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1 Summary

How do humans make simple preferential decisions, like decide what to have for

breakfast at a hotel buffet? In contrast to the assumption of normative accounts of

decision making, humans’ preferences are often not stable but constructed at the time

of choice and contingent on the decision makers’ interaction with the environment.

Recent evidence suggests that the allocation of visual attention during deliberation

is closely linked to subsequent choices so that alternatives that are looked at longer

are generally more likely to be chosen. Prior work has characterized the processes

underlying simple decisions in terms of evidence accumulation over time, where

momentary rates of accumulation depend on the decision maker’s allocation of gaze,

and a decision is made when accumulated evidence reaches a certain threshold.

However, the generalisability of gaze-dependent accumulation remains unclear in

multiple regards: It is not established how well gaze-dependent evidence accumulation

describes individual decision makers’ behaviour or to what extent the association

between visual attention and choice varies between individuals. In addition, it is

unclear to what extent the theory applies to behaviour in contexts where choices

deviate from normative predictions more substantially. Finally, it remains debated

whether visual attention causally influences or rather reflects the construction of

preferences.

In this thesis, I address these questions across three empirical studies using

computational models of the decision process. In Study 1 (Molter et al., 2019; Thomas

et al., 2019), we first developed a novel gaze-dependent evidence accumulation model

that allowed investigation of choice processes on the individual level. In addition, we

published a corresponding Python toolbox to facilitate its use by others. Using this

new tool, we demonstrated that gaze-dependent evidence accumulation accurately

captures individuals’ choice and response time data and associations with gaze

allocation across four simple choice data sets. Our analysis revealed, however, that

individuals strongly differed in the degree to which choices and gaze allocation were
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1 Summary

linked and that this variability was associated with individual differences in choice

consistency.

In Study 2 (Molter et al., 2021), we tested the gaze-dependent evidence accu-

mulation framework in a multi-alternative, multi-attribute task involving choices

between three risky gambles. The task was designed to elicit context effects in choice

behaviour that challenge normative choice theories. These context effects describe

preference changes depending on the set of available alternatives. We found not

only choices but also decision makers’ gaze allocation to be modulated by context,

allowing a gaze-dependent evidence accumulation model derived from prior work to

generalise to this more complex scenario.

In our preregistered Study 3 (Molter & Mohr, 2021b), we finally addressed the

causal direction of the association between visual attention and choice. Participants

made repeated choices between two risky gambles whose attributes were presented

sequentially. This allowed the experimental control of the stimuli’s presentation

duration and order. Our results confirmed a causal influence of information search

on preference construction. However, we identified presentation order, not duration,

as the influencing factor, as alternatives presented last were chosen more frequently.

Notably, causal order effects are only predicted by some gaze-dependent evidence

accumulation models, highlighting potential for future theory development.

The studies generally confirmed positive associations between visual attention

and choice and provided support for gaze-dependent evidence accumulation theories

on the individual level and in more complex choice scenarios. However, our studies also

revealed large individual differences and possible limitations of current computational

models of decision making. We showed that accounting for those differences and

implementing additional mechanisms like accumulation leak to predict acquisition

order effects substantially improve prediction of individual choice behaviour.

Finally, I discuss these results on the active role of visual attention in the decision

process and the theoretical model of gaze-dependent evidence accumulation in the

2



broader context of constructed preferences and outline potential implications for the

model-based analysis of choice and eye movement data.
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2 Glossary

aDDM Attentional Drift Diffusion Model. An influential gaze-dependent evidence

accumulation model (Krajbich et al., 2010; Krajbich et al., 2012; Krajbich &

Rangel, 2011). It is an extension of the DDM which assumes that momentarily

unattended alternatives’ values are discounted by a constant factor (see gaze

discount). 23–27, 29, 30, 32, 39–41, 45–47, 57–59, 62, 68, 69, 73, 74

attraction effect A context effect, where adding a third alternative that is similar

but inferior to an existing one, results in a higher relative preference for the

alternative that it is similar to. 6, 15, 19, 36, 53, 54, 62

BIC Bayesian Information Criterion. 42, 43

compromise effect A context effect, where adding a third alternative with extreme

attributes results in a higher relative preference for the alternative that is then

perceived as intermediate. 6, 15, 19, 36, 52

context effect A change in preference between two alternatives after a third alter-

native is introduced into the choice set. Typically studied using alternatives

with multiple attribute dimensions. 5–7, 14, 15, 30, 33, 36, 39, 42, 52

DDM Drift Diffusion Model. An influential evidence accumulation model of simple,

binary decision making (Ratcliff, 1978; Ratcliff et al., 2016). It assumes that

relative evidence in favor of each of two response alternatives is accumulated

in a noisy process until the relative evidence reaches a threshold corresponding

to one of the alternatives. Notably, it predicts the identity and the time of the

response first. 5, 23, 27, 58, 60

description invariance The normative tenet that preferences should not depend on

the format in which choice alternatives are described. 14, 16, 17, 67
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EUT Expected Utility Theory (Von Neumann & Morgenstern, 1947). 12, 15–18, 36,

40, 41, 53, 62, 71

evidence accumulation The principle of repeated, sequential sampling and integra-

tion of typically noisy evidence (in favour of choice alternatives). A key feature

of most computational cognitive models of decision making including the Drift

Diffusion Model, Decision Field Theory, the attentional Drift Diffusion Model,

and the Gaze-weighted Linear Accumulator Model . 6, 18, 19, 23

gaze bias The empirically observed association of gaze duration and choice, such

that alternatives that are looked at longer, are typically chosen more frequently.

