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Abstract. We consider a linear system that consists of a linear wave equation on a horizontal hypersurface
and a parabolic equation in the half space below. The model describes longitudinal elastic waves in organic
monolayers at the water–air interface, which is an experimental setup that is relevant for understandingwave
propagation in biological membranes. We study the scaling regime where the relevant horizontal length
scale is much larger than the vertical length scale and provide a rigorous limit leading to a fractionally
damped wave equation for the membrane. We provide the associated existence results via linear semigroup
theory and show convergence of the solutions in the scaling limit.Moreover, based on the energy–dissipation
structure for the full model, we derive a natural energy and a natural dissipation function for the fractionally
damped wave equation with a time derivative of order 3/2.

1. Introduction

This work is stimulated by the physical models studied in [12,13], where longitu-
dinal elastic waves of a membrane are coupled to viscous fluid flow in the enclosing
half space. The aims are to understand the damping of the elastic waves through
the coupling to the viscous fluid, on the one hand, and to explain the appearance of
the non-classical dispersion relation, on the other hand. Denoting by k ∈ R

d−1 the
horizontal wave vector and ω ∈ R the angular frequency, the classical elastic wave
satisfies a dispersion relation ω2 ≈ |k|2, while the longitudinal pressure waves, here
referred to as Lucassen waves (cf. [15]), satisfy |ω|3/2 ≈ |k|2 such that the wave speed
c(k) = ω(k)/|k| depends on k.

The class ofLucassenwaves attracted considerable attention over the last decade due
to its biophysical relevance in living organisms, where the transmission of information
over biologically relevant distances and timescales is fundamental. The standardmodel
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describes the propagation of signals on the vast network of nerve cells via a purely
electrical mechanism, unable to explain a number of non-electric phenomena, like the
effectiveness of anesthetics scaling with their solubility in lipid membranes [16,18]
or the lower heat dissipation of a nerve in contrast to an electrical cable [22]. As
it is known that, alongside the electrical signal, a mechanical displacement travels
along the nerve fiber [3,10], there is a need for a more complete model incorporating
these aspects. On the one hand, experimental scientists (see [5,21]), using a lipid
monolayer spread at the air–water interface as a minimal model, have shown that
indeed interface-localized pressure waves can propagate in such systems. On the other
hand, from a more theoretical viewpoint, all possible surface wave solutions for a
viscoelastic membrane atop a half space of viscous fluid have been determined in [9],
including the experimentally observed Lucassen waves and their dispersion relations
of the type |ω|3/2 ≈ |k|2. In particular, a fractionally damped wave equation was
derived for describing the Lucassen waves efficiently in [12,13]. The biophysical
relevance of Lucassen waves is demonstrated by the fact that the wave solutions
depend directly on the lateral membrane compressibility κ . For example, adsorption
of lipophilic substances, like anesthetics, into the membrane presumably alters κ and,
as a consequence, is expected to change the wave propagation properties. In addition
to that, at large amplitudes, the pressure pulse locally modifies the compressibility
κ and thereby significantly increases the propagation distance [21]. This nonlinear
property suggests an all-or-none behavior, which indeed is observed in nerve pulse
propagation.

Herewewant to understand this phenomenon using themathematicallymost simple
model, which is given by the following coupled system:

ρmembÜ = κ�xU − μ∂zv for t > 0, x ∈ �, (1.1a)

U̇ (t, x) = v(t, x, 0) for t > 0, x ∈ �, (1.1b)

ρbulk v̇ = μ�x,zv for t > 0, (x, z) ∈ � := �×]−∞, 0[. (1.1c)

In the physical setup of [12,13], the domain � = R
1 denotes the membrane and

U (t, x) ∈ R denotes the horizontal displacement (longitudinal motion) of the mem-
brane. The half space � = � × ]−∞, 0[ ⊂ R

d is filled by a viscous fluid whose
horizontal velocity component is v(t, x, z) ∈ R (pure shear flow). Condition (1.1b) is
a no-slip condition for the fluid along the membrane, while the induced stress of the
sheared fluid is included in (1.1a) via −μ∂zv(t, x, 0).

Formathematical purposes,we can allow� ⊂ R
d−1, but to avoid any complications

with boundary conditions we assume that � is of the form

� = R
k × (

R/(	Z)

)n with 	 > 0 and k + n = d−1. (1.2)
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In particular, � is an additive group and (1.1) is translation invariant. In Sect. 2, we
first show that the system has the natural energy

E(U, U̇ , v) =
∫

�

{ρmemb

2
U̇2 + κ

2
|∇U |2

}
dx +

∫

�

ρbulk

2
v2 dz dx (1.3)

as a Liapunov function. Thus, the function space H := H1(�) × L2(�) × L2(�)

is the natural state space. Note that this includes periodic boundary conditions for
x ∈ � = R

k × (
R/(	Z)

)n .
Moreover, we discuss suitable scalings of time t , the horizontal variable x ∈ R

d−1,
and the vertical variable z ∈ ]−∞, 0[. We can renormalize all constants such that the
system of equations takes the form

Ü = �xU − ∂zv|z=0 for t > 0, x ∈ �, (1.4a)

U̇ = v|z=0 for t > 0, x ∈ �, (1.4b)

v̇ = ε2�xv + ∂2z v for t > 0, (x, z) ∈ �, (1.4c)

with the parameter ε = μ/
√

ρmembk . The essential point is here that the scaling of
the horizontal variable x ∈ R

d−1 is different from the vertical variable z ∈ ]−∞, 0[,
thus breaking the isotropy of the diffusion μ�x,zv in (1.1c).

Our interest lies in the case ε → 0. Indeed, in Sect. 2.4 we simply set ε = 0 in (1.4c)
and show that this limit allows us to solve the scalar, one-dimensional heat equation
v̇ = ∂2z v on ]−∞, 0[ for each x ∈ � independently. Assuming the initial condition
v(0, x, z) = 0 and using the Dirichlet boundary condition v(t, x, 0) = �(t, x), the
stress ∂zv(t, x, 0) can be explicitly expressed via the heat kernel, namely

∂zv(t, x, 0) =
∫ t

0

1√
π(t−τ)

�̇(τ, x)dτ, (1.5)

see (4.3). It is this one-dimensional parabolic Dirichlet-to-Neumann map that in-
troduces the fractional damping into the wave equation. In particular, denoting the
fractional (Caputo) derivative of order α ∈ ]0, 1[ of the function g with g(0) = 0 by

CDαg : t 	→ 1

�(1−α)

∫ 1

0

1

(t−τ)α
ġ(τ )dτ, (1.6)

we see that the mapping in (1.5) takes the form ∂zv(t, x, 0) = ( CD1/2�)(t, x), which
is a Caputo derivative of order 1/2.

Indeed, if we solve (1.4) with ε = 0 and v(0, x, z) = 0, then we can eliminate v

totally by exploiting (1.5) with � = U̇ , and U has to solve

Ü (t, x) +
∫ t

0

1√
π(t−τ)

Ü (τ, x)dτ = �xU (t, x) for t > 0, x ∈ �. (1.7)
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This is a fractionally damped wave equation where the damping is generated by a
fractional Caputo derivative of order 3/2, and this fractional derivative acts locally
with respect to the space variable x ∈ �.
In Sect. 2.5, we follow the approach in [9,12,12] and discuss the dispersion relations

for our normalized system (1.4) and show that, for the limit case ε = 0, the dispersion
relation reads (iω)2 + (iω)3/2 + |k|2 = 0, where Imω ≥ 0 is enforced by the stability
through the Liapunov function E. Hence, for small |k| we obtain the new dispersion
relation

ω(k) =
(

±
√
3

2
+ i

2

)
|k|4/3 + O(|k|2)k→0.

