼 with

𝑆𝑇,𝛼 = E𝑥∼𝛼 (Var𝑥𝛼 (𝑦 |𝑥∼𝛼 )), (3.35)

𝑆𝑇,𝛼 ≈
∫
Ω∼𝛼

(∫
Ω𝛼

𝑢 (x)2𝑑𝑥𝛼
)
𝑑𝑥𝐷−1∼𝛼 −

∫
Ω∼𝛼

(∫
Ω𝛼

𝑢 (x)𝑑𝑥𝛼
)2
𝑑𝑥𝐷−1∼𝛼

=
∫
Ω

(∑︁
l,i
a l,i 𝜑 l,i(x)

)2
𝑑𝑥𝐷 −

∫
Ω∼𝛼

(∫
Ω𝛼

∑︁
l,i
a l,i 𝜑 l,i(x) 𝑑𝑥𝛼

)2
𝑑𝑥𝐷−1∼𝛼 (3.36)

where
∫
Ω∼𝛼 · · ·𝑑𝑥𝐷−1∼𝛼 denotes the integral over the whole domain, except for the dimension

of 𝛼 and
∫
Ω𝛼

· · ·𝑑𝑥𝛼 the integral over the dimension 𝛼 . Utilizing the product shape of the BFs
(3.18) and the second moment (3.34), we can rewrite the TSI as

𝑆𝑇,𝛼 ≈
∑︁
l,i,l′,i′

a l,i a l′,i′
𝐷∏
𝛽≠𝛼

𝑤
𝛽

l,i,l′,i′

(
𝑤𝛼

l,i,l′,i′ −𝑤𝛼
l,i𝑤

𝛼
l′,i′

)
(3.37)

with respect to the parameter 𝑥𝛼 and where

𝑤𝛼
l,i =

∫ 0.5

−0.5
𝜑𝑙𝛼 ,𝑖𝛼 (𝑥) 𝑑𝑥 (3.38)

and

𝑤
𝛽

l,i,l′,i′ =
∫ 0.5

−0.5
𝜑𝑙𝛽 ,𝑖𝛽 (𝑥) 𝜑𝑙 ′𝛽 ,𝑖 ′𝛽 (𝑥)𝑑𝑥. (3.39)
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3.3 Adaptivity

Although we are now able to construct the Sensitivity Index based on our SG model, we need
many function evaluations to construct such a model in a high dimensional space. The next
step is to reach the goal of adaptive renement in the high dimensional case for which the
relation of parents and children is essential. As indicated in the right panel of gure 3.3, not
every basis function, even in the Sparse grid space, has the same impact on the accuracy
of the surrogate model. While regions of linear behaviour are accurately displayed with a
minimal amount of BFs, the non-linear behaviour requires more renement. To tackle this
problem, the SG approach allows for adaptive renement since the multidimensional ap-
proach inherits the hierarchical structure of the one-dimensional BFs (3.6). The most common
renement strategies are local-adaptive renement and dimension-adaptive renement. The
dimension-adaptive renement was rst introduced by Griebel in 1998 [127] and later on
further developed with Gerstner [102] to a Generalized Sparse Grid (GSG) approach. The
method generalizes the traditional isotropic SG approach that allows for computational eort
in the important dimensions, which mostly means higher variations [100, 128]. For our
example of parameter uncertainty in a kinetic model, determining the Sensitivity Index for
every parameter implies that not every parameter uncertainty has the same impact on the
outcome. It is rather the case that a kinetic model consists of numerous parameters, but the
intrinsic dimensionality is a lot smaller such that only a handful of parameters are important.
For the computational approach, this means that some dimensions are easier to approximate
than others.
The local-adaptive renement involves a similar approach as the dimension-adaptive rene-
ment but focusing on spatial resolution. Functions can have a spatially varying complexity -
as it can be seen in gure 3.3 where non-linearity only appears locally. The goal for the local
renement is to add only points in spatial areas of rough approximations to avoid unnecessary
renement in the subdomains of an accurate approximation. The relationship of parents
and children is essential for that so that adding a child to the nal SG is dependent on the
error indicator of the parent. The rst local-adaptive renement was also introduced by
Griebel [127], but since then, numerous approaches of local renement have been developed.
Moreover, combining the two renement strategies gained much popularity in the last decade
[23, 40, 118, 129].
Since our model contains a hierarchy of important dimensions and varying spatial complexity,
we concentrate on both renement strategies. First, we will introduce a proper renement
criterion and the local and the dimension-adaptive renement strategies separately. Second,
we explain how both can be combined for an eective renement of our problem[23, 40, 118,
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130].

3.3.1 Refinement Criteria

Since we have no prior knowledge of important dimensions or subdomains of high variability,
we must adapt to these characteristics during the computational procedure. For an eective
renement, a proper renement criterion is crucial. Depending on the application and the
function 𝑓 , some renement criteria are more or less eective. In principle, we want to
increase the interpolation accuracy, which means we want to rene the BFs that show a
high interpolation error. Practically, the exact interpolation error is unknown and cannot be
estimated without multiple expensive function evaluations. Thus, it can only be approximated
based on an indicator of the local interpolation error due to omittance of the descendants of
a BFs of𝑊 l. Independent of the measurement for the local error, the hierarchical structure
of the sparse grid implies that, if the grid point (l, i) has a small contribution, we expect
this to also be the case for all its descendants [42]. In consequence, if the local error criteria
exceed a predened accuracy, no further points in the domain Ωl,i are included. There are
many dierent measures for the local error but the most common are the hierarchical surplus
a l,i or the contribution a l,i𝜑 l,i of a BF. The hierarchical surplus a l,i describes the dierence
between the function evaluation and the sparse grid interpolation at the next coarser level
at a grid point. Although the hierarchical surplus is synonymous with the denition of a
local interpolation error, adding BFs according to the hierarchical surplus can be inecient
depending on the functions’ characteristics. When dealing with a highly smooth function,
the hierarchical surplus can be sucient for determining suitable renement BFs whereas
the surplus decreases very slowly with respect to the impact of the BF in areas of rapid
jumps. Figure 3.5 and the table 3.1 depict the problem with the hierarchical surplus during
the renement of non linear behavior. Despite the constant improvement of the interpolation
along with the renement, the hierarchical surplus documents a very slow decrease for the
accuracy of the interpolation[40]. If we measure the 𝐿1-norm of the interpolation error and
this value exceeds the predened accuracy 𝜖 , the method will produce unnecessary points
towards the non-linear behaviour such that the hierarchical surplus becomes disproportional
to the interpolation error. Hence, we employ the 𝐿1-norm of the surplus and the weight of
the BF as an error measure

𝛾 l,i := |a l,i𝑤 l,i | (3.40)

for a single BF with𝑤 l,i as the integration weight and the 𝐿1-norm of 𝜑 l,i. Considering that
we are interested to achieve a high accuracy also for the quadrature with a minimal amount of
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Figure 3.5: Renement procedure and interpola-
tion of a target function with a jump characteris-
tics with the basis functions for dierent rene-
ment levels 𝑙 = [0, 1, 2, 3].

Basis function |a𝑙,𝑖 | |a𝑙,𝑖 𝑤 𝑙,𝑖 |
𝜑0,0 0.5 0.5
𝜑1,0 0.5 0.125
𝜑1,1 0.5 0.125
𝜑2,0 0.25 0.0625
𝜑2,1 0.25 0.0625
𝜑3,0 0 0
𝜑3,1 0.25 0.03125
𝜑3,2 0.25 0.03125
𝜑3,3 0 0

Table 3.1: Dierent renement criteria for
the renement of the target function in g-
ure 3.5. The middle column documents
the hierarchical surplus, i.e., the maximum
norm of the local error, which decreases
very slowly with the increasing level. Com-
pared to that, the right column shows the
𝐿1-norm of the local error with a constant
decrease with the renement.

points, the |a l,i𝑤 l,i | gives the impact of this BF on the quadrature, since | |𝑓 | | = | |∑a𝑙𝑖𝜑𝑙𝑖 | | ≤∑ | |a𝑙𝑖𝜑𝑙𝑖 | | =
∑ |a𝑙𝑖 | ∗ | |𝜙𝑙𝑖 | |. So even when the hierarchical surplus decreases slowly, the

increasing level renement induces a decreasing weight. This is also underlined by the
example of gure 3.5 and table 3.1, where the classical surplus fails but the weighted surplus
shows a decreasing trend along with the renement. We can avoid costly and unnecessary
renement points towards non-linear behaviour with the weighted surplus compared to the
single surplus.

3.3.2 Dimension Adaptivity

The classical Sparse Grid approach includes all hierarchical subspaces𝑊 l with |l|1 ≤ 𝐿. Such
an approach will not suer from the curse of dimensionality but is still unfeasible for high
dimensional problems. The construction scheme showed in section 3.2.2 treats all dimensions
equally, although some dimensions contribute just little to the interpolation. These dimensions
are not known a priori but have to be determined during the computational procedure. For
that, we based our method on the GSG approach of Gerstner and Griebel [102] that identies
the dierence spaces𝑊 l that contribute signicantly to the variability of the function 𝑓 .
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3 Sparse Grid surrogate model

A dierence space is indicated by the level index l and has 𝐷 {l + e𝑑 : 1 ≤ 𝑑 ≤ 𝐷} renement
levels, with the unit vector e𝑑 for the dimension 𝑑 . Similar to the denition of the BFs, the
renement levels are called the children of level l and thus every level index has a maximum
of 𝐷 parent levels. In the original GSG deniti-on these level dependencies are called forward
and backward neighbor. Furthermore the denition of admissability is a key point of the GSG
approach. A level index l is only admissible if

l − e𝑑 ∈ S for 1 ≤ 𝑑 ≤ 𝐷, 𝑙𝑑 > 0 (3.41)

with S as a set of all level indices of the sparse grid. The basic idea is to only include the level
l if the parent levels {l−e𝑑 : 1 ≤ 𝑑 ≤ 𝐷} are admissible and have a big contribution to the SG
interpolant 𝑢 (x). If that is not the case, we omit the dierence space and the corresponding
BFs and grid points. In the case of a high contribution of one parent space𝑊 l − e𝑖 and an
insignicant contribution of a second parent space𝑊 l − e 𝑗 , it is highly probable that the
children will also have an insignicant contribution and can be excluded. This means only if
both hierarchical dierence spaces needs further renement, the children space will have a
high impact on the accuracy of the SG. The contribution denition of the GSG approach by
Griebel and Gerstner sums over the local errors of the singular basis functions to dene the
contribution of𝑊 l [40, 102, 127]

𝛾 l :=
∑︁
l,i∈Il

𝛾 l,i. (3.42)

The original approach chooses the l with the largest 𝛾 l and includes all {l + e𝑘 : 1 ≤ 𝑘 ≤ 𝐷}
children, if the error of the children are big enough. This procedure is repeated until the
predened threshold is met. For our study, we modied the approach to rene multiple level
indices simultaneously and employ the advantage of parallel computing. We start at a SG
whose highest renement level have a 𝐿1-norm of 𝐿 and instead of only including points for
the renement space with the highest error indicator we look at all renement spaces for the
currently highest levels. With every renement step we consider all new renement spaces
of |l|1 = 𝐿 + 1 and check whether all the parents level of each level have a high contribution.
Therefore we do not use the 𝐿1-norm of the local error vector, we choose the maximum norm

𝛾 l := max
i∈Il

𝛾 l,i (3.43)

and include all of the levels l whose parents level have minimum one point with a 𝛾 l above
a predened threshold 𝜖 . That ensures that only points are included whose parents have a
high contribution and excludes levels whose parents are not in the SG and therefor have a
𝛾 l = 0. Since we base the level error indicator on singular point error indicator, we are able
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to combine renement strategies based on renement spaces and point descriptions. The
resulting renement set for the dimension adaptivity Sdim

Sdim :=

{
(l, i) | min

𝑚∈l−e𝑑
(max
j∈I𝑚

( |am,j𝑤m,j |)) > 𝜖
}

(3.44)

includes all index tuples (l, i) whose parents’ level exist and where all of the parent levels
have at least one point with an error above the threshold. The outline of the method is shown
in the gure 3.6 for a 2𝐷 case. Similar to the already presented functions, we used a sigmoid
function, shown in the lower left panel of gure 3.6, as the underlying function with the non
linearity at 𝑥 = 0.25

𝑓 (𝑥1, 𝑥2) := 1

1 + exp((−𝑥1 + 0.25) ∗ 100) . (3.45)

Since the function depends only on one parameter dimension, we expect that the dimension
adaptivity removes all grid points in the 𝑥2-direction. The initial set consists only of the
singular set of S = {0, 0} - with 0 = {0, 0} for𝐷 = 2 - which needs to be rened. This set equals
the renement space𝑊 0 for which we consider all possible children levels {l+e𝑘 : 1 ≤ 𝑘 ≤ 2}
and check for each one if they are admissable, i.e. every parent level of them exists. For the
rst step, the only parent set existing is the target𝑊 0 space so all sets of children are produced.
For the second renement step, the new sets𝑊 l ={𝑊 (1,0),𝑊 (0,1)} are checked for renement.
Since at this point the sets equal a classical sparse grid approach, all parents are admissable
so all children sets𝑊 (2,0),𝑊 (0,2),𝑊 (1,1) are considered. Next, we have to check whether the
renement criteria of at least one grid point in every parent set exeeds the threshold 𝜖 . The
children set𝑊 (2,0) has only𝑊 (1,0) as a parent whose points are located along the non linearity
and show a high renement criteria. In contrast to that, the𝑊 (0,2),𝑊 (1,1) sets have𝑊 (0,1) as
a parents set, whose points lay perpendicular to the target function. Thus, the points have a
local error indictor of 0. This leads to the expected behavior of neglecting the reenment step
in the second dimension. Further renement follows the same scheme, except that renement
spaces in the second dimension are neglected because of the non admissability of the parent
sets. With this, the method avoids to include higher order renement spaces without the
coarser renement spaces.
The resulting SG can be seen in the lower right panel of gure 3.6 with a high density of points
along the rst dimension and only a coarse resolution for the second dimension. Although
the method adapts the intrinsic dimensionality eectively, the subspaces of local behaviour
are unnecessarily accurate. Since the jump lies only in the right part of the space, the high
density of points along the axis (in the left part) produces unnecessary computational eort.
To avoid these is the subject for local renement.
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Figure 3.6: Scheme for the dimension adaptivity. Upper panel: All possible hierarchical dierence
spaces up to |𝑙 |∞ ≤ 3 in 2𝐷 and the corresponding grid points. Solid color symbols the renement
spaces, considered by the dimension adaptivity while the opaque color symbols the spaces that are
neglected by the method. Thus all renement spaces according to dimension 1 are included while the
second dimension is only rened once. Lower panel, left: Target function of a sigmoid character that
needs to be approximated by the Sparse Grid . Lower panel, right: Final Sparse Grid with dimension
adaptivity.
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Algorithm 1: Dimension Adaptivity

S = {(0, 0)}
S𝑑𝑖𝑚 = {(0, 0)}
𝐿 = 1

while S𝑑𝑖𝑚 ≠ ∅ do
S𝑑𝑖𝑚 = ∅
for (i, l) in S with |l|1 = 𝐿 do

for 𝑘 := 1, ..., 𝐷 do
rene = False
l𝑐 = l + e𝑘
for 𝑛 := 1, ..., 𝐷 do

m = l𝑐 − e𝑛
if m ∈ S then

𝛾m :=𝑚𝑎𝑥 ({𝛾m,j : 𝑗 ∈ Im})
if 𝛾m ≤ 𝜖 then

rene = True
break

if rene == True then
C := {(i, l𝑐), for i ∈ Il𝑐 }
S𝑑𝑖𝑚 = S𝑑𝑖𝑚 ∪ C

L = L+1
S = S ∪ S𝑑𝑖𝑚
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3 Sparse Grid surrogate model

3.3.3 Local Adaptivity

Similar to the dimension-adaptive renement, the local adaptivity also tries to minimize the
points for an accurate interpolation. Since the Full Sparse Grid treats every dimension and
interaction the same, it can not adapt to local phenomena, like strong non-linearity. The
sparse grid method should only rene in subdomains of high variability and the relationship of
singular points belonging to consecutive levels imply a selective renement. In the dimension
renement, we concentrated on the renement spaces-wise. For the local renement, we
are using BFs explicitly and the denition of parents and children. We assume that if the
contribution of a parent is small, the contribution of the children are at least equally small.
For some functions we expect for higher levels an exponential decrease of the surplusses, so
that the children will have a lower impact as their parant. As a measure for the contribution
we use the indicator 𝛾 l,i from Eq. (3.40) for every single BF. We calculate 𝛾 l,i of all BFs |l|1 = 𝐿,
where 𝐿 is the maximum level of the sparse grid at the current renement step, and for those
BFs, whose indicator exceeds the predened threshold 𝜖 we include the children [40, 112].
This means, with every renement step we include BFs that correspond to the renement set

S loc =

{
(l, i) | |l|1 = 𝐿 + 1 ∧ max

(j,m)∈P (l,i)
(|a j,m ·𝑤 j,m |) > 𝜖} (3.46)

where P (l, i) denotes the set of parents of the BF 𝜑 l,i with the denition of Eq. (3.15).
The local renement of the sparse grid is done by rening the dierence space, and we
consider all spaces with the current highest renement level |l|1 = 𝐿 and check the local
error for every BF within these spaces. As we indicated in section 3.3.2, for all the renement
spaces in this step, we do not include all BFs of |l|1 = 𝐿 + 1 but only those whose parents
have a high contribution. Figure 3.7 shows these characteristics of the renement strategy for
the underlying function. These characteristics are the same as the target function Eq. (3.45)
of the dimension adaptivity, as the lower-left panel shows. All possible renement spaces
up to a level of |l|∞ = 3 are displayed which would construct a full grid if we considered all
of them. As mentioned before, the renement also operates on the hierarchical dierence
spaces𝑊 l with |l|1 = 𝐿, similar to the dimension adaptivity. The initial set consists only of
the singular set of S = {0, 0} with 0 = {0, 0}. In order to locally rene this set, we consider
all possible renement spaces with |l|1 = 1,𝑊 l = {𝑊 (1,0),𝑊 (0,1)}. Next the parents of every
individual point {(i, l), |l|1 = 1} are calculated with Eq. (3.15) and checked whether the
renement criteria exceeds the threshold 𝜖 . The rst row of the gure 3.7 denotes these
with red crosses ( ). Since for the rst step, the parent is the point to be rened itself, all
children are produced. This procedure is repeated until the accuracy meet the expectations.
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Figure 3.7: Scheme for the local adaptivity. Upper panel: All possible hierarchical dierence spaces up
to |l|∞ ≤ 3 in 2𝐷 and the corresponding grid points. The solid darkblue points and the red crosses

map out the points included by the local adaptivity. The opaque light blue color symbols the
points that are neglected by the method. The red crosses denote the points, which carry a high local
error and need to be rened. Thus the method concentrates the points closest to non linear behavior.
Lower panel, left: Target function of a sigmoid character, that needs to be approximated by the Sparse
Grid . Lower panel, right: Final Sparse Grid with local adaptivity.
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3 Sparse Grid surrogate model

Hence, for the second step, all renement spaces with |l|1 = 2 are checked for renement.
The space of𝑊 (0,2) is excluded, since no parent in𝑊 (0,1) has a high renement criteria.
For the spaces of {l = (2, 0), (1, 1)}, the points in l = (1, 0) are signicant. Points in the
area of constant behavior (denoted by the light green area ) have a small renement
criteria and thus all their children are neglected (denoted by the lightblue points ). In
contrast to that, the points along the non linear behavior have a high renement criteria
(red crosses ) and therefore all the children are included in the sparse grid (denoted with
the darkblue points ). Continuing with this strategy we arrive at the nal SG points for
function 𝑓 , shown in the lower right panel of gure 3.7. Similar to the dimension-adaptive
approach some unnecessary points in the second dimension that do not contribute to the
accuracy of the surrogate model can also be found here. Hence, we used a combination of
the dimension-adaptive and the local-adaptive strategy to minimize the computational eort.

Algorithm 2: Local Adaptivity

S = {(0, 0)}
S𝑙𝑜𝑐 = {(0, 0)}
𝐿 = 1

while S𝑙𝑜𝑐 ≠ ∅ do
S𝑙𝑜𝑐 = ∅
for (i, l) in S with |l|1 = 𝐿 do

if 𝛾i,l ≤ 𝜖 then
C := ndChildren((i, l))
S𝑙𝑜𝑐 = S𝑙𝑜𝑐 ∪ C

L = L+1
S = S ∪ S𝑙𝑜𝑐

3.3.4 Combination: Dimension and Local Adaptivity

Although both renement strategies reduce the number of sparse grid points compared to
the original sparse grid approach, the target sigmoid function is not displayed eciently
with either of the methods. As the gure 3.6 and 3.7 show, both of the renement strategy
produce unnecessary points. For the 2D- case, this does not have a big impact on the sparse
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grid’s performance, but for functions in a higher dimensional case, this will be a bottleneck
in the performance. Since the problems we are dealing with show the characteristic of
low intrinsic dimensionality and locally rapid changes, we propose a combination of both
renement strategies, similar to the ℎ-GSG method [40]. Both methods declare dierent
points as unnecessary regarding the renement goal. Since we want the minimum amount of
points, we only want to include points declared as important by both renement strategies,
combined with the same error indicator. Therefore we chose all dierent spaces that need to
be rened at |𝑙 |1 = 𝐿 and check if their renement spaces have parents spaces with a high
error indicator, forming a new set of renement spaces. For every possible new grid point
in this renement spaces, we then check whether the parents P (i, l) have a local error that
is above the threshold 𝜖 . Only if the contribution of one parent is high enough, we include
the point. This is how we can include more renement spaces than one and employ parallel
computing for the dierent points. In general, we take the intersection of the two renement
sets Sdim (Eq. 3.44) and S loc (Eq. 3.46).

Sdim,loc = Sdim ∩ S loc. (3.47)

The algorithm 3 shows the detailed method of the dim-loc adaptivity. For our example of the
sigmoid function, this means a further reduction of points. Figure 3.8 displays the approach
for the target function. Therefore we chose an initial grid ( ) of |l|1 = 1, since the rst
subspace is always rened. The red crosses show all potential sparse grid points of the
renement step. If we produce the renement sets according to the dimension adaptivity
(upper right panel) and the local adaptivity (lower left panel), the considered points reduce to
2 and 3 points, respectively. However, the intersection of both sets shows how many points
are actually needed to increase the interpolation accuracy, which is only a single point along
with the non-linearity.

3.4 Testing refinement strategies

Before applying the renement strategies to a rst-principles kinetic model, as introduced in
section 2.1, we test the performance of the dierent strategies in four test cases, illustrated
in the gure 3.9 for 2𝐷 . Two of the cases will have similar characteristics as kinetic data
for the TOF and the coverage of one species, described in the upper row of the gure 3.9.
The other two are classical cases for integration problems to show how good the methods
work for already known problems. Therefore we use the shifted continuous function and the
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dim

loc

dim ∩ loc

Figure 3.8: Combination technique of the dimension and local adaptivity. Upper left panel: Initial
grid of |l|1 = 1 and all possible renement points of |l|1 = 2 . Upper right panel: Reduction of
renement points according to the dimension adaptivity; thus only points in the rst dimension along
the variation of the function are considered. Lower left panel: Reduction of renement points according
to the local adaptivity; thus only point in the area of the variation are considered. Lower right panel:
The intersection of both renement sets is added to the Sparse Grid construction.
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Algorithm 3: Dimension and Local Adaptivity

S = {0, 0}
S𝑑𝑖𝑚,𝑙𝑜𝑐 = {0, 0}
𝐿 = 0

while S𝑑𝑖𝑚,𝑙𝑜𝑐 ≠ ∅ do
S𝑑𝑖𝑚,𝑙𝑜𝑐 = ∅
for (i, l) in S with |l|1 = 𝐿 do

if 𝛾l > 𝜖 then
for 𝑘 := 1, ..., 𝐷 do

l𝑐 = l + e𝑘
if all ofm := l𝑐 − e𝑛∀𝑛 := 1, ..., 𝐷 have one point with |𝛾m,j | > 𝜖 , with
j ∈ Im then

for i in 𝐼l do
if |𝛾l,i | > 𝜖 then

S𝑙𝑜𝑐 = ndAxialChildren(i, 𝑘)

S𝑑𝑖𝑚,𝑙𝑜𝑐 = S𝑑𝑖𝑚,𝑙𝑜𝑐 ∪ S𝑙𝑜𝑐

S = S ∪ S𝑑𝑖𝑚,𝑙𝑜𝑐
L = L +1
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3 Sparse Grid surrogate model

Figure 3.9: Four test functions for the renement strategies. Upper panel: Signicant functions for
kinetic data that show the characteristics of the TOF of kinetic data (spherical edge, left gure) and
the coverage for one species (sigmoid, right gure). Lower panel: Classical examples for integration
problems, introduced by Genz. Left gure shows the shifted peak of the continuous function and the
right gure shows the oscillatory function.

oscillatory function, introduced by Genz in 1984 [131] , which are displayed in the lower row
of gure 3.9. To illustrate the dimension-adaptive methods, we test the functions in dierent
dimensions, 4𝐷 and 8𝐷 , including 2 and 6 dummy dimensions, that do not impact the function
value. To outline the characteristics for all three renement methods, we will display the
nal sparse grid of each method for 𝐷 = 2 corresponding to a threshold of 𝜖 = 0.01. For
examining the accuracy of the interpolation, we analyse the measures of the 𝐿1-norm of the
interpolation error and the quadrature error .

3.4.1 Spherical edge test function

The overall goal is to nd a method that is most eective for kinetic data. Therefore we
choose a function whose characteristics are similar to that kind of data, i.e., with local rapid
transition between regimes of a very smooth (almost linear) behaviour. Like the following
function in 2𝐷

𝑓SE(𝑥1, 𝑥2) = 1

|0.3 − (𝑥1 + 0.5)2 − (𝑥2 + 0.5)2 | + 0.1
. (3.48)
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Figure 3.10: Final Sparse Grid for the approximation of 𝑓SE (sherical edge) with a threshold of 𝜖 = 0.01.
The lighter green dots indicate the kink of the function. Left panel Grid points for the DA renement
strategy which equals a SG without adaptivity. Right panel Grid points for the LA renement strategy,
which resolves in a higher resolution in the area of the non-linear kink. Middle panel Grid points for
the combined renement technique whose renement is mostly dominated by the LA and results in a
similar grid as LA.

