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Identifying optimal cycles in quantum thermal machines with
reinforcement-learning
Paolo A. Erdman 1✉ and Frank Noé1,2,3,4✉

The optimal control of open quantum systems is a challenging task but has a key role in improving existing quantum information
processing technologies. We introduce a general framework based on reinforcement learning to discover optimal thermodynamic
cycles that maximize the power of out-of-equilibrium quantum heat engines and refrigerators. We apply our method, based on the
soft actor-critic algorithm, to three systems: a benchmark two-level system heat engine, where we find the optimal known cycle; an
experimentally realistic refrigerator based on a superconducting qubit that generates coherence, where we find a non-intuitive
control sequence that outperforms previous cycles proposed in literature; a heat engine based on a quantum harmonic oscillator,
where we find a cycle with an elaborate structure that outperforms the optimized Otto cycle. We then evaluate the corresponding
efficiency at maximum power.
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INTRODUCTION
Thermal machines convert between thermal and mechanical
energy in a controlled manner. Examples include heat engines
such as steam and Otto engines, which extract useful work from a
temperature difference, and refrigerators, that extract heat from a
cold bath. Quantum thermal machines (QTMs) perform thermo-
dynamic cycles via nanoscale systems that can be as small as
single particles or two-level quantum systems (qubits). Quantum
heat engines and refrigerators could find applications in heat
management at the nanoscale1, or for on-chip active cooling2,3.
Quantum thermodynamics is a rapidly growing research area

that aims at the understanding, design, and optimization of
QTMs4. An open fundamental question is whether quantum
effects can boost the performance of QTMs2,4,5. On the other
hand, understanding how to optimally control the non-
equilibrium dynamics of open quantum systems is a complicated
task, which can improve existing quantum information processing
technologies.
Nowadays it is possible to construct devices that behave as

quantum systems with few degrees of freedom in platforms such
as trapped ions6,7, electron spins associated with nitrogen-vacancy
centers8, circuit quantum electrodynamics9, and quantum dots10,
and to control their state through time-dependent controls, such
as electro-magnetic pulses or gate voltages. The heat flow across
these systems has been measured11–14, and recent experimental
realizations of QTMs have been reported15–22.
While the laws of thermodynamics pose universal constraints

on the efficiency of thermal machines, regardless of their classical
or quantum nature, they do not pose any restriction on the
dynamics of the system, thus on the speed at which it operates.
Therefore, it is crucial to study the power to discover the potential
benefits of using QTMs. However, optimizing the power is a
challenging task: having to operate in finite-time, the state can be
driven far from equilibrium, requiring us to model the full
dynamics of the quantum system. Furthermore, strategies are
needed to identify optimally controlled cycles.

Power maximization of QTMs4,23 is generally carried out either in
specific regimes or assuming a priori a specific shape of the control
cycle. Within the slow-driving24–30 and fast-driving regime, general
strategies have been recently derived31–33. Beyond these regimes,
common strategies consider specific cycle structures34–39, such as
the celebrated Otto cycle40–55, and optimize specific aspects of the
cycle. Shortcuts to adiabaticity56–63, and variational optimization
strategies have also been employed64–66. The impact of quantum
effects on the performance of QTMs is not straightforward. Several
studies have found quantum advantages50,51,55,67–69, while
coherence-induced power losses were proven in linear response
for small driving amplitudes70 and in specific models42,48,54,64,71.
In general, there is no guarantee that typical regimes and

specific cycles considered in literature are optimal for power
maximization. Overcoming this limitation may allow us to unlock
quantum advantages in power extraction. This calls for the
development of powerful search strategies to tackle power-
maximization without relying on specific control sequences or
assumptions.
In this manuscript, we propose a Reinforcement Learning (RL)72

based approach to optimize the performance of QTMs. Specifi-
cally, we use a generalization of soft actor-critic (SAC) methods73,74

for combined discrete and continuous actions, introduced in the
context of robotics and video games75,76, to discover thermo-
dynamic cycles that deliver maximum power. RL has received a
great deal of attention for its success at mastering complicated
tasks beyond the human level such as playing video games77,78,
the board-game Go79, and for robotic applications80. RL has been
recently used for accurate quantum state preparation81–84,
outperforming previous state-of-the-art methods85,86, to minimize
entropy production in closed quantum systems87, for fault-
tolerant quantum computation88, and machine learning methods
have been used for quantum thermometry89.
Our RL-based scheme for power maximization of QTMs is

generic in that it makes no assumptions on the shape of the
control cycle. Rather, it starts from scratch, allowing the RL agent
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to arbitrarily couple or decouple the quantum system from any
bath, and to arbitrarily manipulate the control parameter. We
apply our approach to three paradigmatic systems that have been
well studied in literature: (i) a benchmark heat engine based on a
two-level system, where our approach automatically finds the
known maximum power cycle90. (ii) an experimentally realistic
refrigerator based on a superconducting qubit coupled to
resonant circuits48 which generates coherence during its cycle.
Our RL approach discovers a new and non-intuitive cycle that
outperforms previous proposals48,54,62. (iii) a heat engine based on
a harmonic oscillator42, where we find a cycle with an elaborate
structure that shares qualitative similarities with the Otto cycle,
but which performs better thanks to additional features. We
complement the study of these systems by analyzing the
corresponding efficiency at maximum power.
The complexity and structure of these cycles demonstrate both

the ability of the RL agent to choose actions based on a long-term
return and the complicated non-analytic nature of optimal cycles.
Our results also show that the celebrated Otto cycle is not in
general optimal for power maximization. Furthermore, we show
that the detrimental effect of coherence on the performance of
QTMs71, specifically observed both in the superconducting qubit
and harmonic oscillator cases, can be mitigated thanks to carefully
crafted cycles.