There is a rich mathematical literature on linear and nonlinear partial differential
equations involving fractional time derivatives, see, e.g., [1,11,20,23,24,26]. More-
over, the appearance of fractional derivatives via Dirichlet-to-Neumann maps is a
well-known phenomenon, see, e.g., [6, Ch.1.1, Eqn. (1.2)] for an early reference or
[17] for applications in electrochemistry. Indeed, there is an extensive mathematical
literature on the so-called harmonic extension method, where fractional operators are
expressed via suitable Dirichlet-to-Neumann maps, see [2] and the recent generaliza-
tion in [7] allowing for fractional time derivatives.

Our focus is different, because we want to show that (1.7) appears as a rigorous
limit for ε → 0+ in the coupled system (1.4). For this, in Sect. 3 we develop the
linear semigroup theory by showing that the semigroups et Aε : H → H exist for all
ε ≥ 0 and are bounded in norm by C(1+t). In Theorem 3.3, we establish the strong
convergence et Aεw0 → et A0w0 for ε → 0+, which holds for all t > 0 and w0 ∈ H.
For more regular initial conditions w0, we obtain the quantitative estimate

‖et Aεw0 − et A0w0‖H ≤ √
ε t (2.3+t)2

(‖w0‖H + ‖∇xw0‖H
)
.

In Sect. 4, we return to the energetics and the dissipation for the damped wave
equation. By starting from the natural energy and dissipation in the PDE system (1.4)
with ε = 0 and the explicit solution for v(t, x, z) in terms of U̇ (τ, x), we obtain a
natural energy functionalE for the fractionally dampedwave equation that is non-local
in time:

E(U (t),
[
U̇ (·)][0,t]) =

∫

�

{
1

2
U̇ (t, x)2 + 1

2
|∇U (t, x)|2

+
∫ t

0

∫ t

0

1

4
√

π(2t−r−s)3/2
U̇ (r, x)U̇ (s, x)ds dr

}
dx,

(1.8a)

where
[
U̇ (·)][0,t] indicates the dependence on U̇ (s) for s ∈ [0, t]. For solutions U of

(1.7), we obtain an energy–dissipation balance with a non-local dissipation:

d

dt
E(U (t),

[
U̇ (·)][0,t]) = −

∫

�

∫ t

0

∫ t

0

1√
π(2t−r−s)1/2

Ü (r, x)Ü (s, x)ds dr dx .

(1.8b)
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Related results are obtained in [8,23,25], but there typically only energy–dissipation
inequalities are derived. It is surprising to see that the two non-local kernels in (1.8)
that depend on t−r, t−s ∈ [0, T ] are only depending on the sum (t−r) + (t−s) =
2t−r−s, which derives from very specific scaling properties of the heat kernel.

2. The formal modeling

In this section, we describe the formal modeling, including the energy functional,
the scalings and the derivation of the fractionally damped wave equation as the scaling
limit.

2.1. The energy functional and the state space

We return to the full system (1.1) and observe that it has the form of a damped
Hamiltonian system with the total energy E(U, U̇ , v) given in (1.3). Indeed, taking
the time derivative along solutions t 	→ (U (t), v(t)) of (1.1) we find

d

dt
E(U (t), U̇ (t), v(t)) =

∫

�

(
ρmembU̇Ü + κ∇xU̇ · ∇xU

)
dx +

∫

�

ρbulkv v̇ dx dz

(1.1a),(1.1c)=
∫

�

Utμvz dx +
∫

�

μv �x,zv dx dz
(1.1b)= −

∫

�

μ(|∇xv|2+v2z )dx dz ≤ 0.

Here we used that the integration by parts
∫
�

∇xU̇ · ∇xU dx = − ∫
�
U̇�xU dx does

not generate boundary terms because � has the form (1.2).
Thus,E acts as a Liapunov function and it is a bounded quadratic form on theHilbert

space H = H1(�) × L2(�) × L2(�), which we consider as the basic state space for
our problem. In Sect. 3 we will show that (1.1) has a unique solution for each initial
value w0 = (U (0), U̇ (0), v(0)) ∈ H.
More precisely, the system (1.1) can be written as a damped Hamiltonian system for

the states X = (U, P, p) where P = ρmembU̇ and p = ρbulkv. With E(U, P, p) =
E(U, 1

ρmemb
P, 1

ρbulk
p) we have

⎛

⎝
U̇
Ṗ
ṗ

⎞

⎠ = (
J−K

)
DE(U, P, p) with J =

⎛

⎝
0 I 0

−I 0 0
0 0 0

⎞

⎠ and K =
⎛

⎝
0 0 0
0 ∗ μ∂z�|z=0

0 ∗ −μ�x,z

⎞

⎠,

where K : dom(K) ⊂ X → X := L2(�) × L2(�) × L2(�) is defined as the self-
adjoint, unbounded operator induced by the quadratic dissipation potential

R∗(�,�, ξ) := μ

2

∫

�

|∇x,zξ |2 dx dz + χ∗(�, ξ),

with χ∗(�, ξ) =
{

0 if � = ξ |z=0,

∞ else.
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2.2. A long-wave scaling

To obtain a first understanding of the different scaling of horizontal and vertical
spatial variables, we study the long-wave scaling for the wave equation. This mean
that we scale the horizontal space variable x and the time variable t with the same
factor δ > 0. For the moment, we assume that the membrane constants ρmemb and k
are given and of order 1, while ρbulk and μ are much smaller. More general scalings
are discussed in the following subsection.
Without loss of generality, we keep U fixed and obtain velocities U̇ of order δ.

Hence, to keep the no-slip condition, we also need to rescale v by a factor δ. The main
point is that we want z to be rescaled by a smaller factor, let us say δα with α ∈ [0, 1[.
This implies that ∂zv scales like δ1+α . Thus, to treat the coupling term μ∂zv|z=0 of
the same order as Ü and ∇xU , we need to assume that μ also scales with δ, namely
like δ1−α . Finally, we also assume the appropriate scaling for ρbulk, namely

x̂ = δ x, t̂ = δ t, ẑ = δα z, Û = U, v = δ v̂, μ = δ1−αμ̂, ρbulk = δαρ̂bulk.

Hence, this long-wave scaling with small δ is indeed suitable, if the bulk quantities
ρbulk and μ are much smaller than the membrane quantities ρmemb and stiffness k.
Inserting these scalings (and dropping the hats), we find the transformed system

ρmembÜ = κ�xU − μ∂zv|z=0 and U̇ = v|z=0 on �,

ρbulk v̇ = μ(δ2−2α�x+∂2z )v in �.
(2.1)

Here, the case of small δ is relevant, and in the limit δ → 0+ we obtain the fractionally
damped wave equation.

2.3. Non-dimensionalizing by a general scaling

We fully non-dimensionalize the system by considering general rescalings, where
we scale x , z, and t independently:

x̂ = a x, t̂ = b t, and ẑ = c z,

but do not assume any scaling on the material parameters ρmemb, κ, ρbulk, and μ.
We keep Û = U (which is always possible by linearity), but need to rescale v = b v̂

to transform the no-slip condition U̇ = v|z=0 into ∂t̂ Û = v̂|ẑ=0. The transformed
equations read (after dropping the hats) as follows

ρmembb
2Ü = κa2�xU − μbc ∂zv|z=0 on �,

ρbulkb
2v̇ = μbc2∂2z v + μa2b�xv in �.