As shown in the upper left panel of gure 3.9, 𝑓𝑆𝐸 has a kink located on a radius of 0.5 around
[-0.5,-0.5], which previously has been used by Jakeman and Roberts [40]. Since the function
depends on all dimensions in the 2𝐷 case, we expect a limited impact of the dimension-
adaptive renement for the SG construction. The nal SG of the three dierent renement
strategies for the 2𝐷 case are displayed in gure 3.10 with the dimension adaptivity (DA) on
the left side and the local adaptivity (LA) on the right side. The combined renement strategy
is located in the middle. All renement strategies are tested with a threshold of 𝜖 = 0.01.
The dimension-adaptive renement renes uniformly since the function is dependent on both
dimensions; thus, the intrinsic dimensionality is 2. However, the local adaptivity adapts the
kink with a ner grid and resolves the smooth behaviour with fewer points. The combined
technique grid is similar to the nal grid of the LA. As we expected, the reduction of points is
dominated by the LA and diers from the nal LA grid only by 6% fewer points. A reduction
of points is one important criterion of adaptivity. Another one is the accuracy of the surrogate
model. Detailed data can be found in the table 7.1 in the Appendix.
As a nal measure for the renement accuracy, we are primarily interested in the quadrature
error, but considering using the surrogate model for a sensitivity analysis, we also include
the 𝐿1-norm of the interpolation error. As mentioned before, the advantage of the dimension
adaptivity is very limited for the 2𝐷 case, so that we include two higher-dimensional cases,
4𝐷 and 8𝐷 , but with an intrinsic dimensionality of 2. Thus, we introduce 2 and 6 dummy
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Figure 3.11: Performance of the three renement methods for the 𝐿1-norm of the interpolation error
(upper panel) and the quadrature error (lower panel) in case of the spherical edge function. Displayed
are three dierent dimensional cases. All of them have an intrinsic dimensionality of 2, and in the case
of 𝐷 = 4 two and the case of 𝐷 = 8, six dummy dimensions are added. In all 6 cases, the combined
technique Sdim,loc performs the best. The increasing dimensionality worsens the performance of the
S loc method due to the increasing renement points in all dimensions. Contrary to that, the DA
method can not eciently adapt the function’s local features but gives a two-dimensional full sparse
grid.

parameters that have no impact on 𝑓𝐾𝑀 (x) and can be excluded by the DA. These cases are
closely related to the real kinetic data since the outcome does not show a sensitivity to most
parameters in a kinetic model. Figure 3.11 shows the results of all three cases, 2𝐷 , 4𝐷 and 8𝐷 ,
plotted over the number of points (NoP) for decreasing tolerances. The upper panel displays
the results for the 𝐿1-norm of the interpolation error and the lower panel the integration
error. The nal grid results (gure 3.10) already indicated the results for the 𝐿1-norm of the
interpolation. For higher tolerances, i.e., smaller NoP, all three renement strategies dier
marginally from each other. However, for decreasing tolerance, the dimension adaptivity
shows the worst of all three performances. The DA reaches a high accuracy, but the NoP are
higher compared to the LA and the combined technique (Sdim,loc). The LA and the combined
technique exhibit almost an identical performance, which is analogue to the grid results. With
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increasing outer dimensionality, the impact of the DA becomes stronger so that with a 𝐷 = 8,
the LA and DA end up at the same accuracy of the interpolation error with the same NoP.
However, we have to point out that the LA method shows a steeper slope, which leads to the
conclusion that it will perform better with decreasing tolerance than the DA. Not only does
the combined technique performs best for all three cases of dierent dimensionality, but the
results are almost identical, which shows the eciency of the adaptation. The data in table
7.1 in the Appendix display less than a 10% deviation in points and less than a 0.1% deviation
in the 𝐿1-norm of the interpolation and the quadrature error.
The renement strategies show a dierent result for the accuracy of the expected value dis-
played in the lower panel. All renement methods perform similarly for the outer dimension
of 2, and no strong deviation can be seen. Although the DA shows a higher local error for
the 𝐿1-norm, it approximates the expected value as accurately as the other methods. The full
two-dimensional SG gives an accurate approximation of the integral by cancelling out the
local errors. The impact of the dimension-adaptivity increases with higher dimensionality.
For the 𝐷 = 8 case with an intrinsic dimensionality of 2, the full SG Sdim approximates the
expected value as well as the combined technique. In contrast to that, the LAs performance
declines with the dimensionality as it produces points in 6 dummy directions, which do not
improve the accuracy.
Although the combined technique Sdim,loc show its strong advantage in the case of the interpo-
lation error, it cannot outperform the DA in case of the expected value. This example already
shows the limits for both classical approaches, DA and LA. While the S loc has problems with
unimportant dimensions, the Sdim fails to adapt local features, which makes it less favourable
for the 2𝐷 case. Overall, the combined technique presents a solid performance in all six cases.

3.4.2 Sigmoid function

Most of the times, the TOF is the primary measure for the eciency of the catalyst or the
reaction, but for further understanding, the coverage of the surface can provide additional
information. The surface coverage is highly sensitive to the input parameter and shows
dierent regimes of dominant species according to various areas of our domain. These
regimes can indicate a bottleneck of the reactions or give general information about active or
non-active areas. In most cases, the surface is occupied with only one species. Thus the value
of the coverages of one species is either constantly high or low. For the second model-related
function, we use the sigmoid function, shown in the left upper panel of gure 3.9, whose
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Figure 3.12: Final Sparse Grid for the approximation of the sigmoid function 𝑓S with a threshold of
𝜖 = 0.01. Left panel Grid points for the DA renement strategy which equals a SG without adaptivity.
Right panel Grid points for the LA renement strategy, which resolves in a higher resolution in the
area of the sharp changes and excludes the points in the constant areas. Middle panel Grid points for
the combined renement technique whose renement is mostly dominated by the LA and results in a
similar grid as LA.

characteristics often describe regimes’ behaviour with one dominant species on the surface
and sharp transitions in between. We choose constant plateaus to display a high occupation
with rapid changes to a low occupation. The nal function

𝑓S(𝑥1, 𝑥2) = 1

1 + 𝑒 (𝑥1−0.3)·100 · 1

1 + 𝑒 (−𝑥2−0.3)·100 , (3.49)

has local changes not aligned with the axes and only varies between 0 and 1. Here, we also
include the cases with 2 and 6 dummy dimensions. Figure 3.12 shows the drastic dierence
between the dimension-adaptive and the local-adaptive renement strategies. For the 2𝐷
example, the dimension-adaptive method cannot produce fewer points than a full sparse grid
since both dimensions are important. Detailed data are given in the table 7.2 in the Appendix.
Most subdomains of the function have a constant value, which does not need a high amount
of points. More eectively rened are the grids of the combined techniques and the local
renement strategy. These adapt the rapid changes at [0.3,−0.3] and exclude the points in
the constant areas. Only in the lower right quarter, where the corner of the sharp changes
is located, do their grids need more renement. Based on these results, the combined and
the local method’s performance should give similar results for the interpolation error and
the expected value, which are shown in gure 3.13. The upper row shows the results for the
𝐿1-norm of the interpolation error in all three cases, 2𝐷 , 4𝐷 and 8𝐷 , and the lower row shows
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Figure 3.13: Performance of the three renement methods for the 𝐿1-norm of the interpolation error
(upper panel) and the quadrature error (lower panel) in case of the sigmoid function. Displayed are
three dierent dimensional cases in which all of them have an intrinsic dimensionality of 2. In the
case of 𝐷 = 4 (middel panel) 2 and in the case of 𝐷 = 8 (right panel) 6 dummy dimension added. In all
6 cases, the combined technique Sdim,loc performs the best. The increasing dimensionality worsens the
performance of the S loc method due to the increasing renement points in all dimensions. In contrary
to that, the DA method can not eciently adapt the local features of the function, but the intrinsic
dimensionality and therefore gives a two-dimensional full sparse grid for all the dimensional cases.
This leads to DA and LA showing the same renement behaviour along the accuracy for 𝐷 = 8 for the
expected value.
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the expected value error. As expected from the results of the nal grid, the local-adaptive
renement strategy works better than the dimension-adaptive renement in the 2𝐷 case. The
DA uses an order of magnitude more points for an accuracy of 10−4.
Especially noticeable is the almost identical performance for the interpolation error of the LA
compared to the combined technique, showing that it is mainly inuenced by the LA. The
results are dierent if we move to a higher dimensionality of the function. These insignicant
dimensions are adapted by the DA method, resulting in an identical 𝐿1-norm with increasing
dimensionality in all cases. Similar results are visible for the combined technique, which
eectively excludes the unimportant dimensions and shows the best performance throughout
all cases. The performance of the LA, on the other hand, worsens with more dummy dimen-
sions. Although the LA can implicitly exclude dimensions, the method produces children in
all dimensions for every rened point, causing it to be less eective than the other methods.
Regarding the expected value, the results show a signicant dierence to the kinetic model
example results. Where in the previous example, the DAwas able to approximate the expected
value eciently, it performs worse than the LA and the combined technique, in this case. In
this example, the local features are so strong and sharp that the local adaptivity advantage
leads to minimal points and, therefore, outperforms the dimension adaptivity. Analog to the
cases of the interpolation error, the impact of the DA increases with dimension so that for
𝐷 = 8 DA and LA show almost identical results. In summary, of all six cases, the combined
technique performs the best and reduces the NoP up to one order of magnitude compared to
the other renement methods.

3.4.3 Continuous function

Recent studies [40, 102] have already shown the potential of sparse grids in the manner of the
𝐿1-norm and the quadrature for certain problems. Now we are going to choose two examples
of general integration test problems [131, 132]. The rst example is the continuous function,
with a strong peak and four edges towards the corners of the domain

𝑓CF(𝑥1, 𝑥2) = exp

(
−

2∑︁
𝑖=1

5 · |𝑥𝑖 + 0.2|
)
, (3.50)

where we shifted the peak to [−0.2,−0.2], as it can be seen in the lower left panel of gure
3.9. The shift increases the complexity of the function and the diculty for the characteristics
adaptation. For the next two functions we limit the results to the 2𝐷 and the 8𝐷 cases to
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Figure 3.14: Final Sparse Grid for the approximation of 𝑓CF (continuous function) with a threshold
of 𝜖 = 0.01. Left panel Grid points for the DA renement strategy which equals a full SG for 𝐷 = 2.
Right panel Grid points for the LA renement strategy which resolves in a higher resolution towards
the non-linear peak at [−0.2,−0.2]. Middle panel Grid points for the combined renement technique
whose renement is mostly dominated by the LA and results in a similar grid as LA, except for a
smaller number of points. The combined technique uses 37% fewer points than the LA method.

capture the trends of the dierent methods. Figure 3.14 displays the nal grids for the dierent
renement methods. Like the results before, the dimension renement equals a full sparse
grid since both dimensions are important. The similarity between the local renement grid
and the combined technique grid indicates that local adaptivity dominates the combined
technique renement. Consequently, the nal grid shows a higher density of points in the
area of the peak.
The detailed data, documented in table 7.3 in the Appendix, indicates an stronger impact of
the DA, as the nal points S loc \Sdim,loc dier almost 40%. Therefore the combined technique
eectively excludes points through the dimension-adaptive feature. Figure 3.15 outlines that
the dimension-adaptive method provides a good approximation of the function with more
NoP than the other methods. The combined method is half an order of magnitude better for
the 𝐿1-norm of the interpolation error and less than half an order of magnitude better for the
expected value than the dimension-adaptive method. Since the intrinsic dimensionality does
not change, these results are valid for both dimensions. Although the peak is a very local
feature, the edges are spanned over the major part of the domain, causing good results for
the DA, whose points cover the whole domain.
For the 2𝐷 case, the LA method shows almost identical results as the combined technique for
the 𝐿1-norm of the interpolation error. For the quadrature error, on the other hand, there is a
deviation from the combined technique. It still performs slightly better than the DA method
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Figure 3.15: Performance of the three renement methods for the 𝐿1-norm of the interpolation error
(upper panel) and the quadrature error (lower panel) in case of 𝑓CF(continuous function). Displayed
are two dierent dimensional cases in which all of them have an intrinsic dimensionality of 2. In
the case of 𝐷 = 8 (right panel) 6 added dummy dimension. In all 4 cases, the combined technique
Sdim,loc performs the best. The increasing dimensionality worsens the performance of the S loc method
due to the increasing renement points in all dimensions. Contrary to that, the DA method can not
eciently adapt the local features, which causes a factor 5 of the NoP to achieve the same accuracy as
the combined technique for both measures.
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for small tolerance, but the clear advantage, as in the 𝐿1-norm, cannot be determined. For
the more extreme case of the six dummy parameters, the results become worse for the local
renement. It adapts the peak but renes in every dimension, and as we mentioned before,
the features of the function are spanned over the whole domain, causing a signicant shift in
the NoP. For the expected value, the LA performs even worse. While for the 2𝐷 case, there
was only a marginal dierence, for the 8𝐷 case, it requires about one order of magnitude
more points.

3.4.4 Oscillatory function

As the last example we choose a function whose characteristics are not favorable for local
renement strategies. The oscillatory function

𝑓OF(𝑥1, 𝑥2) = 𝑐𝑜𝑠 (𝜋 +
2∑︁
𝑖=1

5 · (𝑥𝑖 + 0.5)), (3.51)

shows no local features, but a dependence on the whole parameter space with a high degree
of smoothness displayed in the lower right panel of gure 3.9. Figure 3.16 presents that all
renement strategies need almost a full sparse grid. The local and the combined renement
strategies have a higher density in the curved area of the function and the nal grid of the
DA method. However, it shows no adaptation, uses fewer points than the LA method. All
detailed data are given in the table 7.4 in the Appendix.
Hence the combined technique to adapt the curves at the highest and lowest points of the
oscillatory function with less of a dense grid than the LA method. For such a smooth function
higher-order polynomial basis function would be a better choice. That is why the piecewise
linear basis functions need extra renement in the curved area. From these results, none
of the adaptive renement strategies has a clear advantage over the others. Figure 3.17 un-
derlines this impression. All renement results are almost identical for the 2𝐷 case and the
interpolation error (upper left panel). The results show some uctuations for the expected
value (lower left panel), but no strategy strongly outperforms the others. For the 2𝐷 case,
none of the methods shows a big advantage or disadvantage for a function with no local
characteristics but depends on the whole parameter space.
Analog to the previous results for the increasing dimensionality, we can only see an eect in
the LA results. While the performance of the DA and the combined technique are identical to
the 2𝐷 case, the LA shows a shift to a higher number of points. Compared to the previous
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Figure 3.16: Final Sparse Grid for the approximation of 𝑓OF (oscillatory function) with a threshold of
𝜖 = 0.01. Left panel Grid points for the DA renement strategy which equals a full SG but results in
less points than the LA grid. Right panel Grid points for the LA renement strategy, which resolves in
a slightly higher resolution in the curved area. Middle panel Grid points for the combined renement
technique, which shows a slightly higher density in the area of the dense curves like the LA but with
fewer points in total. This is caused by the excluding feature of the dimension adaptivity feature of the
combined technique.

examples, this shift is even more signicant because of the non-local features. Before, the
increased number of points could be limited by eciently adapting the local features, but,
here, the S loc show an almost full sparse grid. Hence, for increasing dimensionality, the local
renement will produce all children in eight dimensions for the 2𝐷 grid, shown in the right
panel of gure 3.16.

3.4.5 Higher dimensional functions

We have analysed the performance of the dierent renement strategies for kinetic-specic
examples and classical functions. However, we also want to include examples with a higher
intrinsic dimensionality than 2 and characteristics for an ANOVA decomposition. Therefore
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Figure 3.17: Performance of the three renement methods for the 𝐿1-norm of the interpolation error
(upper panel) and the quadrature error (lower panel) in case of the oscillatory function. Displayed are
two dierent dimensional cases in which both of them have an intrinsic dimensionality of 2 and in the
case of 𝐷 = 8 (right panel) 6 added dummy dimension. For the 2𝐷 case, all of the methods perform
equally well. For the expected value, it appears that the methods have some uctuations, but none of
the methods can outperform the others. Only for the increasing dimensionality, the performance of
the LA method worsens due to the increasing renement points in all dimensions.
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we choose

𝑓2𝐷 sum =
𝐷∑︁
𝑖=1

𝑔(𝑥𝑖, 𝑥𝑖+1) , 𝐷 = 6 , with 𝑔(𝑥𝑖, 𝑥𝑖+1) = 𝑓SE(𝑥𝑖, 𝑥𝑖+1) (3.52)

𝑓prod func =
𝐷∑︁
𝑙=1

𝑙∏
𝑖=1

𝑔(𝑥𝑖) , 𝐷 = 4 , with 𝑔(𝑥𝑖) = 1

1 + 𝑒 (𝑥𝑖−0.3)·100 (3.53)

as two higher dimensional examples. The rst function 𝑓2𝐷 sum describes a sum of lower
dimensional functions , whose cross references span a function dependency over the entire
parameter domain. The function evaluations of the underlying function 𝑔 are equal to the
spherical edge test function (Eq. (3.48)) from subsection 3.4.1. The shape of the singular
summands include a local kink dependend on two parameters.
The second function 𝑓prod func has a similar shape to the ANOVA decomposition. The sum
over the products of increasing dimensionality can be compared to contributions of dierent
parameters or parameter interactions. In this case, the underlying function 𝑔 displays a
sigmoid function similar to the example in subsection 3.4.2. Again, the renement strategy
needs to adapt to the local rapid jumps and an increasing dimensionality of the summands.
Although both methods have a higher intrinsic dimensionality 𝐷 = 6, 4 than the examples
before, they still can be decomposed into smaller dimensional functions. This is comparable
to kinetic models, where the data often shows dierent subdomains where dierent subsets
of input parameters or dierent interactions between parameters are important.
Figure 3.18 shows the results for both functions for the 𝐿1- norm of the interpolation error
| |𝑢 (𝑥) − 𝑓 (𝑥) | |1 (upper row) and the quadrature error |𝐼 − 𝐼𝑁 | (lower row). In the case of 𝑓2𝐷 sum

the DA renement method shows an increasing interpolation error for the rst renement
steps with a following decrease to | |𝑢 (𝑥) − 𝑓 (𝑥) | |1 = 0.15 . The DA works best if some
dimensions can be excluded in the rst few renement steps. However, the crossreferences
in the sums avoid a general discard of dimensions and the local features of the underlying
function 𝑓SE need a few renement steps to reach an improvement for the function. This and
a good initial approximation by chance explain the initially increasing error.
During the renement, the DA is able to exclude unenecessary dimensions and decrease
the interpolation error by almost two orders of magnitude. Nevertheless, the DA includes
all the points of a renement space and cannot selectivly increase the point density in the
area of the local kinks of the summands. Therefore, it needs more points than the combined
method Sdim,loc that needs only a third of the NoP. Although, the DA performs worse than
the combined method, it is a better method than the LA, for this function. The LA can adapt
the local features but has to include all the points in every dimension, which causes more
points than the DA to reach the same accuracy. Considering the single summands to be
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Figure 3.18: Results of the performance of the three renement methods for the 𝐿1-norm of the
interpolation error (upper panel) and the quadrature error (lower panel) in case of the 𝑓2𝐷 sum function in
the left coloumn and the product function 𝑓prod func in the right coloumn. The 𝑓2𝐷 sum has a dimensionality
of 6 and the product function a dimensionality of 4. Both functions have the characteristic of a parameter
dependency that can be decomposed into smaller dimensional contributions. The combined method
outperforms the other methods in all 4 cases.
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two dimensional, it produces an excess of 4 points with every rened point. Therefore, the
method can still decrease the interpolation error, just with a slower conversion rate. This also
explains the better results for smaller NoP, where the LA can eciently rene toward the
local features, without the big impact of the point excess, yet. These two features of DA and
LA explain why the combined method outperforms the other methods. The disadvantages of
DA are balanced out by the additional local renement and vice versa.
For the quadrature error in the left bottom panel of gure 3.18 we can see similar results, with
some uctuations for the combined method. All methods are able to decrease the quadrature
error by more than two orders of magnitude to |𝐼 − 𝐼𝑁 | = 0.02, with the combined method
needing fewer points than the DA or the LA.
The right column of gure 3.18 shows the results for the four-dimensional product function
Eq. (3.53), where the results dier from the previous example. For the 𝐿1-norm of the inter-
polation error, all methods can decrease the error by almost three orders of magnitude with
the combined Sdim,loc and the LA method using around an order of magnitude fewer points
than the DA. The increasing dimensionality of the summands prevents a big impact of the
dimension adaptivity. The pure DA cannot approximate the local features of the underlying
sigmoid function eciently and reaches the same accuracy only with a larger number of
points. The same argument explains why the LA achieves the same accuracy with fewer
NoP. Since the summands have an increasing dimensionality up tp 𝐷 = 4, all dimensions
are involved and the excess of points, as seen in other examples, is minimal. The LA can
eciently approximate the local features of the underlying sigmoid functions with the same
amount of points as the combined technique. This means the combined method is dominated
by the local adaptivity with only small deviations.
For the quadrature error (right bottom panel), all methods can decrease the error by more
than three orders of magnitude and with less NoP for the combined method and the LA than
the DA. Noticeable during the renement are the uctuations for all three methods due to
the sharp jump in the sigmoid function. To adapt to these sharp jumps in higher dimensions,
the SG needs a ne grid in the subdomain of the jump, but this can cause some over- or
undershooting during the renement for the quadrature. Moreover, it is possible that during
the renement, the LA has a smaller error compared to the combined method, but altogether
they show the same conversion rate.
These higher dimensional results have shown that the dimension- and local-adaptive rene-
ment strategy can outperform the singular DA and LA for higher and more complex functions.
Furthermore, it shows the eciency for the GSA, where we want to analyse the contribution
of singular parameters or interactions between the parameter of our kinetic model. Especially
the second example underlines the advantages of a SG surrogate model. Although the benet
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of the combined method over the pure LA is not so dominant, we have to consider that we
used a function where every parameter has an impact. For our kinetic model, we assume
that Eq. (3.53) would only describe the behaviour in a subdomain of our parameter domain.
Therefore, the DA part would have a stronger impact than in this example.
In summary, these results have shown the robustness and the advantages of the dimension-
and local adaptive renement for a SG construction for approximating kinetic data. We have
checked the performance for multiple characteristics of the data, e.g. the local kinks, the
subset of important dimensions, the decomposition into smaller contribution, and found a
superior performance of the combined technique. This makes us condent to apply the SG-
renement method to a real kinetic example in the next chapter.
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After testing the renement strategies, we want to apply the most promising renement
strategy to a real chemical model for the purpose of performing a Sensitivity Analysis (SA).
For this, we investigate a rst principles-based electrochemical model for the Oxygen evo-
lution reaction on Cobalt(II, III) oxide, proposed by Plaisance et al. in Refs. [133] and [134].
The Cobalt material has shown to be a potential low-cost and earth-abundant material to
perform the oxygen evolution reaction (OER). The OER can also be described as a photo- or
electrocatalytic water splitting reaction that requires an overpotential [135, 136]. Core results
have already been published in Ref. [23] and are explained here in more detail.
The purpose of the original OER paper is to analyze the structure sensitivity of the OER
reaction, so four dierent structures are examined. In this work, we want to concentrate on
the additional information content given by a SA and only consider the (110)-A surface site
as a model to describe the OER mechanism and perform a SA on.
We examine the (110)-A surface structure of the Co3O4 that consists of two redox-active
Cobalt atoms sharing a bridging Oxygen atom, whose activity for the OER mechanism is
highly sensitive to the applied potential. We choose this model and this surface due to its
complex structure but easily comprehensible analytical form, which makes the SA results
suitable for chemical interpretation. Before we go into detail about the sensitivity of the model
on the energetics parameters, we shortly introduce the model. For a more comprehensive
explanation, we refer to the original articles by C. Pleasant, A. Santen, and K. Reuter [133],
and [134]. Figure 4.1 shows the reaction circle of the Oxygen evolution schematically. The
reaction pathway consists of six elementary steps, which can later be summarized into two
irreversible steps. As a starting point (Structure 1), we have two bridging hydroxyl groups
that will take part in the reaction, which are deprotonated in the rst two steps (Structure
2/3) and producing a Cobalt atom with two bound oxos.
We create a hydroxyl group for the oxo (Structure 4) through water addition, which is turned
into a superoxo by another deprotonation (Structure 5). Out of the superoxo ligand, we can
form a desorb elementary oxygen molecule (Structure 6), whose vacancies are lled with
another water addition (Structure 1).
As mentioned before the OER cycle on the (110)-A surface can be summarized in two irre-
versible non- electrochemical steps. Starting with an active center site of the Cobalt atom
with two bound oxos, the rst step 4.1 forms an O-O bond out of a bound oxo-species by
nucleophilic addition. The second step 4.2 is based on an superoxo ligand, which forms an
elementary Oxygen molecule O2 by a water adsorption on the vacancies [134].
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Figure 4.1: The cyclic Oxygen evolution reaction on the 110A site of Co3O4. The structure consists of
two redox-active Cobalt atoms bridged by an Oxygen atom. Structure 1) has two bridging hydroxyl
groups that will take part in the reaction, which are deprotonated in the rst two steps (Structure 2/3)
and results in a Cobalt atom with two bound oxos. We create a hydroxyl group for the oxo (Structure
4) through water addition, which is turned into a superoxo by another deprotonation (Structure 5).
The superoxo ligand desorbs as an elementary Oxygen molecule (Structure 6), whose vacancies are
lled by another water addition (Structure 1).
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H2O +O−Sa(Hx)−O −−−→ HO−Sa(Hx)−OOH {4.1}
H2O +O−Sa(Hx)−OO −−−→ HO−Sa(Hx)−OH +O2 {4.2}