22, 23, 31, 33, 38, 39, 58, 60, 61

gaze cascade A theory proposed by Shimojo et al. (2003). It posits that visual

gaze and preference are associated in a positive reciprocal loop so that gaze

towards an item increases preference for it, and preference for an item increases

the likelihood of gaze towards it. The empirical effect where gaze towards the

ultimately chosen item increases over the course of a decision is often called

the gaze cascade effect. 22, 24, 28, 34, 55, 64

gaze discount The mechanism of a computational model of decision making by which

value representations of momentarily unattended alternatives (or attributes)

are discounted by a constant factor. 5, 23, 33, 40, 41, 43, 45, 57–62, 67, 74

GLAM Gaze-weighted Linear Accumulator Model. 40, 46–48, 51, 52, 54, 57–60, 62,

70, 73–75

MDFT Multialternative Decision Field Theory (Roe et al., 2001). An evidence

accumulation model of multi-alternative, multi-attribute choice based on which

can predict multiple context effects, namely attraction effects, compromise

effects, and similarity effects. 19, 20, 30, 41, 53, 62, 71, 72, 74
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perceptual choice The process of categorizing different stimuli of the environment,

based on the subjective sensation of their physical features. 9, 19, 31, 35

preferential choice The process of deciding between multiple alternative actions

based on idiosyncratic preferences. Also referred to as value-based decision

making. 9, 10, 12, 19, 23, 31, 61

procedure invariance The normative tenet that preferences should not depend on

the method by which they are elicited (e.g., the order of individually placed

bids for risky prospects should match the preference order obtained from choice

between those prospects). 14, 67

process model (of decision making). A theory of decision making that describes not

only the decision outcome but the psychological (and possible neural) processes

leading to a decision. 17, 18

PT Prospect Theory (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992).

16–18, 36, 62, 68, 69, 71

RT response time. 16, 18, 23, 32, 39, 41, 45, 46, 49, 52, 66, 70, 74

similarity effect A context effect, where adding a third alternative that is similar to

an existing one (and neither dominated nor dominating), results in a higher

relative preference for the alternative that it is dissimilar to. 6, 15, 18, 19

WAIC Widely Applicable Information Criterion. 42, 48
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3 Introduction

Our personal lives consist of series of decisions. Every morning, when we wake up,

we decide what we want to have for breakfast, what we want to wear for the day,

whether to take the car or the train to work, and so on. That is, after we decided

when to set our alarm, whether to hit the snooze button (once? twice?), which

groceries and clothes to buy, which career to pursue, and whether or not to buy the

monthly subscription pass for the train. We make decisions all the time. It could be

said, in fact, that every process between perceiving information from the world and

acting is decision making, involving alternative courses of action at each point.

Not only are decisions everywhere in our lives, but the choices we make have

a great part in what makes each individual different from – or similar to – other

persons: Which newspaper to read, who to vote for, or whether to get vaccinated in

times of a global pandemic or not.

The choices we make can broadly be divided into two classes: There is perceptual

and preferential choice. Perceptual choices are choices about different states of our

environment. For example, deciding whether the alarm is really ringing, the jar of

cereal full or empty, whether the jacket is a very dark shade of blue or black. For

these types of decisions, there exists an objective truth, and it’s our task to identify

it. Preferential choices, on the other hand, involve our own preferences: Whether to

have the apple or the banana, whether the khaki or the green pants go better with

the probably blue jacket, whether to take the train to work (even though it might be

late and crowded), or the car (but there might be traffic, it’s less environmentally

friendly, and you might have to get gas anyway). In these situations, there is no right

or wrong choice, but our personal and subjective preferences determine our actions.

The study of decision making is relevant not only because it is interesting

to understand how humans perform this fundamental task, but also because the

decisions we make can have important consequences: Whether to save for retirement

or not, which investment to take, which home to buy? In addition, changes to

9



3 Introduction

decision making are at the core of many clinical conditions like addictions or eating

disorders.

One aspect that has caught researchers’ eyes more recently is that humans

do not have omniscient insight into their environment but need to actively orient

themselves towards different aspects of their environment, gathering information

relevant to their decisions. For example, before one can decide whether to buy the

daily, monthly, or single trip pass for the train, one has to glance at the menu of

options on the vending machine screen and learn about those different options. Or,

to choose a snack from a vending machine, the decision maker first has to find out

which products are in stock. This information search often consists of looking and

directing attention towards information in the environment relevant to our decision.

There is also an intuitive indication that looking at different choice options and

choosing them is somehow linked. Ask yourself, how often do you choose an item

from a vending machine which you did not look at? How often did you choose one

item from a vending machine while looking at another?

This thesis aims to address these kinds of questions and provide an increased

understanding of the role of visual attention (i.e., where we look) during deliberation

and what we end up choosing. It deals with simple preferential choice scenarios, but

the hope is that findings might help address more profound decisions by increasing

the understanding of the general mechanisms involved in decision making.

3.1 A framework of decision making

A basic framework to formalize different core components of the decision-making

process is given by Rangel et al. (2008) and illustrated in the left half of Figure 3.

In order to make value-based decisions, the decision maker is thought to perform

multiple sequential steps. Note that this framework is a deliberate simplification

to help structure investigation of the decision-making process. Both the sequential

nature and the boundaries between the proposed operations are not rigid (Rangel

10



3.1 A framework of decision making

et al., 2008).

First, the decision maker must form representations of the available alternatives,

their attributes, and associated actions like button presses or arm movements that

need to be performed to obtain them. Other relevant states of the environment that

might be relevant to the decision (e.g., the amount of change in one’s pocket, the

other person waiting in line) have to be represented, too. Similarly, information

internal to the decision maker, like hunger, thirst, or stress level, must be represented

to be able to inform the decision. As many decisions involve visually presented

choice alternatives (e.g., at the vending machine, or on the computer screen), those

representations are likely to depend on decision makers’ visual attention.

Second, many decision-making theories assume that choice alternatives and their

associated actions need to be valued. The idea is that each action (e.g., choosing

a candy bar from a vending machine) is assigned a scalar value, representing the

expected benefits of taking it. Depending on the nature of the choice alternatives,

different methods of valuation are assumed to be involved.

Third, when each action is assigned a value, the decision maker has to select

which action to take, for example, by comparing the alternatives’ values.

Fourth, after an action was made and an outcome is obtained, it is evaluated. If

the decision maker chose the candy bar, the outcome of tasting and consuming the

it is evaluated. In addition, actions can result in changes to the decision maker’s

internal or external states (like the chocolate affecting satiety), and these new states

must also be evaluated.

Fifth, evaluations of the decision’s outcomes can be used to learn and update all

components of the decision mechanism: Has the set of available actions changed (is

there another candy bar in the machine)? Have internal or external states changed

(how much change is left)? Should actions be valued differently the next time (did

the candy bar taste as good as expected)? Does the action selection mechanism

require adjustment?

11



3 Introduction

This thesis focuses on the mechanisms involved in action selection and valuation

to some extent, and the role of visual attention, that is where decision makers look

while making their decisions, in particular.