RESULTS
Quantum thermal machines
We describe a QTM by a quantum system (QS), acting as a working
medium, that can exchange heat with a hot (H) or cold (C) thermal
bath characterized by inverse temperatures βH < βC (Fig. 1). We
can control the evolution of the QS and exchange work with it
through a set of time-dependent control parameters u(t). In
classical thermal machines, the working medium could be a gas in
a cylinder, and u(t) could be the time-dependent position of the
piston which influences the state of the gas and allows us to
exchange energy. In a QTM, the working medium is a quantum
system whose Hamiltonian can be parametrized by the control
variables u(t)91.
Here we study finite-time thermodynamics of QTMs within the

Markovian regime using the commonly employed master
equation92–95. This approach describes the time-evolution of the
reduced density matrix of the QS, ρ̂ðtÞ, under the assumption of
weak system-bath interaction. Setting ℏ= 1, the master equation
reads

∂

∂t
ρ̂ðtÞ ¼ �i Ĥ½uðtÞ�; ρ̂ðtÞ� �þX

α

DðαÞuðtÞ;dðtÞ½ρ̂ðtÞ�; (1)

where Ĥ½uðtÞ� is the Hamiltonian of the QS which depends
explicitly on time via the control parameters u(t), [⋅ , ⋅] denotes the

commutator, and DðαÞuðtÞ;dðtÞ½�� describes the effect of the coupling
between the QS and bath α= H, C. d(t)= {Hot, Cold, None} is an
additional discrete control parameter which allows us to choose
which bath (if any) is coupled to the QS. We compute the
extracted power P(t) and the instantaneous heat flux Jα(t) flowing
out of bath α in the standard way23 which guarantees the validity
of the first law of thermodynamics ∂U(t)/(∂t)=− P(t)+ ∑αJα(t), the
internal energy being defined as U ¼ Tr½ρ̂ðtÞĤ½uðtÞ�� (see “Meth-
ods” for details). The two main thermal machines we consider are
the heat engine and the refrigerator. A heat engine is used to
extract work, while a refrigerator is used to extract heat from the
cold bath. Therefore, we define

P½E�ðtÞ �
X
α¼H;C

JαðtÞ; P½R�ðtÞ � JCðtÞ; (2)

respectively as the instantaneous power of a heat engine E (since
the total heat extracted coincides with the work if the internal
energy difference is zero), and as the instantaneous cooling power
of a refrigerator R.
Our goal is to determine the optimal driving, i.e. to determine

the functions u(t) and d(t) that maximize the average power in the
long run. We thus define the following exponentially weighted
average of the power

hP½ν�i ¼ γ

Z 1

0
e�γtP½ν�ðtÞ dt; (3)

where γ determines the timescale over which we average. While
we do not enforce any periodic structure on the controls u(t) and
d(t), we expect the RL agent to automatically discover the
optimality of periodically driving the QTM and the corresponding
driving period. The intuition is the following: in the short term, we
can maximize the power by taking advantage of the state
preparation of the system, for example by extracting all the free
energy from the system. However, the amount of work that can
be extracted this way is bounded, while the work that can be
extracted through cycles scales with the number of performed
cycles, i.e. with time. Therefore in the long run, i.e. for small
enough γ, we expect the maximization of Eq. (3) to naturally
discover thermodynamic cycles and to prevent the exploitation of
transient effects. We confirm this hypothesis in all QTMs
studied below.

Reinforcement learning for quantum thermal machines
We formulate the power optimization problem as a discounted,
continuing RL task. As we will demonstrate, this approach is able
to learn far-from-equilibrium finite-time thermodynamic cycles
with high performance.
RL is a general framework that tackles optimization problems

formulated in the following way. As schematically shown in Fig. 2,
a computer agent (blue box) must learn to master some tasks by
repeated interactions with some environment (gray box). Dis-
cretizing time in time steps Δt, we denote with si 2 S the state of
the environment at time t= iΔt, where S is the state space. The
agent must choose an action ai 2 A to perform on the
environment based on its current policy (lower orange arrow). A
is the action space, and the policy π(ai∣si) is a function that
describes the probability distribution of choosing action ai, given
that the environment is in state si. The environment then evolves
its state according to the chosen action and provides feedback
back to the agent by returning the updated state si+1 and a scalar
quantity ri+1 known as the reward (upper orange arrow). This
procedure is reiterated for a large number of time steps.
At every time step ti, the aim of the agent is to use the feedback

it receives from the environment to learn an optimal policy that
maximizes, in expectation, the return, i.e. the total future reward it

Quantum
System

( )

( )

( )

…
Fig. 1 Schematic representation of a quantum thermal machine.
A hot (cold) bath at inverse temperature βH (βC), represented by the
red (blue) box, can be coupled to the quantum system QS, gray
circle, enabling a heat flux JH(t) (JC(t)). The quantum system is
controlled by an external agent through a set of control parameters
u(t), which allow power exchange P(t), and through a discrete
control d(t)= {Hot, Cold, None} which determines which bath (if any)
is coupled to the QS.
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receives from the environment, defined as

riþ1 þ γriþ2 þ γ2riþ3 þ � � � ¼
X1
k¼0

γkriþ1þk ; (4)

where γ ∈ [0, 1) is the discount factor which determines how much
we are interested in future rewards, as opposed to immediate
rewards.
We now turn to the power maximization problem. Discretizing

time in steps Δt, we search for protocols u(t) and d(t) that are
constant during each time step. As shown in Fig. 2, we choose as
action space A ¼ fðu; dÞ j u 2 U; d 2 fHot;Cold;Nonegg, where
U is the continuous set of accessible controls, which can account
for any experimental limitation, and d is the discrete action,
motivated by typical thermodynamic cycles, which determines
which bath (if any) is coupled to the QS. We choose the physical
quantum states of the QS and the last chosen action as state
space, i.e., S ¼ fðρ̂;uÞ j ρ̂ 2 D;u 2 Ug, where D ¼ fρ̂ j ρ̂ �
0; Tr½ρ̂� ¼ 1g is the space of density matrices. Crucially, we choose
as a reward

riþ1 ¼ hP½ν�iΔt �
1
Δt

Z tþΔt

t
P½ν�ðτÞ dτ; (5)

which is the average power of the machine during the time
interval [t, t+ Δt]. Plugging Eq. (5) into Eq. (4), we see that the aim
of the agent is to maximize the average power 〈P[ν]〉 introduced in
Eq. (3), where γ ¼ �ln γ=Δt (see Methods for details). In the RL
notation, γ sets the timescale for the power averaging, with γ→ 1
corresponding to long-term averaging.
Our agent has no prior knowledge of quantum dynamics, nor of

thermodynamic cycles: the evolution of the state from si ¼ ρ̂ðtÞ to
siþ1 ¼ ρ̂ðt þ ΔtÞ and the computation of the rewards ri is
performed by the environment. We learn the optimal policy
employing the SAC method, which relies on learning also a value
function Q(s, a), generalized to a combination of discrete and
continuous actions73–76. In this approach, the policy function π(a∣s)
plays the role of an “actor” that chooses the actions to perform,
while the value function Q(s, a) plays the role of a “critic” that

judges the choices made by the actor, thus providing feedback to
improve the actor’s behavior. Both π(a∣s) and Q(s, a) are
parameterized using fully connected neural networks with two
hidden layers, and they are determined by minimizing the loss
functions in Eqs. (22) and (29) in Methods using the ADAM
optimization algorithm96. The gradient of the loss functions is
computed off-policy, over a batch of past experience which is
recorded and stored in a replay buffer, using backpropagation
(see Methods for details).