The notationY1−Sa(Hx)−Y2 denes the arbritrary state of the active Cobalt center site Sa, to
which the ligand species Y1 and Y2 are bound including x hydrogen atoms located as hydroxyl
species on the surface (0 ≤ x ≤ 12) [23]. Both reactions are connected by quasi equilibrated
ensembles of states involving the coupled transfer of electrons to the bulk electrode and
protons to the bulk electrolyte.
Reaction 4.1 is therefore connected to reaction 4.2 by the state Ai = HyO−Sa(Hx)−OOHz

with y, z = 0, 1 and vice versa by Bi = HyO−Sa(Hx)−OHz with y, z = 0, 1. The coupled
transfer of electrons and protons,

Ai −−−⇀↽−−− Aj + (nj − ni) (H+e−) {4.3}

Bi −−−⇀↽−−− Bj + (nj − ni) (H+e−), {4.4}

is dened over the degree of oxidation 𝑛𝑖 = 14 − x−y−z of the states A𝑖 and B𝑖 .
The degree of oxidation describes the number of electrons and protons pairs that have to be
removed to achieve this state in reference to state A0, B0. The degree can vary between 0
and a maximum number of 14 due to a limited population for higher degrees of oxidation
for this structure. Twelve of the electron/proton pairs can be removed from the centre atoms
Co(III), oxidating them to Co(IV), in the surface layer and the remaining two come from
Oxygen atoms. Also, these reactions are quasi equilibrated due to the low activation barriers
of electron and proton transfer [137]. Of the two rst steps (4.1, 4.2) only the rst one is
considered to be kinetically rate limiting. This means also for reaction 4.3 and 4.4 that we
only have to consider the reaction 4.3, since the Oxygen release is an irreversible reaction.
As in most catalytic kinetic models the Quantity of Interest (QoI) of the model is the Turnover
Frequency (TOF), which describes the number of chemical conversions per active site per
second. Since we only have to consider one elementary reaction the TOF equals the total
rate of this reaction. However, the reaction can occur through several Transition States,
originating in the corresponding intermediate state A𝑖 , as it can be seen in gure 4.2. These
intermediate states are dened by the degree of oxidation, which means that the system
reaches multiple oxidation states from which the reaction can happen. As a result, the TOF is
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Figure 4.2: Adapted energy diagram for the OER reaction on Co3O4. Δ𝐸int,𝑖 indicates the free energy
of the intermediate state A𝑖 for the oxidation state 𝑖 with respect to the reference state A0. The reaction
can only happen from intermediate states A𝑖 of even numbered states with an energy barrier Δ𝐸act,𝑖 to
arrive at the product state.
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the sum over all single rates through the Transition State (TS) 𝑇𝑆𝑖 ,

TOF =
∑︁
𝑖

𝑟𝑖 =
∑︁
𝑖

𝑘𝑖\𝑖, (4.1)

where 𝑘𝑖 describes the rate constant of the reaction 4.1 from the intermediate state A𝑖 and
\𝑖 is the probability to nd the system in the state A𝑖 before the rate limiting step. As it is
described in chapter 2, the rate constant 𝑘 is, according to the transition state theory, given by

𝑘𝑖 =
𝑘𝐵𝑇

ℎ
exp

(
Δ𝐸act,𝑖
𝑘𝐵𝑇

)
(4.2)

with 𝑇 as the temperature, 𝑘𝐵 as the Boltzmann constant. Since the step of constructing two
bound oxos is slow we can assume the electrochemical exchange of h+ and e− with their
surrounding to be in quasi-equilibrium. The exchange is responsible for the state A𝑖 of the
system, so how likely a high or low oxidation state is, follows a grand canonical ensemble.
Therfore the propability to nd the state A𝑖 can be dened as a grand canonical distribution
or Boltzmann distribution,

\𝑖 =
1

𝑍
exp

(
−Δ𝐸int,𝑖 − 𝑛𝑖 𝑒[

𝑘𝐵𝑇

)
, (4.3)

where the overpotential [ can be dened as the sum of the chemical potentials of h+ and e−.
𝑍 is the grand partition function of all possible states of the system, which also serves as a
normalisation factor

𝑍 =
∑︁
𝑖

exp

(
−Δ𝐸int,𝑖 − 𝑛𝑖 𝑒 [

𝑘𝐵𝑇

)
. (4.4)

The activation free Δ𝐸act,𝑖 energy, used in the rate constant expression Eq. (4.2), denes the
energie dierence between the transition state and the intermediate state A𝑖 . The intermediate
free energy Δ𝐸int,𝑖 is the required energy to transform the state into A𝑖 in reference to the
state A0. To calculate the required energy, the free energy of a proton/electron is taken with
respect to the equilibrium potential of the OER at standard conditions (1.23 V vs SHE) with
[ = 0. As the electrochemical models are highly dependent on the applied overpotential, the
change in the free energy caused by the applied overpotential must be taken into account.
The term −𝑛𝑖 𝑒[ describes the deviation in the free energy of the intermediate states caused
by the overpotential [ compared to the OER equilibrium potential - with 𝑒 as the unit of an
electric charge[23]. Furthermore, the inuence of the applied overpotential increases with
the degree of oxidation 𝑛𝑖 .
To explain how the parameter uncertainty inuences the model output, we have to outline
the model parameters in detail. For each degree of oxidation (𝑖 = 0...14), the model considers
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intermediate energies activation energies

Δ𝐸int,0 0.00 eV - -

Δ𝐸int,1 0.44 eV - -

Δ𝐸int,2 0.88 eV - -

Δ𝐸int,3 1.64 eV - -

Δ𝐸int,4 2.33 eV Δ𝐸𝑎𝑐𝑡,4 0.60 eV

Δ𝐸int,5 3.09 eV - -

Δ𝐸int,6 3.79 eV Δ𝐸act,6 0.59 eV

Δ𝐸int,7 4.59 eV - -

Δ𝐸int,8 5.38 eV Δ𝐸act,8 0.62 eV

Δ𝐸int,9 6.22 eV - -

Δ𝐸int,10 7.05 eV Δ𝐸act,10 0.60 eV

Δ𝐸int,11 7.88 eV - -

Δ𝐸int,12 8.71 eV Δ𝐸act,12 0.56 eV

Δ𝐸int,13 9.77 eV - -

Δ𝐸int,14 10.83 eV - -

Table 4.1: Intermediate energies and activation barriers for the model for Oxygen evolution on the
Co3O4 (110)-A surface, taken from Refs. [133] and [134]. Reproduced from [23], with the permission
of AIP Publishing.

a single intermediate state, which is the one with the lowest free energy. As implied in the
original paper [134], the pathways according to reaction 4.1, are only reasonably possible
from even number intermediate states of 𝑖 = 4, 6, 8, 10, 12. So altogether, the model consists of
20 elementary energies, 15 initial energies to reach the intermediate state from the reference
state and ve activation energies. Hence, the model considers 20 input parameters, displayed
in the table 4.1. The reaction from odd number states are also possible, but, as argued by
the authors of the model, for nominal parameters settings the odd-numbered intermediate
states have such a low population over the range of condition that we examine, that these
pathways are neglected. The low population is caused by a very low barrier to the next higher
occupation state , due to the more stable conguration of even-numbered states.
All energies have been taken determined by our collaborators using the GGA+𝑈 method
(based on the Perdew-Burke-Ernzerhof Density Functional Theory (DFT) functional) [133,
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138, 139]. The +𝑈 correction was necessary to capture the eect of correlated 3d electrons
and is the reason for the choice of the relatively high uncertainty of ΔΔ𝐸 = 0.3 eV which
we will employ throughout the following chapter. As mentioned before, reasonable errors
for such chemical models are between 0.2 eV-0.3 eV [60] from which we have chosen the
upper bound. All DFT-calculation are performed with an a+𝑈 correction term applied to
the Cobalt 3d electrons [140–142] to avoid the over-delocalization of the 3d electrons. This
over-delocalization is caused by a spurious self-interaction error in the standard semi-local
exchange-correlation functionals [143]. The DFT+𝑈 method requires specication of eective
on-site Coulomb interaction, for which no agreed-upon technique exists, causing an addi-
tional ambiguity in the method [133]. As a consequence, we have to consider an increased
uncertainty in the parameters, besides the general DFT error. Thus we assume the upper
bound for the error of [- 0.3 eV, + 0.3 eV] for each parameter. Ref. [133] provides a complete
discussion of the DFT-functionals. Detailed information about the calculation and the choice
of DFT+𝑈 can be found in the original paper Ref. [133]
Since electrochemical models are not only dependent on material input parameters, the
energetic parameters, but also external parameters, like the overpotential, we have to take
it into account. We include the overpotential, not as an additional parameter in the SA, but
conduct several SAs calculations at three dierent constant overpotential values. Figure 4.3
displays the dependency of the logarithm of the TOF on the overpotential [. The dark blue
line indicates the TOF for the nominal values of the energies, documented in table 4.1, at room
temperature (298.15K). As the results shows, up to an overpotential of [ = 0.7V the TOF
increases almost exponentially and remains nearly constant for values between [ = 0.7V and
[ = 1.1V. With reaching the maximum value between [ = 1.0V and [ = 1.1V, the TOF curve
rapidly decreases for higher overpotential values and which have not be considered in the
model. This may not be a physical eect but happens due to the absence of reaction pathways
for high intermediate states A14 which is more dominantly present at higher overpotential
values.
As described before the material parameters consist of uncertain data with an error of
±0.3 eV due to the approximation in the DFT functionals of which we have no further
knowledge and assume a uniformly distribution of the error over the hypercube Ω =

x𝑛𝑜𝑚 + [−0.3 eV, +0.3 eV]𝐷 , centered at the nominal values. This creates a probability density
function (PDF),

𝑝 (x) =



1
(0.6 eV)𝐷 if x ∈ Ω

0 else
(4.5)

that minimizes the information content. To emphasize the impact of these errors on the
TOF the gure 4.3 includes the green shaded area, describing the standard deviation (STD)
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Figure 4.3: TOF as a function of the applied overpotential [ for 𝑇 = 298.15K for the nominal energy
values (blue line ). The green area depicts the standard deviation of the model output by
assuming uniformly distributed DFT-errors in range of [- 0.3, 0.3] eV. Reproduced from [23], with the
permission of AIP Publishing.
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4.1 Sparse Grid

𝜎 =
√︁
Var(𝑦) of the logarithm of the TOF caused by the DFT errors. For that, we performed

106 Monte Carlo points in the domain, spanned by Ω. The STD, displayed as a green shaded
area, underlines that with our choice of PDF the results can deviate in more than two orders
of magnitude from the nominal value of the TOF, making it dicult to extract information.
The dierence of the mean, E(𝑦), and the nominal value of the TOF can be as large as two
orders of magnitude. Such a range can be the dierence between an ecient and a non-
ecient catalyst. As the ’true’ curve cannot be obtained from statistical averaging since the
uncertainty of 𝑦 cannot be regarded as uctuations, we have refrained from displaying the
mean. Based on these results, it is unsure whether we can extract information from this model.
One opportunity would be to decrease the DFT errors to increase the accuracy of the model
outcome, but this is costly and only possible to a certain degree[60]. We choose to analyze the
error-prone data regarding qualitative information, like rate-determining steps, and which
parameters uncertainties have the biggest impact on the model uncertainty. Both can be
tackled with a Sensitivity Analysis (SA). The results of the SA allow increasing the accuracy
only of the important parameters by higher-order quantum-chemical methods or dedicated
experiments. This will increase the accuracy of the model outcome without unnecessary
costs. For the Global Sensitivity Analysis (GSA) we will employ our local- and dimensional
adaptive sparse grid approach.

4.1 Sparse Grid

For the GSA of subsection 2.2.2, we need to construct a surrogate model to solve the integrals
Eq. (3.36), which we will address using the Sparse Grid (SG) approach discussed in the
previous chapter 3. As mentioned, the primary Quantity of Interest (QoI) is the turnover
frequency. In chemical kinetics, it is common to investigate the logarithm of the TOF; see
the denition of the Degree of Rate Control (DRC)[34]. This is caused by the exponential
dependency on the energetics like barriers or (electro-) chemical potentials, dened in Eq.
(4.2)) We, therefore, investigate the sensitivity of the logarithm of the TOF with respect to
all intermediate and activation energies, also to have the GSA equivalent to the DRC. So we
deal with a 20-dimensional system, consisting of 15 intermediate energies and 5 activation
energies, listed in tab. 4.1. As an example, gure 4.4 displays a two dimensional subdomian
of the 20 dimensional system, where the log10 of the TOF is displayed as a function of the
errors of two input parameters, Δ𝐸int,4 and Δ𝐸act,4. These two energies describe the reaction
path through the intermediate state A4 with an oxidation state of 4. The calculations are
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Figure 4.4: Two dimensional dependence of the TOF on the energy errors ΔΔ𝐸int,4 and ΔΔ𝐸act,4 at
an overpotential of [ = 0.7V. (I) no dependence on ΔΔ𝐸int,4 and ΔΔ𝐸act,4, (II) only depending on
ΔΔ𝐸act,4, (III) depending on both, and (IV) only depending on ΔΔ𝐸int,4. Reproduced from [23], with
the permission of AIP Publishing.

performed at an overpotential of [ = 0.7 and 𝑇 = 298.15K with all other input parameters
xed to the nominal values.
The interpolation does not show a singular linear dependency over the whole domain, but
rather four domains with dierent dependencies on the input parameters. While the domains
itself behave mostly linear, the edges between the domains are exactly the narrow subdomains
where the function is non-linear. In detail, for the rst regime (I) with medium to high Δ𝐸int,4

and Δ𝐸act,4, the response is independent of both parameters. In the second regime (II) with low
Δ𝐸int,4, the TOF is solely dependent on Δ𝐸act,4. Compared to regime (II), regime (IV) shows
the opposite dependency. For high Δ𝐸act,4 values the model shows a singular dependency on
the Δ𝐸int,4. Only in the third regime (III) with low to medium Δ𝐸act,4 and medium to high
Δ𝐸int,4 the response is dependent on both input parameters. The linear dependencies in the
domains implies a use of piecewise linear basis functions for the SG (Sec. 3.2.1).
Next to the characteristic behaviour, we assume that in this 20-dimensional system, there will
be a hierarchy of importance of the energies towards the turnover frequency. As the results
of section 3.4 have shown, the combined technique of dimension and local adaptivity (LA) is
the most suitable renement strategy for such kinds of models.
Nevertheless, with a real chemical problem, we cannot expect perfect systematic behaviour
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as we showed before in the test case (Sec. 3.4 ). We detected that this model has local features
that go undetected by the renement strategy based on some simulations, starting with
a |𝑙 |1 = 1 as an initial grid with 2𝐷 + 1 points. In the case of the dimensional and local
renement, the strategy is very harsh with avoiding the unnecessary points without pushing
the interpolation to a minimal threshold. This has the advantage that the renement quickly
adapts the important dimensions with minimal points, with the downside that if it is not
adapted within the rst step, it will be neglected. The SG renement is only as good as the
initial grid, so that we need a suciently sampled initial grid, which resolves all features
well enough, such that the renement strategy does not suer from an early termination. To
avoid this problem, we run a SG simulation with the dimension and local-adaptive renement
for a minimal threshold 𝜖 = 10−5, but with a limited renement level of a maximum norm
|𝑙 |∞ = 1. With this, we include all the interactions between the dimensions in the rst step
and resolve important features on a coarse level [23]. For example, features like a rapid local
increase in the corner of the Sparse Grid would not be detected by the usual initial grid with
an 𝐿1-norm of |𝑙 |1 = 1, unless the generated points indicate the feature as well. Using the
results as a suciently accurate initial grid provides a more eective SG algorithm performed
with higher thresholds.
In order to perform the sparse grid approach, we have to limit the values of overpotentials
that we want to analyze. We will look at three interesting cases of [ = 0.4V, 0.7V and 1.0V

and the corresponding SA. These three cases are signature examples for dierent kinetically
active regimes of the model. [ = 0.4V characterizes a regime with lower total activity but
with an almost exponential increase. The medium overpotential [ = 0.7V is the starting
point of the highest active area with a relatively constant TOF and [ = 1.0V marks the end
of that kinetic regime. Since the TOF decreases for higher overpotentials and the results may
not be physical, [ > 1.0V are of less interest.
Due to the rising overpotential activating dierent reaction pathways, the complexity of the
model diers according to the applied overpotential. However, the table 4.2 shows the initial
grids for the [ = 0.4V, 0.7V and 1.0V.
As mentioned before and implied in gure 4.3, the model shows a lower reactivity for [ = 0.4V

than for [ = 0.7V. This could be due to the limited pathways at the lower [, but we would
also expect less complexity for areas without phase transitions or fewer rate determining
steps [34, 35] . Thereby the initial grid consist of only 149 points, compared to the 5162 points
for [ = 0.7V. The same eect occurs for [ = 1.0V. Due to the absence of higher oxidation
state pathways, the model reaches a point of limited possible pathways. So even though the
TOF shows a high reactivity we assume a decreasing interaction of parameters, resulting in an
initial grid of 256 points for [ = 1.0V. Although the SG is only a tool to obtain the expected
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0.4V NoP E(log10(TOF)) Var(log10(TOF))
initial grid 149

0.1 157 -11.8005 20.41047734

0.01 230 -11.7179 20.80824933

0.001 467 -11.6742 20.92827296

0.0001 1238 -11.6692 20.95995558

0.7V NoP E(log10(TOF)) Var(log10(TOF))
initial grid 5162

0.1 5185 1.80462 8.18310458

0.01 6014 1.34399 9.327653459

0.001 13712 1.68762 9.498208983

0.0001 52357 1.61414 9.27517

1.0V NoP E(log10(TOF)) Var(log10(TOF))
initial grid 256

0.1 383 1.92823 9.85318734

0.01 550 2.01832 10.62025072

0.001 1416 1.89977 11.21293531

0.0001 4395 1.89208 11.19771616

Table 4.2: The SG results for the initial grid and the nal grid for decreasing threshold
𝜖 = [0.1, 0.01, 0.001, 0.0001] and the estimates for the expected E(log10(TOF)) and the variance
E(log10(TOF)) for the SG results. Partially reproduced from supplementary material [23], with the
permission of AIP Publishing.
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Figure 4.5: Adaptive grid for three applied tolerances 𝜖 = 0.1 (left) 𝜖 = 0.01 (middle) and 𝜖 = 0.001
(right). Dotted line indicates borders between four dierent regimes with dierent dependencies
on the parametersΔΔ𝐸int,4 and ΔΔ𝐸act,4. Renement primarily happens close to the origin, where the
four regimes meet. Partially reproduced from [23], with the permission of AIP Publishing.

value and the variance, we briey want to discuss the SG results based on the 2𝐷 subdomain
of gure 4.4 for [ = 0.7V. Based on the initial grid we show the nal SG-grids for dierent
thresholds 𝜖 = [0.1, 0.01, 0.001] in the gure 4.5. As we expected, the most renement points
are produced towards the non-linear edges between the dierent regimes and a signicant
amount at the crosspoint of all four regimes close to the origin. For decreasing threshold, this
eect becomes signicantly stronger.
Overall, these aspects underline only the LA of the renement strategy. Since the dimension
adaptivity (DA)’s eect is the strongest by excluding dimensions, it is dicult to show that in
a 2𝐷 subplot. This is visible in the reduced nal points for all three overpotential cases for
dierent thresholds that are displayed in table 4.2.

4.2 Sensitivity Analysis

For the three overpotential examples we nd the expected values and the variance docu-
mented in the table 4.2. The highest variance of the log10(TOF) of 20.9 can be found for
the lowest overpotential ([ = 0.4V) with an expected value of E(log10(TOF)) = −11.7 . For
[ = 0.7V the variance is 9.5 with E(log10(TOF)) = 1.7 and for [ = 1.0V it is 11.3 with
E(log10(TOF)) = 1.9. This range of variances corresponds to TOF uncertainties of three to
ve order of magnitude. These results are taken from the SG surrogate model of 𝜖 = 0.001,
thus of a very low threshold and a very ne sparse grid. Nevertheless, the SG results for
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higher threshold are already giving accurate estimation of the variance and the expected
value (𝜖 = 0.1) and the reduction leads to minor changes of the numbers as shown in table
4.2. Solely the case of [ = 0.7V shows some bigger variations which is caused by the more
complex structure of the model. Although the variations might have an impact on the SA the
following results show that the SA is robust against this order of variations. To underline
this, the gure 7.1 in the appendix show the convergence behaviour. This means that we do
not need a very ne grid to estimate the necessary quantities, but even if we would consider
lower threshold results, the number of points would still be moderate ([ = 0.4V :∼ 500,
[ = 0.7V :∼ 14000, [ = 1.0V :∼ 1500).

4.2.1 Total Sensitivity Index TSI

Based on the SG interpolation, we now investigate which of the parameters errors are re-
sponsible for the reported uncertainties in the model outcome, taking into account that we
deal with three dierent kinetic behaviours of the model. For that, we include not only the
GSA but also the Local Sensitivity Analysis (LSA), so that we can compare the results to a,
mostly in the engineering science used, approach [33]. Figure 4.6 displays the total Sensitivity
Index (SI) for all input parameters with the corresponding overpotential of [ = 0.4V, 0.7V
and 1.0V. The 20 Total Sensitivity Indices are separated into two classes corresponding to
the intermediate energies Δ𝐸int,𝑖 and the activation free energies Δ𝐸act,𝑖 . The grey areas of
the activation energy panel indicate the intermediate states from which no reaction pathway
is considered in the model; thus, only states of even numbers bigger than 2 are included for
the SA.
In order to interpret the Total Sensitivity Index (TSI) results, we have to connect the un-
certainty in the TOF results to the single variances caused by the input parameters. As we
already mentioned, the TSI captures the expected variance caused by a single input parameter
𝑥𝑖 . This means, a 𝑆T,𝑖 = 1 equals a STD of 1 for the logarithm of the TOF and transfered for
the non-logarithmic TOF a STD of 10. So an increased 𝑆T,𝑖 of 4, causes a STD of 2 for the
logarithmn and a deviation of 100 for the nominal TOF values [23].
As gure 4.6 shows, the TSI indicate dierent dependencies for the dierent overpotentials.
While for low overpotentials, which is displayed in the upper panel of gure 4.6, the TOF
mostly depends on parameters whose state is of a low oxidation degree (𝑖 < 5), the importance
shifts to states of higher degrees for increasing overpotential. From a physical point of view,
this phenomenon makes sense since the system will exist predominantly in states of the
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Figure 4.6: Local und global sensitivity indices 𝑆T,𝑖 for the 20 input parameters for the (110)-A structure
of the Oxygen evolution reaction at three dierent overpotentials [ ∈ {0.4, 0.7, 1.0} V. The gray-shaded
elds describe intermediate states that are not considered for a reaction in the model. Shown are the
sensitivities of log10(TOF × 𝑠) with respect to the errors in Δ𝐸int,𝑖 and Δ𝐸act,𝑖 . Reproduced from [23],
with the permission of AIP Publishing.
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lowest oxidation degree A0 for a low applied overpotential, as the states of higher oxidation
degrees are thermodynamically unfavourable. This means for the reaction network of water
to Oxygen that the reaction 4.1 can only happen on the lowest possible degree of oxidation,
A4. Even when taking the parameters uncertainties into account, the free energies of states
with a higher degree of oxidation will not be low enough to contribute signicantly to the
probability, which would allow the surface to exist in that state. This means that over the
parameters domain, the kinetic is only inuenced by energies of the states of a lower degree
of oxidation.
As the overpotential increases, as shown in the middle and lower panel of gure 4.6, the
important states are shifted towards higher oxidation degrees, which dominate the probability
distribution Eq. (4.3). By this means, the probability of the surface state is more widely dis-
tributed and does not have a signicant probability of occurring in lower degrees of oxidation.
In comparison, the LSA and the GSA show roughly a similar trend regarding the TSIs, yet a
more detailed analysis reveals major discrepancies. The LSA often not only underestimates the
number of important parameters but also overestimates the importance of a single parameter.
For example in the case of [ = 0.4V (upper panel 4.6 ), the LSA indicates three parameters as
very important and a small dependency on a fourth parameter, while the GSA shows, that
the TOF depends on ve parameters. For [ = 1.0V (lower panel 4.6 ), the LSA shows no
dependencies on the intermediate energies, only on one activation free energy. In contrast to
that, the GSA describes a broader distribution of important energies, in total seven. In the case
of [ = 0.7V (middle panel 4.6 ), the LSA not only indicates three instead of nine parameters,
but the importance itself is more than twice the value of the GSA, so that the TOF would
strongly depend on only three parameters. Although the LSA may be the cheaper method,
the convergence of the GSA, displayed in gure 7.1 in the appendix, underlines that the GSA
does not need a highly converged grid to identify the important parameters. It identies the
parameters already with a very coarse sparse grid. Depending on the purpose of the GSA, the
results can be obtained with a very small amount of grid points.
The discrepancies between the LSA and GSA are caused by non-linearities in the equation of
the TOF