In the following sections, I will outline theoretical details and empirical findings

referring to and expanding on the elements of this framework to motivate the open

research questions this thesis aims to address.

3.2 Stable preferences

The study of preferential choice has a longer history in the field of economics than

it does in psychology. Accordingly, economists had a significant head start in

systematically defining concepts central to decision making like value, preference,

and risk. Economic theories of individual decision making are, therefore, a natural

starting point for psychologists’ and neuroeconomists’ (Glimcher & Fehr, 2014)

investigation of choice, or the background against which their theories are contrasted.

While the field of economics has produced a myriad of choice theories, its most

influential ones share a fundamental assumption: That decision makers have stable

preferences which they seek to maximise (McFadden, 2001) and that preferences are

"revealed" by their choices (Samuelson, 1938).

Another shared property of most economic models is their or normative character:

Even though originally motivated by the desire to describe behaviour (Bernoulli,

1954, originally published in 1738) the neoclassical Expected Utility Theory (EUT)

(Von Neumann & Morgenstern, 1947) is founded on a set of assumptions (or axioms)

which decision makers should follow if they acted rationally.

Notably, regarding the valuation operation, the axiomatic approach of EUT

provides a solution to the fundamental problem that the utility of goods and actions

– denoting their desirability or subjective value – cannot be measured directly, but

only inferred through choice: EUT shows that if decision makers’ choice behaviour

was compatible with its axioms, then their behaviour can be described as if they

12



3.3 Constructed preferences

assigned a stable, numerical value or utility to each alternative and chose the one

with the number. In case of uncertain outcomes, their utilities ought to be weighted

by their probabilities of occurrence.

Action selection in standard utility theories is accordingly assumed to be as

simple as identifying the highest-valued alternative. To account for the fact that

human decision making is not deterministic (Luce, 1959; Rieskamp, 2008; Rieskamp

et al., 2006), different probabilistic utility models have been developed: In random

utility models (McFadden, 1973) action selection keeps its deterministic, utility-

maximising status, but the underlying utilities are assumed to have a random

error component leading to choice variability. Fixed utility models, on the other

hand, assume that action selection itself is probabilistic (Luce, 1959) so that the

highest-utility alternative is only most likely to be chosen, but not deterministically

so.

Strictly speaking, economists do not insist that utilities are real and actually

used by decision makers. They are "as-if models" (Friedman, 1953; Gigerenzer,

2020), agnostic about the real process underlying choice, and without relationship to

psychological reality.

3.3 Constructed preferences

The normative and as-if status of economics’ optimal choice models, together with

a growing body of data incompatible with their fundamental axioms, prompted the

search for more psychological and descriptive accounts of decision making.

Starting with Simon (1955) who introduced the concept of bounded rationality,

many researchers adopted an "information-processing view" of decision making, focus-

ing on the roles of perception, cognition, learning, and psychological representations

of decision problems (Slovic, 1995). The general idea of these emerging theories is

that human decision makers are biological systems, inherently limited in the resources

they can operate on.

13
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In contrast to the assumption of stable preferences which do not vary across

occasions, and choices resulting from rational maximisation of utility, researchers

considered preferences constructed at the time of choice, choices to be the product the

decision makers’ interaction with their environments, and thereby decision making a

process highly contingent on task, context, and other factors (Lichtenstein & Slovic,

2006; Payne et al., 1992). Notably, theories of constructed preference explain a wide

range of choice behaviour in conflict with the assumptions of rational choice models.

3.3.1 Preference reversals, frames, biases, and context effects

Rational models of choice make the basic assumption that preference orders should

be identical ("invariant") across different ways of eliciting them (e.g., via choice or by

ordering individual ratings). Similarly, different ways of presenting objectively iden-

tical choice alternatives should not result in changed preferences. Human decisions,

however, violate both of these assumptions frequently and robustly: Lichtenstein

and Slovic (1971) demonstrated that decision makers’ preference order of two mone-

tary lotteries reversed, depending on whether they chose between, or priced them

individually, violating procedure invariance. The robustness of this violation was

demonstrated to great effect by replicating it on a Las Vegas casino floor (Lichten-

stein & Slovic, 1973). Violations of description invariance are illustrated in framing

effects (Tversky & Kahneman, 1981), where decision makers’ preferences reverse

based on different descriptions of identical outcomes (e.g., saving a third of people

from a deadly illness vs. letting the illness kill two-thirds of them). Many more

so-called biases are documented, in which decisions deviate from rational utility

models’ predictions and are influenced by factors which those consider irrelevant.

Context effects Another set of decision-making patterns incompatible with most

theories of stable preferences are context effects. These can be observed in choices

with more than two alternatives that are described by multiple attributes. Consumer

choices, for example, usually involve more than two alternative products, differing

14



3.3 Constructed preferences

on multiple attributes like price and quality. Context effects refer to the change in

relative preference between two alternatives after a third alternative is added to the

choice set.

At least three context effects are in conflict with traditional models assuming

stable alternative-wise utilities: The attraction effect describes an increased preference

for an alternative after a similar but slightly inferior alternative is added (Huber et al.,

1982). In the compromise effect, relative preference for an alternative is increased after

the addition of a third alternative that makes it appear as intermediate (Simonson,

1989). The similarity effect (Tversky, 1972) predicts that adding an alternative that

is similar to one of the original ones and similarly appealing will increase relative

preference for the other, dissimilar alternative.

All context effects violate the rational principle of independence from irrelevant

alternatives (Luce, 1959), which states that the relative preference between two

alternatives should remain constant across different choice sets. In addition, the

attraction effect violates the normative principle of regularity, which prescribes that

preference for an alternative should only decrease after a choice set is enlarged.

Generally, models that presume independent valuation of each available alterna-

tive (e.g., fixed utility models) are unable to account for these observed violations

(Rieskamp et al., 2006). For this reason, multi-alternative, multi-attribute choice

scenarios provide rigorous testbeds for competing theories of preferential choice

(Berkowitsch et al., 2014).

3.3.2 Theories of preference construction

Theories of constructed preference can be broadly classified by their methodological

approach (Busemeyer et al., 2006): The first group of theories builds on classic utility-

based models like EUT but includes modifications, for example, to the weightings of

outcomes, to provide better descriptions of observed behaviour. The second stream of

research, independent from traditional models, instead described choice behaviour in

15
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terms of heuristics, that is, simple rules that determine how information is processed

and results in decisions. The third computational modelling approach, to which this

thesis’ methods are most closely related, describes preference construction in terms

of dynamic and mathematically defined processes, which make precise predictions

about choices and response times (RTs) in a given context (Busemeyer et al., 2006).