Dividing the equations by ρmembb2 and ρbulkb2 respectively, we can equate the first
three of the four coefficients to 1, namely
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κa2

ρmembb2
= 1,

μc

ρmembb
= 1,

μc2

ρbulkb
= 1.

We obtain the solution

a2 = ρ2
bulkμ

2

ρ3
membκ

, b = ρbulkμ

ρ2
memb

, and c = ρbulk

ρmemb
,

and the remaining fourth coefficient reads

ε :=
( μa2

ρbulkb

)1/2 = a

c
= μ√

ρmembκ
.

The non-dimensionalized coupled system now reads

Ü = �xU − ∂zv|z=0 and U̇ = v|z=0 on �, v̇ = ε2�xv + ∂2z v in �,

which is exactly the renormalized system (1.4), which is studied subsequently.
Hence, the system (1.1) has a unique non-dimensional parameter ε = μ/

√
ρmemb k

that describes the effective anisotropy of the diffusion in the bulk �. Subsequently,
we are interested in the case of very small ε and indeed in the limit ε → 0+.
We can interpret ε as the ratio of three different length scales. Choosing an arbi-

trary timescale t0 > 0, we have the diffusion length 	diff , the “equivalent membrane
thickness” 	thick, and the membrane travel length 	trav given by

	diff(t0) =
( μt∗
ρbulk

)1/2
, 	thick = ρmemb

ρbulk
, 	trav(t0) = t0cmemb = t0

( κ

ρmemb

)1/2
,

where cmemb is the wave speed in the undamped membrane. Now our dimensionless
parameter ε is given by

ε = 	diff(t0)2

	thick 	trav(t0)
for all t0 > 0.

To make the definition even more intrinsic, we may choose t0 as a characteristic
time t∗ for the system. We ask that the time t∗ is chosen such that the corresponding
diffusion length scale equals the equivalentmembrane thickness, viz. 	diff (t∗) = 	thick.
This yields

t∗ = ρ2
memb

μρbulk
and 	trav(t∗) = t∗cmemb = ρ

3/2
membκ

1/2

μρbulk
.

The scalings of time and horizontal and vertical lengths are now given as

t = t∗ t̂, x = 	trav(t∗) x̂, z = 	thick ẑ.

This leads to the final relation

ε = 	thick

	trav(t∗)
= μ√

ρmembκ
.



3086 A. Mielke et al. J. Evol. Equ.

Typical parameters for the experimental setup consisting of a lipid monolayer, such
as DPPC at the water–air interface, are ρmemb = 10−6 kg/m2, μ = 10−3 Pa s =
10−3 kg/(sm), and κ = 10−2 N/m, where for ρmemb the surface excess mass density
was used. These parameters yield ε = 10. Although this value is not small, it does not
contradict our argumentation. As shown in [9], different waves can coexist in such a
system, the longitudinal capillary waves with |ω|3/2 ≈ |k|2 being only one of them.
In particular, it is interesting that the dispersion of this wave, which has been known
in the literature since [15], follows from our general calculation as a rigorous limit.

2.4. The limit model and the fractionally damped wave equation

We now study the limit equation by setting ε = 0 in the rescaled system (1.4). The
justification of taking this limit is given in the following section.
After setting ε = 0, we obtain the system

Ü (t, x) = �xU (t, x) − ∂zv(t, x, 0) for t > 0, x ∈ �, (2.2a)

U̇ (t, x) = v(t, x, 0) for t > 0, x ∈ �, (2.2b)

v̇(t, x, z) = ∂2z v(t, x, z) for t > 0, (x, z) ∈ �. (2.2c)

The important point is now that the equation for (2.2c) can be solved explicitly by the
useof theproperly rescaledone-dimensional heat kernel H(t, y) = (4π t)−1/2e−y2/(4t).
Note that x ∈ � appears now as a parameter only, since the diffusion in x-direction is
lost.
The solution of (2.2c) with the boundary condition (2.2b) and the initial condition

v(0, x, z) = 0 takes the explicit form

v(t, x, z) =
∫ t

0
2∂z H(t−τ, z) U̇ (τ, x)dτ,

see Sect. 4.1 for a derivation. Taking the derivative with respect to z and using that the
heat kernel H satisfies ∂2z H = ∂t H , we obtain

∂zv(t, x, z) =
∫ t

0
2∂t H(t−τ, z) U̇ (τ, x)dτ =

∫ t

0
2H(t−τ, z) Ü (τ, x)dτ,

where for the integration by parts in the last identity we exploited U̇ (t, x, 0) =
v(t, x, 0) = 0 and H(0, z) = 0 for z < 0. Thus, evaluation at z = 0 and using
H(t, 0) = (4π t)−1/2, the coupling term in (2.2a) reduces to

∂zv(t, x, 0) =
∫ t

0
2H(t−τ, 0)Ü (τ, x)dτ =

∫ τ

0

1√
π(t−τ)

Ü (τ, x)dτ. (2.3)
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Through these formulas, we see how kinetic energy is moved from the membrane
via the no-slip condition (2.2b) into the one-dimensional diffusion equation. Through
the memory kernel in (2.3) the energy is restored partially in a delayed fashion, which
leads to a fractional damping, here of order 3/2. Because in the bulk� = �×]−∞, 0[
there is no coupling between different points x ∈ �, this damping is non-local in time
but local with respect to x ∈ �.
Joining everything, we see that the limiting system (2.2) contains the fractionally

damped wave equation

Ü (t, x) +
∫ t

0

1√
π(t−τ)

Ü (τ, x)dτ = �U (t, x) on �. (2.4)

An analysis concerning existence of solutions and concerning the energetics is given
in Sect. 4.

2.5. The dispersion relations

Following [12], we consider special solutions of (3.1) obtained by a Fourier ansatz.
For the temporal growth factor μ = iω ∈ C with Reμ ≤ 0 and the wave vector
k ∈ R

d−1 we set

(U (t, x), V (t, x), v(t, x, z)) = eμt+ik·x(a, b, c eγ z)

with a, b, c, γ ∈ C and Re γ > 0. From V = Ut , we obtain b = aμ, while v|z=0 = V
implies c = b = aμ. Finally, we have to satisfy the membrane equationUtt = �xU−
vz |z=0 and the diffusion equation ∂tv = ε2�xv + ∂2z v, which leads to the algebraic
relations (since only a �= 0 is interesting) μ2 = −|k|2 − μγ and μ = −ε2|k|2 + γ 2.
As in [12], we eliminate the variable γ and obtain the dispersion relation

0 = �(μ, k) = (
μ2+|k|2)2 − ε2μ2|k|2 − μ3,

where we still need to be careful to satisfy Reμ ≤ 0 and Re γ > 0 with γ 2 =
μ+ε2|k|2.
For short waves, i.e., |k| � 1, we obtain the expansion

μ = −i|k| − |k|
2

(
ε2 − i

|k|
)1/2 + h.o.t.

In the case ε > 0, this means that short waves travel at speed 1, but are damped
proportional to |k|. The limit ε = 0 leads to a significantly smaller damping, namely
one of order |k|1/2.
As expected due to the scaling discussed in the previous subsections, the case of

long waves, i.e., |k| � 1, is not so sensitive with respect to ε. For all ε ≥ 0, we find
the expansion

μ = −
(1
2

± i
√
3

2

)
|k|4/3 + h.o.t.
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In particular, we find that the waves slow down for |k| → 0, because the wave speed
takes the form c(k) = Im(μ(k)/|k|) = ±|k|1/3√3/2+h.o.t. Moreover, the damping
is very low, because it is proportional to |k|4/3.