TOF =
𝑘𝐵𝑇

ℎ

∑
𝑖 exp

(
−Δ𝐸act,𝑖+Δ𝐸int,𝑖−𝑛𝑖𝑒[

𝑘𝐵𝑇

)
∑
𝑖 exp

(
−Δ𝐸int, 𝑗−𝑛 𝑗𝑒[

𝑘𝐵𝑇

) (4.6)

based on eqs. (4.1) to (4.3). For a xed value for the overpotential, the numerator and the
denominator will likely be dominated by one exponential term, corresponding to an individual
oxidation state 𝑖 and 𝑗 , respectively. This occurs due to the major energie uncertanties
compared to the term 𝑘𝐵𝑇 . Taking this into account the logarithm of the TOF can be resembled
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as piecewise linear functions

log10(TOF) = log10

(
𝑘𝐵𝑇

ℎ

)
− log10 𝑒𝐸𝑢𝑙𝑒𝑟

𝑘𝐵𝑇
(Δ𝐸act,𝑖 + Δ𝐸int,𝑖 − Δ𝐸int, 𝑗 ) + log10 𝑒𝐸𝑢𝑙𝑒𝑟

𝑘𝐵𝑇
(𝑛𝑖 − 𝑛 𝑗 )𝑒[

(4.7)
where 𝑒𝐸𝑢𝑙𝑒𝑟 is the Euler’s number. In this case the 𝑖 corresponds to the transition state with
the lowest free energy (Δ𝐸act,𝑖 + Δ𝐸int,𝑖 −𝑛𝑖𝑒[) and 𝑗 to the intermediate state with the lowest
free energy (Δ𝐸int, 𝑗 −𝑛 𝑗𝑒[)). Hence the TOF should depend predominantly on the energies of
the states 𝑖 and 𝑗 . Unfortunately this is only true if the uncertainty range captures only one
kinetic regime, so that the dominant 𝑖 and 𝑗 stay the same in the domian of the uncertainty
range. Then, the LSA and GSA results would be identical and only show non-vanishing
sensitivities on Δ𝐸int,𝑖,Δ𝐸int, 𝑗 ,Δ𝐸act,𝑖 . At [ = 0.4V these correspond to 𝑖 = 4 and 𝑗 = 0, at
[ = 0.7V to 𝑖 = 4 and 𝑗 = 2 and at [ = 1.0V to 𝑖 = 𝑗 = 12. For the latter the LSA shows only
a strong dependence on one activation energy. The vanishing SI towards all intermediate
states energies are due to 𝑖 = 𝑗 which causes Δ𝐸int,𝑖 − Δ𝐸int, 𝑗 = 0 in Eq. (4.7).
In the case, that the uncertainty range includes multiple kinetic regimes, the GSA would
identify the dominant energies Δ𝐸int,𝑖,Δ𝐸int, 𝑗 ,Δ𝐸act,𝑖 for each of these regimes. In contrast to
that, the LSA would only identify the dominant energies for the regime at the nominal values
unless we hit one of the boundaries between dierent regimes by chance. Furthermore, the
LSA would overestimate the importance of the single energies, assuming that the current
kinetic regime is true for the whole uncertainty range. The GSA captures the transition to
other kinetic regimes at large enough deviations from the nominal values. This results in a
broader dependence of dierent energies of dierent states [23, 37, 98].
Taking this consideration into account, we can assume that for [ = 0.4V the uncertainty
range predominantly consist of one kinetic regime, because of the similar results of LSA and
GSA. Both strategies identify Δ𝐸int,0,Δ𝐸int,4,Δ𝐸act,4 and the important reaction happening
primarily from 𝑖 = 4. The results for the more complex case of [ = 0.7V are very dierent.
As mentioned before, the LSA overestimates the importance of the three identied energies
and we see that the multiple other kinetic regimes include higher oxidation states. For the
highest overpotential case of [ = 1.0V we see no big deviations in the results of the two
strategies. This is due to the fact that the reactions mostly happen via the transition state of
𝑖 = 12 over the whole uncertainty range.
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4.2.2 Higher Order Sensitivity Indices

As the deviations between the LSA and the GSA show, the one- dimensional functions of
the Analysis of Variance (ANOVA) decomposition have to be either non-linear or there are
additional interactions between the dierent parameters as described in Subsection 2.2.2
[23, 98]. The rst possibility would imply, that the variance can be decomposed into one-
dimensional scans along the axes, and the deviation from linear behavior must be visible
in these one-dimensional scans. More probable is the second possibility, which can not be
proven or disproven by any local scans. The function can appear locally linear along the axes
but behaves non-linear globally, which provides a lot of information. So far, we have just
looked at the global contribution of single input parameter, but these can have interactions
among each other, which are not directly discussed with the TSI. For a detailed discussion
higher order SIs have to be included. As they correspond to the interaction of an increasing
amount of parameters, we expect the highest contribution to be of pairwise interaction and
concentrate mainly on the second order indices. Therefore, we rst have to calculate rst
order sensitivity indices (Eq. (2.16))

Var𝑖 = Var𝑥𝑖 (E𝑥∼𝑖 (𝑦 |𝑥𝑖)) (4.8)

in order to calculate the second order indices

Var𝑖 𝑗 = Var𝑥𝑖 (E𝑥∼𝑖 𝑗 (𝑦 |𝑥𝑖, 𝑥 𝑗 )) − Var𝑖 − Var 𝑗 . (4.9)

The ANOVA decomposition implies that the variance of the model output consists of single
distributions of a dierent order. Performing the respective sums, we can estimate the
residual contribution of higher orders than the second term. Table 4.3 shows these variance
contributions for the rst, the second-order and the remaining residual. The three cases have
three very dierent conclusions. In the case of [ = 0.4V, with the highest variance of all three,
the biggest contribution results from the rst-order sensitivity indices, thus from singular
parameters. Only 4.2% are due to interaction of higher-order, 3.7% from second-order indices.
In contrast to that are the results for [ = 0.7V, where the rst-order eects account for only
68.2% and second-order eects are responsible for 26.6% of the variance. This points to a
function with an intrinsic multidimensional character [23, 37]. The results of case [ = 1.0V

are in between the previous results. The dominant contributions (86.2%) are from rst-order
eects, but the second-order eects are still responsible for 11.4% and the higher-order eects
for 2.4% of the variance. As a result, we only concentrate on the second-order indices since
higher-order interactions do not signicantly contribute. However, for other models, it can
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[ [V] Var(𝑦) ∑
𝑖 Var𝑖

∑
𝑖
∑
𝑗, 𝑗>𝑖 Var𝑖 𝑗

0.4 20.93 20.05 0.76

0.7 9.50 6.48 2.52

1.0 11.21 9.66 1.28

[ [V]
∑

𝑖 Var𝑖
Var(𝑦) [%]

∑
𝑖
∑

𝑗, 𝑗>𝑖 Var𝑖 𝑗
Var(𝑦) [%] 𝑅

Var(𝑦) [%]
0.4 95.8 3.7 0.5

0.7 68.2 26.6 5.2

1.0 86.2 11.4 2.4
Table 4.3: The total variance and the contribution of the rst and second order decomposition,
documented for three cases of overpotential [ and displayed in the upper row of the table. The
importance of either the rst, second or the remaining residual 𝑅 on the total variance are underlined
by the percentage contribution are displayed in the lower row.

be interesting to analyze the higher-order indices [144]. Figure 4.7 shows the second-order
indices for the three case, restricted to those parameters with a non vanishing TSI, as the
Var𝑖 𝑗 can not be bigger than the minimum of the individual TSIs min(𝑆T,𝑖, 𝑆T, 𝑗 ) (Eq. (2.17)). So
for [ = 0.4V, where the second-order interactions are responsible for less than 4% of the
variance, we nd the strongest coupling between the intermediate states of 𝑖 = 0 and 𝑗 = 1,
which makes sense as the system is predominantly found in the lowest intermediate state.
Furthermore, the indices show no interactions between intermediate and activation energies,
only within the lower intermediate states energies. Thus the interaction of the intermediate
state and the reaction on the fourth state are not important to the model outcome. The results
for [ = 0.7V are more complex, as it shows the highest coupling where one of Δ𝐸act,4 or
Δ𝐸act,6 is involved. Each activation energy couples the strongest with the corresponding
intermediate state energy and vice versa. Only the intermediate energies of states from which
no reaction is possible (𝑖 = 2, 3 and 5) interact exclusively with intermediate state energies.
This eect can be reasoned with the denition of the logarithmn of the TOF

log10(TOF) = − log10

(
14∑︁
𝑖=0

exp(−Δ𝐸int,𝑖 − 𝑛𝑖𝑒[
𝑘𝐵𝑇

)
(4.10)

+ log10

(
6∑︁
𝑖=2

exp(−Δ𝐸int,2𝑖 + Δ𝐸act,2𝑖 − 𝑛𝑖𝑒[
𝑘𝐵𝑇

)
(4.11)

+ log10

(
𝑘𝐵𝑇

ℎ

)
(4.12)
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Figure 4.7: Second order indices with respect to the input parameters of the OER model on the (110)-
A surface for an overpotential [ ∈ {0.4, 0.7, 1.0} V. Darker areas correspond to as stronger interaction
between the two parameters. Partially reproduced from [23], with the permission of AIP Publishing.
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where the rst term includes the states 2,3 and 5 and does not depend on any activation
energies. The second term, that depends on the activation energies, has no consideration
of the states in question. For the last case of [ = 1.0V, we found the strongest interactions
involving the intermediate state energy Δ𝐸int,12. The energy strongly couples with Δ𝐸int,13,
but also with the activation energies. Furthermore, the results show that the intermediate
energies of states that allow reactions have the highest second order indices. Similar to the
case of [ = 0.7V, the energies of the intermediate states, of whose state no reaction is possible,
interact only with other intermediate states, but not with the activation energies.

4.3 Discussion

Overall the uncertainty analysis draws attention to the impact of approximated DFT-energies
and thus their errors in microkinetic modelling. Based on the initial variance and standard
deviation of the model outcome, it is dicult to conclude whether the surface is highly active
or not. Unfortunately, this model is only one of many examples whose quantity of interest,
the TOF, carries uncertainties of several orders of magnitude. In our previous studies about
rst-principles kinetic Monte Carlo models, we show this exact diculty [24].
However, using GSA it is still able to draw conclusions from the uncertain input data. Before
discussing the results of the GSA, we are going to discuss the basis of the GSA, the perfor-
mance of the SG approach. Overall, the locally and dimensionally adaptive SG-approach
works well for carrying out a GSA, with a few drawbacks. For all three cases of overpotential,
the SG achieves high accuracy with a modest amount of points. The number of points might
be not crucial in the case of an analytical model, like the targeted problem, as the compu-
tational costs are negligible compared to the costs of the DFT calculations. Nevertheless, if
we are dealing with complex simulation-based models, like kinetic Monte Carlo, a single
evaluation might be expensive, and the number of evaluations can be a major bottleneck
[23]. For the ecient performance of the dimension and LA, the intrinsic dimensionality is
signicant. As discussed in Sec. 4.2, the model has a higher complexity for [ = 0.7V and
the SG method requires more points than for the other cases, due to the higher intrinsic
dimensionality. So the biggest benet of the adaptive SG will be achieved with a high true
dimensionality and a low intrinsic dimensionality, as it can be seen for the [ = 0.4V case,
where we need signicantly fewer points for the 20 dimensional model with an intrinsic
dimensionality of 5. The drawback of the SG in general is the risk of premature termination.
The harsh renement strategy can overlook local eects, but concerning the features of the
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models, this can be compensated with some preprocessing. In our case, we address this by
applying a disproportionally low threshold and by limiting the maximal resolution for the
initial grid. This method may not generally be applied to every model. For dealing with a
complex model, such high accuracy might, for example, not be aordable.
Our results indicate that, using GSA, we can still extract information about the reaction
mechanism from the uncertain model, even though we are not able to predict whether the
catalyst is active or not. The GSA method successfully identies only a few important pa-
rameters, even though we assume the worst case scenario of an equally distributed error
for the PDF. Since we are dealing with microkinetic modelling and, in particular, with the
eciency of a catalytic surface, the GSA identies key atomistic aspects which control the
reactivity. In all three examples, the GSA identies only a fraction of all input parameters
that inuence the model output, meaning that variations in the respective parameters cause
a higher variation in the model outcome, compared to parameters with a vanishing TSI. In
other words, the parameters with a high TSI are more kinetically relevant and control the
eciency of the catalyst. For the model itself, the TSI results mean that the physical details
of the corresponding intermediate states are highly responsible for the reactivity behaviour.
These results can be drawn, although we are dealing with this sizable error. Furthermore,
the distinction between the dierent overpotentials has shown that the complexity and the
important energies change with the applied overpotential and without a xed potential, that
a general conclusion on which atomistic indicators control the reactivity is not possible. If
there is a previously known operational constraint, like a xed window of the overpotential,
important indicators can be identied, as the previous discussion showed.
In the discussion of SA, our results in Sec. 4.2.1 established that the LSA method draws
erroneous conclusions by underestimating the number of important parameters and over-
estimating the importance of the identied parameters. As the LSA is the most common
method to use for SA the erroneous analysis can be fatal when targeting at improving the
model accuracy. As it can be seen for the case of [ = 0.7V, the LSA fails to identify all of the
important parameters and strongly overestimates the importance of the detected parameters.
If we use these results as a base to recalculate the respective DFT energies with a more
accurate methodology, the potential of variance reduction would be limited. Additionally,
the higher accurate DFT-numbers are obtained from signicantly more expensive methods,
which illustrates why a correct set of parameters is important. These more expensive methods
are higher-level electronic structure methods, like domain-based local pair natural orbital
based singles and doubles coupled-cluster method (DLPNO+CCSD(T)) or Constrained -Orbital
-DFT[31, 32] As the LSA misses some important parameters, we would have a limited number
of energies to recalculate. Based on the corresponding estimation of the variance, the latter
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LSA true variance

[ [V] reduced energy Varorg(𝑦) Varred,3 Varorg(𝑦) Varred,3
0.4 Δ𝐸int,0, Δ𝐸int,4, Δ𝐸act,4 22.84 0.91 20.93 2.73

0.7 Δ𝐸int,2, Δ𝐸int,4, Δ𝐸act,4 17.18 0.97 9.50 4.58

1.0 Δ𝐸act,12 8.72 0.49 11.21 4.88

Table 4.4: Calculation of the total variance Varorg(𝑦) according to Eq. (2.10) for the LSA and Eq. (2.9)
for the true variance and the reduced variance Varred,3 if the most important LSA energies contain
a decreased error of ΔΔ𝐸int/act,𝑖 = 0.06 eV for all three cases [ ∈ {0.4, 0.7, 1.0} V. This describes the
recalculation of the most important energies with a higher accuracte method.

more accurate energies would produce an articially low variance for Eq. (2.10). This would
lead to a false conclusion of an ’accurate’ model. For a short demonstration, we assume for
now, that the LSA results are correct and we can apply a higher level treatment for the energies
and achieve an error of ΔΔ𝐸 = 0.06 eV, so a fth of our initially employed error ΔΔ𝐸 = 0.3 eV.
Then we take all three overpotential cases and apply the more accurate energies, assuming
that the nominal values stay the same out of simplicity. Table 4.4 displays the variance (Eq.
(2.10) and Eq. (2.9)) and the variance reduction based on rening the DFT-energies according
to the LSA.
Since the SI for the LSA dier strongly between the most dominant ones and the small detec-
tion of less important parameters, we could concentrate on recalculating the three parameters
with the most dominant SI. That means we recalculate Δ𝐸int,0, Δ𝐸int,4, Δ𝐸act,4 in the case of
[ = 0.4V, Δ𝐸int,2, Δ𝐸int,4, Δ𝐸act,4 in the case of [ = 0.7V and Δ𝐸act,12 in the case of [ = 1.0V.
To begin with, the variance of the LSA calculated by equation (2.10) diers from the true
variance. After improving the energies the recalculated LSA variance shows the same trend
in all three cases. The variance drops below 1, which would be an improvement factor of
around 22 ([ = 0.4V), 17 ([ = 0.7V) and 16 ([ = 1.0V). However the true variance shows
dierent results if we consider a reduced error for the same three LSA energies. While the
variance for [ = 0.4V is also drastically reduced by a factor of around 8, the variance for the
other two cases is approximately halved. This factor of 2 means we improve the nominal TOF
by a factor less than one order of magnitude instead of three ([ = 0.7V) or two ([ = 1.0V)
orders of magnitude as expected from the LSA results. For [ = 1.0V this is the nal variance
reduction, since the LSA does not indicate a dependency of the model outcome on another
parameter. If we also include the forth most important parameters in the other two cases
the true variance can be decreased to 1.86 ([ = 0.4V) and 3.56 ([ = 0.7V), which is still very
dierent from the variance reduction indicated by the results of the LSA. If we now base the
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[ [V] all reduced energy Varred,3 Varred,4 Varred, all

0.4
Δ𝐸int,4, Δ𝐸act,4, Δ𝐸int,0, 2.73 1.85 0.88

Δ𝐸int,1, Δ𝐸int,2

0.7
Δ𝐸act,4, Δ𝐸act,6, Δ𝐸int,4,

3.45 3.11 0.57Δ𝐸int,6,Δ𝐸int,2, Δ𝐸int,8,

Δ𝐸act,8, Δ𝐸int,3, Δ𝐸int,5

1.0
Δ𝐸act,12, Δ𝐸int,12, Δ𝐸int,13,Δ𝐸act,10, 1.29 1.12 0.38

Δ𝐸int,10, Δ𝐸int,14, Δ𝐸int,11

Table 4.5: Calculation of the total reduced variance if the three, four, or all GSA energies contain
a decreased error of ΔΔ𝐸int/act,𝑖 = 0.06 eV for all three cases [ ∈ {0.4, 0.7, 1.0} V. This describes the
recalculation of the most important energies with a higher accuracte method.

recalculation on the SI of the GSA and also consider at rst only the three most important
parameters to have the same costs as before, we get the results presented in table 4.5. It lists
all energy parameters with a non-vanishing SI, starting with the most important one. For
[ = 0.4V, the results are the same as for the LSA recalculation before, due to the same set of
important parameters. For the most complex case, [ = 0.7V, the variance reduces to a third of
the original variance, which indicates that the GSA identies better the right parameters. For
[ = 1.0V we have a reduction factor of around 10, which is caused by the extended amount
of important parameters, compared to the one parameter identied by the LSA.
If we now extend the amount to four important parameters, as also documented in table 4.5,
we achieve a slight improvement of the variance in all cases. Finally, taking all the important
parameters into account for the recalculation, we achieve the target reduction with an actual
variance of under 1 for all three cases.
This shows that the GSA has the potential to quantify the dependence of the model output
on its input parameters. It is important to note here that such reduced kinetic models are
often only valid for a certain set of parameters. So now the question arises, how robust the
GSA results are against extending the model. As we already discussed, for this particular
model, we excluded the reaction from odd-numbered states since, for nominal values, the
intermediate state would not be suciently populated [133, 134]. However, if we consider
the uncertainties in the energies, this may not be the case. An extension would be to include
all the reaction pathways for reaction 4.1 from oxidation states between 𝑖 = 4 and 𝑖 = 13 and
extend the model to 25 dimensions. Figure 4.9 shows the results for the LSA and GSA for the
most complex case of [ = 0.7V. Reactions from intermediate states below 4 are not possible
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Figure 4.8: Local and global sensitivity indices 𝑆T,𝑖 for the extended model of the OER on the (110)-A
surface for an overpotential [ = 0.7V. The gray-shaded elds describe intermediate states that are
not considered for a reaction in the model. Shown are the sensitivities of log10(TOF × 𝑠) with respect
to the errors in the input parameters. Reproduced from [23], with the permission of AIP Publishing.
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and are still excluded. For the energies of the new reactions, we assume a constant value of
ΔΔ𝐸act,5/7/9/11/13 = 0.6 eV close to the other nominal energy values and an uncertainty of
ΔΔ𝐸act,5/7/9/11/13 = 0.3 eV.
The LSA numbers are nearly identical to the results of the not extended model in the middle
panel of Fig. 4.6. For the GSA, the results are totally dierent. The GSA results shown in
the Fig. 4.9 are performed on the SG results of 𝜖 = 0.01. These results are dierent from the
original case, although the TSIs for the even-numbered states up to 6 are nearly identical.
However, for the extended model, the GSA shows a high dependency on the intermediate
state and the corresponding activation energies of the odd states 5, 7 and 9. This rise of
importance could have been expected from the results of the original model. The free energies
of the odd-numbered intermediate states at [ = 0.7V are similar to the even states free
energies. Furthermore, the barriers seem to be independent of the oxidation state so that
there is no signicant dierence between even- and odd-states. A bigger dierence occurs
for the intermediate state of 8. While the original model only shows a minor dependency on
state 8, the GSA shows now a signicant TSI for the intermediate and activation energies.
This shows that the GSA can guide chemical intuition when it comes to extending the model.
As the initial result for the OER on the (110)-A surface showed a high dependency on the
fourth and the sixth state for [ = 0.7V, it is highly likely that the fth and the seventh state
would also be important. As the discussion about the results in gure 4.9 underlines that this
would largely resemble the entire case, the rst step would be to include the fth and the
seventh state.
Here it is important to note that the GSA for the full case shows signicant dependencies
(𝑆T,𝑖 > 0.5) on more than 14 parameters compared to 5 in the reduced model. This higher
intrinsic dimensionality has a major impact on the SG performance. While the reduced model
only need around 14000 points for a threshold of 𝜖 = 0.001, it now needs approximately 70000
points.
This analysis shows the potential of the GSA to reduce the computational cost in microkinetic
modelling. Based on the results, resources only need to be invested for the parameters in
which uncertainties signicantly impact the model outcome. This might make the GSA an
essential feature for hierarchical modelling strategies. Instead of calculating all energies
with an already expensive semi-local DFT method, the GSA allows starting with an even
cheaper and less accurate method, e.g. machine learning potentials or semi-empirical Density
Functional based Tight Binding [145, 146]. Then the GSA would identify the parameters that
need to be recalculated with the next higher accurate method. In the next step, a new GSA
can then determine which parameter to improve next and so on until the required accuracy
is reached or the methods become too computationally expensive. In that context, a LSA
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Figure 4.9: Global sensitivities indices and local sensitivities indices of the TOF for [ = 0.7V with
respect to the energies for an extended model where the reactions from the intermediate states 5 and 7
are considered. Reproduced from the supplementary material of Ref. [23], with the permission of AIP
Publishing.

101



4 Oxygen Evolution Model

method is questionable since the importance of non-linearities rises with increasing errors.
So for such a hierarchical modelling structure, the LSA could be misleading and produce more
computational costs than needed.
As an important note, the SA results are dependent on the employed error model and the
corresponding choice of probability density function PDF. In this work, we utilize the worst
case scenario, a uniformly distributed error with only bound constraints on the single error.
In reality, the DFT errors may be correlated, but without more detailed information, except
for the energy uncertainty of 0.3 V, we have to maximize the entropy for the PDF. For our
test model, the OER on the Co3O4, the errors in the intermediate energies result from an inac-
curate description of the transition of Co(III) to Co(IV) by the DFT+𝑈 method. We, therefore,
have to expect a strong correlation for the intermediate states. This means that they are either
over- or underestimated, but denitely not independent as we assumed. The similar values of
the barriers imply that they are independent of the degree of oxidation so that the errors are
presumably identical for all barriers. Furthermore, the results already show some connection
between intermediate and the corresponding activation barrier, which is backed up by the
established Brønsted-Evans-Polanyi theory, which states that the barriers are correlated with
the intermediate energies [6]. For such a correlated PDF we would assume a lower uncertainty
than the one we employed, also causing changes in the SA indices. However, these changes
are unpredictable because they strongly depend on the PDF and for a proper variance based
analysis, we would have to employ an ANOVA decomposition for dependent parameters
[94]. The GSA, as we introduced it, serves as a good starting point for identifying important
parameters and their correlation that should be investigated in more detail [27, 147]. This
can also be incorporated in the hierarchical method with rstly determining the correlation
on a low accurate level and how it impacts the sensitivities. Based on that, the rening can
continue with higher accurate methods.
This is the main application of the SA approach, but there are also possible applications in
the eld of material screening [6] or parametrization. In material screening, where the desire
to cheaply examine a large class of materials often the variability causes the parameters un-
certainties, the GSA and SG can serve as a tool to identify indicators of the catalytic function.
Furthermore, in the case of comparison of dierent parametrisation methods (linear scal-
ings[6], UBI-QEP [148], machine learning [149, 150]), the GSA results can help to choose the
cheapest one. It helps to avoid the methods where important parameters are very expensive,
but choose the parametrization where expensive parameters have a vanishing impact to avoid
calculating them.
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4.4 Conclusion

In this chapter, we have presented the most important individual parameters errors on the
Quantity of Interest (QoI) for the Oxygen evolution model on Co3O4. For that purpose, we
performed a variance based Global Sensitivity Analysis (GSA) and compared the results to the
common derivative based Local Sensitivity Analysis (LSA). Because of the need to eciently
estimating the numerical quadrature of high-dimensional integrals for determining the GSA
indices, the approach utilizes a local- and dimension-adaptive Sparse Grid (SG) approach,
introduced in chapter 3. This allows for an interpolation of the underlying function with
a relatively low amount of points due to the ecient adaptation of the local features and
the lower intrinsic dimensionality of the function. We employed the method on the Oxygen
evolution on a Co3O4 (110)-A surface at room temperature. Here the lower amount of model
evaluations have a limited impact on the computational costs, but for more complex models,
like kinetic Monet Carlo [53] or methods for addressing the immediate solution of the Master
Equation (ME) [30, 55], the number of model evaluations can be a signicant drawback
for the computational costs. However, the method’s eciency diminishes if the exploited
characteristics, like low intrinsic dimensionality or local features, are not so pronounced.
For the employed model, we nd uncertainties of two orders of magnitude or higher for
the Turnover Frequency (TOF), which makes it impossible to assess whether the catalyst is
active or not. It should be emphasized that the results and the uncertainty depend strongly
on the parametrization and the employed error model. Both display an extreme test case
with minimal pre-known information content about the model and the uncertainties of the
parameters. In reality, correlations between the input parameters exist that might result in
reduced uncertainty. However, even with the minimal information, the GSA can identify key
atomistic features that are driving or hindering the catalytic performance [23]. In contrast,
severe shortcomings have been found with the LSA to identify these parameters. The strong
non-linearities of the model in the typical error bounds causes the LSA to identify a too small
number of relevant parameters and to overestimate their importance.
This approach has a high potential to support the construction of higher accurate rst
principles-based models without tremendous costs by rst identifying the important parame-
ters, which then can be investigated more deeply by calculating the energies with higher-level
methods [31, 32], by dedicated experiments or by incorporating previously ignored aspects,
e.g. solvation eects [151]. Furthermore, the GSA can help to identify suitable indicators for
catalytic performances in the context of material screening.
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We already discussed in chapter 3.2, the advantages of the Sparse Grid (SG) approach in the
context of numerical quadrature in high dimensions to overcome the curse of dimensionality.
The key feature of adaptive renement allows displaying function characteristics eectively
without producing too many points. However, we showed only deterministic examples,
although in many problem settings, the integrand has to be derived from a simulation algo-
rithm, like Monte Carlo (MC), and single point evaluations can be costly. Furthermore, the
simulation result will always carry a nite sampling error, which is inversely proportional
to the computational cost. Even though the introduced adaptive Sparse Grid (ASG) method
reduces the number of evaluations, the method might be unfeasible as a single evaluation can
still be very expensive. Without more profound analysis, the SG and the ASG do not provide
the information on how accurately single points have to be calculated and whether we have
to spend the same computational costs on every grid point. In the past, multilevel MC have
proven their ability to decrease computational costs by balancing the simulation with the
numerical discretisation error [41, 152]. While these approaches mainly concentrated on
estimating the expected value, we want to perform a Global Sensitivity Analysis (GSA) to
extract more information from the MC model. Therefore we need a method to construct an
accurate surrogate model, and in order to tackle our problem, we want to incorporate the
multilevel idea in our SG approach to lower the costs.
So, if we want to employ such stochastic models for the GSA, we need an ecient approach
to decrease the overall computational cost for approximating the integral and therefore the
variance and the expected value of the target function 𝑓 (x) over a parameter domain Ω.
Unlike common approaches, like Multilevel Monte Carlo (MLMC) [41] or Multilevel Sparse
Grid (MLSG) [45, 46, 153], we will not utilize a hierarchy of functions with a dierent numeri-
cal approximations of the underlying model and approximate these functions independently.
We construct a single surrogate model and exploit the intrinsic hierarchical structure of the
SG.
As a starting point, we consider integrands implicitly given by a general MC simulation and
where a nite sampling error causes deviations of the function value estimates. Parametric
dependency of the output of such a model is necessary for the uncertainty quantication of
chemical stochastic models [24, 52, 99]. However, the general method for the integrals can be
applied to other popular elds like nance [100, 154] or molecular simulations [101].
In detail, there are many dierent methods for various applications, but often the eciency is
based on a high amount of simulations that can be performed on a low accuracy level and a
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decreasing amount of simulations for higher accuracy levels.
The most common method is the MLMC approach with its rst appearance in the late nineties
[152, 155, 156]. The MLMC and later the Multilevel Quasi Monte Carlo (MLQMC) method has
been applied to various problems, but in particular to uncertainty quantication, e.g for the
treatment of partial dierential equation (PDE)s with random input [43, 44]. In later years,
the multilevel idea was also adapted for stochastic collocation with SG, MLSG methods [157].
As an extension to the multilevel idea, the multi-index idea was recently developed. The latter
approach utilises a hierarchy of dierent general spatial approximations and dierent spatial
approximations for dierent directions. The method produces dierent discretisation levels
over the parametric domain along dierent axes. In the context of the SG, this utilises only
the mixed derivatives that are most eective. The common Multi-Index Monte Carlo (MIMC)
and Multi-Index Stochastic Collocation (MISC) can be seen as a combination of the SG ap-
proach and MC or Stocastic Collocation (SC) [47, 48]. These methods are used for problems
controlled by multiple parameters computing the solution of a PDE with random data. Before
we present our Multilevel Adaptive Sparse Grid (MLASG) approach, we will briey introduce
the common multilevel idea and discuss why this approach does not work for our problem.