In addition, theories can be distinguished by their type of explanations for

contingent decision making. Payne et al. (1992) identify two non-exclusive frame-

works: In cost/benefit frameworks, contingent decision behaviour results from the

consideration of different choice strategies’ associated mental costs and benefits of

application in a specific choice setting (Payne et al., 1988). In perceptual frameworks,

on the other hand, contingent decision making is explained by more fundamental

mechanisms associated with the representation of decision problems (Payne et al.,

1992).

Prospect theory

In the domain of choices between alternatives with uncertain outcomes (risky choice),

Prospect Theory (PT) (Kahneman & Tversky, 1979; Tversky & Kahneman, 1992)

provides an accurate explanation for many observed deviations from EUT’s predic-

tions. This includes violations of description invariance as they are observed framing

effects.

PT builds on the general framework of EUT, but includes several modifications

to better describe observed behaviour: In a first "editing" phase, decision makers

are assumed to form simplified representations of the decision problem at hand. In

a second "evaluation" phase, not unlike in EUT, decision makers are assumed to

assign values to each choice alternative, weighting their outcomes by their probabili-

ties. In this phase, PT posits three major differences to EUT with respect to the

representation of information. First, outcomes are thought to be represented with

respect to a subjective reference point (e.g., the status quo or the decision maker’s
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3.3 Constructed preferences

expectation). Second, objective outcome probabilities are assumed to be transformed

into subjective decision weights in a non-linear fashion, where small probabilities are

overweighted and large probabilities underweighted. Third, the value function which

maps objective outcomes to subjective utilities is assumed to have a steeper slope

and inverted curvature in the domain of relative losses compared to relative gains.

Like in EUT, however, valuation in PT involves alternative-wise weighting of

outcome utilities by their subjective weights. Similarly, action selection follows the

maximisation of subjective expected utilities over alternatives.

Notably, PT’s changes in representation allow it to predict violations of descrip-

tion invariance and qualify it as a theory of constructed preference. As reference-

dependence and non-linear probability-weighting are assumed to result from fun-

damental properties of humans’ make-up, PT’s explanations of contingent decision

making are considered perceptual (Payne et al., 1992).

Adopting the general structure of rational utility models, especially with respect

to valuation and action selection, PT, however, remains agnostic about the actual

processes that decision makers use to make their choice. In this sense, PT stays close

to the as-if status of rational utility models.

Heuristics

Heuristic approaches, in contrast, describe decision makers’ information processing

steps more directly. In specifying which information is used at which point in time

(and characteristic of heuristics: which information is not used), they are models of

the decision process.

Examples of heuristics include the priority heuristic (Brandstätter et al., 2006)

which describes many deviations from EUT in risky choice by describing a list

of "reasons" considered sequentially by decision makers. When a reason (e.g., the

minimum gain of a lottery) is sufficiently diagnostic between alternatives, a decision

is made, and no further reasons are considered. The elimination-by-aspects heuristic
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(Tversky, 1972) similarly predicts which information is used by decision makers

in decisions involving multiple alternatives with multiple attributes (e.g., choices

between consumer goods). In Tversky’s model, decision makers are assumed to

sequentially consider different aspects (i.e., criteria relating to individual attributes;

e.g., a maximum price) and rule out alternatives that exclude the selected aspect

until only one remains and is chosen. Notably, this procedure is able to predict

similarity effects.

It is noteworthy that heuristic models typically do not presume an intermediate

and alternative-wise valuation step between representation and action selection.

Instead of selecting the alternative with the highest a priori assigned value, action

selection in heuristic models results from comparative and non-exhaustive processing

of the alternatives’ representations.

Contingent decision making emerges from heuristics in multiple ways: First,

their comparative action selection makes them inherently context-dependent. Second,

individual heuristics are often considered part of larger repertoires of decision strate-

gies (Gigerenzer & Selten, 2001; Scheibehenne et al., 2013) which decision makers

adaptively employ, depending on their costs and benefits in a given choice setting

(Payne et al., 1992).

Dynamic computational process models of decision making

A third theoretical approach to preference construction is its description in terms of

dynamic computational process models. (Busemeyer et al., 2006; E. J. Johnson &

Ratcliff, 2014). In contrast to heuristic accounts, this approach involves the precise

mathematical mapping from input variables like the choice alternatives’ attribute

values to the observable choice, and notably RTs. Unlike simple algebraic (E. J.

Johnson & Ratcliff, 2014) mappings as in EUT and PT, however, these models also

provide descriptions of the process leading to the decision. A central concept to

this group of models is that of evidence accumulation, which describes the process
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3.3 Constructed preferences

of repeatedly sampling and integrating noisy evidence in favour of each choice

alternative. In this framework, choices are made as soon as the accumulated evidence

for one alternative reaches a certain threshold. Not only are many of these models

inspired from biological systems (Roe et al., 2001; Usher & McClelland, 2001, 2004;

Wang, 2002), but there is also a large body of research demonstrating evidence

accumulation processes in neural data during perceptual and preferential choice,

both in humans and nonhuman primates (Basten et al., 2010; Gold & Shadlen, 2007;

Heekeren et al., 2008; Pisauro et al., 2017; Shadlen & Newsome, 2001)

An example of a dynamic computational process model of decision making is

Multialternative Decision Field Theory (MDFT) (Roe et al., 2001). Like heuristic

approaches, this evidence accumulation model does not assume alternative-wise

valuation. Instead, it posits the computation of choice alternatives’ valences, derived

from attribute-wise comparisons with other alternatives. The attribute selected for

this comparison is stochastically determined by a so-called "attention" mechanism

(see below).

The model further assumes leaky evidence accumulation, where the influence

of early acquired evidence diminishes until evidence for one alternative reaches a

threshold and a choice is elicited. In addition, accumulated evidence for different

alternatives are assumed to inhibit each other, depending on the similarity of the

alternatives’ attributes.

MDFT makes quantitative predictions about similarity, compromise and attrac-

tion effects and, illustrating the additional value of computational process models,

also how they change under different levels of time pressure (Roe et al., 2001).