Case studies
In this section, we prove the validity of our RL-based approach by
applying it to three different systems, namely a heat engine based
on a two-level system, a refrigerator based on a superconducting
qubit, and a heat engine based on a quantum harmonic oscillator.
While the results presented below were obtained performing a
single training, in Methods we show that our RL approach reliably
converges to solutions with nearly the same performance across
multiple trainings.
We first benchmark our method on a two-level system for which

the optimal control cycle is known:

Ĥ½uðtÞ� ¼ E0uðtÞ
2

σ̂z; (6)

where u(t), which determines the energy gap of the two-level
system, is our single control parameter, E0 is a fixed energy scale
and σ̂z is a Pauli matrix. We consider the qubit to be coupled to
fermionic baths with a flat density of states (for example, a single-
level quantum dot tunnel-coupled to metallic leads), with
thermalization timescales fixed by the rates Γα (see Methods for
details).
Our results are shown in Fig. 3. Figure 3a shows the running

average of the power hP½E�iγðiÞ � ð1� γÞPi
k¼0 γ

kri�k , i.e. an
exponentially weighted average of the past rewards with weight
γ, as a function of the time steps. Figure 3b shows the actions
chosen by the agent, as a function of the steps, at three different
moments during training highlighted by the black dots in Fig. 3a.
The position of the segments corresponds to the chosen value of
u, while the color represents the discrete action d (see legend).
The optimal cycle learned at the end of the training is shown in
Fig. 3c. Initially, the agent has no knowledge of the system, and its
actions appear random (Fig. 3b, left), producing negative power
hP½E�iγ (Fig. 3a). As expected, by performing random actions the
agent is dissipating work into the heat baths, rather than
extracting work. With increasing time, the agent gains experience
and learns how to control the heat engine: hP½E�iγ increases, and
structure appears in the chosen actions (Fig. 3b, center, and right).
Eventually, the policy converges and hP½E�iγ saturates to a finite
positive value.
The optimal cycle for this model was derived in ref. 90, and it

corresponds to the exact structure discovered by the agent, i.e. a
square wave alternating between the hot and the cold bath as fast
as possible without spending any time disconnected from the
baths. The black dashed line in Fig. 3a shows the corresponding
power. Notably, although the frequency of the learned cycle is
limited by the choice of Δt, and although the values of u(t) found
by the agent are slightly different respect to the ones predicted by
ref. 90 (the difference is ≈ 0.05), the power it generates nearly
coincides with the upper bound. This occurs because there is a
manifold of near-optimal solutions.
We conclude the analysis of the two-level system heat engine

by computing the efficiency at maximum power (EMP), i.e. the
thermodynamic efficiency of the heat engine, defined as the ratio
between the extracted work and the input heat, while the engine
is operated at maximum power. We compare the EMP both to the
Carnot efficiency ηc= 1− βH/βC and to the Curzon-Ahlborn
efficiency ηca ¼ 1� ffiffiffiffiffiffiffiffiffiffiffiffiffi

βH=βC
p

. Despite not being a fundamental

EnvironmentComputer Agent

Ac�on:
= , d t

NN Policy 
( | )

…

Quantum
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=

State:
= + Δ ,

NN Value 
( , )

Fig. 2 Schematic representation of the learning process. A
computer agent (blue box) chooses an action ai at time step i
based on the current state si of the environment (gray box) through
the policy function π(ai∣si). The action, which encodes the control
(u(t), d(t)), is passed to the environment (lower arrow) which evolves
the quantum state si of the machine based on the action ai, and
computes the average power during the time step as a reward. The
new state si+1 and reward ri+1 are returned to the agent (upper
arrow), which uses this information to improve π(a∣s) using the soft
actor-critic algorithm, which learns also the value function Q(s, a).
Both π(a∣s) and Q(s, a) are parameterized using fully connected
neural networks (NNs). This process is reiterated until the
convergence of the policy.
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upper bound, the latter has received considerable attention in the
literature for its simplicity, for being an upper bound to the EMP in
various specific models24,28,97,98, and it has been derived by
general arguments from linear irreversible thermodynamics99.
Interestingly, we find that the optimal cycle shown in Fig. 3c
delivers a large EMP corresponding to 100% of ηca, equivalent to
59% of ηc.
We now consider a refrigerator based on an experimentally

realistic system, i.e. a superconducting qubit coupled to two
resonant circuits which behave as heat baths48. As opposed to the
previous setup, here coherence between the instantaneous
eigenstates is generated while driving the system, since
½Ĥðu1Þ; Ĥðu2Þ�≠ 0 for u1 ≠ u2. This quantum effect was found to
deter the power of this specific setup48,54,62 and of arbitrary
systems in linear response and for small driving amplitudes70.
As shown in refs. 48,54,62, the system Hamiltonian is given by

Ĥ½uðtÞ� ¼ �E0 Δσ̂x þ uðtÞσ̂z½ �; (7)

where E0 is a fixed energy scale, Δ characterizes the minimum gap
of the system, and u(t) is our control parameter. In this setup, the
coupling to the bath is fixed, and cannot be controlled. However,
the qubit is resonantly coupled to the baths at different energies.
The u-dependent coupling strength to the C (H) bath is described
by the function γ

ðCÞ
u (γðHÞu ) that, as in ref. 62, is peaked at u= 0 (u=

1/2) with a resonance width determined by the quality factor QC

(QH) (see Methods for details).
Panels (a), (b), and (c) of Fig. 4 report the results in the same

style as in Fig. 3, with the exception that all actions are black since
there is no discrete choice to make, while Fig. 4d shows the
coupling strength γ