3. Convergence result for the semigroup

From now on, it suffices to consider the rescaled system, where ε > 0 appears as
the only small parameter:

Ü = �xU − ∂zv|z=0 for t > 0, x ∈ �, (3.1a)

U̇ = v|z=0 for t > 0, x ∈ �, (3.1b)

v̇ = ε2�xv + ∂2z v for t > 0, (x, z) ∈ � = �×]−∞, 0[. (3.1c)

In this section, we first prove existence of solutions for the initial boundary value
problem and then show that in the limit ε → 0 the corresponding solutions t 	→
wε(t) ∈ H converge strongly to t 	→ w0(t) in the Hilbert space H. For this, it is
sufficient to employ the classical theory of Trotter and Kato, see, e.g., [19, Sec. 3.3],
where convergence of the resolvent implies convergence of the semigroup.

3.1. Formulation via strongly continuous semigroups

By introducing the variable V = U̇ and setting w = (U, V, v), we rewrite system
(3.1) in the form ẇ = Aεw and will show that the solutions w can be obtained in
the form w(t) = et Aεw0, i.e., we have to show that Aε is the generator of a strongly
continuous semigroup on the space H = H1(�) × L2(�) × L2(�). We define the
unbounded linear operators Aε : D(Aε) ⊂ H → H via

D(Aε) = {
(U, V, v) ∈ H2(�) × H1(�) × (

Xε
1(�)∪Y ε(�)

) ∣
∣ v|z=0 = V on �

}
,

Aε

⎛

⎝
U
V
v

⎞

⎠ =
⎛

⎝
V

�xU − (∂zv)|z=0

ε2�xv + ∂2z v

⎞

⎠ .

Here the spaces Xε
λ(�) with λ > 0 and Y ε(�) are defined via

Xε
λ(�) := {

v ∈ L2(�)
∣∣ ε2�xv + ∂2z v − λv = 0, v|z∈0 ∈ H1(�)

}
and

Y ε(�) := {
v ∈ L2(�)

∣∣ ε2�xv + ∂2z v ∈ L2(�), v|z=0 = 0
}
.

We emphasize that the domain for ε = 0 is different from the domains for ε > 0,
because of the missing x-derivatives for v in the first case. Nevertheless, the trace of
v at z = 0 is well defined in L2(�) because ∂zv lies in L2(�,H1(]−∞, 0[)) and
H1(]−∞, 0[) embeds continuously into C0(]−∞, 0[).
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More precisely, for ε > 0 we may apply the classical elliptic regularity theory from
[14] which shows that Y ε(�) is a closed subspace of H2(�) whereas Xε

λ(�) is only
contained in H3/2(�) but not in H2(�). In Step 3 of the proof below, we will show
that for ε > 0 we have

Xε
λ(�) ∪ Y ε(�) = Xε

1(�) ∪ Y ε(�) for all λ > 0. (3.2)

For ε = 0, the spaces X0
λ(�) and Y 0(�) have lower regularity in x ∈ �, namely

X0
λ(�) = {

v ∈ H1(�)
∣∣ v(x, z) = e

√
λzv(x, 0), v(·, 0) ∈ H1(�)

}
,

Y 0(�) := {
v ∈ L2(�;H2(]−∞, 0[)) ∣∣ v(x, 0) = 0 a.e. in �

}
.

Since z 	→ ez − e
√

λz lies in H2(]−∞, 0[) and vanishes at z = 0, we easily see
X0

λ(�) ∪ Y 0(�) = X0
1(�) ∪ Y 0(�) for all λ > 0.

Our first result in this section shows that for each ε ≥ 0 the operator Aε generates
a strongly continuous semigroup (et Aε )t≥0 on H with a uniform growth rate 1.

Theorem 3.1 (Generation of semigroups). For all ε ≥ 0, the operators Aε defined
above are closed. For real λ > 0, the resolvents (Aε−λI )−1 : H → D(Aε) ⊂ H exist
and satisfy the estimate

∥∥(Aε−λI )−1
∥∥
H→H ≤ 1

λ − 1
for λ > 1. (3.3)

In particular, Aε is the generator of the strongly continuous semigroup et Aε : H → H
satisfying ‖et Aε‖H→H ≤ 1 + t e/2 for t ≥ 0. Moreover, the functional energy

E0(U, U̇ , v) =
∫

�

{1
2
U̇ (x)2 + 1

2
|∇U (x)|2 +

∫ 0

−∞
1

2
v(x, z)2 dz

}
dx (3.4)

is a Liapunov function, i.e., along solutions we have the estimate

E0(U (t), U̇ (t), v(t)) ≤ E0(U (s), U̇ (s), v(s)) for t > s ≥ 0.

Proof. We first treat the case ε > 0 in Steps 1 to 3 and then discuss the differences
for the case ε = 0 in Step 4.

Step 1: A priori estimate. For α > 0 we use the norm | · |α on H1(�) defined
via |U |2α = α2‖U‖22 + ‖∇xU‖22, where ‖ · ‖2 is the standard L2 norm on �. For
w̃ = (Ũ , Ṽ , ṽ) and ŵ = (Û , V̂ , v̂) inH,wedefine

〈〈
w̃, ŵ

〉〉
α

:= 〈Ũ , Û 〉α+∫
�
Ṽ V̂ dx+∫

�
ṽ v̂ dz dx .
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For w = (U, V, v) ∈ D(Aε) and α ≥ 0, we obtain the estimate

〈〈
Aεw,w

〉〉
α

:= 〈V,U 〉α +
∫

�

(
�xU−∂zv|z=0

)
V dx +

∫

�

(
ε2�xv+∂2z v

)
v dz dx

=
∫

�

{
α2UV + ∇U · ∇V − ∇U · ∇V − (∂zv v)|z=0

−
∫ 0

−∞
(
ε2|∇xv|2 − (∂zv)2

)
dz + (∂zv v)|z=0

}
dx

=
∫

�

α2UV dx −
∫

�

(
ε2|∇xv|2 − (∂zv)2

)
dz dx

≤ α

2

(
α2‖U‖22 + ‖V ‖22

) ≤ α

2

〈〈
w,w

〉〉
α

= α

2
|||w|||2α,

(3.5)

where we used the norm |||w|||α = 〈〈
w,w

〉〉1/2
α

. For λ > 0 and F = (Aε−λI )w we
obtain the estimate

|||F|||α|||w|||α ≥ −〈〈
F, w

〉〉
α

= −〈〈
(Aε−λI )w,w

〉〉
α

≥ (
λ − α

2

)〈〈
w,w

〉〉
α

= (
λ − α

2

)|||w|||2α.

Thus, for α > 0 we have established the estimate

|||(Aε−λI )−1F|||α ≤ 1

λ − α/2
|||F|||α for all λ > α/2. (3.6)

Because of ||| · |||α=1 = ‖ · ‖H, we obtain
∥∥∥
(
Aε−λI

)−1
F

∥∥∥
H

= ∥∥w
∥∥
H ≤ 1

λ − 1/2

∥∥F
∥∥
H.

In particular, we have shown that the bounded linear operators Aε−λI : D(Aε) → H
are injective. The following steps show that these operators are also surjective, i.e.,
the resolvent equations have a solution in D(Aε).
Step 2: Reduction of resolvent equation. It remains to show that for all λ > 0 the

resolvent equation (Aε−λI )w = F ∈ H has a solution in w = (U, V, v) ∈ D(Aε).
In this step, we reduce the problem to an equation for U alone.