Notably, these models’ explanations can be described as perceptual assume

contingent decision behaviour to result from the dynamic interplay of elemental

processes within the decision-maker.
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3.4 Attention

Attention broadly describes the set of mental processes that serve functions of

selection, modulation, and maintenance of information in the face of limited cognitive

resources (Chun et al., 2010; Krauzlis et al., 2021). With researchers focusing on

the psychological factors influencing decision making and the general limitations

to humans’ information processing capacity, the concept of attention took a more

prominent role in theories of constructed preferences (Weber & Johnson, 2009).

Unlike rational models, which trivially assume that decision makers should consider

all relevant and disregard all irrelevant information, attention therefore serves to

provide certain information in a given choice context with additional weight, and

changes the resulting decisions accordingly (Russo, 2019). The specific mechanisms

attributed to attention, however, vary considerably:

Many computational process models of multi-alternative, multi-attribute choice

contain mechanisms labelled attention (Busemeyer et al., 2019): In MDFT and other

models (Usher & McClelland, 2004), the mechanism that stochastically switches

between momentarily evaluated attributes is called attention. In the associative

accumulation model (Bhatia, 2013), the weights given to different attribute dimen-

sions are determined by a mechanism called attention. Loss attention (Yechiam &

Hochman, 2013) describes a general increase in alertness in the face of possible losses,

highlighting yet another facet of the attention construct (Petersen & Posner, 2012).

This overly broad use of attention as an explanatory device has, however, drawn

criticism for the many different functions and meanings associated with the term

(Chun et al., 2010; Hommel et al., 2019; Krauzlis et al., 2021), the risk of circular

arguments (Hommel et al., 2019), and the lack of direct measurements (Krauzlis

et al., 2021).
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3.4.1 Visual attention in decision making

In contrast, a more concrete and measurable approach to investigating decision

makers’ behaviour considering limited processing capacity is to focus on overt visual

attention. Overt visual attention describes the mechanism by which an agent selects

one location for preferred processing over others by moving their eyes towards this

location.

Generally, eye movement recordings can be used to measure overt visual attention

(Rayner, 2009). Even though attention can also be deployed covertly (i.e., without

moving the eyes; Orquin & Holmqvist, 2018) and short periods of dissociation

between visual fixations and attention precede the shift of gaze (Liversedge et al.,

2011), these misalignments are unlikely to be strategic when decision makers can

inspect information freely (Rayner, 2009).

Intuitively, it is plausible to assume that visual attention has at least some

relevance in the decision making process: Unlike many theories implicitly assume,

decision makers typically do not have the ability to instantaneously form a full

representation of all relevant information. Standing in front of a vending machine

or a supermarket shelf, for example, decision makers first have to identify which

products are in stock. This is often done by sequential and visual inspection. Even

when all alternatives are identified, casual observation shows that decision makers do

not choose with their eyes closed, but when deciding between candidate alternatives,

they shift their gaze between them before making the decision.

Empirical findings Many empirical studies have investigated, mostly using eye

tracking, the factors that influence the way decision makers allocate their visual

attention (for a review see Orquin & Mueller Loose, 2013). These studies identify

both bottom-up, stimulus-driven, and top-down, goal-directed factors (Corbetta &

Shulman, 2002; Orquin & Mueller Loose, 2013). Notably, some drivers of visual

attention are also associated with changes in choice behaviour.
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First, the position of choice items determines whether and when they will be

attended. Generally, items positioned at the top and left of a display are attended

earlier and more (Chandon et al., 2009; Krajbich et al., 2010; Krajbich & Rangel,

2011; Thomas et al., 2021), which has been associated with decision makers’ learned

reading direction. In addition, centrally displayed items are attended more (Chandon

et al., 2009) and earlier (Thomas et al., 2021) and also chosen more frequently

(Chandon et al., 2009).

Next, more visually salient items, referring to their distinctiveness against the

background, and subsuming features like contrast and colour (Itti & Koch, 2000,

2001), are attended and chosen more (Milosavljevic et al., 2012; Towal et al., 2013).

Similar effects have been reported for the physical size of choice options (Chandon

et al., 2009; Thomas et al., 2021).

In tasks where decision makers provide estimates of single alternatives’ value

(e.g., by rating them individually), items of higher value are attended more (Gluth

et al., 2020; Krajbich & Rangel, 2011; Thomas et al., 2021; Towal et al., 2013), and

increasingly so over the course of deliberation (Thomas et al., 2021).

Relatedly, items that are ultimately chosen are attended more in total (S. Fiedler

& Glöckner, 2012; Folke et al., 2016; Glöckner & Herbold, 2011; Isham & Geng, 2013;

Kim et al., 2012; Krajbich et al., 2010; Krajbich & Rangel, 2011; Stewart et al., 2016;

Tavares et al., 2017), a finding referred to as gaze bias. The association between

gaze direction and choice also increases over the period of the choice (S. Fiedler &

Glöckner, 2012; Shimojo et al., 2003). This gaze-cascade effect (or late onset bias;

Mullett & Stewart, 2016) has been theorized to result from a positive feedback loop

between mere exposure effects (i.e., looking at an alternative increasing preference

for it; Zajonc, 1968) and preferential looking (B. A. Anderson et al., 2011), but can

also emerge without such a loop (see below; Mullett & Stewart, 2016).

Finally, decision makers’ last fixation before making a choice is mostly directed

towards the chosen alternative (Krajbich et al., 2010; Krajbich & Rangel, 2011).
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3.4 Attention

In summary, a wealth of empirical data has established a generally positive

association between overt visual attention and choice. Attention towards an alter-

native is associated with a higher likelihood of choosing it and an increase of this

association’s strength over the time of choice.

3.4.2 Gaze-dependent evidence accumulation

Findings of gaze biases and casual observations that decision making involves repeated

shifts of gaze between choice alternatives motivated the development of computational

models of action selection that explicitly integrate decision makers’ patterns of visual

attention into the choice process. These gaze-dependent evidence accumulation

models formalize the empirically observed association between gaze and choice. They

are based on the DDM (Ratcliff, 1978; Ratcliff et al., 2016), a highly influential

evidence accumulation model of decision making. In the DDM the relative evidence

in favour of each of two possible responses is accumulated until it reaches one of two

decision thresholds, which triggers the corresponding response. While the model

was initially developed to explain memory retrieval (Ratcliff et al., 2016) it was also

shown to predict choice and RT data in preferential choice by defining the average

rate of accumulation (the drift rate) as a difference of item values (Milosavljevic

et al., 2012).