ðCÞ
u (blue curve) and γ

ðHÞ
u (red curve) as a

function of u (on the y-axis). The parameters were chosen as in Fig.
7 of ref. 62. As previously, the agent begins with random actions in
the first steps, and the corresponding running average cooling
power hP½R�iγ is slightly negative, indicating that we are dissipating
heat into the cold bath. As the agent gains experience, hP½R�iγ

increases until it saturates to a final positive value obtained with
the cycle shown in Fig. 4c (thick lines).
Interestingly, this setup was partially optimized in ref. 62. In their

analysis, the authors fix a smoothed trapezoidal cycle u(t) (Fig. 4c,
dashed line) which was shown to outperform a sine and a
trapezoidal cycle48. They find that the cooling power is positive for
large cycle periods T, and tends to zero as T→∞. However, the
cooling power becomes negative as T→ 0 because the detri-
mental effect of the generation of coherence increases with the
speed of the cycle. As a consequence, there is an intermediate
optimal value of T. They find that 〈P[R]〉 ≈ 2.3 × 10−4 at this optimal
choice (dashed line in Fig. 4a, c). Notably, our RL agent discovers a
protocol with 〈P[R]〉 ≈ 10.8 × 10−4 using the same system para-
meters. This improvement is due to the non-intuitive additional
step visible in Fig. 4c. Indeed, both the trapezoidal and the agent’s
cycle spend time in resonance with the baths at u= 0 and u= 0.5.
However, the agent identifies also a third point, around u ≈ 0.13,
where it spends ≈1/4 of the total cycle time and where the system
is essentially decoupled from the bath, thus undergoing unitary
evolution (as can be seen by the small values of γðαÞu correspond-
ing to u ≈ 0.13 in Fig. 4d). This additional feature allows us to
roughly extract the same amount of heat per cycle, but 5 times
faster. Interestingly, we verified that the trapezoidal cycle running
at the same speed as the cycle found by the RL agent would yield
negative power. As argued in48,54,62, this power loss is attributed
to the generation of coherence during the cycle, so we can
interpret the power enhancement achieved by our cycle as
mitigation of such detrimental effects. To confirm this, we
rigorously quantify the generation of coherence in both cycles
by computing the time average of the relative entropy of
coherence100. Indeed, we find that the trapezoidal cycle operated
at the same speed as the cycle found by the RL agent generates
almost twice as much coherence (see Methods for details).
We conclude the study of the qubit-based refrigerator by

evaluating the coefficient of performance (COP) at maximum

Fig. 3 Results of training the agent on the two-level heat engine model. a Running average of the extracted power hP½E�iγ as a function of
the step during the whole training. The dashed line represents the theoretical upper bound derived in ref. 90. b Actions chosen by the agent,
represented by the value of u, as a function of step, zoomed around the three black circles in panel (a). The color represents action d, i.e. the
bath coupled to the QS. c Final cycle found by the agent as a function of time. The parameters used for training are: ΓH= ΓC= 1, βH= 1, βC=
2, U ¼ ½0:3; 1�, E0= 2.5, Δt= 0.5, and γ= 0.995.
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power, i.e. the ratio between the heat extracted from the cold
bath and the input work, while the system is operated at
maximum cooling power. We find that our cycle shown in Fig. 4c
as a thick black line delivers a COP at maximum power that is 6%
of Cc ¼ β�1C =ðβ�1H � β�1C Þ, which is Carnot’s upper bound to the
COP. While this may appear as a rather low value, we notice that
the COP at a maximum power of a two-level system coupled to
Fermionic of Bosonic baths is zero90, and that for on-chip cooling
applications, the aim is typically to maximize the cooling power
regardless of the efficiency of such a process.
At last, we consider a heat engine based on a collection of non-

interacting particles confined in a harmonic potential42. The
Hamiltonian is given by

Ĥ½uðtÞ� ¼ 1
2m

p̂2 þ 1
2
mðuðtÞw0Þ2q̂2; (8)

where m is the mass of the system, w0 is a fixed frequency, and p̂
and q̂ are the momentum and position operators. The control
parameter u(t) allows us to change the frequency of the oscillator.
As in the qubit heat engine case, we let the agent choose which
bath (if any) to couple to the oscillator. Since ½Ĥðu1Þ; Ĥðu2Þ�≠ 0 for
u1 ≠ u2, also this system exhibits a power loss at finite driving
speed42,71. The coupling to the baths, characterized by the
thermalization rates Γα, is modeled as in ref. 42 (see Methods for
details).
The solid line in Fig. 5a, b shows hP½E�iγ , as a function of the step,

for the same system parameters (chosen as in the upper panel of
Fig. 6 of ref. 42), but setting respectively U ¼ ½0:5; 1� and
U ¼ ½0:35; 1:5�. In both cases, the power is negative for small
steps, while it converges to a positive value as the agent gains
experience. The corresponding final cycles learned by the agent
are shown in Fig. 5c, d as thick lines. These cycles display a quite

elaborate structure which demonstrates the ability of the agent to
perform planning for a long-time reward. Indeed, while the system
is in contact with the cold bath, which happens roughly for 20-
time steps, energy is flowing into the bath, thus producing
negative rewards. Nonetheless, the agent discovers that this step,
required by the second law of thermodynamics, is necessary for
power extraction in the long run.
We now compare the cycle discovered by the agent to the well-

known Otto cycle often considered in literature. The authors of
ref. 42 study the power of this system by optimizing an Otto cycle,
i.e. the cycle shown in Fig. 5c, d as a dashed line. The authors then
fix the value of the control uH= 1 (uC= 0.5) while in contact with
bath H (C), and maximize the power by tuning the duration of
each of the four segments composing the cycle. The resulting
optimized Otto cycle is the one shown as a dashed line in Fig. 5c,
d, with corresponding power shown in Fig. 5a, b as a dashed line.
As we can see, even constraining the choice of u(t)∈ [uC, uH]=
[0.5, 1] to the values chosen in ref. 42, the agent discovers a cycle
that outperforms the optimized Otto cycle (Fig. 5a). If we further
allow the agent to modulate u(t) in a larger interval, we find a
cycle with an even larger power (Fig. 5b).
The protocol discovered by the agent in Fig. 5a resembles the

Otto cycle (both are flat for some time at u= uC and u= uH), yet
there are additional features. First, the agent ramps up the control
u(t) between uC and uH in a non-linear fashion while in contact
with a bath, rather than decoupling the system. Next, there are
two strong discontinuities where the system is abruptly discon-
nected from the baths for a short time (Fig. 5c, green segments).
These additional features turn out to enhance the power. At last,
we notice that the cycle found by the agent in Fig. 5d is more
regular than the one in Fig. 5c, and it further deviates from an Otto
cycle. The crucial difference with respect to the Otto cycle,

Fig. 4 Results of training the agent on the superconducting qubit refrigerator model. a Running average of the cooling power hP½R�iγ as a
function of the step during the whole training. The dashed line represents the maximum cooling power found in ref. 62 by optimizing a
smoothed trapezoidal cycle. b Actions chosen by the agent, represented by the value of u, as a function of step, zoomed around the three
black circles in panel (a). c Final deterministic cycle found by the agent (thick discontinuous line) and smoothed trapezoidal cycle (thin dashed
line) whose power is given by the dashed line in panel (a), as a function of time. d coupling strength γ