Writing F = (G, H, f ) the system reads

on � : V − λU = G, �xU − ∂zv|z=0 − λV = H, V = v|z=0, (3.7a)

in � : ε2�xv + ∂2z v − λv = f. (3.7b)

Obviously, we can eliminate V using the first equation giving V = G + λU .
Next, we solve (3.7b) for v. Together with the Dirichlet boundary condition v = V

at z = 0, we obtain a unique solution v = Vε
λ( f, V ). By classical elliptic regularity

theory (see [14]), for all λ > 0 the linear operator Vε
λ maps Hs(�) × Hs+3/2(�)
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boundedly into Hs+2(�). Because we have V ∈ H1(�) and f ∈ L2(�), we treat
the two inhomogeneities separately, namely Vε

λ(·, 0) : L2(�) → Y ε(�) ⊂ H2(�)

and Vε
λ(0, ·) : H1(�) → Xε

λ(�) ⊂ H3/2(�). As the equation for U uses ∂zv|z=0, we
define the bounded, linear operators

Mε
λ :

{
L2(�) → H1/2(�),

f 	→ ∂zVε
λ( f, 0)|z=0,

N ε
λ :

{
H1(�) → L2(�),

V 	→ ∂zVε
λ(0, V )|z=0,

(3.8)

where N ε
λ is a (scaledversionof the)Dirichlet-to-Neumannoperator thatmapsHs+1(�)

continuously into Hs(�) for all s ∈ R. This can be seen either by the abstract result
in [4, Thm.1.5(c)] or, in our special case with � = � × ]−∞, 0[, by observing the
explicit representation N ε

λ = (λ−ε2�x )
1/2 with λ, ε > 0. Choosing s = 0, we obtain

the case stated in (3.8). Hence, it remains to solve an equation for U alone, namely

− �xU + (λ2 I + λN ε
λ)U = −H − Mε

λ f − (λI + N ε
λ)G. (3.9)

Step 3. (Aε−λI )−1F ∈ D(Aε). Using F = (G, H, f ) ∈ H and the mapping prop-
erties of Mε

λ and N ε
λ , we see that the right-hand side in (3.9) lies in L

2(�). Moreover,
for λ > 0, the operator on the left-hand side generates a bounded and coercive bilinear
form on H1(�), because

∫
�
UN ε

λU dx = ∫
�

(
ε2|∇xv|2 + (∂zv)2 + λv2

)
dz dx ≥ 0,

where v = Vε
λ(0,U ). This is of course the same calculation as in Step 1. Thus, the

Lax–Milgram theorem provides a unique solution U ∈ H1(�), which by classical
linear regularity lies even in H2(�). From V = G + λU , we obtain V ∈ H1(�).
Finally, we obtain v = Vε

λ( f, V ) ∈ Xε
λ(�) ∪ Y ε(�).

Thus, we are done, if the identity (3.2) is established. For this, we take any W ∈
H1(�) and consider vλ := Vε

λ(0,W ) ∈ Xε
λ(�) and v1 := Vε

1(0,W ) ∈ Xε
1(�). By the

definition of Vε
λ(0, ·), we see that the difference w := vλ −v1 satisfies the linear PDE

ε2�xw + ∂2z w − w = (1−λ)vλ ∈ H3/2(�), w|z=0 = 0.

Hence, we conclude w ∈ Y ε(�), which implies vλ = v1 + w ∈ Xε
1(�) ∪ Y ε(�) as

desired.
Step 4. The case ε = 0. The a priori estimate in Step 1 works for this case, too.

The elimination of V and v works similarly, but now with the simplification that Nλ is
explicitly given, namely N 0

λ = √
λI . Togetherwith X0

λ(�)∪Y 0(�) = X0
1(�)∪Y 0(�)

(see above) we see that all results in Steps 1 to 3 also hold for ε = 0.
Step 5. Generation of a semigroup. Steps 1 to 4 show that for all ε ≥ 0 the shifted

operator Aε− 1
2 I generates a contraction semigroup on H (cf. [19, Thm.3.1]) with

‖et (Aε− 1
2 I )‖H→H ≤ 1. Thus, Aε generates a semigroup satisfying ‖et Aε‖H→H ≤ et/2.

Step 6. Growth rates for the semigroup. From (3.6), we know that the semigroups
et Aε satisfy the growth estimate |||et Aεw|||α ≤ etα/2|||w|||α for all α ≥ 0. Setting
α = min{1, α} and α = max{1, α} and using the equivalence between | · |α and
‖ · ‖H1 = | · |1, we obtain

‖et Aεw‖H ≤ 1

α
|||et Aεw|||α ≤ etα/2 1

α
|||w|||α
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≤ etα/2 α

α
‖w‖H = max{α, 1/α}etα/2‖w‖H.

Optimizing with respect to α > 0 yields the bound et/2 for t ∈ [0, 2] and t e/2 for
t ≥ 2, which implies the final result ‖et Aε‖H→H ≤ (1 + t e/2).
The final statement concerning E0 follows by setting α = 0, observing E0(w) =

1
2 |||w|||20, and the contraction property |||et Aεw|||0 ≤ e0·t |||w|||0 = |||w|||0. Hence, The-
orem 3.1 is established. �

3.2. Convergence of semigroups

The next result proves the convergence of the resolvents (Aε−λI )−1 as operators
from H into itself in the strong operator topology. The critical point is to understand
the convergence of the Dirichlet-to-Neumann operators N ε

λ to the limiting operator
N 0

λ , see (3.8).

Proposition 3.2 (Strong convergence of resolvents). For all λ > 0 and all F ∈ H,
we have the strong convergence (Aε−λI )−1F → (A0−λI )−1F.

Proof Throughout the proof, λ > 0 is fixed.
Step 1. Reduction to F in a dense subset Z of H. Let Z ⊂ H be given such that

Z is dense in H and that for all F ∈ Z we have (Aε−λI )−1F → (A0−λI )−1F as
ε → 0+.
For an arbitrary F ∈ H, we consider Fn ∈ Z with Fn → F in H as n → ∞.

By Step 1 in the proof of Theorem 3.1, we know that the resolvents (Aε−λI )−1 are
uniformly bounded by Cλ with respect to ε > 0. Hence, we have

∥∥(Aε−λI )−1F − (A0−λI )−1F
∥∥
H

≤ ∥∥(Aε−λI )−1(F−Fn)
∥∥
H + ∥∥(Aε−λI )−1Fn − (A0−λI )−1Fn

∥∥
H

+ ∥∥(A0−λI )−1(Fn−F)
∥∥
H

≤ Cλ‖F−Fn‖H + ∥∥(Aε−λI )−1Fn − (A0−λI )−1Fn
∥∥
H + Cλ‖F−Fn‖H.