In contrast to the DDM, gaze-dependent evidence accumulation models make

the additional assumption that the momentary drift rate of evidence accumulation

depends on which alternative is currently fixated by the decision maker (Figure 1).

In the influential attentional Drift Diffusion Model (aDDM) (Krajbich et al.,

2010; Krajbich & Rangel, 2011) evidence accumulation for an alternative is assumed

to be discounted by a constant factor while another item is fixated (Figure 1).

This gaze discount mechanism lets the model explain the observed gaze bias and

provide precise predictions of choices RTs and eye movement data (Ashby et al.,

2016; Cavanagh et al., 2014; G. Fisher, 2017; Gluth et al., 2020; Gluth et al., 2018;
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Figure 1. Gaze-dependent evidence accumulation In the multialternative attentional Drift Diffusion Model
(Krajbich & Rangel, 2011) decision makers accumulate relative evidence in favour of each available alternative (ice
cream, crisps, and chocolate). Crucially, momentary accumulation rates depend on the allocation of the decision
maker’s gaze so that evidence in favour of an item accumulates faster while it is fixated. A choice is made, once the
relative evidence in favour of one alternative reaches a given threshold, the decision boundary. In this example, the
decision maker chose to eat ice cream.

Krajbich et al., 2010; Krajbich et al., 2012; Krajbich & Rangel, 2011; Towal et al.,

2013).

Specifically, the model correctly predicts an increased likelihood of choice for

alternatives that are looked at longer due to evidence for non-fixated alternatives

being discounted. Notably, it also correctly predicts that this effect should be reversed

for choices between aversive items (Armel et al., 2008). It also accounts for the

fact that decision makers typically choose the alternative they fixate last, as fixated

alternatives are more likely to cross the decision threshold than unfixated, discounted

alternatives (unless their value is much lower). Last fixations are also correctly

predicted to be shorter, because they get interrupted when the decision threshold

is reached. Similarly, the aDDM and other gaze-dependent evidence accumulation

models with a relative choice criterion provide an account for the gaze-cascade effect,

even without assuming preference-driven gaze (Mullett & Stewart, 2016).

Multiple studies found neurobiological correlates of the aDDM’s assumed dis-

counted value signals: Using electrophysiology Hunt et al. (2018) and McGinty et al.

(2016) recorded fixation-dependent value signals in monkeys’ orbitofrontal cortex,
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3.4 Attention

while the animals freely viewed reward-associated cues. In humans, Lim et al. (2011)

found similar fixation-dependent relative value signals during two-alternative choice

with enforced fixation patterns in the ventromedial prefrontal cortex and the ventral

striatum using functional magnetic resonance imaging (fMRI).

Application of the aDDM to data from simple two- and three-alternative snack

food choices revealed that decision makers, on average, appear to discount the value

of unattended alternatives roughly by a factor of one-third (Krajbich et al., 2010;

Krajbich & Rangel, 2011).

Notably, these findings were obtained from applying the aDDM to group-level

data. As the model aims to describe and explain individual decision makers’ behaviour,

however, it is essential to also demonstrate its ability to explain data on this individual

level. See Box 1 for an example of how inferences about individuals’ behaviour from

group level data can be misleading.
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Box 1| Inferences from aggregate data
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Figure 2. Fictional data of people solving a puzzle. Each colored line marks a single person’s
ability to solve a puzzle over time. The black line shows the group-average performance evolving over time.
Example adapted from Hayes (1953).

Suppose a friend hands you a puzzle made up
of wooden blocks and rings connected by a string,
seemingly impossible to disentangle. She asks you to
free one particular wooden ring from the string. Af-
ter fidgeting for three minutes, you have an epiphany
and see the one required move and solve the puzzle.
Knowing the solution, you could do the puzzle again
in an instance.

Now imagine many people solving the puzzle.
Most people will find the solution eventually, and
for most people, the puzzle will be easy after they
solved it the first time. It is, however, likely that
people differ in how fast they find the solution.

Fictional data from this thought experiment are
plotted in Figure 2, where each coloured line shows
the ability of a single person to solve the puzzle. Note
how they all start at the bottom but make a step to-

wards the top, when a person had their epiphany
and found the solution. The black line shows the
average performance across puzzlers at each point in
time. Notice how the average appears to increase con-
stantly and smoothly over time (because the time at
which people’s performance steps up varies), while
this is not true of any individual performance curve.

A theoretical problem ensues when the aggre-
gated group data is used to make inferences about the
constituting individuals’ behaviour: A theory posit-
ing smooth and incremental learning describes the
aggregated data well but fails to describe any indi-
vidual. In general, inferences from aggregate to in-
dividual data are only valid under specific circum-
stances (A. J. Fisher et al., 2018; Molenaar, 2004).
Therefore it is important to test theories of individ-
ual behaviour on data matching this level.

Given the significant challenge which context effects pose to many models of

decision making, it also remains unclear, however, whether the aDDM will also

account for choices in scenarios involving more than two alternatives with multiple

attributes, where these can emerge. One possibility in which gaze-dependent models

could predict context-dependent choices would be if the allocation of gaze itself would

change depending on the set of available alternatives.

Practical limitations Despite its predictive accuracy and intuitive appeal, empirical

application of the aDDM, especially on the individual level, is held back for multiple
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reasons: First, there exists no off-the-shelf solution like those available for the

application of the DDM (e.g., Vandekerckhove & Tuerlinckx, 2008; Voss & Voss,

2007; Wagenmakers et al., 2007; Wiecki et al., 2013). Second, due to its fixation-

dependence, there is no analytical solution to its first passage density distribution (the

predicted distribution of response times, conditioned on choice). Therefore custom

implementations of the model need to rely on processing-intensive simulations.

Third, as the accumulation process is assumed to depend on eye movements, these

simulations have to include the simulation of decision makers’ fixation paths. This

was solved for simple two- and three-alternative choice (Krajbich et al., 2010; Krajbich

& Rangel, 2011), but becomes exponentially more difficult for more complex (e.g.,

multi-alternative, multi-attribute) choice scenarios.