ðCÞ
u (blue curve) and γ

ðHÞ
u (red curve) as a

function of u (on the y-axis). The parameters used for training are gH= gC= 1, βH= 10/3, βC= 2βH, QH= QC= 30, E0= 1, Δ= 0.12, ωH= 1.03,
ωC= 0.24, U ¼ ½0; 0:75�, Δt= 0.98, and γ= 0.995.
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therefore, seems to be the ramping up of u(t) while in contact with
the baths, which probably benefits from simultaneously exchan-
ging heat and modulating u(t), rather than doing them in two
separate strokes.
As in the two-level case, we evaluate the EMP of the discovered

cycles shown in Fig. 5c, d. In both cases the EMP is considerably
high, corresponding respectively to 60% and 78% of ηca,
equivalent to 46% and 59% of ηc. Interestingly, the cycle shown
in Fig. 5d yields both a higher power and a larger EMP than the
cycle displayed in Fig. 5c.

DISCUSSION
We introduced a general framework based on Reinforcement
Learning to discover thermodynamic cycles that maximize the
power of out-of-equilibrium quantum thermal machines, paving
the way for more systematic use of machine learning in the field
of quantum thermodynamics. Using state-of-the-art machine
learning techniques, we applied our method to three different
paradigmatic setups. Our method found the optimal known
solution in the benchmark system, while in the other systems it
discovered new unintuitive and elaborate cycles which outper-
form previously proposed cycles.
Our results show that the celebrated Otto cycle is not in general

optimal for power extraction and that carefully crafted cycles can
mitigate coherence-induced power losses48,54,70,71 without intro-
ducing additional controls as required by Shortcuts to Adiabati-
city56–63. As opposed to other optimal control techniques, such as
the Pontryaghin Minimum Principle64–66, our RL-based approach
has the following advantages: it does not require any analytic
calculation; it can handle both continuous and discrete controls
(such as the choice of the heat bath), and it can naturally find
discontinuous and irregular protocols; it can be applied as-is to
arbitrarily complicated setups and it could be used to find optimal
protocols also in the presence of noise in the controls.
Future research directions include applications to multi-particle

systems, where many-body advantages might be revealed, and a
systematic study of the mitigation of coherence-induced power
losses. Interesting extensions of our framework include investigat-
ing the strong system-bath coupling regime going beyond a
master equation approach101–103, optimizing additional

thermodynamic quantities, such as minimizing the fluctuations
in the power output and developing of a scheme that can be
applied directly to experimental setups that does not require the
knowledge of the quantum state.

METHODS
Physical model
As discussed in the main text, we assume that the state evolves according
to the Markovian master Eq. (1), which can be derived, also for non-
adiabatic drivings95, in the weak system-bath coupling regime performing
the usual Born-Markov and secular approximation92–94 and neglecting the
Lamb-shift contribution. We notice that since the RL agent produces piece-
wise constant protocols, we are not impacted by possible inaccuracies of
the master equation subject to fast parameter driving104, provided that Δt
is not smaller than the bath timescale. Without loss of generality, the
dissipators can be expressed as93,94

DðαÞuðtÞ;dðtÞ½ρ̂� ¼ λα½dðtÞ�
X
k

γ
ðαÞ
k;uðtÞ Â

ðαÞ
k;uðtÞρ̂Â

ðαÞy
k;uðtÞ �

1
2
Â
ðαÞy
k;uðtÞÂ

ðαÞ
k;uðtÞρ̂�

1
2
ρ̂Â
ðαÞy
k;uðtÞÂ

ðαÞ
k;uðtÞ

� �
;

(9)

where λα[d(t)]∈ {0, 1} are functions that determine which bath is coupled

the QS, Â
ðαÞ
k;uðtÞ are the Lindblad operators, and γ

ðαÞ
k;uðtÞ are the corresponding

rates. In particular, λH(Hot)= 1, λC(Hot)= 0, while λH(Cold)= 0, λC(Cold)= 1,
and λH(None)= λC(None)= 0. Notice that both the Lindblad operators and
the rates can depend on time through the value of the control u(t). Their
explicit form depends on the details of the system, i.e. on the Hamiltonian
describing the dynamics of the overall system including the bath and the

system-bath interaction. Below, we provide the explicit form of Â
ðαÞ
k;uðtÞ and

γ
ðαÞ
k;uðtÞ used to model the three setups considered in the manuscript. We
adopt the standard approach to compute the instantaneous power and
heat currents23

PðtÞ � �Tr ρ̂ðtÞ ∂

∂t
Ĥ½uðtÞ�

� �
; JαðtÞ � Tr DðαÞuðtÞ;dðtÞ½ρ̂ðtÞ� Ĥ½uðtÞ�

h i
: (10)

In the two-level system heat engine, we consider the following Lindblad
operators and corresponding rates (identifying k= ± ):

Â
ðαÞ
± ;uðtÞ ¼ σ̂ ± ; γ

ðαÞ
± ;uðtÞ ¼ Γα f ð± βαuðtÞE0Þ; (11)

Fig. 5 Results of training the agent on the quantum harmonic oscillator heat engine model. a, b Running average of the extracted power
hP½E�iγ as a function of the step during the whole training. The dashed line represents the maximum power found in ref. 42 optimizing the
duration of each stroke of an Otto cycle (see “Methods” for details). c, d Actions chosen by the agent, represented by the value of u, as a
function of time. The color represents action d, i.e. the bath coupled to S. The discontinuous thick line is the final cycle discovered by the
agent, while the thin dashed line is the Otto cycle whose power is given by the dashed line in panels (a, b). The parameters used for training
are Γ(H)= Γ(C)= 0.6, βH= 0.2, βC= 2, w0= 2, Δt= 0.2, and γ= 0.998. In panels a–c we set U ¼ ½0:5; 1� to enable a fair comparison with the Otto
cycle of ref. 42, while in b–d we set a larger control range, i.e., U ¼ ½0:35; 1:5�.
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where σ̂þ and σ̂� denote the raising and lowering operators, Γα is a
constant rate which sets the thermalization timescale when the QS is
coupled to bath α, and f ðxÞ ¼ ½1þ expðxÞ��1 is the Fermi distribution. This
choice can be derived, for example, when considering the qubit as a
single-level quantum dot tunnel-coupled to metallic leads, with flat density
of states, which act as heat baths105–108.
In the superconducting qubit refrigerator, we employ the model first put

forward in ref. 48, and further studied in refs. 54,62. In particular, we consider
the following Lindblad operators and corresponding rates (identifying
k= ± ):