Thus, for a given δ > 0 we can make the difference small by first choosing n so big
that Cλ‖F−Fn‖H < δ/3 and then choosing ε0 > 0 so small that the middle term is
less than δ/3 for all ε ∈ ]0, ε0[ as well. Thus, for all F ∈ H we have the convergence
(Aε−λI )−1F → (A0−λI )−1F .
Step 2. Higher regularity for smooth right-hand sides F . We use that the system

is translation invariant in the domain �. Thus, if the partial derivatives ∂x j F lie in H,
then the solutions wε = (Aε−λI )−1F have an additional derivative in x j direction
as well and satisfy the a priori estimate ‖∂x j wε‖H ≤ Cλ‖∂x j F‖H. Thus, for F in the
dense subset

Z = {
F ∈ H

∣∣ ∇x F ∈ H
}

(3.10)

the improved estimate ‖wε‖Z ≤ Cλ‖F‖Z holds with ‖F‖Z = ‖F‖H+‖∇x F‖H.
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Step 3. Convergence for ε → 0+. We now assume F ∈ Z and compare wε =
(U ε, V ε, vε) = (Aε−λI )−1F with w0 = (U 0, V 0, v0) = (A0−λI )−1F . As in Step
1 of the proof of Theorem 3.1, we estimate the differencewε−w0 as follows (choosing
α > 0 with α < 2λ):

(
λ−α

2

)〈〈
wε−w0, wε−w0〉〉

α
≤ −〈〈

(A0−λI )(wε−w0), wε−w0〉〉
α

∗= 〈〈
(0, 0, ε2�xv

ε)�, wε−w0〉〉
α

= −
∫

�

ε2∇xv
ε(∇vε−∇v0)dz dx

≤ Ĉαε2‖wε‖Z(‖wε‖Z+‖w0‖Z) ≤ 2ε2ĈαCλ‖F‖2Z → 0 as ε → 0+ .

In the identity
∗=, we used the cancellation arising from (A0−λI )w0 = F and

(A0−λI )wε = (Aε−λI )wε + (A0−Aε)w
ε = F − (0, 0, ε2�xv

ε)�.

By the equivalence of the H norm and the norm induced by
〈〈·, ·〉〉

α
, we conclude

‖wε−w0‖H ≤ C ε, and Proposition 3.2 is proved. �

Theorem 3.1 and Proposition 3.2 are the basis for the following result that states that
the strongly continuous semigroups (et Aε )t≥0 onH converge as ε → 0+ in the strong
operator topology. Indeed, the proof of the first part is a direct consequence of the
Trotter–Kato theory, see [19, Sec. 3.3], while the second part uses explicit estimates.

Theorem 3.3 (Strong convergence of the solutions). Consider the operators Aε de-
fined in Theorem 3.1 and the induced semigroups et Aε : H → H for t ≥ 0. Then, for
all initial conditions w0 ∈ H, the solutions wε : [0,∞[ → H, t 	→ wε(t) = et Aεw0

satisfy for all t ≥ 0 the convergence wε(t) → w0(t) as ε → 0.
Moreover, for initial conditions with additional derivatives in x-direction, namely

w0 ∈ Z (cf. (3.10)) we have the quantitative error estimate

‖wε(t) − w0(t)‖H ≤ ε
√
t (2.3+t)2 ‖w0‖Z for all t ≥ 0. (3.11)

Proof It remains to show (3.11). For this, we set δ = wε − w0 and perform a simple
energy estimate, where we use that wε = (U ε, V ε, vε) and w0 = (U 0, V 0, v0) are
sufficiently smooth solutions of (3.1), because we have the extra regularity ofw0 ∈ Z.
We employ the norms ||| · |||α from (3.5) and find

1

2

d

dt
|||δ|||2α =

∫

�

α2(U ε−U 0)(V ε−V 0)dx

−
∫

�

{|∂zvε−∂zv0|2 + ε2∇xv
ε · (∇xv

ε−∇xv
0)

}
dz dx

≤ α

2
|||δ|||2α − 0 + ε2‖∇xv

ε‖L2(�)

(‖∇xv
ε‖L2(�) + ‖∇xv

0‖L2(�)

)

≤ α

2
|||δ|||2α + ε2‖w0‖2Z 2

(
1 + t e/2

)2
,
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where we used ‖∇xw
ε‖H ≤ ‖et Aε∇xw0‖H ≤ ‖et Aε‖H→H‖w0‖Z and the growth

estimate from Theorem 3.1. With δ(0) = w0−w0 = 0, Gronwall’s lemma yields

|||δ(t)|||2α ≤ ε2
∫ t

0
2 eα(t−s)(1+s e/2)2 ds ‖w0‖2Z.

For t ∈ [0, 2], we choose α = 1 and obtain

‖δ(t)‖2H = |||δ(t)|||21 ≤ C∗t ε2‖w0‖2Z for t ∈ [0, 2]
where C∗ = ∫ 2

0 e2−s(1+se/2)2 ds ≈ 27.14... ≤ 2.34. For t ≥ 2, let α = 2/t ≤ 1 to
obtain

‖δ(t)‖2H ≤ 1

α2 |||δ(t)|||2α ≤ t2

4

∫ t

0
2 e2(1−s/t)(1+se/2)2 ds ε‖w0‖2Z

= t3

32

(
(e2−5)e2t2 + 4(e2−3)et + 8(e2−1)

)
ε2‖w0‖2Z

≤ t

6

(
1 + t e/2)4 ε2‖w0‖2Z.

Combining this with the result for t ∈ [0, 2] and (e/2)4 ≤ 6, we find ‖δ(t)‖2H ≤
t (2.3+t)4 ε2‖w0‖2Z for all t ≥ 0, which is the desired result (3.11). �

4. Energy and dissipation functionals

We now show that the fractionally damped wave equation (2.4) carries a natural
energy–dissipation structure. This is done in two different ways. First, we reduce
the natural energy–dissipation structure of the limiting system (3.1) with ε = 0 by
eliminating the diffusion equation. For this, we first study the one-dimensional dif-
fusion equation v̇ = ∂2z v on the half line ]−∞, 0[ in detail. Second, we show by
a direct calculation that the energy–dissipation structure extends to a more general
class of fractionally damped wave equations, where the time derivative of order 3/2 is
replaced by order 1+α with α ∈ ]0, 1[.
4.1. Diffusion equation on the half line

We consider the following initial boundary value problem on I := ]−∞, 0[:
v̇ = ∂2z v, v(0, z) = v0(z), v(t, 0) = ϕ(t). (4.1)

We always assume the compatibility condition v0(0) = ϕ(0).
Using the one-dimensional heat kernel H(t, y) = (4π t)−1/2 exp

(−y2/(4t)
)
and the

reflection principle, the influence of v0 is described via KDir(t, z, y) = H(t, z−y) −
H(t, z+y) giving homogeneous Dirichlet data via KDir(t, 0, y) = 0:

v(t, z) =
∫

I
KDir(t, z, y)v0(y)dy.
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To obtain the influence of the inhomogeneous Dirichlet data at z = 0, we set v0 = 0
and make the ansatz v(t, z) = w(t, z) + ϕ(t) such that w has to satisfy

wt = wzz − ϕ̇(t), w(t, 0) = 0, w(0, z) = −ϕ(0) = 0.

With Duhamel’s principle (variation-of-constants formula), we obtain

w(t, z) = −
∫ t

0

∫

I
KD(t−s, z, y)ϕ̇(s)dy ds.

Setting G(y) := ∫ y
−∞ H(1, η)dη (such that G(−∞) = 0 and G(∞) = 1), we obtain

w(t, z) =
∫ t

0
ϕ̇(s)

(
G(z/

√
t−s) − G(−z/

√
t−s)

)
ds.

Putting both cases together, the full solution formula for (4.1) reads

v(t, z) =
∫

I
KDir(t, z, y)v0(y)dy + ϕ(t) +

∫ t

0
ϕ̇(s)

(
G

( z√
t−s

) − G
( −z√

t−s

))
ds.