3.4.3 Causal direction

Another more profound question surrounding the aDDM is that of causality. Even

though gaze-dependent computational models of choice are usually interpreted this

way, they technically do not imply any causal direction of the association between

gaze duration and choice but merely formalize their association. It would, for

example, be possible that a third unknown variable causes both shifts in gaze and

modulations of the evidence accumulation process. In this case, changes in gaze

would not necessarily affect the choice process, as the unknown third variable could

have remained unchanged.

The question of whether aspects of information search, like the duration for

which choice alternatives are inspected, causally affect choice behaviour, however,

has important implications: If they did, choices could be subject to irrelevant,

external factors influencing information search. On the one hand, this would provide

opportunities to externally influence decisions using choice architecture (Thaler &

Sunstein, 2009) that considers human information search more specifically. On the

other hand, identifying visual attention as a causal and constructive element in
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decision making would emphasize a theoretical perspective to understanding decision

biases and invariances that can build on a large body of prior work concerned with

the allocation of visual attention.

Multiple studies addressed this question of causality by experimentally control-

ling aspects of information search. Some studies presented alternatives sequentially,

thereby controlling the total duration for which alternatives were presented (Armel

et al., 2008; Shimojo et al., 2003). Others used gaze-contingent decision prompts

(Liu, Lyu, et al., 2020; Pärnamets et al., 2015; Sui et al., 2020; Tavares et al., 2017),

where participants can freely inspect alternatives but are prompted to make a choice

as soon as their viewing patterns (recorded using eye tracking equipment) fulfil preset

criteria (e.g., the decision maker looked at one alternative for 500 ms longer than

the other). All studies confirm causal effects of viewing or presentation duration on

choice, in line with causal interpretations of gaze-dependent evidence accumulation

models (but see Newell & Le Pelley, 2018).

Notably, these studies focused on causal effects of alternative-wise viewing

durations on choice. Other aspects of information search like the order in which

information is acquired, however, are also associated with choice, as indicated by

last-fixation and gaze-cascade effects. In addition, visual attention towards attribute

dimensions (e.g., outcomes and probabilities in risky choice) have also been associated

with differences in choice (e.g., S. Fiedler & Glöckner, 2012; Glöckner & Herbold,

2011; Kim et al., 2012), but are investigated less frequently.

Initial studies found choices to be causally influenced by the location of the last

fixation (Liu, Zhou, et al., 2020) and by viewing duration of individual attributes

(Liu, Lyu, et al., 2020; Sui et al., 2020).

Furthermore, associations between alternative-wise viewing duration and choice

might have been confounded with viewing order in prior work: Chosen alternatives

are often looked at longer and last, especially in fast-paced decisions which are

often made with one, two, or three fixations (e.g., Krajbich et al., 2010). Notably,

28



3.5 Summary

this potential problem can also arise in experimental designs using gaze-contingent

decision prompts – depending on the conditions triggering the choice prompt.

In sum, there is growing evidence of a directed causal effect of alternative-wise

gaze-duration on choice, but causal effects of other aspects of information search are

only recently being revealed, and their independent contributions remain challenging

to distinguish.

3.5 Summary

Gaze duration
How long are alternatives fixated?

Outcome evaluation
How desirable are states,

outcomes that followed the action?

Learning
Update

representation,
valuation, and

action-selection
processes

Rangel et al. (2008)

Representation
Feasible actions?

Internal & external states?

Valuation
What is the value of each action

(given internal & external states)?

Action selection
Choose action based on

valuations.

Context
Which alternatives are present?

What are their attributes?

aDDM
Computational model associating

gaze and choice

Figure 3. An expanded framework of decision making. Decision makers first have to form representations
of internal and external states, including available alternatives and their attributes, and associated courses of action.
Next, many theories of decision making assume a valuation step where each alternative is assigned a scalar value
that denotes its expected benefits. The decision maker then selects an action, evaluates its outcomes and uses new
information to update all processes during learning. Context effects illustrate that action selection depends on the
context of available alternatives, with some models assuming context-dependent valuation. Finally, visual attention
is linked to action selection, with the aDDM providing a theoretical account of this association. Adapted from
Rangel et al. (2008).

At this point, the initially presented framework has been expanded in two main

aspects (Figure 3): First, from the literature on the constructive nature of preferences,
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the influence of the context given by the set of available alternatives is now included

more explicitly. These context effects demonstrate clearly that the set of available

alternatives can affect action selection, with MDFT and related computational

theories providing mechanistic explanations for this effect. Note that an edge is

also drawn from context to valuation, as some models of context-dependent choice

(especially normalization accounts like Louie et al., 2013; Soltani et al., 2012) locate

the influence of context more on this level, rather than action selection. Second, the

observed link between action selection and visual attention, especially the duration

for which alternatives’ are viewed, has been included. Gaze-dependent evidence

accumulation in form of the aDDM provides a theoretical framework explaining this

connection (on the group level, as noted earlier). In addition, visual attention is also

assumed to affect decision-relevant representations.
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The goal of this dissertation is to provide an improved understanding of the role that

visual attention plays in individuals’ choice behaviour. Specifically, I investigate (i)

interindividual variability in the strength of the association between gaze and choice

in simple preferential and perceptual choice scenarios, (ii) the predictive performance

and functional form of gaze-dependent evidence accumulation in context-dependent

choice, and (iii) the causal effect of different aspects information presentation on

choice processes.

Addressing individual variability in the association between gaze and choice, I aim

to answer the questions:

1. How can individual gaze-bias mechanisms be investigated efficiently using

computational modelling?

2. Does gaze-dependent evidence accumulation capture simple choice behaviour on

the individual level?

3. Which interindividual differences exist in gaze-bias strength and how do they

relate to individual differences in choice behaviour?

With respect to generalization of gaze-dependent evidence accumulation to context-

dependent choice, I address the question:

4. To what extent can gaze-dependent evidence accumulation explain complex

multi-attribute, multi-alternative risky choice?

Lastly, regarding the causal effects of presentation characteristics on choice, I investi-

gate:

5. Can binary risky choices be causally influenced by external control of presenta-

tion duration?

6. Can binary risky choices be causally influenced by external control of presenta-

tion order?

31



4 Research questions

Rationales and hypotheses

Question 1. How can individual gaze-bias mechanisms be investigated efficiently

using computational modelling? Application of the standard model of gaze-dependent

accumulation (the aDDM) to individual-level data posed a practical and technical

challenge for multiple reasons, such as the lack of an analytical solution to its

first-passage time distribution, and the need to simulate fixation patterns. Existing

approaches to work around these practical difficulties (e.g., Cavanagh et al., 2014;

Smith et al., 2019) did not apply to multi-alternative choice. In Thomas et al.