Â
ðαÞ
þ;uðtÞ ¼ �ijeuðtÞihguðtÞj; Â

ðαÞ
�;uðtÞ ¼ þijguðtÞiheuðtÞj; (12)

where jguðtÞi and jeuðtÞi are, respectively, the instantaneous ground state
and excited state of Eq. (7). The corresponding rates are given by

γ
ðαÞ
± ;uðtÞ ¼ Sα½±ΔϵuðtÞ�, where Δϵu(t) is the instantaneous energy gap of the

system, and

SαðΔϵÞ ¼ gα
2

1

1þ Q2
αðΔϵ=ωα � ωα=ΔϵÞ2

Δϵ

eβαΔϵ � 1 (13)

is the noise power spectrum of bath α. Here ωα, Qα, and gα are the base
resonance frequency, quality factor, and coupling strength of the resonant
circuit acting as bath α=H, C (see refs. 48,62 for details). As in ref. 62, we
choose ωC= 2E0Δ and ωH ¼ 2E0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ 1=4

p
, such that the C (H) bath is in

resonance with the qubit when u= 0 (u= 1/2). The width of the resonance
is governed by Qα. The total coupling strength to bath α, plotted in Fig. 4d,
is quantified by

γ
ðαÞ
uðtÞ � γ

ðαÞ
þ;uðtÞ þ γ

ðαÞ
�;uðtÞ: (14)

In the Harmonic oscillator heat engine, following ref. 42, we describe the

coupling to the baths through the Lindblad operators Â
ðαÞ
þ;uðtÞ ¼ âyuðtÞ ,

Â
ðαÞ
�;uðtÞ ¼ âuðtÞ and corresponding rates γ

ðαÞ
þ;uðtÞ ¼ Γα nðβαuðtÞω0Þ, and

γ
ðαÞ
�;uðtÞ ¼ Γα½1þ nðβαuðtÞω0Þ�, where we identify k= ± . âuðtÞ ¼
ð1= ffiffiffi

2
p Þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mω0uðtÞ
p

q̂þ i=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mω0uðtÞ

p
p̂ and âyuðtÞ are respectively the (con-

trol dependent) lowering and raising operators, Γα is a constant rate setting
the thermalization timescale of the system coupled to bath α, and nðxÞ ¼
½expðxÞ � 1��1 is the Bose–Einstein distribution.

Reinforcement learning algorithm
As discussed in the Results section, the choice of the reward as in Eq. (5)
guarantees that the aim of the RL agent is to maximize 〈P[ν]〉 introduced in
Eq. (3). To be precise, plugging Eq. (5) into Eq. (4) gives 〈P[ν]〉 (up to an
irrelevant constant prefactor) only in the limit of Δt→ 0. However, also for
finite Δt, both quantities are time averages of the power, so they are
equally valid definitions to describe a long-term power maximization.
We use a generalization of the SAC method, first developed for

continuous actions73,74, to handle a combination of discrete and
continuous actions75,76. We here present an overview of our implementa-
tion of SAC putting special emphasis on the differences with respect to the
standard implementation. However, we refer to73–76 for additional details.
Our method, implemented with PyTorch, is based on modifications and
generalizations of the SAC implementation provided by Spinning Up from
OpenAI109. All code and data to reproduce the experiments are available
online (see Data Availability and Code Availability sections).
The SAC algorithm is based on policy iteration, i.e. it consists of iterating

multiple times over two steps: a policy evaluation step, and a policy
improvement step. In the policy evaluation step, the value function of the
current policy is (partially) learned, whereas in the policy improvement
step a better policy is learned by making use of the value function. We now
describe these steps more in detail.
In typical RL problems, the optimal policy π*(s∣a) is defined as the policy

that maximizes the expected reward defined in Eq. (4), i.e.:

π� ¼ arg max
π

Eπ
s � μπ

X1
k¼0

γk rkþ1js0 ¼ s

" #
; (15)

where Eπ denotes the expectation value choosing actions according to the
policy π. The initial state s0= s is sampled from μπ, i.e. the steady-state
distribution of states that are visited by π. In the SAC method, the balance
between exploration and exploitation72 is achieved by introducing an

entropy-regularized maximization objective. In this setting, the optimal
policy π* is given by

π� ¼ arg max
π

Eπ
s � B

X1
k¼0

γk rkþ1 þ εHðπð�jskÞÞð Þjs0 ¼ s

" #
; (16)

where ε ≥ 0 (usually denoted with α in the RL literature) is a
hyperparameter that balances the trade-off between exploration and
exploitation, and

HðPÞ ¼ E
x�P
½�log PðxÞ� (17)

is the entropy of the probability distribution P. Notice that we replaced
the unknown state distribution μπ with B, which is a replay buffer
populated during training by storing the observed one-step transitions
(sk, ak, rk+1, sk+1).
We define the value function Qπ(s, a) of a given policy π as

Qπðs; aÞ ¼ Eπ r1 þ
X1
k¼1

γk rkþ1 þ εH π �jskð Þð Þð Þjs0 ¼ s; a0 ¼ a

" #
; (18)

and its recursive Bellman equation reads

Qπðs; aÞ ¼ E
a1�π �js1ð Þ

r1 þ γ Qπ s1; a1ð Þ � εlogπ a1js1ð Þð Þjs0 ¼ s; a0 ¼ a½ �: (19)

We use a function approximator Qϕ(s, a) (e.g. a neural network) to describe
the value function of the current policy, where ϕ represents a collection of
learnable parameters.
Next, we describe the policy π(a∣s). Since we are dealing with a

combination of discrete and continuous actions, we define a= (u, d),
where u is the continuous action and d is the discrete action (for simplicity,
we describe the case of a single continuous action, though the
generalization to multiple variables is straightforward). From now on, all
functions of a are also to be considered as functions of u, d. We decompose
the joint probability distribution as

πθðu; djsÞ ¼ πθD ðdjsÞ � πθU;d ðujd; sÞ; (20)

where πθD ðdjsÞ is a function approximator for the marginal probability of
taking discrete action d, which depends on learnable parameters θD, and
πθU;d ðujd; sÞ is a parameterization of the conditional probability density of
choosing action u, given action d, which depends on learnable
parameters θU,d—one set for each discrete action d. We denote with θ
the collection of all parameters θD and θU,d. Notice that this decomposi-
tion allows us to describe correlations between the discrete and the
continuous action, which are crucial in our application. We further
parameterize πθU;d ðujd; sÞ as a squashed Gaussian policy, i.e. as the
distribution of the variable

~uθU;d ðs; ξÞ ¼ ua þ ub�ua
2 ½1þ tanhðμθU;d ðsÞ þ σθU;d ðsÞ � ξÞÞ�;

ξ � Nð0; 1Þ; (21)

where μθU;d ðsÞ and σθU;d ðsÞ, representing respectively the mean and
standard deviation of the Gaussian distribution, are function approxima-
tors which depend on the learnable parameters θU,d, Nð0; 1Þ is the normal
distribution with zero mean and unit variance, and where we assume that
U ¼ ½ua; ub�.
We now describe the policy evaluation step. In the SAC algorithm, we

learn two value functions Qϕi
ðs; aÞ described by the learnable parameters

ϕi, for i= 1, 2. Since Qϕi
ðs; aÞ should satisfy the Bellman Eq. (19), we define

the loss function for Qϕi
ðs; aÞ as the mean square difference between the

left and right-hand side of Eq. (19), i.e.