5.1 Parametric Monte Carlo Models

Analog to the cases before, we consider a function 𝑓 : Ω → R with Ω ∈ R𝐷 , where we are
interested in an accurate surrogate model to perform Sensitivity Analysis (SA). Again we
restrict to those cases, where the domain equals a hypercube Ω = [0, 1]𝐷 , but here we assume
that the function 𝑓 is only implicitly given by a simulation code, some kind of Monte Carlo
simulation.
To provide the integrands, the simulation code uses 𝑥 as the input parameter and the Monte
Carlo code provides an approximation of the function 𝑓 (𝑥). Due to the random sampling, the
approximation error correlates with the nite number of samples. Starting with a xed 𝑥 , the
code draws samples from a probability distribution which is parametrically dependent on the
input parameter 𝑥 , with the outcome of a random variable 𝑌 𝑥 . We suppose that the function
value 𝑓 (𝑥), is given by the expected value of 𝑌 𝑥 , 𝐸 (𝑌 𝑥 ) which is estimated from𝑀𝑥 samples
and equals the function evaluation

𝑓 (𝑥) = E(𝑌 𝑥 ) ≈ 𝑀−1
𝑥

𝑀𝑥∑︁
𝑖=1

𝑦𝑥,𝑖 =: 𝑌𝑥 𝑀 (5.1)
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where 𝑦𝑥,𝑖 are the dierent sample outcomes according to the parameter 𝑥 . We assume that
the simulation code provides independently distributed samples for dierent values of 𝑥 . For
a xed value of 𝑥 all samples for 𝑦𝑥,𝑖 are identical and independently distributed, but the
distribution itself might depend on 𝑥 . Then, the variance and the covariance of the estimates
obey

Var(𝑌𝑥 𝑀 ) = 𝐶𝑥𝑀−1
𝑥 (5.2)

Cov(𝑌 𝑥 𝑀 , 𝑌 𝑥 ′𝑀 ) = 0 for𝑥 ≠ 𝑥′ (5.3)

with𝐶𝑥 = Var(𝑌 𝑥 ). Eq. (5.2) follows from the assumption to have identical and independently
distributed samples and a covariance of zero follows from the statistical independence for
dierent values of 𝑥 and 𝑥′. Therefore, with increasing sampling size 𝑀𝑥 the variance
decreases and with𝑀𝑥 → ∞ the code would provide an accurate estimate. Unfortunately the
computational costs increases with the𝑀𝑥 and𝑀𝑥 → ∞ is infeasible. Therefore, our function
value estimates will always carry some nite random noise, which will be propagated into the
surrogate model. To practically estimate the variance we use the empirical variance formula

Var(𝑌𝑥 𝑀 ) ≈ (𝑀𝑥 (𝑀𝑥 − 1))−1
𝑀𝑥∑︁
𝑖=1

(𝑦𝑥,𝑖 − 𝑌𝑥 𝑀 )2. (5.4)

For the variance of the function evaluation we assume, that there exists an upper bound 𝐶∗,
such that 𝐶𝑥 < 𝐶∗,∀𝑥 ∈ Ω. Therefore we restrict to Monte Carlo models, which produce
samples with nite variance irrespective of the value of the input parameter.

5.2 Multilevel idea

In this chapter, we address a similar problem setting as Heinrich and want to point out the
dierences to our MLASG method. One application by Heinrich uses the multilevel approach
for approximating a function whose function evaluations are approximated by a parametric
MC integration [49].
To explain the method, we start with a simple example that is close to our original problem
and want to approximate the underlying function 𝑢 (𝑥). With a basic parametric example

𝑢 (𝑥) =
∫
Ω𝑡

𝑓 (𝑥, 𝑡) 𝑑𝑡 (5.5)
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with 𝑓 (𝑥, 𝑡) as a function of 𝑥 ∈ Ω𝑥 and Ω𝑥 ⊆ R𝐷1 , the parameter domain and 𝑡 ∈ Ω𝑡 , with
Ω𝑡 ⊆ R𝐷2 , the integration domain. To approximate the integral we could apply a standard
MC approach and x a spatial approximation to a resolution of 𝑅 with 𝑥𝑖 = 𝑖

𝑅 , 𝑖 = 0, ..., 𝑅.
Therefore, we estimate a single grid point evaluation with

𝑢 (𝑥𝑖) = 1

𝑀

𝑀∑︁
𝑗=1

𝑓 (𝑥𝑖, 𝜔 𝑗 ). (5.6)

𝜔 𝑗 are independently and identically distributed samples and the same set of 𝜔 𝑗 is used for
every 𝑥𝑖 . This causes a high correlation between two approximations, which implies smooth
approximation curves and avoids statistical uctuation [49]. Based on the spatial (𝑁 𝑟 )and the
stochastic approximation the full function can be constructed by interpolation

𝑢 (𝑥) ≈ (𝑃𝑅𝑢) (𝑥) =
𝑁𝑅∑︁
𝑖=0

𝑢 (𝑥𝑖) 𝜑 (𝑥) (5.7)

≈ 1

𝑀

𝑀∑︁
𝑗=0

(𝑃𝑅 𝑓 (·, 𝜔 𝑗 )) (𝑥), (5.8)

where 𝑃𝑅 describes the interpolation operator with a resolution of 𝑅. For a simple case, we
deal with a piecewise linear interpolation and therefore with piecewise linear basis function
𝜑 , but the used interpolation operator depends on the problem [49]. The accuracy and the
correlated computational cost of the approximation 𝑢 (𝑥) is split in contributions of the spatial
error and the stochastic error, assuming that with a ner spatial resolution 𝑁 → ∞ and
increasing number of MC points 𝑀 → ∞ we achieve the exact solution. Achieving a high
accuracy in a singular approach would cause high computational cost, which are not feasible
for some problems. Therefore, the multilevel approach tries to balance the accuracy and the
computational cost, to get the highest accuracy for minimal total cost.
For this purpose we sample not only from one ne spatial approximation, but from sev-
eral ones, such that there is a sequence of grids with a hierarchy of spatial resolutions 𝑟 ,
𝑥𝑟𝑖 = 𝑖

𝑟 , 𝑖 = 0, ..., 𝑟 , (𝑟 = 0, ..., 𝑅) . The key for multilevel approaches is to avoid approximat-
ing 𝑃𝑟 directly on level 𝑟 , but estimating the correction towards the next lower level 𝑟 − 1,
Δ𝑃𝑟 := 𝑃𝑟 − 𝑃𝑟−1, resulting in the telescoping sum

𝑢𝑅 (𝑥)𝑀𝐿 =
𝑅∑︁
𝑟=0

(𝑃𝑟𝑢 − 𝑃𝑟−1𝑢) ≈
𝑅∑︁
𝑟=0

1

𝑀𝑟

𝑀𝑟∑︁
𝑗=0

(𝑃𝑟 − 𝑃𝑟−1) 𝑓 (·, 𝜔𝑟 𝑗 )) (𝑥) (5.9)
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The approximation on the highest level 𝑅 equals the lowest resolution level with additional
corrections of the dierence between two consecutive levels. Furthermore, the multilevel
idea implies independently estimate each of these dierences to lower the computational
cost at a given variance. So instead of estimating all integrals 𝑢 (𝑥𝑟𝑖) with a xed 𝑀 the
multilevel adapts the number of MC points of every level and 𝜔𝑟 𝑗 , 𝑟 = 0, ..., 𝑅, 𝑗 = 0, ..., 𝑀𝑟 are
independent and uniformly distributed over Ω𝑡 . It turns out that often the most MC points
have to be spent on the lowest spatial approximation, and with increasing resolution, the
amount of MC points can be decreased [44, 158]. Although Heinrich’s targeted model is
very close to our problem, we cannot apply it. Heinrich’s underlying assumption of strong
coupling through using the same set of samples is not true for a kinetic Monte Carlo (kMC)
model. Studies have shown that for a kMC simulation, the coupling is very weak, especially
for strong trajectories. Furthermore, we need to use a SG approach to break the curse of
dimensionality and use adaptivity to decrease the number of points. A dierent approach,
which is very common, concentrates on approximating the expected value of the model
with paramteric uncertainty [43, 44]. For this case the multilevel approach is applied for the
sampling accuracy of the numerical approximation and not for the spatial approximation.
Regarding this strategy many methods have been developed including a SG approach to
determin the sampling accuracy, but all of these examples deal with deterministic models and
not stoachstic models [157]. When transferred it to our problem we want to approximate the
target function and the multilevel approaches decompose the function (or its integral) using a
telescoping sum to approximate 𝑓 on level 𝑅

𝑓 ≈ 𝑓𝑅 = 𝑓0 +
𝑅∑︁
𝑟>0

𝑓𝑟 − 𝑓𝑟−1 = 𝑓0 +
𝑟∑︁
𝑟>0

Δ𝑓𝑟 . (5.10)

The function 𝑓0 corresponds to the lowest level of evaluation accuracy and 𝑓𝑟 corresponds to
increasing level accuracy 𝑟 = [1, 𝑅]. With 𝑅 → ∞ , 𝑓𝑅 approaches 𝑓 . Nowwe need to discretise
each dierence independently, but because the terms will become smaller with increasing 𝑟 ,
only coarse discretisations are needed. For our Monte Carlo model, the accuracy level would
correspond to the drawn samples𝑀 per function evaluation. If we now apply the adaptive
SG approach, we would produce random renement due to the random error at low levels
caused by the nite sampling. The method would not benet from the adaptivity or, in the
worst case, draw to wrong results due to too early terminations of the renement. To enable
the multilevel idea for an adaptive quadrature, we do not work with multiple sparse grid
approximations but on a single SG and employ the intrinsic multilevel structure of the SG itself.
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5.3 Sparse Grid

We employ the same SG structure as described in detail in section 3.2. In this section we want
to briey recap the important features of the SG approach for the multilevel extension. We
work with piecewise linear basis function (Eq. (3.9)) to construct the SG surrogate model to
approximate the function 𝑓 (x)

𝑓 (x) ≈ 𝑢𝐿 (x) =
∑︁

|l|1≤𝐿,i∈Il
a l,i𝜑 l,i(x) (5.11)

with the hierarchical indices sets Il, dened by Eq. (3.20). The hierarchical surplus a l,i can be
calculated through the recursive formula, implied by the interpolation requirement Eq. (3.7)

a l,i = 𝑓 (xl,i) − 𝑢 |l|1−1(xl,i). (5.12)

It denes the hierarchical increments between two successive levels and characterizes the
interpolation error of the |l|1 − 1 approximation, making it a key characteristic for the
renement of the sparse grid.
The second important feature is the denition of the quadrature. The integral is approximated
with (3.29) which in detail gives

∑︁
|l|1≤𝐿,i∈Il

a l,i𝑤l,i =
∑︁

|l|1≤𝐿,i∈Il
a l,i

𝐷∏
𝑑=1

𝑤𝑙𝑑 ,𝑖𝑑 (5.13)

with 𝑤𝑙,𝑖 =

1∫
0

𝜑𝑙,𝑖 (𝑥) 𝑑𝑥 =




2−𝑙 for 𝑙 = 0

2−2𝑙 for 𝑙 = 1

2−𝑙 for 𝑙 > 1

(5.14)

with the values for the one-dimensional basis function (BF)’s weights 𝑤𝑙,𝑖 . For this choice
of BF the weight is the 𝐿1-norm of the BF 𝜑𝑙,𝑖 . Therefore, |a l,i𝑤 l,i | can be counted as the
contribution by the BF.

5.3.1 Adaptivity

To decrease the number of points, compared to a normal SG, we use the local-adaptive
renement described in Sec. 3.3.3. With Eq. (3.46) we are able to neglect points with a small
contribution a l,i𝜑 l,i(x) to the surrogate model. As a renement indicator we still employ the 𝐿1-
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norm of the contribution 𝛾 l,i (Eq. (3.40)), which shows a reasonable decrease with increasing
renement levels for localized rapid changes. According to Eq. (3.46), the renement set S𝑙𝑜𝑐
includes the children Cl,i (Eq. (3.14)) of the BFs in |l|1 = 𝐿, with 𝐿 being the currently highest
renement level in the SG, whose indicator 𝛾 l,i exceed the predened threshold 𝜖 .
To use the sparse grid’s multilevel structure, later on, we consider only the local renement,
as it also has an implicitly given dimension adaptivity as points of unimportant dimensions
have a quickly diminishing error indicator. Additionally to the classical local renement, we
include also all ancestors Al,i (Eq. (3.16)) of the new set points in every renement step. This
procedure is repeated until no point shows an indicator higher than the predened threshold.
With this strategy and by equation (5.12) we ensure identical surpluses of the adaptive strategy
compared to a full sparse grid, except for the points not included. This is a crucial necessity
to avoid an optimization within every renement step to minimize the numbers of sample for
𝑓 (xl,i). Therefore the multilevel approach in the next section becomes less complex.

5.4 Multilevel Adaptive Sparse Grid

The MLASG method does not follow the outlined multilevel strategy but rather employs
the multilevel structure of the SG which is based on the hierarchical structure. Higher-level
BFs lead to higher resolution of the grid but it also means that their contribution a l,i𝑤l,i

has a diminishing impact on the integral value. The weights as dened in Eq. (5.14) decay
exponentially with the level, and the surplus should asymptotically decay, at least for bound
mixed derivatives [104]. Furthermore, the discussion on the construction of the surrogate
model and the numerical integration in sec. 5.1 shows that the accuracy increases by adding
points, regardless of the sampling variance. Because of the decreasing impact of a single sparse
grid point, we assume that the estimations’ accuracy can decay with increasing renement
level, and we have to spend less computational eort for higher-order estimations.For the
construction of the sparse grid, we include all the BF that increase the accuracy of the surrogate
model, so that the error indicator 𝛾 l,i are below a predened accuracy 𝜖

𝛾 l,i = |a l,i ·𝑤l,i | ≤ 𝜖. (5.15)

The idea of MLASG is to limit the sampling eort for the estimates 𝑌 l,i with respect to the
renement level, such that the adaptive renement is not drastically eected. In order to
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avoid random renement, we control the variance of the estimated error indicator 𝛾 l,i

Var(𝛾 l,i) ≤ 𝑐 · 𝜖2

⇔ Var(a l,i) ≤ 𝑐 · 𝜖2 ·𝑤−2
l,i ,

(5.16)

with a user dened constant 𝑐 , whose use will be explained later. Because we use piecewise
linear basis function we can limit the weight of a BF to𝑤i,i ≤ 2−|𝑙 |1 (Eq. (5.14)) Together with
Eq. (5.16), this means that we can increase the variance of the surplus a l,i by a factor of four
in every renement step. Unfortunately, this relation cannot be directly propagated to the
function estimation 𝑌 l,i whose MC sampling accuracy we can control. According to Eq. (5.12),
the surplus are linear combinations of the estimates 𝑌 l,i

a l,i = 𝑓 (xl,i) − 𝑢 |l|1−1(xl,i) = 𝑌 l,i − 𝑢 |l|1−1(xl,i). (5.17)

As the estimates are statistically indepependent we dene a correlation between the surplus
variance to the estimate variance

𝑐 𝑤−2
l,i 𝜖

2 ≥
∑︁
m,j

𝐴2
l,i;m,j · Var(𝑌m,j), (5.18)

where 𝐴 results from the recursive formula Eq. (5.17) and maps function values to the surplus
withm including all levels up to l. This means the inverse of𝐴 consists of the BFs evaluations
at the grid points xi, 𝐴−1

l,i;m,j = {𝜑m,j(xl,i)}. 𝐴l,i;m,j is a sparse matrix with nonzero values for
identical indices (m, j) = (l, i) or if (m, j) is an ancestor of (l, i). The entries of the matrix
only depend on the index pair and not on the function nor the threshold 𝜖 , so that it can
therefore be calculated beforehand for (l, i) if we include all ancestors. To be able to apply
Eq. (5.17) for all points, the renement strategy includes all ancestors of the node in each
renement step. This means that for xed (l, i) we have the same coecients 𝐴−1

l,i;m,j for the
adaptive strategy as we would have for no adaptive renement.
With this we want to choose the sampling eort of 𝑌 l,i beforehand so that the inequality
(5.18) is fullled. The sampling eort of 𝑌 l,i depends on the number𝑀 l,i of MC samples which
have been drawn for the parameter set xl,i . 𝑀 l,i displays the computational eort spent on
that grid point and Δ𝑀 l,i describes the additional sampling to fulll the inequality. If now
new points are added in a renement step, the total additional sampling eort

∑
l,i Δ𝑀 l,i has

to be minimized with the subject to the constrained Eq. (5.18) utilizing Eq. (5.4) or Eq. (5.2)
if the variance of 𝑌 l,i or a bound 𝐶∗ is known. Since we want to avoid to solve the integer
minimization problem along the simulation, we assume that we can nd a 𝐵 > 0, such that
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choosing
Var(𝑌 l,i) ≤ 𝑐𝜖2𝐵 |𝑙 |1, (5.19)

fullls the inequality (5.18). This propagates into the inequality

𝑐 22|𝑙 |1 𝜖2 ≥
∑︁
m,j

𝐴2
l,i;m,j𝑐𝜖

2𝐵 |𝑚 |1 with𝑤l,i ≤ 2|𝑙 |1 (5.20)

4|𝑙 |1 ≥
∑︁
m,j

𝐴2
l,i;m,j𝐵

|𝑚 |1 . (5.21)

With our renement strategy that includes all ancestors we can exploit that 𝐴2
l,i;m,j for a xed

(l, i) contains the same entry as for a non adaptive approach. For points of a higher level
|m|1 > |l|1 holds 𝐴2

l,i;m,j = 0 by equation (5.17). To nd the right 𝐵, we tested dierent values
for 𝐵 for various dimensionalities, using 𝐴2

l,i;m,j from a non adaptive SG approach. As we
want to apply the method to a 7 dimensional problem later on, we tested the method in this
range of dimensionality and found that 𝐵 = 2 fullls the inequality of Eq. (5.21).
Using the upper bound 𝐶∗ for the variance of a single Monte Carlo sample, we can now
estimate the computational cost C 𝑎𝑙𝑙 spent for Monte Carlo simulation for the nal sparse
grid with |l|1 = 𝑙 in terms of the total number of samples

C 𝑎𝑙𝑙 ≤
𝐶∗

𝑐𝜖2

𝑙𝑚𝑎𝑥∑︁
𝑙=0

2−𝑙𝑛(𝑙). (5.22)

where 𝑛(𝑙) is the number of SG nodes in the nal adaptive grid. This is in contrast to a single
level ASG where we estimate all points with the same number of MC samples and which has
a complexity ∼ ∑𝑙𝑚𝑎𝑥

𝑙=0 𝑛(𝑙). If MLASG and ASG have roughly the same number of points in
each level, MLASG therefore produces signicantly lower costs.
The pseudocode for the MLASG approach is provided in algorithm 4. Starting with a level
zero SG, which is the most accurate and therefore the most expensive point calculation of
the SG, we have an initial kMC calculation for𝑀 samples. Here, S is the set of points in the
adaptive sparse grid, whereas S𝑙 is the set of points with |l|1 = 𝑙 added in the 𝑙-th renement
step. S𝑙𝑜𝑐 is the total set of points added in each renement step and Cl,i and Al,i are the
children and the ancestors of l, i, respectively. Of course, the above strategy works also using
a higher level nonadaptive SG as starting point as long as the surplus obeys Eq. (5.16). The
detailed pseudocode is shown in algorithm 4.
There are many dierent options for the choice of 𝑐 , but the most promising seems to be
𝑐 = 1. Much lower values would not improve the surrogate model’s accuracy concerning
the increasing computational eort. Choosing C much larger than one 𝑐 > 1 increases the
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Algorithm 4: Pseudocode for MLASG
Choose threshold 𝜖
𝑙 = 0
S = ∅
𝑌0,0 = 𝑌𝑥0,0𝑀 using𝑀 samples {𝑦𝑥0,0,𝑖}𝑀𝑖=1. Choose𝑀 such that

(𝑀 (𝑀 − 1))−1
𝑀∑
𝑖=1

(𝑦𝑥0,0,𝑖 − 𝑌𝑥0,0𝑀 )2 ≤ 𝑐𝜖
a0,0 = 𝑌0,0
S0 = S ∪ {(0, 0)}
S = S0 while S0 ≠ ∅ do

𝑅 = ∅
S𝑙+1 = ∅
for (l, i) ∈ S𝑙 do

if a l,i𝑤l,i ≥ 𝜖 then
R = R ∪ Cl,i
S𝑙+1 = S𝑙+1 ∪ Cl,i
for (m, j) ∈ Cl,i do

R = R ∪ Sm,j \ S

for (m, j) ∈ R do
𝑌m,j = 𝑌𝑥m,j𝑀 using𝑀 samples {𝑦𝑥m,j,𝑖}𝑀𝑖=1. Choose𝑀 such that

(𝑀 (𝑀 − 1))−1
𝑀∑
𝑖=1

(𝑦𝑥m,j,𝑖 − 𝑌𝑥m,j𝑀 )2 ≤ 𝑐𝜖𝐵𝑙

S = S ∪R
for n=0:l+1 do

for (m, j) ∈ R with |m|1 = 𝑛 do
Calculate am,j using Eq. (5.12) from the nodes in S and corresponding
function estimates.

𝑙 = 𝑙 + 1

possibility of random renement as the noise increases. With 𝑐 = 1 the standard deviation of
the lowest level point, the most accurate equals the threshold 𝜖 . For error indicators larger
than 𝜖 , the corresponding variance is sucient to avoid false renement. Only if the surplus
is in the same order as the 𝜖 the renement strategy could pick up the noise of the surplus
and falsely rene the points. However, 𝛾 l,i is a rough indicator. So possible errors due to
this indicator have the same eect as if we erroneously rene points due to noise of order
𝜖 . The relatively wider choice of 𝑐 is possible due to the conservative choice of 𝐵 and the
corresponding level variance ratio in Eq. (5.19). This implies that the error indicators might
have a signicantly lower variance than 𝜖2.
So MLASG seems to be able to accelerate the construction of surrogates for Monte Carlo
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models, i.e. a similar setting as Heinrich has treated initially in his pioneering work on MLMC
[152, 155]. Before the method is tested at a CO oxidation model, a rst principle kMC model,
we display the method’s performance at two examples, a low-dimensional 2D problem and a
medium dimensional 7D problem.