For the analysis related to the fractionally damped wave equation, we consider only
the case v0 ≡ 0, which implies ϕ(0) = 0 as well by continuity of the boundary-initial
data. Doing integration by parts for the time integral and using

∂s
(∓G(±z/

√
t−s)

) = H(1,±z/
√
t−s)

z

2(t−s)3/2
= −∂z H(t−s, z)

we arrive, for the case v0 ≡ 0, at the relation

v(t, z) =
∫ t

0
K0(t−τ, z) ϕ(τ)dτ with K0(t, z) = 2∂z H(t, z). (4.2)

Using ∂2z H = ∂t H , doing another integration by parts, and using ϕ(0) = 0 again, we
find

∂zv(t, z) =
∫ t

0
K1(t−τ, z) ϕ̇(τ )dτ with K1(t, z) = 2H(t, z). (4.3)

In particular, evaluating at z = 0, where H(t, 0) = 1/
√
4π t , we find

∂zv(t, 0) =
∫ t

0

ϕ̇(τ )√
π(t−τ)

dτ. (4.4)

According to the definition (1.6), the boundary derivative ∂zv is the fractional Caputo
derivative of order 1/2 of ϕ, i.e., ∂zv(·, 0) = CD1/2ϕ.

We nowderive an energy–dissipation balance for the diffusion equation by rewriting
the natural L2 integrals in terms of the boundary value ϕ. The starting point is the
classical relation
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d

dt

∫

I

1

2
v(t, z)2 dz =

∫

I
vv̇ dz =

∫

I
v∂2z v dz = v(t, 0)∂zv(t, 0) −

∫

I

(
∂zv(t, z)

)2 dz.

(4.5)

For solutions v of (4.1) with v0 ≡ 0 and ϕ(0) = 0, we can rewrite this energy–
dissipation balance totally in terms of ϕ by using the following result.

Proposition 4.1 Assume that v is given via (4.2) and ∂zv by (4.3), then we can express
twice the energy

∫
I v2 dz and the dissipation

∫
I (∂zv)2 dz via

∫

I
v2 dz =

∫ t

0

∫ t

0
M0(t−r, t−s) ϕ(r)ϕ(s)dr ds and (4.6a)

∫

I
(∂zv)2 dz =

∫ t

0

∫ t

0
M1(t−r, t−s) ϕ̇(r)ϕ̇(s)dr ds (4.6b)

where

M j (r, s) =
∫

I
K j (r, z)K j (s, z)dz = 2 j

√
4π (r+s)3/2− j

. (4.6c)

In particular, M j (r, s) = M̃ j (r+s) and ∂r M1(r, s) = ∂sM1(r, s) = −M0(r, s).

Proof The relations (4.6a) and (4.6b) with Mj (r, s) = ∫
I K j (r, z)K j (s, z)dz follow

simply by the definitions. Thus, it remains to establish the explicit formulas for M0

and M1 by exploiting the structure of K0 = 2∂z H = − z
2t 2H and K1 = 2H . We

obtain

K j (r, z)K j (s, z) = 4
( z2

4rs

)1− j 1

4π
√
rs

exp
(
− z2

4r
− z2

4s

)

=
( z2

4rs

)1− j 1

π
√
rs

exp
(
−r+s

4rs
z2

)
.

An explicit integration with
∫ ∞
0 e−a2x2 dx = √

π/(2a) and
∫ ∞
0 x2e−a2x2 dx =√

π/(4a3) yields the stated formulas for M0 and M1. �

It is a surprising fact that M0 and M1 depend only on the sum r+s rather than on
r and s individually. The relations in (4.6) allow us to rewrite the energy–dissipation
balance (4.5) in terms of ϕ alone. We obtain the identity

d

dt

∫ t

0

∫ t

0

1

2
M0(t−r, t−s) ϕ(s)ϕ(r)dr ds

= ϕ(t)
∫ t

0

ϕ̇(τ )√
π(t−τ)

dτ −
∫ t

0

∫ t

0
M1(t−r, t−s) ϕ̇(s)ϕ̇(r)dr ds . (4.7)
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4.2. An energy–dissipation relation for fractional derivatives

Here we show that the identity (4.7) can be derived in an independent way, not using
the Dirichlet-to-Neumann map for the one-dimensional diffusion equation. We even
generalize the result to the case of general fractional derivatives CDαϕ, where (4.7) is
the special case α = 1/2. For general α ∈ ]0, 1[, we set

Nα
0 (r, s) = α

�(1−α) (r+s)1+α
and Nα

1 (r, s) = 1

�(1−α) (r+s)α
. (4.8)

With this, we obtain the following result.

Proposition 4.2 For all ϕ ∈ C1([0,∞[) with ϕ(0) = 0, we have the identity

d

dt

∫ t

0

∫ t

0

1

2
Nα
0 (t−r, t−s) ϕ(s)ϕ(r)dr ds

= ϕ(t) CDαϕ(t) −
∫ t

0

∫ t

0
Nα
1 (t−r, t−s) ϕ̇(s)ϕ̇(r)dr ds.

Proof We set r = t−ρ and s = t−σ and obtain

d

dt

∫ t

0

∫ t

0

1

2
Nα
0 (t−r, t−s) ϕ(s)ϕ(r)ds dr

= d

dt

∫ t

0

∫ t

0

1

2
Nα
0 (ρ, σ ) ϕ(t−σ)ϕ(t−ρ)dσ dρ

1=
∫ t

ρ=0

∫ t

σ=0

1

2
Nα
0 (ρ, σ )

(
ϕ(t−σ)ϕ̇(t−ρ) + (

ϕ̇(t−σ)ϕ(t−ρ)
)
dσ dρ.

2=
∫ t

ρ=0

∫ t

σ=0
Nα
0 (ρ, σ )ϕ(t−σ)ϕ̇(t−ρ)dσ dρ.

Here
1= uses ϕ(0) = 0 such that the boundary terms arising from d

dt

∫ t
0 g(τ )dτ = g(t)

vanish. In
2=, we simply use the symmetry Nα

0 (r, s) = Nα
0 (s, r).

In the next step, we perform an integration by parts with respect to σ ∈ [0, t] and
use the fundamental relation Nα

0 (ρ, σ ) = −∂σ Nα
1 (ρ, σ ). Hence, we continue

=
∫ t

ρ=0

{[−Nα
1 (ρ, σ )ϕ(t−σ)

]∣∣
∣
t

0
−

∫ t

0

(−Nα
1 (ρ, σ )

)(−ϕ̇(t−σ)
)
dσ

}
ϕ̇(t−ρ)dσ dρ

=
∫ t

ρ=0
Nα
1 (ρ, 0)ϕ(t)ϕ̇(t−ρ)dσ dρ −

∫ t

0

∫ t

0
Nα
1 (ρ, σ )ϕ̇(t−σ)ϕ̇(t−ρ)dσ dρ,

wherewe again have usedϕ(0)=0. The definition of the function Nα
1 gives Nα

1 (t−τ, 0)
= 1/

(
�(1−α)(t−τ)α

)
, such that the first term is indeed equal to ϕ (CDαϕ). With this,

the result is established. �
We emphasize that the above result does not need the exact form of Nα

0 and Nα
1 as

given in (4.8). We only exploited the relations

Nα
0 (r, s) = Nα

0 (s, r), Nα
0 (r, s) = −∂s N

α
1 (r, s), Nα

1 (r, 0) = 1/
(
�(1−α) rα

)
.
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Clearly, there are many more functions satisfying these conditions. However, we also
want positive semi-definiteness of the kernels Nα

j , i.e.,

∫ t

0

∫ t

0
Nα

j (r, s)ψ(s)ψ(r)ds dr ≥ 0 for all ψ ∈ C0([0,∞[), t > 0, and j ∈ {0, 1}.