LQðϕiÞ ¼ E
ðs;a;r;s0Þ�B

ðQϕi
ðs; aÞ � yðr; s0ÞÞ2

h i
; (22)

where

yðr; s0Þ ¼ r þ γ E
a0�πθð�js0 Þ

min
j¼1;2

Qϕtarg;j
ðs0; a0Þ � εlog πθða0js0Þ

� �
: (23)

Notice that in Eq. (23) we replaced Qϕi
with min

j¼1;2
Qϕtarg;j

, where ϕtarg;j , for j=

1, 2, are target parameters which are not updated when minimizing the
loss function; instead, they are held fixed during backpropagation, and
then they are updated according to polyak averaging, i.e.

ϕtarg;i  ρpolyakϕtarg;i þ ð1� ρpolyakÞϕi ; (24)

where ρpolyak is a hyperparameter. This change was shown to improve
learning73,74. In order to evaluate the expectation value in Eq. (23), we use

P.A. Erdman and F. Noé

7

Published in partnership with The University of New South Wales npj Quantum Information (2022)     1 



the decomposition in Eq. (20) to write

E
a0�πθð�js0 Þ

½�� ¼
X
d0

πθD ðd0js0Þ E
u0�πθU;d0 ð�jd

0 ;s0 Þ
½��; (25)

where we denote a0 ¼ ðu0; d0Þ. Plugging Eq. (25) into Eq. (23), and
approximating the expectation value over u0 with a single sampled value
yields

yðr; s0Þ ¼ r þ γ
P
d0
πθD ðd0js0Þ � min

j¼1;2
Qπ
ϕtarg;j
ðs0; d0; u0Þ � αlog πθðd0; u0js0Þ

� �
;

u0 � πθU;d0 ð�jd0; s0Þ:
(26)

We, therefore, perform a full average over the discrete action, and a single
sampling of the continuous action.
We now turn to the policy improvement step. Given a policy πθold , ref.

74

proves that πθnew is a better policy [respect to maximization in Eq. (16)] if
we update the policy parameters according to

θnew ¼ arg min
θ

DKL πθð�jsÞk exp Qπθold ðs; �Þ=αð Þ
Zπθold

� �
; (27)

where s is any state, DKL denotes the Kullback-Leibler divergence and Zπθold

is the partition function of the exponential of the value function. Intuitively,
this step is the equivalent of making the policy ϵ-greedy in the standard RL
setting. The idea is to use the minimization in Eq. (27) to define a loss
function to perform an update of θ. Noting that the partition function does
not impact the gradient, multiplying the Kullback-Leibler divergence by α,
and replacing Qπθold with minj Qϕj

, we define the loss function as

LπðθÞ ¼ E
s�B

a�πθ ð�jsÞ
αlog πθðajsÞ �min

j¼1;2
Qϕj
ðs; aÞ

� �
: (28)

In order to evaluate the expectation value in Eq. (28), we use the previous
trick of averaging the discrete action and performing a single sample of
the continuous action using ξ. Recalling Eq. (21), this yields

LπðθÞ ¼ E
s�B

P
d
πθD ðdjsÞ αlog πθðd; ~uθU;d ðs; ξÞjsÞ �min

j¼1;2
Qϕj
ðs; d; ~uθU;d ðs; ξÞÞ

� �� �
;

ξ � Nð0; 1Þ:
(29)

To summarize, the SAC algorithm consists of repeating over and over a
policy evaluation step, and a policy improvement step. The policy
evaluation step consists of a single optimization step to minimize the
loss functions LQ(ϕi) (for i= 1, 2), given in Eq. (22), where yðr; s0Þ is
computed using Eq. (26). The policy improvement step consists of a single
optimization step to minimize the loss function Lπ(θ) given in Eq. (29). In
both loss functions, the expectation value over the states is approximated
with a batch of experiences sampled randomly from the replay buffer B.

Training details
We now provide the details of the algorithm used to learn the four specific
cycles described in the main manuscript.
The value function Qϕ(s, u, d) is parameterized the following way. We use

a fully connected neural network (NN), with two hidden layers, that take s
and u as input (by stacking them into a single array), and output ∣D∣ values,
where ∣D∣ is the number of discrete actions. The ith output corresponds to
Qϕ(s, u, d= di), where {di} are the possible discrete actions. We use the
ReLU activation function in all layers except for the output layer, where we
apply the identity (since the value function can take arbitrary positive or
negative values). The parameters ϕ correspond to the weights and biases
of the whole network.
The policy πθðu; djsÞ ¼ πθD ðdjsÞ � πθU;d ðu; jd; sÞ is parameterized the

following way. We use a fully connected NN, with two hidden layers,
that takes s as input, and produces 3 ⋅ ∣D∣ values, corresponding to

πθD ðdi jsÞ; μθU;di ðsÞ; σθU;di ðsÞÞ
n o

i¼1;¼ ;jDj
: (30)

More specifically, we use the ReLU activation in all layers except for the
output layer, where we use the identity. However, in order to enforce the
normalization

P
iπθD ðdi jsÞ ¼ 1, we apply a soft-max to the corresponding

outputs, and instead of outputting σθU;di ðsÞ, we output log ðσθU;di ðsÞÞ, which
has no constraint on the sign.
In order to enforce sufficient exploration in the early stage of training,

we do the following. For a fixed number of initial steps, we choose random

actions sampling them uniformly within their range. Furthermore, for
another fixed number of initial steps, we do not update the parameters to
allow the replay buffer to have enough transitions. B is a first-in-first-out
buffer, of fixed dimension, from which batches of transitions are randomly
sampled to update the NN parameters. After this initial phase, we repeat a
policy evaluation and a policy improvement step nupdates times every
nupdates steps. This way, the overall number of updates coincides with the
number of actions performed on the environment. The optimization steps
are performed using the ADAM optimizer with the standard values of β1
and β2. To favor an exploratory behavior early in the training, and at the
same time to end up with a policy that is approximately deterministic, we
schedule ε. In particular, we vary it during each step according to