5.5 An Illustrative model

To eectively test the method for a Monte Carlo model, the test model should reect the same
characteristics as the MC model. So we will test the method initially for the a function in
Ω = [−0.5, 0.5]𝐷 with similar characteristics as kinetic data

𝑓 (x) = 𝑔
©«

√√√
𝐷∑︁
𝑖

(𝑥𝑖 + 0.5)2
ª®®¬
, (5.23)

with

𝑔(𝑟 ) =


𝑔1(𝑟 ) = 10 ·

(
exp

(−𝑟 + 0.35

0.086

)
+ 1

)−1
, for 𝑟 < 0.6

𝑔2(𝑟 ) = 0.005𝑟 · 𝑔1(0.6) 1

(0.0050.6) , for 𝑟 ≥ 0.6
(5.24)

which has a kink for
√︃∑𝐷

𝑖 (𝑥𝑖 + 0.5)2 = 0.6, describing the local non linear behavior of kinetic
models [28]. The function for the 𝐷 = 2 case is displayed in gure 5.1. As this model is
deterministic, we have to add artical noise to the function evaluations to mimic the costs
for the MC model output. We use normally distributed, zero mean noise, whose variance
increases with increasing level. The values 𝑌l,i used for the sparse grid construction

𝑌l,i = 𝑓 (xl,i) + 𝑠l,i (5.25)

consists of the function evaluation and an additional noise 𝑠l,i, whose variance equals

Var(𝑠l,i) = 𝑐 𝜖2 2|𝑙 |1 . (5.26)

So with every level increment, the variance of the noise doubles. In connection with the MC
model we introduced the variance, connected to the computational cost by equation (5.2), so
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Figure 5.1: An illustrative function for the MLASG method which has the similar characteristics as
the kinetic data. Kinetic data has rather sharp changes depending on more than one dimension. In the
2 dimensional gure the changes are displayed as a kink at a radial value of 𝑟 =

√︃∑𝐷
𝑖 (𝑥𝑖 + 0.5)2 = 0.6.

that we assign a cost ratio of 2−|𝑙 |1 to the sample 𝑌l,i to mimic the cost of a parametric MC
model. For analysing the MLASG approach, we are going to compare it to the classical ASG
approach with local adaptivity.

5.5.1 2D-case

Before we start discussing the benets of the multilevel approach in terms of computational
costs, we will illustrate how much the multilevel idea inuences adaptive renement. There-
fore we choose the test-model with 𝜖 = 10−4 for 𝐷 = 2, in order to visualize the results more
easily. As discussed before, we set 𝑐 = 1 and the standard deviation 𝜎0 of the lowest level point
|l|1 = 0 to 𝜖 . Figure 5.2 displays the sparse grids constructed by the MLASG, in the left gure,
and the ASG, in the right gure. The ASG renement is based on the function values 𝑓 (xl,i)
and the MLASG renement on the estimates of Eq. (5.25). As the underlying function has the
characteristics of a local kink with a locally non-linear behaviour, both sparse grids show an
increased density of points toward this kink. For the areas of less local rapid changes, the
grids show a more sparse pattern due to the rather linear behaviour in these areas. However,
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5.5 An Illustrative model

Figure 5.2: Comparison of the adaptive grids for
𝜖 = 10−4 for ASG without noise (left gure) and
MLASG (right gure) with an initial standard de-
viation 𝜎0 = 10−4, i.e. c = 1. Both nal sparse
grids show the same results for adapting the kink
of the function with only a minimal dierence in
the number of points.

NoPASG 1117
NoPMLASG 1118

NoPASG 4𝑁𝑜𝑃MLASG 11

Table 5.1: The number of points (NoP)
for the nal grids of both methods. The
rst row displays the results for ASG
and the second for MLASG. The third
row displays the actual dierence in
the number of points for both nal
grids.

both grids contain almost the same grid points and dier only in 1% of the points. Table 5.1
documents the number of points (number of points (NoP)) for both adaptive strategies and
the symmetrical dierence between the point sets, which are roughly 1% of the total amount
of points. Both renement methods increase the density of points in the local kink area so
that the multilevel approach does not strongly inuence the adaptive strategy. But how does
it aect the overall results for the 𝐿1-norm of the approximation and the integral?
As our goal is to construct an accurate surrogate model, we will mostly concentrate on the
𝐿1-norm of the approximation error. Still, we will also inspect the quadrature error as it
is a good indicator for the GSA, later on. Figure 5.3 displays the 𝐿1-norm (upper row) and
quadrature error (lower row) of both SG approaches, the classical ASG and the MLASG. These
do not show the convergence of the nal results after renement for dierent values of 𝜖 , but
the behaviour during renement for a xed value of 𝜖 = 10−4 and 𝑐 = 1.
The MLASG and the ASG show essentially the same convergence behaviour for the 𝐿1-norm
during the renement as both result lines overlap in the upper left gure for the NoP plot.
Similar results can be seen for the quadrature error in the lower left gure. Only small
dierences occur for small quadrature errors due to a very ne resolution of the grid and a
renement criteria in the same order of magnitude as the applied noise. Despite the dierence,
both methods show almost the identical trend and even for the proceeded renement, it is not
denite which method shows a better performance. To discuss the benets of the multilevel
approach, we have to dene a measure for the CPU savings. For this deterministic model, the
savings are, similar to the noise, articial, but gives a good impression of how much potential
the method has.
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Figure 5.3: Results for the 2𝐷 case of the illustrative function (Eq. (5.24)) for the MLASG and the ASG
method over the NoP (left coloumn) and the relative CPU(right coloumn). Upper row : Results for the
𝐿1-norm of the interpolation error | |𝑢 (x) − 𝑓 (x) | |1 during the renement.
Lower row: Results for the quadrature error |𝐼 − 𝐼𝑁 | for the two methods during the renement.
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5.5 An Illustrative model

Figure 5.4: Comparison of the adaptive grids for
𝜖 = 10−4 for ASG (left gure) without noise and
MLASG (right gure) with an initial standard de-
viation 𝜎0 = 10−2, i.e. c = 100.
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Figure 5.5: 𝐿1-Norm of the interpolation er-
ror for dierent initial noise values 𝜎0 =
[10−2, 10−3, 10−4] compared to the ASG method
without noise.

As a reference value, we dene a single point calculation of the ASG, i.e. with the highest
accuracy. Therefore the CPU results of the ASG are identical to the NoP results. For the mul-
tilevel approach we calculate the computational costs of one SG point according to C = 2−|l|1

(Eq. (5.22)) which describes the roughly the factor of CPU savings compared to the ASG
method. If the CPU time equals the NoP for the ASG we would have a CPU time for the
MLASG of NoP(ASG)

2 |l |1 for the MLASG.
The results of the two methods for the relative CPU, shown in the right column of gure 5.3,
indicate a rapid drop of the interpolation and the quadrature error for the MLASG approach
compared to the ASG. As both methods start with the same initial grid (5 points) for |𝑙 |1 = 1

and the same accuracy for the rst centre point of the sparse grids, the initial cost is similar
for both sparse grids. During the renement of the sparse grid, the computational savings
of the MLASG increase, but also at very coarse sparse grids, the eect of the savings are
around half a magnitude. Since both approaches show the same behaviour for the NoP, the
MLASG approach can decrease the cost ratio by two orders of magnitude without aecting
the accuracy of the quadrature.
Before we discuss the multilevel eect in a higher dimensional case, we want to discuss
the limits of the MLASG and the eect of 𝑐 , which is responsible for the ratio between the
variance and the renement tolerance 𝜖 .
The right column of gure 5.4 shows the grid results if we consider an initial increased
standard deviation of 𝜎0 = 10−2 for the lowest level point for the MLASG method. Compared
to that, the left column displays the results for the ASG with exact function values. For both
we exploit a threshold of 𝜖 = 10−4, thus the dierence to the earlier results is an increased
𝑐 = 100 instead of 𝑐 = 1 (as in gure 5.2 ). For the increased value of 𝑐 , the MLASG renement
does not follow the function’s characteristics but randomly renes points to spread over the
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domain. Due to the value of 𝑐 , the renement criteria’ noise is a factor hundred bigger than
the threshold 𝜖 . As a consequence, the adaptive renement falsely renes the noise.
In order to analyze the limits of the MLASG method according to dierent 𝑐 values, we tested
the performance for varying thresholds 𝜖 = [10−4, 2] for three zero-level standard deviations
𝜎0 = [10−2, 10−3, 10−4].
Figure 5.5 shows the interpolation error of the three cases as a function of the threshold 𝜖 ,
where we included the ideal ASG case for comparison. Starting at the largest values for 𝜖 , all
three curves follow the ideal ASG until the threshold 𝜖 becomes close to the respective value
of 𝜎0 with 𝑐 = 1. A further renement would lead to points containing a variance bigger than
the threshold 𝜖 , which causes random renement. This is indicated by the atted curves and
the increase of the interpolation error towards smaller 𝜖 . This underlines that the accuracy of
the interpolant highly depends on the initial noise applied to the function. We lose the benet
of the adaptive renement and interpolation accuracy for much larger values of 𝑐 than 𝑐 ≈ 1.
This means, for high accuracy, the initial noise has to be chosen adequately low, while for a
lower accuracy, the benet of the multilevel approach can be enhanced with an increased 𝑐 .

5.5.2 7D-case

As a higher dimensional case, we consider the function Eq. (5.23) for 7 dimension. As in the
previous section, we employ a renement tolerance of 𝜖 = 10−4 and 𝑐 = 1. Similar to the
2D-case in subsection 5.5.1, gure 5.6 shows the convergence during the renement of the
two dierent methods, ASG, MLASG, with respect to the 𝐿1-norm of the interpolation error
and the quadrature error. In the left column both quantities of interest are displayed as a
function of points and of the relative CPU in the right column. As expected, the curves for
the number of points for both errors do not dier much between the ASG and the MLASG
method for, except for a very high accuracy, where the MLASG outperforms the ASG regard-
ing the quadrature error. This phenomenon is rather random, since the error indicator for the
renement is very coarse compared to the little deviations in the indicator, as it is described
in sec. 5.4. For the interpolation error (upper left panel), the dierence for a higher accuracy
is not as pronounced but still visible. Regarding the results for the CPU-savings for both
Quantity of Interest (QoI)s, the multilevel method, MLASG, saves two orders of magnitude
compared to ASG.
All in all, the MLASG achieves the higher accuracy with two orders of magnitude in cost
savings compared to the ASG method. This example already shows the possibilities of the
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Figure 5.6: Results for the 7𝐷 case of the illustrative function (Eq. (5.24)) for the MLASG and the ASG
method over the NoP (left coloumn) and the relative CPU(right coloumn). Upper row : Results for the
𝐿1-norm of the interpolation error | |𝑢 (x) − 𝑓 (x) | |1 during the renement.
Lower row: Results for the quadrature error |𝐼 − 𝐼𝑁 | for the two methods during the renement.
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MLASG. Due to the local renement strategy, the impact of excluding points is strongly
visible in the 7𝐷 case, but still, the implicitly given dimension adaptivity is not shown. Since
the characteristics depend on every dimension, the adaptivity has to rene in every dimen-
sion and towards higher levels. In the kinetic model, only a fraction of the parameters are
considered important for the surrogate model’s construct. There the adaptivity is even stricter
with a bigger impact on the computational costs so that it is very interesting whether the
MLASG still behaves similar to the ASG.

5.5.3 7D-2D-case

To test the case of lower intrinsic dimensionality, we consider a 7𝐷 domain and the function
Eq. (5.23) is only dened in 2𝐷 , i.e. we include 5 dummy dimensions. Figure 5.7 is equivalent
to the results gure of 2𝐷 and 7𝐷 , which shows the convergence during renement of the
two methods for the 𝐿1-norm of the interpolation error and quadrature error, regarding the
NoP (left column) and the relative CPU (right column). The value for 𝑐 and the initial error
is identical to the recent examples(𝜎0 = 10−4, 𝑐 = 1). As we expected for the NoP, the ASG
and the MLASG curves mostly agree for the interpolation and the quadrature error. Thus, the
adaptation of the lower dimensional function in 2𝐷 works well for the MLASG method.
The multilevel approach in gure 5.7 achieves a cost saving of around two orders of magnitude
compared to the ASG. These three examples present the multilevel approach’s potential and
that the performance of the multilevel approaches depends on the function itself. All in all, we
can save 1 to 2 orders of magnitude with a multilevel extension of the adaptive SG. Since these
are only toy models, we will address in the next sections 5.6 and 5.7 the MLASG approach for
a number test functions and a realistic kMC model, respectively.

5.6 Test examples

We have now established that the multilevel method works well for functions with similar
characteristics as the target kinetic data. However, we want to know how the MLASG method
performs for general examples, and where the possible limits are for the method. Genz [131,
132] publishes a set of examples in 1984 from which we are going to choose the oscillatory
example in two dierent modications and the discontinous function to show the limits and
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Figure 5.7: Results for the 7𝐷 − 2𝐷 case of the illustrative function (Eq. (5.24)) for the MLASG
and the ASG method over the NoP (left coloumn) and the relative CPU(right coloumn). The intrinsiv
dimensionality is 𝐷 = 2 and 5 dummy dimensions are added, that do not hve an impact on the function
outcome.
Upper row : Results for the 𝐿1-norm of the interpolation error | |𝑢 (x) − 𝑓 (x) | |1 during the renement.
Lower row: Results for the quadrature error |𝐼 − 𝐼𝑁 | for the two methods during the renement.
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which key characteristics can be in favour for the MLASG approach. More examples of the
Genz publication can be found in the section 7.3 in the Appendix. Particularly, we consider
the functions

𝑓osc(x) = cos

(
𝐷∑︁
𝑖

𝑎𝑖 (𝑥𝑖 + 0.5) + 𝜋
)

𝑎𝑖 = 4.0 ;𝐷 = 2 (5.27)

𝑓osc dec(x) = cos

(
𝐷∑︁
𝑖

𝑎𝑖
2𝑖
(𝑥𝑖 + 0.5) + 𝜋

)
𝑎𝑖 = 8.0 ;𝐷 = 14 (5.28)

𝑓dis(x) =


exp

∑2
𝑖 (𝑎𝑖 (𝑥𝑖 + 0.5)) if (𝑥𝑖 >= 0.0) ∀ 𝑖 ∈ [1, 2]

0 else
𝑎𝑖 = 4.0 ;𝐷 = 12 (5.29)

We already introduced the oscillatory function as an example in the section 3.4. The results
established that an adaptive SG approach shows a limited gain for this function due to local
features that are spread over the whole domain. Since the standard oscillatory function (Eq.
(5.27)) is equally dependent on all dimensions, and the adaptivity eect is limited, we assume
that the performance. For the second example, we adapt this example for a more realistic
approach for a kinetic model, and we would not deal with an equally strong dependence on
all dimensions. Therefore we decreased the importance of increasing dimension so that the
method can benet from adaptation. As a last example function we use the discontinuous
function, which describes a dicult characteristics for a SG to approximate. This function
can cause a lot of renement of the SG at the sharp jump and is, therefore, unfeasible for the
adaptive sparse grid approach. We nd that if we increase the dimensionality 𝐷 > 3, the ASG
and the MLASG needs a high number of points to achieve the lowest accuracy. So we restrict
the intrinsic dimensionality to 𝐷 = 2 . If you are only interested in the quadrature, then we
suggest to use methods like MLQMC (Section 7.4) for a discontinuity in higher dimensions.
In the previous section, we essentially assumed that the noise per MC sample is so high that
we can consider the number of samples to be drawn at a certain grid point a quasi-continuous.
In this section, we now address the more realistic scenario that a single MC sample 𝑌l,i has
a nite standard deviation (STD) of 𝜎 . So the STD for our estimates 𝑌l,i is never below the
value of 𝜎 . That means with 𝑐 = 1 for the renement that both renement strategies MLASG
and ASG will only produce one sample grid point as long as the threshold 𝜖 is bigger than
𝜎 of a single point. Only for smaller values of 𝜖 , the number of samples will increase, and
MLASG has to draw fewer samples than the ASG. For that, we now test three dierent noises
𝜎 = [1, 0.1, 0.01] and display the nal results for decreasing tolerances and not the results
along the renement process. This means the following gures show the nal points of the
previous examples just for various tolerances.
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Figure 5.8: Results of the two renement methods, ASG( ) and MLASG ( ) for 𝐿1-norm of the
interpolation error. Displayed are three dierent noises 𝜎 = [1, 0.1, 0.01] and the CPU savings ( )
for the MLASG compared to the ASG.
Upper row : Performance for the function 𝑓osc in 𝐷 = 2, which is a classical example for quadrature
calculations.
Middle row : Performance for the function 𝑓osc dec in 𝐷 = 14 with a decreasing hierarchy of dimensions.
Lower row : Performance for the function 𝑓dis in 𝐷 = 12 with a intrinsic dimensionality of two.

For all three examples we analyse the performance of the 𝐿1-norm of the interpolation error,
displayed in gure 5.8, and the quadrature error, displayed in gure 5.9, but only over the NoP
and not the relative CPU. Instead we additionally display the CPU savings over the NoP for
the MLASG compared to the ASG. The CPU savings by the MLASG method are quantied
by the dierence in the total number of drawn samples for all sparse grid points in case of
the ASG compared to the MLASG, normalized with the value for ASG. and divided by the
samples for all ASG points

𝑀all(ASG) −𝑀all(MLASG)
𝑀all(ASG) (5.30)

This equals a savings of 0 % if both sparse grids a constructed with the same amount of
samples and reaches the 100% as the impact of the MLASG grows and the total numbers of
samples of MLASG are vanishing small compared to the ASG samples.
The upper panel of gure 5.8 displays the results of classical low dimensional case 𝑓osc. For
the smallest noise 𝜎 = 0.01 (right column) both methods show an identical performance with
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only a small CPU saving for the multilevel method. While for increasing noise 𝜎 = [1, 0.1]
the MLASG and ASG still perform very similar, the CPU-savings shift toward smaller NoP.
So with increasing noise already at a coarse accuracy level, the MLASG is able to save 70-
80% of the CPU- eort.
For the second function, 𝑓osc dec, the two adaptive approaches show an almost identical be-
haviour, regarding the NoP, with only a small deviation for increasing accuracy. However, the
CPU savings show that the MLASG can save up to almost 100% of the computational costs.
The convergence is not as eective as in the classic oscillatory example, which is caused by
the increasing dimensionality of the function. The local adaptivity of the SG approaches can
intrinsically adapt important dimensions, but with a limited eect as all dimensions must be
sampled to a certain accuracy level, and the adaptivity can not exclude dimensions in an early
renement state. Furthermore, no feature is localised but spread over the whole domain. The
adaptive method is more eective if localised features need a higher density of points.
The 𝑓dis example is favourable for an adaptive approach since 10 of the dimensions are dummy
dimensions that can be excluded regarding the renement. In the lower panel of gure 5.8,
the discontinuity, dened in 2 dimensions, is well approximated by both renement strategies,
with only little deviations for 𝜎 = 0.1. Regarding the total performance for the 𝐿1-norm,
both methods are able to decrease the interpolation error by two orders of magnitude. Due
to the higher dimension of 12, the NoP is shifted to higher numbers in comparison to the
examples before, and we assume with smaller thresholds, the convergence rate would slow
down. If the threshold causes a very ne grid, the error caused by the overshooting of the SG
for a discontinuity causes multiple additional renements. For higher dimensions, this eect
occurs earlier in the renement procedure so that the cost becomes unfeasible. Regarding
the computational savings, the multilevel approach can save almost 98% with 104 points in
case of the highest noise. So even for an example that is less suited for the SG approach, the
MLASG performs equally to the ASG with fewer costs.
Regarding the overall results of the two SG approaches, we see no signicant dierence in the
results for all three examples. Although we tested both methods for dierent characteristics of
a function, the MLASG performs nearly identical to the ASG method. We see only a minimal
discrepancy between the MLASG and the ASG, due to higher noise at coarse renement level,
which produces more points. These result in a constant shift toward a higher NoP. So with
a smaller noise of 𝜎 = 0.01, the shift is smaller. Taken the CPU-savings into account the
MLASG is cheaper than the ASG approach, although it produces a higher amount of points
for the same accuracy of the interpolation.
Next to the 𝐿1-norm, we analyse the performance of both methods regarding the quadrature
error, displayed in gure 5.9. For the 𝑓osc and the highest noise, we detect a deviation in
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Figure 5.9: Results of the two renement methods, ASG( ) and MLASG ( ) for quadrature error.
Displayed are three dierent noises 𝜎 = [1, 0.1, 0.01] and the CPU savings ( ) for the MLASG
compared to the ASG.
Upper row : Performance for the function 𝑓osc in 𝐷 = 2, which is a classical example for quadrature
calculations.
Middle row : Performance for the function 𝑓osc dec in 𝐷 = 14 with a decreasing hierarchy of dimensions.
Lower row : Performance for the function 𝑓dis in 𝐷 = 12 with a intrinsic dimensionality of two.
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the NoP. The MLASG needs more points to reach the same accuracy as the ASG. Taking
the cpu-savings into account, the MLASG is still cheaper than the non multilevel approach,
although it requires more points. For decreasing noise the MLASG and the ASG present
similar results with only small uctuations for high tolerances. Overall both methods are able
to decrease the quadrature error over two orders of magnitude.
For the 𝑓osc dec function, we can see more uctuations but an overall decreasing trend for the
three noise cases. Although the performances are not identical for the interpolation error, the
convergence trend is still similar, and both decrease the error by two orders of magnitude.
For the CPU-savings, the MLASG outperforms the ASG and ist able to save up to 97% of the
computational costs.
In the case of the 𝑓dis, both methods draw a similar picture to the examples before, except for
the increasing error at the beginning of the renement. For the rst two renement steps, the
error increases by a factor of almost one order of magnitude due to the coarse grid that does
not adapt to the discontinuity yet. During further renement, the ASG and MLASG results
show a decreasing trend with smaller uctuations for a smaller noise and greater uctuations
for increasing noise. All in all, both methods manage to increase the interpolation’s accuracy
by two orders of magnitude, with the MLASG saving up to 98% of the computational cost.
The comparison between the ASG and the MLASG outlines that their results are not identical
for the quadrature error, whereas their error in terms of the norm is almost identical. This is
due to the quadrature error being smaller than the 𝐿1-norm of the interpolation error. Even a
coarse approximation results in a smaller quadrature error than the interpolation error so that
small errors have a bigger eect of uctuations on the quadrature error than the interpolation
error. The smallest noise gives the closest aligned results for the two renement strategies
over the NoP. Still also for the bigger value, the performances do not dierentiate strongly.
Considering the CPU- savings, the MLASG performs at lower costs, and even with more
points for the MLASG, the method is cheaper than the ASG. Furthermore, the MLASG can
also achieve a reduction of the CPU savings at coarser renement levels, so that even at a
coarse level, we save computational eort with the MLASG
So for all three cases, it shows that although the model is not the most favourable for a
SG approach, both approaches produce a good accuracy at a reasonable number of points.
Furthermore, the CPU savings underline that the multilevel approach also works for a dicult
example and can still decrease the computational cost.
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5.7 Parametric Monte Carlo Model: CO oxidation model

As a realistic parametric model, on which the test model was based on, we use a reduced
version of the well established CO oxidation on Rutheniumdioxide (RuO2(110)). This is a
heterogeneous catalyst model, whose original quantum chemistry model was introduced by
Reuter and Scheer [13]. This kMCmodel describes the chemical kinetics of the CO oxidation
as Markov jump processes on a chain of the catalytic surface, consisting of two dierent
adsorption sites, cus and bridge. Each of these jumps correspond then to one of the allowed
elementary reactions, which include the adsorption/desorption of CO and O2, the diusion of
O and CO to neighboring sites and the reaction of the educts to gaseous CO2. In total, the
model consists in total of 22 elementary steps, considering two adsorption sites. Later on, the
model was reduced to seven dimensions[29, 30], since the reaction is mainly controlled by
processes on one adsorption site, the cus site [24, 34, 35] and therefore all processes on bridge
sites were excluded. Since we are working on a lattice model we can describe the state of the
surface as a chain of singular sites. Each cus site on the catalytic surface, enumerated by its
position 𝛽 in the chain, can be in one of three states: I) empty (∗𝛽 ), II) CO covered (CO𝛽 ), or
III) oxygen covered (O𝛽 ). Since all of the processes are happening on the cus sites, we omit
the site indexing for the rates. These states of the individual sites, that are documented in a
vector, can be changed by elementary processes

∗𝛽
𝑘adsCO−−−→ CO𝛽,

∗𝛽 + ∗𝛽+1
𝑘adsO2−−−→ O𝛽 +O𝛽+1,

CO𝛽

𝑘 des
CO−−−→ ∗𝛽,

O𝛽 +O𝛽+1
𝑘desO2−−−→ ∗𝛽 + ∗𝛽+1,

CO𝛽 + ∗𝛽+1
𝑘 di
CO−−−→ ∗𝛽 + CO𝛽+1,

∗𝛽 + CO𝛽+1
𝑘 di
CO−−−→ CO𝛽 + ∗𝛽+1,

O𝛽 + ∗𝛽+1
𝑘 di
O−−−→ ∗𝛽 +O𝛽+1,

∗𝛽 +O𝛽+1
𝑘 di
O−−−→ O𝛽 + ∗𝛽+1,

CO𝛽 +O𝛽+1
𝑘reac−−−→ ∗𝛽 + ∗𝛽+1,
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O𝛽 + CO𝛽+1
𝑘reac−−−→ ∗𝛽 + ∗𝛽+1,

where 𝑘adsCO etc. are the rates, with which the respective process occurs. For further details on
the model, we refer to references [29, 30]. Compared to the previous study [30], we choose a
dierent parametrisation for the uncertainty analysis. Instead of using the adsorption and
desorption rates directly, we use the equilibrium constant (EC) of the adsorption of CO and O2

(𝐾CO, 𝐾O2) and the adsorption rates themselves of CO and oxygen on the cus site (𝑘adsCO, 𝑘
ads
O2

).
The corresponding desorption rates are implicitly given by the equilibrium constant and
the adsorption rate by the reaction 𝑘des

𝐶𝑂/𝑂2
= 𝑘ads

𝐶𝑂/𝑂2
× 𝐾−1

𝐶𝑂/𝑂2
. Furthermore, we include the

diusion rates (𝑘diCO, 𝑘
di
O2

) and the actual reaction (𝑘reac).
Although it is a reduced model, it is still too high dimensional to be solved with classical
numerical methods, so we use the lattice kinetic Monte Carlo code 𝐾𝑀𝑂𝑆 [159] to simulate
the stationary expected values for the QoI.
The process rates, whose activation energies have been derived from Density Functional
Theory (DFT), are used as an input parameter for the model. As previously stated, the rate
constants carry a nite uncertainty due to the approximation of the density functional for the
barrier calculation. We assume now that the input parameters’ logarithm is independent and
uniformly distributed in a specic range of values dominated by the errors in the activation
energies that enter the input exponentially [13]. These ranges and the default values are
displayed in table 5.2. Out of multiple outputs to employ, but we choose the logarithm of