For general Nα
j , this positive semi-definiteness is a significant restriction, but for

our chosen cases it can be established as follows:

0 ≤
∫ ∞

y=0

( ∫ t

r=0

yα−1/2

rα
e−y2/rψ(r)dr

)2
dy

=
∫ ∞

y=0

∫ t

r=0

∫ t

s=0

yα−1/2

rα
e−y2/rψ(r)

yα−1/2

sα
e−y2/sψ(s)ds dr dy

=
∫ t

r=0

∫ t

s=0

∫ ∞

y=0

y2α−1

(rs)α
e−y2(r+s)/(rs) dy ψ(r)ψ(s)ds dr.

Using
∫ ∞
0 |y|2α−1e−by2 dy = �(α)/(2bα), we obtain the desired result

0 ≤
∫ t

r=0

∫ t

s=0

�(α)

(r+s)α
ψ(r)ψ(s)ds dr for all ψ ∈ C([0, t]),

which holds for all α ≥ 0.

4.3. Energetics for the fractionally damped wave equation

To derive the physically relevant energy–dissipation balance for the fractionally
damped wave equation

Ü (t, x) +
∫ t

0

Ü (s, x)√
π(t−s)

ds = �U (t, x) (4.9)

we use the limiting system (2.2). The latter is a classical system of partial differential
equations, and it is easy to write down the physically motivated energy functional E
and the corresponding dissipation function D.

The total energyE is the sum of the kinetic and potential energy in the membrane�

plus the kinetic energy in the lower half space � = � × ]−∞, 0[, where we consider
v as the horizontal component of a shear flow. This leads to E0 as defined in (3.4), and
along the solutions of (2.2) the energy–dissipation balance takes the form

d

dt
E0(U (t), U̇ (t), v(t)) = −D(U, U̇ , v) :=

∫

�

1

2
(∂zv)2 dz dx .

This shows that the only dissipation occurs by the (shear) viscosity of the fluid in the
lower half space �.
As explained inSects. 2.4 and 4.1,we can eliminate v via (usingϕ(t, x) = U̇ (t, x, 0)

and assuming v(0, x, z) = 0 of all (x, z) ∈ �)

v(t, x, z) =
∫ t

0
2∂z H(t−τ, z)U̇ (τ, x)dτ, where H(t, z) = e−z2/(4t)

√
4π t

.
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This allows us to eliminate ∂zv(t, x, 0) via (4.4) andwe obtain the fractionally damped
wave equation (4.9).

Using the formulas derived inProposition 4.1,weobtain the reduced energy function
E and the reduced dissipation function D in the form

E(U (t), [U̇ ][0,t]) :=
∫

�

{1
2
U̇ (t)2 + 1

2
|∇xU (t)|2 (4.10a)

+
∫ t

0

∫ t

0

1

4
√

π (2t−r−s)3/2
U̇ (r, x)U̇ (s, x)dr ds

}
dx,

D(U (t), [U̇ ][0,t]) :=
∫

�

{ ∫ t

0

∫ t

0

1√
π (2t−r−s)1/2

Ü (r, x)Ü (s, x)dr ds
}
dx .

(4.10b)

Clearly, along solutions of the fractionally damped wave equation (4.9) we have the
reduced energy–dissipation balance

d

dt
E(U (t), [U̇ ][0,t]) = −D(U (t), [U̇ ][0,t]). (4.11)

Of course, it is possible to check this identity directly without any reference to the
limiting system (2.2) involving the hidden state variable v. For this, we do the standard
argument for energy conservation for the wave equation plus the calculation in the
proof of Proposition 4.2 for the parts non-local in time.
In the related works [8,23,25], other energy functionals were constructed for equa-

tions with fractional time derivatives. However, the approach there is quite different
and is less inspired by the true energy and dissipation hidden in the eliminated state
variable v.
Indeed, we may generalize the energy–dissipation balance (4.11) to the case of

fractional damping of order 1+α ∈ ]1, 2[. We consider (4.9) as a special case of the
equation

Ü + CDαU̇ = �U on �. (4.12)

Taking into account the calculations in Sect. 4.2, we define the energy Eα and the
dissipation function Dα via

Eα(U (t), [U̇ ][0,t]) :=
∫

�

{1
2
U̇ (t)2 + 1

2
|∇xU (t)|2

+
∫ t

0

∫ t

0

α/2

�(1−α)(2t−r−s)1+α
U̇ (r, x)U̇ (s, x)dr ds

}
dx, (4.13a)

Dα(U (t), [U̇ ][0,t]) :=
∫

�

{∫ t

0

∫ t

0

1

�(1−α)(2t−r−s)α
Ü (r, x)Ü (s, x)dr ds

}
dx . (4.13b)

Clearly, for sufficiently smooth solutions of the fractionally damped wave equation
(4.12) we have the reduced energy–dissipation balance

d

dt
Eα(U (t), [U̇ ][0,t]) = −Dα(U (t), [U̇ ][0,t]). (4.14)
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5. Conclusion and outlook

In this work, we have shown that the fractionally damped wave equation can be
obtained as a scaling limit from a bulk-interface coupling between a wave equation
for a membrane and a viscous fluid motion in the adjacent half space. The coupling
is such that the natural mechanical energies act as a Liapunov function. We have
identified the physical scaling parameters like the equivalent membrane thickness
	thick = ρmemb/ρbulk for the vertical scaling and the effective travel length 	trav(t∗) =
ρ
3/2
membκ

1/2/(μρbulk) for the horizontal scaling. Thus, taking the limit ε → 0 in the
critical parameter

ε = 	thick

	trav(t∗)
= μ√

ρmemb κ

leads to the appearance of the fractionally damped wave equation.
The first main outcome of the mathematical analysis is that the system is stable

uniformly with respect to ε and that it converges strongly in the natural energy space
H in the sense of linear semigroup theory. For initial data with higher horizontal
regularity, a convergence rate could be derived. Thus, the fractional time derivative of
order 3/2 appears naturally as a consequence of the Dirichlet-to-Neumann map of a
one-dimensional parabolic equation on the half line.
The second outcome of our approach is the energy–dissipation structure for the frac-

tionally damped wave equation which is derived by integrating out the “hidden states”
v in the fluid layer in the full mechanical energy–dissipation structure of the coupled
system of partial differential equations. As expected, we obtain quadratic functionals
for the reduced energy and the reduced dissipation function that are non-local in time,
thus keeping track of information stored in the hidden state variable v. It is surprising
that both quadratic functionals obtained have memory kernels Mj (t−r, t−s) that de-
pend only on the sum (t−r)+ (t−s). It is certainly important to understand where this
special structure comes from and how it relates to more general energy–dissipation
structures as introduced in [8,23,25].
Amajor restriction occurs throughour assumption v(0, x, z) = 0 for a.a. (x, z) ∈ �,

which implies U̇ (0, x) = 0.We expect that this assumption can be avoided by suitably
generalizing the Caputo derivative and by extending the memory kernel to negative
time, thus allowing for some pre-initial conditions. This will be the content of further
research.
This work is understood as a first step to understand the principles behind damping

based on fractional time derivatives. In subsequent works, we plan to extend the
analysis to a more physical model, namely that of a true membrane over a viscous
incompressible fluid governed by the Navier–Stokes equations. The approach based
on partial differential equations developed here, will then allow us to study the full
vector-valued case v(t, x, z) ∈ R

d including the associated nonlinearities. It will be
interesting to see under what conditions the relevant scalings in the nonlinear setting
will be the same as in the linear theory in [12,13]. Moreover, it will be critical to see
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the occurrence of fractional damping, which relies on the linearity of the Dirichlet-to-
Neumann map of the parabolic equation on the vertical half line.
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