εðnstepsÞ ¼ ε0 expð�nsteps=εdecayÞ; (31)

where nsteps is the current step number, and ε0 and εdecay are
hyperparameters.
All hyperparameters used to produce the cycles in Figs. 3, 4, and 5 are

provided in Table 1.
At last, we discuss the parameterization of the state s. As discussed in

the manuscript, we use s ¼ ðρ̂; uÞ as state. While u is passed to the NNs as-
is, we now detail how we encoded ρ̂ in the 3 systems studied in the
manuscript.
In the two-level system heat engine, a closed equation of motion

governing the evolution of pðtÞ � Tr½ρ̂ðtÞσ̂þσ̂�� can be derived from the
Markovian master equation, and the instantaneous heat flux Jα(t) can be
expressed solely in terms of p(t) (see ref. 90 for details). Therefore, we use
the single parameter p(t)∈ [0, 1] to encode ρ̂.
In the superconducting qubit refrigerator, we encode ρ̂ using the

following three real parameters: heuðtÞjρ̂ðtÞjeuðtÞi, Re½hguðtÞjρ̂ðtÞjeuðtÞi� and
Im½hguðtÞjρ̂ðtÞjeuðtÞi�. These fully characterize a density matrix of a qubit.
In the Harmonic oscillator heat engine a closed set of equations of

motion can be derived from the Markovian master equation for the
following three quantities:

HðtÞ � Tr½ρ̂ðtÞĤ½uðtÞ��;
LðtÞ � Tr½ρ̂ðtÞð 12m p̂2 � 1

2mðuðtÞw0Þ2q̂2Þ�;
DðtÞ � Tr½ρ̂ðtÞðq̂p̂þ p̂q̂Þ�:

(32)

Furthermore, the heat flux Jα(t) can be expressed solely in terms of these
quantities (see ref. 42 for details). We thus use these three quantities to
encode ρ̂. More specifically, since they are not bounded in an obvious way
by some system parameter, for numerical stability we use ~OðtÞ �
log ðjOðtÞj þ δÞ and sO(t)= sign(O(t)) instead of O= H, L, D to encode the
state, where δ= 10−20 is a small parameter introduced to prevent
numerical divergences. At last, we do not use sH(t) since H(t) is always a
positive quantity (being the energy of the harmonic oscillator). Therefore,
we encode ρ̂ using the following 5 parameters: ð~H;~L; ~D; sL; sDÞ.

Convergence of the RL approach
The training process presents some degree of stochasticity, such as the
initial random steps, and the random sampling of a batch of experience

Table 1. Hyperparameters used in numerical calculations that are not
reported in the figure captions.

Hyperparameter Figs. 3, 4 Fig. 5a Fig. 5b

Hidden layers 2 2 2

Hidden layer units 256 256 256

Initial random steps 5k 5k 10k

First update at step 1k 1k 1k

Batch size 256 256 256

learning rate 0.001 0.001 0.0005

ε0 50 50 300

εdecay 48k 24k 48k

nupdates 50 50 50

ρpolyak 0.995 0.995 0.995

B size 192k 192k 192k
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from the replay buffer to compute an approximate gradient of the loss
functions. We thus need to evaluate the reliability of our approach.
In Figs. 6 and 7, we show the training curves for six consecutive runs of

our method applied to all four cases studied in the main text. More
specifically, panels (a, c, and e) of Fig. 6 correspond to the training of the
two-level system heat engine (considered in Fig. 3), while panels (b, d, and f)
of Fig. 6 correspond to the training of the superconducting qubit refrigerator
(considered in Fig. 4). Panels (a, c, and e) of Fig. 7 correspond to the training
of the Harmonic oscillator in the interval considered in Fig. 5a, c, while
panels (b, d, and f) of Fig. 7 correspond to the training of the Harmonic
oscillator in the interval considered in Fig. 5b, d. Both Figs. 6 and 7 show, as
a function of the step, the running average of the power [panels (a) and (b)],
the running average LQh iγ of the loss function LQ [panels (c, d)] and the
running average Lπh iγ of the loss function Lπ [panels (e) and (f)] computed
on the batch of experience used to estimate the gradient of the
corresponding loss function. Every curve corresponds to a separate training.
As we can see in Figs. 6 and 7, in all four cases the running average of the

reward reliably converge to a solution yielding similar values of the power,
and also the running averages of the loss functions display qualitatively
similar behavior. We notice that while LQ is the mean square of the Bellman
error [see Eq. (22)], Lπ is just a function whose gradient provides a better
policy, so its value during training is not required to be a decreasing function.

Generation of coherence
In order to quantify the coherence generated in the instantaneous
eigenbasis of the Hamiltonian in the refrigerator based on a super-
conducting qubit, we evaluated the time average of relative entropy of
coherence100, defined as

Cðρ̂ðtÞÞ ¼ Sðρ̂diag:ðtÞÞ � Sðρ̂ðtÞÞ; (33)

where Sðρ̂Þ ¼ �Tr½ρ̂ln ρ̂� is the Von Neumann entropy, and

ρ̂diag:ðtÞ ¼ hguðtÞjρ̂ðtÞjguðtÞi � jguðtÞihguðtÞj þ heuðtÞjρ̂ðtÞjeuðtÞi � jeuðtÞiheuðtÞj
(34)

is the density matrix, in the instantaneous eigenbasis jguðtÞi and jeuðtÞi, with
the off-diagonal terms canceled out. We find that that the time average of
the relative entropy of coherence is ≈0.116 in the cycle found by the RL
agent, while it is ≈0.194 applying the trapezoidal cycle with the same period.

Otto cycle comparison
In Fig. 5 we compare the performance of an Otto cycle, optimized as in the
upper panel of Fig. 6 of ref. 42, with the cycle discovered by the RL agent.

However, ref. 42 only provides the value of the power of the optimized Otto
cycle, not the duration of the four strokes that produce such power. We,
therefore, performed a grid search in the space of these four durations.
After identifying the largest power, we ran the Netwon algorithm to further
maximize the power. The final cycle we found is the one shown as dashed
lines in Fig. 5c, d. The corresponding power, shown as a dashed line in
Fig. 5a, b, nicely matches with ref. 42.
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