Parameters Default value [1/s] Range [1/s]

𝐾CO
2.0
9.2 × 102 2.0

9.2 × 100 − 2.0
9.2 × 104

𝐾O2
9.7
2.8 × 106 9.7

2.8 × 102 − 9.7
2.8 × 106

𝑘adsCO 2.0 × 108 1.0 × 108 − 4.0 × 108

𝑘adsO2
9.7 × 107 4.85 × 107 − 1.94 × 108

𝑘diCO 5.0 × 10−1 5.0 × 10−3 − 5.0 × 101

𝑘diO2
6.6 × 10−2 6.6 × 10−4 − 6.6 × 100

𝑘reac 1.7 × 105 1.7 × 103 − 1.7 × 107

Table 5.2: List of input parameter for the reduced model for CO2 oxidation on at RuO2 with its
default values at 𝑇 = 600K, 𝑝CO = 𝑝O2 = 1 bar. Included are the range of variation for each parameter,
spanning our domain.

the expected value of the Turnover Frequency (TOF) 𝑦 = log10(E(TOF)) as the QoI. Since
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5.7 Parametric Monte Carlo Model: CO oxidation model

we want to perform a GSA with the results, we use the logarithm of the expected TOF.
Using the logarithm allows the GSA to be comparable to other established Local Sensitivity
Analysis (LSA) and makes the interpolation easier. Without logarithmic settings, we cannot
expect a linear dependency of the TOF on the kinetic parameter for most of the interpolation
domain, which leaves us with only narrow regions with non-linear behaviour. For this setup
linear basis functions are suitable to solve the problem. In similar research, we have used the
CO coverage as a QoI to extract information about the dependencies of dominant regimes of
the surface coverage on the input parameter [42].
The explored parameterisation and the parameter range has to advantage to be comparable to
other SA indices, e.g. the Degree of Rate Control (DRC), that requires the same parametrisation
for a comparison. Additionally, we can exploit the rather small uncertainty for the adsorption
rates constants, for which extensive studies with dierent density functionals indicate that
the respective barrier is very close to zero [160]. With the coordinate transformation to the
equilibrium constant, it is easy to bring the required integral with the parameter distribution
and the parameter-dependent TOF into a form (5.5). In the explored parameter range, the
integral of the log10(E(TOF)) is approximately -3.591, calculated by 105 Quasi Monte Carlo
(QMC) points, with each point averaged over 100 trajectories with 108 kMC steps., that are
used as a reference value for the accuracy of the SG integrals.
In a very stricly manner, the QoI of the logarithm of the TOF is not suitable for the multilevel
approach we are presenting. Since we ar taking the logarithmn of the TOF determined by𝑀
samples, we are producing a bias. Fortunatly the method still works since the bias appears
only in higher order. If we approximate the bias with an taylor expansion it arrives at

E(log(TOF) − log E(TOF) = E(log(𝑑TOF + E(TOF)) − log E(TOF) (5.31)

= E(log(E(TOF)) + 𝑑TOF
E(TOF) + E(O( 𝑑TOF

2

E(TOF)2 )) − log E(TOF)

with 𝑑TOF = TOF − E(TOF) (5.32)

and since E(log(E(TOF)) = log E(TOF) and the expected dierence of the expected TOF and
the real TOF equals zero (E(𝑑TOF) = 0) we can determine

E(log(TOF)) − log E(TOF) = E
(
O

(
𝑑TOF2

E(TOF)2
))
. (5.33)

This shows a relative uctuation of the bias in a second-order, which is negligible compared
to the random error of the rst order.
We perform the simulations on a surface of 20 sites and periodic boundary conditions. Since
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Figure 5.10: Comparison of the quadrature errors for the log10(E(TOF)) of the ASG and MLASG
for dierent tolerances 𝜖 and the MLQ method in the CO oxidation model. Left gure: The original
7 dimensional case. Right gure: Extension of the original model with 6 dummy parameters to a 13
dimensional model.

we are interested in estimating the stationary expected value, we perform the rst 107 steps
for relaxation to reach the steady-state and 107 points for estimating the expected value
by time averaging over these. To achieve the target variance, we run these 2 × 107 long
trajectories multiple times with dierent, hardware-generated random numbers as seeds for
the kMC simulations. For the CO oxidation model we compare the nal errors of the MLASG
and the ASG for dierent target tolerances 𝜖 = [1, 5 · 10−4]. Therefore we chose the initial
standard variation to be equal to the applied tolerance 𝜎0 = 𝜖 for the MLASG and the ASG
method, , i.e. we employ 𝑐 = 1 in Eq. (5.19). With increasing level the noise for the MLASG
increase by 𝜎𝑙 = 𝜎0 ·

√
2𝑙 while the 𝜎 for the ASG stays the same. In practice we will use the

empirical variance, since we do not know the upper bound of the variance, so that we draw
𝑀 samples from the kMC points to fulll

Var(𝑌l,i) ≤ 𝜖2 · 2𝑙 for MLASG Var(𝑌l,i) ≤ 𝜖2 for ASG (5.34)

with Var(log(TOF)) = 1

E(TOF)2 +O( 𝑑TOF
E(TOF)3 ) .

For estimating the initial variance, we draw a minimal sample size of 20 for each point. The left
column of gure 5.10 shows the quadrature error displayed over the NoP for both renement
methods. We display the CPU-savings of the multilevel approach compared to the standard
ASG, calculated as the dierence of all the drawn samples of the ASG method and the MLASG
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Figure 5.11: Comparison of the 𝐿1-norm for the log10(E(TOF)) of the ASG and MLASG for dierent
tolerances 𝜖 and the MLQ method in the CO oxidation model. Left gure: The original 7 dimensional
case. Right gure: Extension of the original model with 6 dummy parameters to a 13 dimensional
model.

with regard to all ASG samples (Eq. (5.30)) This gives a relative measurement of the CPU -
savings caused by the multilevel extension.
With decreasing tolerances, the quadrature error shows some uctuating behaviour till the
renement reaches smaller thresholds where both methods can decrease the error by a factor
of 102. The uctuations appear for SG with the size up to 100 points. The SGs use for the
nest grid around 1000 points to decrease the quadrature error to |𝐼 − 𝐼𝑁 | = 0.0088. As we
are mostly interested in the accuracy of the surrogate model to extract further information,
e.g. for the sensitivity analysis, we also analyse the error of the 𝐿1-norm for both methods.
The results are displayed in gure 5.11. The convergence of the interpolation error for the
7-dimensional case in the left gure is not as rapid as the one for the quadrature error for
both adaptive methods. The renement strategies are able to decrease the 𝐿1-norm by one
order of magnitude with decreasing threshold and a maximum size of around 1000 points.
The minimal interpolation error for the tolerance range of 𝜖 = [1, 5 · 10−4] is 0.22. The slow
convergence implies that the underlying model is not an optimal model for the SG method.
The results underline previous ndings of a very complex structure of the RuO2 model. The
previous studies indicate that we are mostly dealing with a second order phase transition
for the default setting of the model, which includes inconsistent derivatives [30, 35]. This
is also underlined by the uctuations seen in the quadrature errors. The general behaviour
of the SG of an increasing quadrature error for the rst renement steps indicates that the

133



5 Multilevel Renement

kinetic model structure is rather complex, and the initial SG is a good guess. Still, not all
kinetic features are mapped with the initial grid. With further renement, the quadrature
error shows a plateau caused by regions of sharp transitions requiring a higher density of
points to be approximated correctly.
For all tolerances, both SG renement strategies show the same behaviour with respect to the
NoP. Although the MLASG increases the variance with every renement step of the sparse
grid, the strategy avoids randomly rening noise but shows the same renement pattern as
the ASG with more accurate points. As we expected, the MLASG outperforms the standard
ASG in regard to the CPU-savings. For the lower accuracy and NoP below 100, we cannot see
the multilevel approach’s impact since the points’ variances are below the target threshold
𝜖 . Lowering the threshold causes the ASG to strongly increase the number of samples 𝑀
compared to the multilevel approach. Therefore, the CPU-savings increase already at coarser
renement steps. At NoP of around 1000, we can save ∼ 90% of the CPU-time without
lowering the accuracy of the quadrature integral. For further renement, the CPU-savings
slope decreases so that for the minimal error of the quadrature, we can save roughly 95% or a
factor of 20 less than for the ASG.
As the toy model results imply, the MLASG method, as well as ASG, can exploit low in-
trinsic dimensionality. To demonstrate this, we added three dummy species 𝑍 𝑖 , that can be
adsorbed/desorbed from the surface but do not take place in any reaction paths. This extends
the system with three more states on the 𝑐𝑢𝑠 site 𝑍 𝑖𝑐𝑢𝑠 𝑖 ∈ 1, 2, 3, resulting in a total of six
states (CO𝑐𝑢𝑠 , O𝑐𝑢𝑠 , e𝑐𝑢𝑠 ). To the kMC model, we add the adsorb and desorb process

∗cus
𝑘ads
𝑍𝑖−−−→ [𝑘desZi ] 𝑍 𝑖𝑐𝑢𝑠 (5.35)

with 𝑘des
𝑍 𝑖 = 𝑘ads

𝑍 𝑖 𝐾
−1
𝑍 𝑖 and 𝑘ads𝑍 𝑖 ∈ [1, 105] and 𝐾𝑍 𝑖 ∈ [1, 104], thereby increasing the dimension-

ality to 13. This could reect a situation where trace gases are present in the gas phase above
the catalyst, which can be adsorbed but do not take part in the reaction. The other parameters
stay the same, and the right column of gure 5.10 shows the results of the 13-dimensional
model. As before, we plot for both methods the quadrature error over the NoP in the right
gure of gure 5.10 and the interpolation error in the right gure of gure 5.11. For both
QoIs, we see a similar behaviour as for the 7 dimensional case. Regarding the quadrature
error, the results show less strong uctuations and a non-decreasing error for coarser sparse
grids. Towards smaller threshold, both SG methods are able to decrease the quadrature error
to |𝐼 − 𝐼𝑁 | = 0.0023. The 𝐿1-norm of the interpolation error in the 13-dimensional case is very
similar to the 7 dimensional case, except that the nal error is minimally higher. The right
gure shows the same slow convergence rate for the model.
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As we expected, the sparse grid performances are not much inuenced by the higher dimen-
sionality. Compared to the 7-dimensional case, the adaptive methods produce more points due
to the local adaptation, which also produces points in irrelevant dimensions. There is a small
dierence in the CPU-savings behaviour. Also, here we analyse tolerances 𝜖 = [1, 5 · 10−4]
but we can save ∼ 98, 5% of the CPU -costs with the multilevel approach. This is more than
in the 7-dimensional case, which implies that the eect of the multilevel approach might shift
to higher tolerances.
These results show the positive impact of the multilevel idea on the ASG approach and under-
line the computational savings without a lower accurate surrogate model. To examine how
much information we can extract from the MLASG surrogate model, we want to perform a
GSA and analyse the important input parameters of the CO oxidation model.

5.8 Global Sensitivity Analysis

After having tested the L1-norm convergence of ASG and MLASG on a realistic kMC model
with realistic error bounds, we now turn to an application in terms of global sensitivity
analysis (GSA), which has been introduced in subsection 2.2.2. We are only going to perform
it on the 7- dimensional case, since the dummy dimension in the 13 -dimensional case, should
not have an inuence on the GSA results. The nal results for the Total Sensitivity Index (TSI)
are displayed in the gure 5.12 for three dierent tolerances 𝜖 . We choose three accuracy
levels 𝜖 = [0.5, 0.008, 5 · 10−4] of the model for dierent convergence states and compare the
performance of the ASG and the MLASG. The upper panel of gure 5.12 displays the coarsest
approximation with no impact of the multilevel approach, resulting in a CPU-saving of 0%.
For the applied threshold of 𝜖 = 0.5 the sparse grid does not rene the initial grid that much
further so that the threshold is bigger than the sample variance of the grid points. Based on
this, we expect no dierence between the ASG and the MLASG. The Sensitivity Indices for
the coarse grid show a strong dependency on the ECs 𝐾CO, 𝐾O2 and the reaction rate 𝑘reac. In
relative comparison, the system depends on the 𝐾O2 the strongest, followed by the 𝐾CO, and
𝑘reac. If we then increase the accuracy to 𝜖 = 0.008 (middel panel), the strongest dependency
shifts to the EC of CO, followed by the EC of O2. Additionally to the three dependencies of the
coarsest results, the system also show a small dependency on both adsorption rates. Regarding
the dierence between the ASG and MLASG results, we detect a only minor dierences in
the TSI, but all below 10−3. Both methods identify the same dependencies, qualitatively and
quantitatively, but the MLASG is able to save almost 30% of the computational cost compared
to ASG. This eect is even stronger for the highest accuracy 𝜖 = 5 · 10−4. Both methods show
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Figure 5.12: GSA of the 7- dimensional CO oxidation model for three dierent accuracies 𝜖 =
[0.5, 0.008, 5 · 10−4]. We analysed the log10(E(TOF)) and compared the GSA-results of the ASG and
the MLASG surrogate model.
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identical results for the TSI except that for this high accuracy the MLASG saves almost 96%
of the computational costs. Although the TSI are not totally converged at 𝜖 = 5 · 10−4 there
are only minor dierences compared to 𝜖 = 0.008, which shows a good approximation of
the TSIs for our case. The impact of the 𝐾CO increases even more, similar to the 𝐾O2 , but the
relative order stays the same.
Previous work on that model has shown similar results for the sensitivity on the parameters
[24, 34] of this model, except for the missing strong dependency on the adsorption rates. We
do not nd this strong dependency due to the coordinate transformation and the smaller
domain range we chose. We can decrease the domain range for the adsorption rates since the
DFT calculations have shown no activation barrier for these processes. Since they are then
only correlated to the sticking coecient, these are also the only source of uncertainty [160] .
Therefore, we can expect a smaller uncertainty for the rate constant [28].
Regarding the sensitivity results, we have to take into account what previous studies already
revealed about the model [34]. A detailed analysis has shown that we have three dominant
regimes: I) CO covered II) O covered and III) a mixed regime. For the CO covered regime, we
expect an equilibrium between the 𝑘ads,CO and 𝑘des,CO, while the adsorption of the oxygen is
rate-limiting. For a CO covered surface, the biggest challenge is to get O2 on the surface to
enable a reaction. This explains the high dependency on the EC of CO and the low dependency
on the 𝑘𝑎𝑑𝑠,𝐶𝑂 . Furthermore, the importance of 𝑘ads,CO is negligibly small in all regimes in
contrast to 𝑘ads,O2 , which shows high importance for the rst regime. Since this regime is
only a part of the whole domain, the importance is comparably small but still bigger than the
𝑘ads,CO.
The results with the same settings from the LSA in paper [34] imply that there is no depen-
dency on the adsorption rate in the second regime since they are both in equilibrium. This
underlines the dependency on the EC, but not the adsorption rates. For the mixed regime,
we expect a high dependency on both adsorption rates to enable a reaction. This regime
displays a very complex reaction structure, where we can not imply equilibrium between the
adsorption and desorption rates. Similar results are also presented with the DRC of paper
[34]. The importance of the adsorption constant is still so insignicant due to the smaller size
of the regime. Furthermore, the dependency on the adsorption rates is rather limited if the
uncertainty of the domain is decreased.
All in all, these results show that the CO oxidation model on RuO2 depends strongly on the
ratio between the adsorption and desorption rates of both educts, symbolised by the EC. This
implies that the occupation of the surface is a rate-limiting factor. As one species dominantly
covers the surface, and to enable the reaction, we need to bring the minority educt on the
surface. The subsequent reaction is the only reaction channel the model shows the third
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strongest dependency on the reaction constant.

5.9 Conclusion

In this work, we introduced a multilevel sparse grid approach for parametric MC models
to address the problem of high computational eort for estimating parametric numerical
quadrature and approximation. To this end, we exploit the sparse grid model’s intrinsic
multilevel structure. It allows us to control the sampling variance of a single grid point such
that the noise does not inuence the adaptivity of the sparse grid in the MC simulation results.
The upper bound of the variance assures a low computational eort without compromising
neither the renement strategy nor the accuracy of the SG approximation. By analysing the
SG structure and testing the new method on an articially constructed and a realistic model,
we found that the sampling variance can be doubled in every renement step, resulting in
a computational eort with a factor of two orders of magnitude lower compared to non-
multilevel ASG. Naturally, these results depend on the kind of problem whose integral should
be estimated.
If we would just consider the quadrature and not the surrogate model, the classical telescopic
sum approach, the MLQ would outperform the adaptive sparse grid approach, as described in
the appendix 7.4. Regarding our purpose to perform a SA, we can not assume that the MLQ
method outperforms the MLASG. Therefore, the MLQ needs to control the MC sampling
error. If we then consider the functionals we need to approximate for the GSA, the MLQ
would need to control the noise, and the bias and the easy approach with one sample per
sparse grid point would not work anymore.
Beyond the quadrature results, we also included the interpolation error for the model to
underline that the surrogate results can be used for further analysis, e.g. gradient-based GSA.
For this QoI the multilevel approach performed as accurate as of the more expensive ASG
method, and the impact on the TSI results was negligible.
All in all, we presented the potential of the MLASG method for producing an accurate
surrogate model without reducing the eciency of the renement method. This can be very
useful for multiscale models that have a coupling between low-delity and high-delity data.
Our MLASG model is able to construct a surrogate, whose construction and, therefore, the
evaluation of the function is cheaper than the evaluation of the underlying model.
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This work dealt with the error propagation in rst-principles models in the eld of hetero-
geneous (electro-) catalysis. Such models often have multiple error-prone input parameters
that span a high-dimensional parameter domain that needs to be analysed. Furthermore, the
parameters are often drawn from electronic structure theory, whose intrinsic approximation
cause a very large error in the parameters. These errors, propagated into the rst-principle
models, can cause uncertainty of 2 or more orders of magnitude for the catalytic activity.
Therefore it is not possible to predict whether the catalyst is active or not. We could have
either tried to decrease the uncertainty in the input parameters or tried to extract the most
information out of the given data to tackle this problem.
Based on the selectiveness of catalysed reaction, we expected only a few of the parameters to
inuence the reaction and, therefore, the activity of the model. On that basis, we quantied the
imporrtance of single input parameters with a Global Sensitivity Analysis (GSA). We prefered
the GSA over a Local Sensitivity Analysis (LSA) due to the variance-based approach that
takes the signicant parameter errors and the non-linearities into account. This Sensitivity
Analysis (SA) gave us better qualitative insights that, in fact, only a fraction of input param-
eters inuence the model outcome. We concentrated purely on the input parameters and
not on the system parameters (temperature, pressure...). However, we could see the dierent
importance of the input parameter depended on the applied overpotential for the Oxygen
evolution on Cobalt. Depending on the applied overpotential to the electro-catalytic model,
the cobalt-surface can achieve dierent oxidation states, determining the reaction path. Such
a model is complex due to the multiple possible reaction paths with possible dependencies
between the parameters. The GSA gave us not only the overall most important parameters
but also revealed important dependencies between parameters. Thus, we can determine
the relevant oxidation state of the surface and dominant reaction paths. Our analysis also
included a LSA to compare the results with the GSA and underline why the GSA is a better
option for such models. Due to the mentioned characteristics of non-linear behaviour and
large parameter domains, the gradient-based LSA underestimated the number of important
parameters and simultaneously overestimated the impact of a single parameter.
To perform the GSA we needed a surrogate model for the non-linear functionals of the GSA.
As mentioned before, we were working on high-dimensional parameter domains, where we
expected only a fraction of the dimensions to be important. Therefore, we concentrated on
Sparse Grid (SG) approach, that did not suer from the curse of dimensionality. A general
full SG approach would have meant to produce a lot of points in dimensions that would
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be unnecessary because the outcome did not show a dependence on them. So we used a
dimension-adaptive method to only rene the relevant dimensions and minimise the points
for unimportant dimensions. Furthermore, we knew that the kinetic data mostly show a
linear behaviour on a logarithmic scale and behaves non-linearly only in minor areas of the
parameter domain. Based on this, we utilised a piecewise linear basis function with a local
adaptivity that produces a higher density of points in non-linear areas. Similar methods were
already content of earlier studies, but we adapted the methods to perform renement steps
according to a renement level instead of singular points. While other methods concentrated
on the SG points with the highest error and choose the renement of these points as a rene-
ment step, we considered all points above a predened accuracy in one renement step. All
these things considered, the method allows us to deal with very high-dimensional models
and construct an accurate surrogate model with a modest amount of SG points.
In the case of models, where the integrand is derived from a simulation algorithm, like Monte
Carlo (MC) models, the presented SG would minimise the number of points but still be unfea-
sible as a single evaluation of the model is already very expensive. These simulation results
carry a nite sampling error, which is inversely proportional to the computational cost. So
to increase the computational savings, we needed to control the accuracy of a single point.
Since the SG approach does not provide the information on how accurate one point has to be
calculated, we needed a method that combines adaptive renement and a sampling size adap-
tation. Therefore we employed the hierarchical structure of the SG, with a decreasing impact
of the points along with the renement steps and found out that with every renement, we
could increase the variance by two without compromising the renement strategy. Together
with the choice of basis function, this allows us to predene the variance of points according
to the preset threshold and avoid an on-the-y optimisation of the SG, which makes the use
uncomplicated. All in all, the threshold/accuracy 𝜖 is the single point of control for the sparse
gird construction as it controls the renement strategy as well as the accuracy of the SG
points.
During our studies, we also identied some limitations of the SG approach. Next to the
common diculties, like choosing the proper basis function for eective construction of the
surrogate model, we dealt with early termination problems and quasi-discontinuous function.
If the initial SG is too coarse and is not able to approximate important local characteristics the
renement strategy terminates too early in the renement procedure. This can be avoided
with some coarse inexpensive precalculation that gives a rough qualitative approximation as
a base for the SG or with a very accurate initial SG construction. In this case, we mean an
initial SG with a limited maximum renement level but with a very low threshold. Therefore
we avoid a very dense sparse grid but include the smallest variation in the evaluation of

140



points. Based on this initial grid, we can then run the SG method for higher renement levels
but with a much reduced risk to overlook important areas of the domain. Combining the
preprocessing and the adaptive sparse grid would make it even suitable for high-dimensional
complex kinetic models, such as kinetic Monte Carlo (kMC) models [53].
Methods like a coordinate transformation prior to the sparse grid approach can eectively
tackle the early determination. Estimating the variance with random data points of poor
accuracy can identify the areas of high variances and areas that can be excluded a priori.
Transforming the coordinates of the SG toward the high variance dimensions will increase
the performance of the SG. Similar methods have already been established for least-squares
algorithms for high-dimensional problems [161]. Especially for complex kinetic models as
the CO-oxidation model in 5.1, this can be very benecial to further understanding on the
microscopic level.
Furthermore, the results of the CO oxidation model for the Multilevel Adaptive Sparse
Grid (MLASG) indicated the problems with discontinuous functions. Some of these functions
can be suitable for the sparse grid with a coordinate transformation. However, it often in-
cludes a major amount of precalculation or cannot be eectively approximated in a practical
mesh-spacing.
This work shows the potential of the presented methods for various applications in the future.
Regarding the GSA, we can see the advantage of a surrogate model over other methods, par-
ticularly for kMC-models. An accurately constructed surrogate model is easier and cheaper
to evaluate, especially when it comes to gradient-based GSA, where for other methods, the
gradient calculation causes high computational cost because of multiple evaluations of the
underlying model. The results of the GSA for both chemical models have shown how robust
the results are against the quality of input data or the choice of model. On that basis, we can
expect that we could also apply a hierarchical approach to the SA. First, starting with very
poor and cheap input data and let the GSA dene the most important one to be calculated with
a more accurate method to limit the computational cost. This can be extended to a one-by-one
approach that only improves one parameter at a time. Therefore we could individually decide
which method is the best to improve the data and lower the computational cost even further.
Approaches like these will include a complex accuracy vs cost analysis based on dierent
quantum-mechanical approaches. This would not only mean a higher accurate rst-principles
model outcome but also an impact for the underlying electronic structure theories that can
concentrate on the important parameter and reduce the computational costs.
In reality, the worst-case scenario of uncorrelated input parameters is not true for chemical
models. The Density Functional Theory (DFT)-energies and therefore the DFT-errors are cor-
related. Functionals like the Bayesian error estimation functional takes exchange-correlation
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for dispersion interactions into account. The error correlation will be taken into account by
adapting the probability density function (PDF). However, the SA performance will not be
inuenced by that, except that the higher-order sensitivity indices will display the correlation.
In the aspect of material or catalyst screening, an eective GSA with a surrogate model
provides a method to identify the important parameters of a material class with data of very
poor accuracy data for dierent materials. This means we can easily scan an extensive pa-
rameter range of materials inexpensively. Regarding the construction of the surrogate model,
the next step would be developing a rst local and then dimensional adaptivity. Since the
kinetic data often describes dierent regimes from non-active to active, the SA can eectively
identify which parameter has the highest impact for these local regimes. This is benecial to
increasing the Turnover Frequency (TOF) in already active regimes or identifying potentially
active regimes and characterising them.
We only used the SG approach for interpolation, but potential applications are manifold. They
can also be used for a regression algorithm or Galerkin-projection for a parameter domain.,
where they have to be proven very eective for dynamic models with multiple parameters
[113, 162]. In regards to the MLASG approach, we presented only a local-adaptive renement,
but we could also extend the renement to dimension adaptivity or other renement strategies.
The critical requirement of the multilevel approach is to include all the parents of one point.
Therefore we keep the hierarchical decreasing importance structure that allows us to increase
the variance of a single evaluation. As we mentioned early, we could also construct the SG
as a minimisation problem during the renement. Instead of predening the accuracy of
the point, we minimise the computational cost on the y with every renement step. This
would also allow for other basic functions. Furthermore, the future incorporation of integer
programming approaches for an optimal distribution of the sampling eort will optimise
the computational eort. This allows testing more renement strategies and various basis
functions. The possible application of the methods expands to various real-life problems.
The next step would be to test the approach on dierent applications, e.g. from the eld
of molecular simulations, to achieve a thorough picture of the performances and possible
improvements.
At last, we want to point out the good performance of the SG method in regards to kinetic
data. Other studies have shown that Gaussian process regression is not ideal for extracting
information of kinetic data [29]. The local rapid changes are often problematic, or the under-
lying low-dimensional model causes more computational cost than necessary. The renement
strategies of the SG show a high eciency regarding the local features. Although we have
seen some quantitative uctuations for the GSA results for dierent accuracies of the SG, the
qualitative results did not change for increasing accuracy. This shows how ecient the SG
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can be even with a coarse renement level and a small number of points. Other methods, like
a random-forest tree mechanism or a spline approach, have been shown to work for kMC
data but only for a small amount of dimension or smooth models. For higher-dimensional
models it is left to be proven ecient to be an alternative for the SG[163, 164].
In the kinetic eld, a method like our approach that can control the sampling accuracy and
allows for only one threshold to dene the construction of the sparse grid, is rarely used.
This prevents higher computational costs for unnecessary production of testing points, as
can be seen in other methods, e.g. for the construction of neural networks. To consider both
aspects, the amount of points and the sampling accuracy is not very common yet. Most
studies only focus on a minimal amount of points. They do not take the sampling accuracy
into account, meaning most of the evaluations are more accurate than needed and include
a waste of computational eort. At last, we want to point out the fast convergence of the
MLASG method, although we double the variance with every renement step. All the results
show almost the same behaviour as the non-multilevel adaptive Sparse Grids and show a
good conversion rate, even for a very complex model like the CO oxidation on RuO2.
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7 Appendix

7.1 Sparse Grid

The following section displays the detailed data for the SG examples of section 3.4 for (110)-A surface
structure of the Co3O4 for the threshold of 𝜖 = 0.01. We included all dimensional cases, 2𝐷 , 4𝐷 and
8𝐷 for all four examples with the results for the DA, LA and the combined technique with dimensional
and local adaptivity. In all cases is the intrinsic dimensionality 2 but we extended the models of the 4𝐷
and 8𝐷 cases with 4 and respectivly 8 dummy dimensions to underline the eect of the dimension
adaptivity.
For the continuous and the oscillatory examples, we also included the 4𝐷 case compared to the gures

renement strategy dimension dimension-local local

2D
A2𝐷 3.85e+02 1.33e+02 1.41e+02

| |𝑢 (x) − 𝑓 (x) | |1 1.13e-01 2.36e-01 2.28e-01
|𝐼 − 𝐼𝑁 | 1.33e-02 6.42e-02 6.36e-02

4D
A4𝐷 3.89e+02 1.37e+02 3.53e+02

| |𝑢 (x) − 𝑓 (x) | |1 1.13e-01 2.34e-01 2.26e-01
|𝐼 − 𝐼𝑁 | 1.33e-02 6.42e-02 6.36e-02

8D
A8𝐷 3.97e+02 1.45e+02 7.77e+02

| |𝑢 (x) − 𝑓 (x) | |1 1.13e-01 2.34e-01 2.26e-01
|𝐼 − 𝐼𝑁 | 1.33e-02 6.42e-02 6.36e-02

Table 7.1: Results for the nal sparse grid, its 𝐿1-norm of the interpolation error an quadrature error
for the kinetic model function.

3.15 and 3.17 to underline the strong eect of the dimension adaptivity for the dummy dimension.
Table 7.3 and table 7.4 show in case of the DA that for the increasing dimensionality only points of the
initial grid are added, resulting in 4 and 12 more points for 4𝐷 and 8𝐷 compared to the 2𝐷 example.

7.2 Oxygen Evolution Model

Based on the convergence of the sparse grid results, we expect similar results for the TSI of the oxygen
evolution model. Figure 7.1 shows the TSI results for the three cases of overpotential [ for three
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7 Appendix

renement strategy dimension dimension-local local

2D
A2𝐷 2.25e+02 5.00e+01 5.80e+01

| |𝑢 (x) − 𝑓 (x) | |1 9.06e-03 1.07e-02 7.73e-03
|𝐼 − 𝐼𝑁 | 4.03e-03 5.50e-03 2.78e-03

4D
A4𝐷 2.29e+02 5.40e+01 1.34e+02

| |𝑢 (x) − 𝑓 (x) | |1 9.01e-03 1.07e-02 7.88e-03
|𝐼 − 𝐼𝑁 | 4.03e-03 5.50e-03 2.78e-03

8D
A8𝐷 2.37e+02 6.20e+01 2.86e+02

| |𝑢 (x) − 𝑓 (x) | |1 9.01e-03 1.07e-02 7.87e-03
|𝐼 − 𝐼𝑁 | 4.03e-03 5.50e-03 2.78e-03

Table 7.2: Results for the nal sparse grid, its 𝐿1-norm of the interpolation error an quadrature error
for the sigmoid function

dierent tolerances, tol = 0.1 (dark blue), tol = 0.01 (green) and tol = 0.001 (orange). Already at the
smallest threshold of tol = 0.1, the important parameters are properly identied. The variations caused
by lowering the tolerances are minimal and do not change signicantly after tol = 0.001. Furthermore,
no variations are visibly for the identied parameters. Although the importance may vary slightly, the
important underlying parameters are already identied with a very coarse sparse grid.
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7.2 Oxygen Evolution Model

renement strategy dimension dimension-local local

2D
A2𝐷 2.10e+01 1.70e+01 2.70e+01

| |𝑢 (x) − 𝑓 (x) | |1 4.96e-02 5.01e-02 3.02e-02
|𝐼 − 𝐼𝑁 | 8.83e-03 1.35e-02 2.11e-02

4D
A4𝐷 2.50e+01 2.10e+01 6.30e+01

| |𝑢 (x) − 𝑓 (x) | |1 4.96e-02 5.01e-02 3.01e-02
|𝐼 − 𝐼𝑁 | 8.83e-03 1.35e-02 2.11e-02

8D
A8𝐷 3.30e+01 2.90e+01 1.35e+02

| |𝑢 (x) − 𝑓 (x) | |1 4.96e-02 5.01e-02 3.01e-02
|𝐼 − 𝐼𝑁 | 8.83e-03 1.35e-02 2.11e-02

Table 7.3: Results for the nal sparse grid, its 𝐿1-norm of the interpolation error an quadrature error
for the continuous function

renement strategy dimension dimension-local local

2D
A2𝐷 8.10e+01 7.30e+01 8.90e+01

| |𝑢 (x) − 𝑓 (x) | |1 4.07e-02 5.25e-02 4.05e-02
|𝐼 − 𝐼𝑁 | 2.13e-03 6.86e-03 6.91e-03

4D
A4𝐷 8.50e+01 7.70e+01 2.37e+02

| |𝑢 (x) − 𝑓 (x) | |1 4.07e-02 5.25e-02 4.045e-02
|𝐼 − 𝐼𝑁 | 2.13e-03 6.86e-03 6.91e-03

8D
A8𝐷 9.30e+01 8.50e+01 5.33e+02

| |𝑢 (x) − 𝑓 (x) | |1 4.07e-02 5.25e-02 4.04e-02
|𝐼 − 𝐼𝑁 | 2.13e-03 6.86e-03 6.91e-03

Table 7.4: Results for the nal sparse grid, its 𝐿1-norm of the interpolation error an quadrature error
for the oscillatory function
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Figure 7.1: Covergence plot of the TSI for the three dierent overpotentials [ ∈ {0.4, 0.7, 1.0} V. We
display the global sensitivity indices 𝑆T,𝑖 for the 20 input parameters for the (110)-A structure of the
oxygen evolution reaction. The results are shown for three decreasing tolereances 𝜖 = [0.1, 0.01, 0.001]
of the sparse grid construction. The gray-shaded elds describe intermediate states that are not
considered for a reaction in the model. We present the sensitivities of log10(TOF × 𝑠) with respect to
the errors in Δ𝐸int,𝑖 and Δ𝐸act,𝑖 .
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7.3 Multilevel refinement

This chapter introduces three additional examples for multilevel renement that can be of interest for
chemical data. First we analyse the sigmoid function (Eq. (7.1)) that we also used as an example for
the sparse grid renement in Sec. 3.4. In that section, we explained why this function is useful for
chemical data as it has the same characteristics as the coverage behaviour of one species. Here, we
just increase the outer dimensionality to 𝐷 = 4.
The second example is the sharper peak which is a sharper version of the continuous peak, introduced
by Genz [1]. As we already explained, the adaptive SG with piecewise linear functions is not eective
for functions with no locally restricted features. We modied the original example to a stronger peak.
The same basic structure as the oscillatory case (Eq. (5.27)) of section 5.6 has the cosinus kink
function (Eq. (7.3)), including an edge caused by the absolute value function. This characteristic with
locally sharp edges and features are expected to prot from the local-adaptive sparse grid approach.
Furthermore, we decrease the intrinsic dimensionality to 2, so the important dimensions are quartered.
With this, we shape the general oscillatory function so that the MLASG method would be favourable
and compare the results to the original, whether the multilevel impact is stronger. Similar to the
previous example we test three dierent noises 𝜎 = [1, 0.1, 0.001].

sigmoid

𝑓sig(x) = 1

1 + 𝑒 (𝑥1−0.3) ·100 · 1

1 + 𝑒 (−𝑥2−0.3) ·100 𝐷 = 4 (7.1)

sharper peak

𝑓peak(x) = exp(−𝑎𝑖 ∗ ||x| |1) 𝑎𝑖 = 30.0 ;𝐷 = 6 (7.2)

cosinus kink

𝑓cos kink(x) =
�����cos

(
2∑︁
𝑖

𝑎𝑖 (𝑥𝑖 + 0.5) + 𝜋
)����� 𝑎𝑖 = 4.0 ;𝐷 = 8 (7.3)

Figure 7.2 displays the performance of the two adaptive approaches for the 𝐿1-norm of the interpolation
error and the quadrature error regarding the NoP, including the CPU savings using the multilevel
approach compared to the standard ASG.
None of the examples shows a signicant dierence between the results of the ASG and the MLASG
for the 𝐿1-norm of the interpolation error. Only for the sharper peak and the higher noises, both
renement methods show deviations for coarser approximations that vanish for increasing accuracy.
Overall, the approximation for this function is not as eective as for the other examples. For the
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Figure 7.2: Results of ASG( ) and MLASG ( ) for 𝐿1-norm of the interpolation error (upper
panel) and the quadrature error (lower panel) for the three functions 𝑓sig, 𝑓peak, 𝑓cos kink. Displayed are
three dierent noises 𝜎 = [1, 0.1, 0.01] and the CPU savings for the MLASG compared to the ASG
( ).
Upper row : Performance for the function 𝑓osc in 𝐷 = 2, which is a classical example for quadrature
calculations.
Middle row : Performance for the function 𝑓osc dec in 𝐷 = 14 with a decreasing hierarchy of dimensions.
Lower row : Performance for the function 𝑓cos kink in 𝐷 = 8 with a intrinsic dimensionality of two.
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major amount of the renement, the methods show no decreasing trend for the error. At already very
high NoP the curves start to decrease with a slope of lower than 0.5, which is very small compared
to the other examples whose slope is > 1. Thus the adaptive SG methods do not provide a sucient
convergence. Regarding the CPU -savings, the MLASG can save up to > 90% computational cost for
all cases, compared to the normal adaptive method. Considering the 𝜎 , major savings can be achieved
with very coarse grids when the noise is high.
The 𝑓cos kink example is favourable for an adaptive approach since 6 of the dimensions are dummy
dimensions that can be excluded regarding the renement. The included articial edge of the function
gives a good local feature for the ASG and MLASG. The lower row of the 𝐿1-norm in gure 7.2 shows
similar results again, except for a small constant deviation for the MLASG towards a higher NoP. The
MLASG needs a small number of points more than the ASG to reach the same accuracy, but the CPU
savings of almost a 100% illustrates the impact of the multilevel approach for the computational cost.
So even though the MLASG needs more points, it can save most of the CPU-eort of the ASG.
For the quadrature error, the results show more uctuations but also similar trends as before. We have
a very slow convergence of both methods for the sharper peak, which is in line with the interpolation
error results. We see an even stronger decrease for the other two results than for the 𝐿1-norm without a
strong deviation between both methods. In the case of the 𝑓cos kink, both methods draw a similar picture
to the examples before. The ASG and MLASG results show a decreasing trend with smaller uctuations
for a smaller noise and greater uctuations for increasing noise. All in all, both methods manage to
increase the interpolation’s accuracy, with the MLASG saving up to 92% of the computational cost.
Overall the results show no negative impact of the multilevel approach. On the contrary, we can
already reduce the computational cost for the coarse sparse grid without challenging the interpolation
accuracy of the integral.

7.4 Multileveladrature

The main work is concentrating on the case to have a surrogate model for further analysis like a GSA.
If we would be only interested in the quadrature, there are alternatives to the SG approach. Especially
MC or multilevel- MC methods are very ecient to approximate the quadrature. However, those are
not applicable for, e.g. function approximation and therefore not a real alternative to our problem. Due
to its high eciency toward the quadrature, we want to introduce the general idea of a MLQ.
Assuming we would approximate the integral (Eq. (3.2)) of function 𝑓

𝐼 =
∫
Ω
𝑓 (𝑥) 𝑑𝑥𝐷 (7.4)
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with some kind of numerical quadrature

𝐼 = lim
𝑁→∞

𝐼𝑁 with 𝐼𝑁 =
𝑁∑︁
𝑖=1

𝑤 𝑖 𝑓 (𝑥𝑖), (7.5)

we would have a sum of𝑤 𝑖 weighted function evaluation 𝑓 (𝑥𝑖) at the quadrature nodes {𝑥𝑖}𝑁𝑖=1over 𝑁
samples. With the classical Multilevel (ML) approach we decompose the intergal 𝐼 using a telescoping
sum

𝐼𝑅 = 𝐼0 +
𝑅∑︁

𝑟>0

𝐼𝑟 − 𝐼𝑟−1 = 𝐼0 +
𝑟∑︁

𝑟>0

Δ𝐼𝑟 with 𝐼𝑟 =
∫
Ω
𝑓 𝑟 (𝑥) 𝑑𝑥𝐷 (7.6)

where 𝑓 𝑟 (x) is the approximation of 𝑓 (𝑥) on the level 𝑟 . For a parametric MC model, the 𝑟 correlates
with the accuracy of the evaluation, so the number of samples𝑀𝑟 per integration node drawn from
the model. The Integrals 𝐼0 and Δ𝐼𝑟 are numerically solved by independent quadrature rules. 𝑓𝑟
are generated from a nite number of pointwise independent Monte Carlo samples and therefore
they are discontinuous at every point in Ω. However, the samples are drawn independently, i.e. the
errors should be statistically independent. Then, Δ𝐼𝑟 equals zero, Δ𝐼𝑟 = 0, when employing suitable
quadrature rules in Eq. (7.5), whose properties we will specify below. Thereby, the method equals a
single numerical quadrature with drawing only a single MC sample per node.

𝐼 = 𝐼𝑟=0 (7.7)

In order to proof under which conditions the above statement holds true, we consider the numerical
quadrature and the limit of innitely many quadrature nodes. In the considered multilevel setting for
MC models, the true function values at the nodes have to be replaced with the MC estimates 𝑌𝑥𝑖 ,𝑀 ,
(compare section 5.1), based on𝑀 Samples per node. We then approximate the integral 𝐼 using

𝐼 ≈ 𝐼𝑁 ≈ 𝐼𝑁 =
𝑁∑︁
𝑖=0

𝑤 𝑖 𝑌𝑥𝑖 ,𝑀 . (7.8)

with E(𝑌𝑥𝑖 ,𝑀 ) = 𝑓 (𝑥𝑖) and Var(𝑌𝑥𝑖 ,𝑀 ) ≤ 𝐶∗𝑀−1.
By the linearity of Eq. (7.8) the expected value of 𝐼𝑁 equals the numerical quadrature 𝐼𝑁 with the exact
function values, E(𝐼𝑁 ) = 𝐼𝑁 [2]. For the mean square error for the estimator we arrive at

E(𝐼 − 𝐼𝑁 )2 =
= E( | (𝐼 − 𝐼𝑁 ) − (𝐼𝑁 − 𝐼𝑁 ) |2)
= E( |𝐼 − 𝐼𝑁 |2) − 2E((𝐼 − 𝐼𝑁 ) (𝐼𝑁 − 𝐼𝑁 )) + E((𝐼𝑁 − 𝐼𝑁 )2)
= |𝐼 − 𝐼𝑁 |2 + (𝐼 − 𝐼𝑁 )E(𝐼𝑁 − 𝐼𝑁 ) + Var(𝐼𝑁 )
= |𝐼 − 𝐼𝑁 |2 + Var(𝐼𝑁 )
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Figure 7.3: The sum of the squared quadrature weights for dim=[1, 2, 3, 4] shows the convergence for
increasing dimensionality over a common denominator, the renement level of the FSG.The actual
NoP for grid with renement level increase with the dimensionality.

where, for the last equality, we employed that E(𝐼𝑁 ) = 𝐼𝑁 . The rst term after the last equality is
simply the quadrature error if we would use the exact function values. By Eq. (7.5), this converges to
zero for 𝑁 → ∞. What remains is to show under which conditions 𝑙𝑖𝑚𝑁→∞Var(𝐼𝑁 ) = 0. Since the
samples are drawn independently, the variance of the integral can be estimated by

Var(𝐼𝑁 ) =
𝑁∑︁
𝑖=1

𝑤2
𝑖 Var(𝑌𝑥𝑖 ,𝑀 ) ≤ 𝐶∗

𝑁∑︁
𝑖=1

𝑤2
𝑖 . (7.9)

The variance Var(𝐼𝑁 ) converges to zero for 𝑁 → ∞ , when the sum of the squared quadrature weights
tends to zero. In this case, our approximate 𝐼𝑁 converges against the true integral 𝐼 irrespectively of the
choice of the number samples𝑀 per node. In this sense, we can say 𝐼𝑟 = 𝐼𝑟 ′ ∀𝑟, 𝑟 ′ and hence Δ𝐼𝑟 = 0

and Eq (7.7) holds. This is the case for equal-weight quadrature rules (e.g. QMC), where the variance
Var(𝐼𝑁 ) tends to zero asO(𝑁 −1 (which is the fastest rate, which one can expect for a MC model). Thus
Multilevel quadrature boils down to a straightforward approach in the considered parametric Monte
Carlo models. One draws a single sample per node and estimates the integral using this data.
We want to emphasise that this procedure can not be employed using arbitrary quadrature rules. For
rules, where the sum of the squares of the quadrature weights does not converge to zero for 𝑁 → ∞,
the variance will also not converge to zero. Even if it converges, this might be at a prolonged rate if
the sum of the squared weights tends only slowly to zero. This can be the case for the SG weights.
Figure 7.3 shows the behaviour of the squared weights for dierent dimensions for a FSG, and as can
be seen, the convergence becomes slower with increasing dimension. The behaviour is displayed over
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the levels to have a common comparison between the dimension. What needs to be considered is the
dierence in the number of points. While the grid of 𝑙 = 10 for 𝑑𝑖𝑚 = 1 only includes 1025 points the
grid for same level for 𝑑𝑖𝑚 = 4 includes 113409 points. This means that even though the method only
uses one sample per point, the number of points can be increasingly high till the integral converges.
Applying now an adaptive grid renement, ASG, would be of no substantial help because I) it will
not alter the weights signicantly, and II) the MC noise in the samples would prohibit a reasonably
accurate estimation of the surplus resulting in random renements. The large random noise of a single
point would prohibit a reasonably accurate estimation of the surplus.
For a better understanding of the MLQ with QMC we include an example case for the quadrature error
and compare the performance of the MLASG and the MLQ. As an example we choose the cos kink
function, introduced in section 7.3, except we will not 6 dummy dimensions just 2

cosinus kink in 4D

𝑓cos kink(x) =
�����cos

(
2∑︁
𝑖

𝑎𝑖 (𝑥𝑖 + 0.5) + 𝜋
)����� 𝑎𝑖 = 4.0 ;𝐷 = 4. (7.10)

Figure 7.4 shows the results for both methods for the cos kink in 4D- function for 3 dierent noises
𝜎0 = [0.01, 0.1, 1]. As we mentioned before we draw only one sample per node for the MLQ (QMC)
method, so that we choose the all drawn sample𝑀all, which will equal the number of QMC-points for
the MLQ, as an indicator for the CPU-eort and display it on the x-axis. For the MLASG method,𝑀all

equals the sum of all drawn samples to reach an accuracy of every point of 𝜖 = 𝜎0 ∗ 2 |l |1 . As it can be
seen in the right pannel of gure 7.4, the MLASG performs worse than the MLQ(QMC) even for the
smallest noise. For coarser accuracy the results are similar but with further renement the MLQ is
abel to keep a higher decreasing slope compared to the MLASG. Therefore, the MLQ needs around 3
orders of magnitude less𝑀 samples to arrive at the same accuracy for the quadrature error. Similar
results are displayed for the higher noises in the middel pannel (𝜎 = 0.1) and the left pannel (𝜎 = 1)
in gure 7.4. The MLQ is able to reach a high accuracy with at least 4 orders of magnitude less CPU-
eort than the MLASG with increasing uctuations toward higher noises.
All in all, the MLQ outperforms the MLASG for approximating the quadrature and is superior for this
application. Nevertheless, the limited functionality of the MLQ is a signicant disadvantage to MLASG.
If we want to apply this to the GSA, we would have the problem that the errors are not cancelled
out for the Sensitivity Index (SI), so that we need accurate values for the nodes. Furthermore, the
GSA approximations are far more expensive due to the multiple integral approximations. So if the
application is restricted to the expected value/ quadrature, the MLQ is a better solution than MLASG.
For more diverse applications, the surrogate model gives more exibility.
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Figure 7.4: The quadrature error |𝐼 − 𝐼𝑁 | results for the cosinus kink in 4D- function for the MLQ
(QMC) and the MLASG methods for dierent tolerances 𝜖 . Displayed are the results of three dierent
initial noise cases 𝜎0 = [1, 0.1, 0.01] over the sum of drawn samples𝑀all.
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Deutsche Zusammenfassung
Auf dem Gebiet der heterogenen Katalyse hat sich die First-Principle-basierte mikrokinetische Model-
lierung als wesentliches Werkzeug bewährt, um ein tieferes Verständnis der mikroskopischen Wech-
selwirkung zwischen Reaktionen zu ermöglichen. Leider basieren die katalytischen Modelle auf
Informationen aus der elektronischen Strukturtheorie (z. B. Dichtefunktionaltheorie), die aufgrund in-
trinsischer Näherungen einen beträchtlichen Fehler enthalten. In dieser Arbeit werden wir analysieren
wie signikant die Auswirkungen dieser Fehler auf das Modellergebnis sein können. Dazu erklären
wir zunächst, wie diese Fehler in ein Modellergebnis, wie z. B. Turnover-Frequency (TOF), übertragen
werden. Des Weiteren quantizieren wir die Auswirkung einzelner Fehler mittels einer lokalen und
globalen Sensitivitätsanalyse und erklären die Unterschiede beider Methoden.
Der globale Sensitivitätsansatz erfordert das Lösen hochdimensionaler Integrale bzw. ein akkurates
Ersatzmodel zum Auswerten, wofür wir einen lokalen und dimensions-adaptiven Sparse Grid-Ansatz
benutzen. Sparse Grids (SG) haben sich für mitteldimensionale Probleme als sehr nützlich erwiesen,
da ihre Adaptivitätsfunktion ein genaues Ersatzmodell mit einer kleinen Anzahl von Punkten er-
möglicht. Trotz der hohen Dimensionalität der Modelle wird das Ergebnis meist von einem Bruchteil
der Modellparameter dominiert, was eine hohe Verfeinerung in nur einem Bruchteil der Dimensionen
erfordert (dimensionsadaptiv). Darüber hinaus zeigen die kinetischen Daten Charakteristiken scharfer
Übergänge zwischen "nicht aktiven" und "aktiven" Bereichen, die eine höhere Verfeinerung (lokal-
adaptiv) erfordern. Die Ezienz des adaptiven SG wird an verschiedenen Testmodellen und einem
realistischen First-Principle-Modell, einschließlich der Sensitivitätsanalyse, getestet. Die Ergebnisse
zeigen, dass für katalytische Modelle eine lokale Sensitivitätsanalyse auf Basis lokaler Ableitungen
nur begrenzte Informationen liefert. Dagegen kann der globale Ansatz die wichtigen Parameter identi-
zieren und ermöglicht es, Informationen aus komplexeren Modellen detaillierter zu extrahieren.
Der Sparse Grid-Ansatz reduziert die Gesamtzahl an Punkten, aber was ist, wenn die Auswertung
eines Punktes schon sehr teuer ist? Deswegen konzentriert sich der zweite Teil dieser Arbeit auf die
Lösung hochdimensionaler Integrale für Modelle, deren Auswertungen nur implizit, z.B. durch ein
Monte-Carlo-Modell, gegeben ist. Wir erweitern die SG-Methode um einen mehrstugen Ansatz,
der die Kosten senken soll. Im Gegensatz zu bestehenden Ansätzen werden wir nicht die Teleskop-
summe verwenden, sondern die intrinsisch gegebene hierarchische Struktur des SG ausnutzen. Jede
Funktionsauswertung enthält einen Fehler, aufgrund einer begrenzten Probenmenge, aber nicht alle
SG-Punkte benötigen die gleiche Genauigkeit. Deswegen können wir bei jedem Verfeinerungsschritt
die Varianz der Punkte verdoppeln und somit die Menge der gezogenen Stichproben halbieren und
die Kosten minimieren. Wir demonstrieren die Methodik an verschiedenen Testmodellen und einem
realistischen kinetischen Monte-Carlo-Modell. Dabei vergleichen wir den reinen adaptiven Sparse Grid
(ASG) Ansatz mit dem Multilevel Adaptive Sparse Grid (MLASG). Die Ergebnisse zeigen, dass wir mit
der mehrstugen Erweiterung im Vergleich zur ASG, bis zu zwei Größenordnungen an CPU (Central
Processing Unit)- Zeit einsparen können, ohne die Genauigkeit des Ersatzmodells zu beeinussen.
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