(2019) and Molter et al. (2019), we therefore set out to develop a gaze-dependent

accumulation framework that is computationally tractable and applies to choice

settings with an arbitrary number of alternatives.

Question 2. Does gaze-dependent evidence accumulation capture simple choice

behaviour on the individual level? Prior work (Krajbich et al., 2010; Krajbich

et al., 2012; Krajbich & Rangel, 2011) could demonstrate that gaze-dependent

accumulation provides a parsimonious account of choice, RT and gaze data and their

interactions. However, these studies focused on the group level, leaving open whether

gaze-dependent accumulation also captures individual participants’ behaviour, since

a description of aggregate group data does not necessarily characterize data of its

constituents well (see Box 1). To address this question, in Thomas et al. (2019)

we tested a novel gaze-dependent accumulation model on data from individuals

across four existing data sets, and performed systematic model comparisons with

competing gaze-independent theories on the individual level. We expected gaze-

dependent evidence accumulation to describe individuals’ choice behaviour better

than competing models without gaze-dependence.

Question 3. Which interindividual differences exist in gaze-bias strength and how

do they relate to individual differences in choice behaviour? Similarly, while prior

work (Krajbich et al., 2010; Krajbich et al., 2012; Krajbich & Rangel, 2011) has
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focused on the average strength of the gaze discount across participants, variability

therein between participants was not addressed. As a result it remained unclear

whether individuals were well described by the group average. In addition, individual

estimates of the gaze discount are necessary to investigate individual differences in

gaze bias strength, and establish associations with other sources of interindividual

variability. We addressed these issues in Thomas et al. (2019), by estimating

individual gaze discount factors and investigating associations with other metrics of

simple choice behaviour. Based on the limited evidence from prior work (Krajbich

et al., 2010), we expected to find substantial variability between individuals, such

that some individuals’ choices were strongly associated with their gaze, whereas

others’ would not.

Question 4. To what extent can gaze-dependent evidence accumulation explain

complex multi-attribute, multi-alternative risky choice? Having confirmed that gaze-

dependent accumulation is a good model of individuals’ choice behaviour in simple

two- and three-alternative choice in Thomas et al. (2019), we next aimed to test,

whether this finding holds when choices are made in more complex scenarios, that

have long proven to be a challenge for traditional models of decision making. In

Molter et al. (2021), we therefore tested different forms of gaze-dependent evidence

accumulation models in a task where participants’ choice behaviour was subject to

context effects. We hypothesized that gaze-dependent accumulation could provide a

process-oriented model of context-dependent choice, even in the presence of context

effects, due to the context-dependent allocation of gaze.

Question 5. Can binary risky choices be causally influenced by external control of

presentation duration? Based on prior experimental work (e.g., Armel et al., 2008;

Shimojo et al., 2003), and predictions from causal interpretations of gaze-dependent

accumulation models including the one used in Molter et al. (2021) (Glickman

et al., 2019; Krajbich et al., 2010; Krajbich & Rangel, 2011), in Molter and Mohr
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(2021), we experimentally tested the causal influence of different aspects of stimulus

presentation on choice. We hypothesized that presentation duration affects choice,

such that longer shown alternatives, and alternatives with better values on longer

shown attributes would be chosen more frequently.

Question 6. Can binary risky choices be causally influenced by external control

of presentation order? In addition, based on empirical associations between choice

and within-trial acquisition order as in gaze cascade and last-fixation effects, we

hypothesized that presentation order similarly affects choice, such that last presented

alternatives and those which have better values on last shown attributes would be

chosen more frequently.
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5 General methodology

This section provides an overview of the general methodology used in the empirical

and model development studies that are part of this thesis. Specifically, I will outline

the general structure and characteristics of the different decision-making tasks,

the eye tracking procedures, and the general principles that guided computational

modelling of decision making. Readers are referred to the original publications for

comprehensive descriptions of the methods used.

5.1 Behavioural tasks

All studies that make up the body of this thesis investigate human decision making

behaviour measured in experimental tasks, where participants repeatedly indicate

their preference between different choice alternatives shown on a computer screen.

In Thomas et al. (2021), we analysed four existing data sets from prior work

using different behavioural tasks: The data from Krajbich et al. (2010), which

included 39 participants making 100 choices between pairs of 70 different snack

foods, the data from Krajbich and Rangel (2011), which included 30 participants

each making 100 choices between three snack food items, and the data from Folke

et al. (2016, Experiment 2), where 24 participants each made 144 choices between

three snack food items. Lastly, with the data from Tavares et al. (2017, Experiment

1), Study 1 also included data from a different decision making domain, namely

perceptual choice. Here, 25 participants performed 1344 trials across four sessions,

in which they decided which of two slanted line segments closer matched a target

exemplar.

Snack food experiments included additional valuation tasks, where participants

indicated liking ratings (Krajbich et al., 2010; Krajbich & Rangel, 2011) or their

willingness-to-pay (Folke et al., 2016) for each item individually. These value estimates

served to assess the overall quality of choices (whether highly valued items are chosen
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over others) and are important inputs to the computational models used to describe

choice behaviour.

In Molter et al. (2021) and Molter and Mohr (2021), we collected new data

from participants choosing between multiple risky prospects, each described by a

probability p to win an amount m and nothing otherwise. The use of risky prospects

as choice alternatives has a long history in the literature on judgment and decision

making (e.g., Allais, 1953; Tversky, 1972). Unlike snack food items used in Study 1,

which are represented by an image of the item on the screen, risky prospects have

two explicitly communicated attributes (probability and payoff) and therefore act

as multi-attribute stimuli. Additionally, they provide a high degree of control over

their attribute values (in contrast, for example, to snack foods’ attributes like taste,

mouthfeel, etc.) and a straightforward way to incentivise choices, even in an online

setting. Finally, they serve as prototypical stimuli to the most influential theories of

value-based decision making, namely EUT and PT. Molter et al. (2021) included

40 participants, collected in the laboratory at Freie Universität Berlin. In Molter

and Mohr (2021), we aimed to collect a larger sample. Therefore this study was

conducted online. This data set includes 179 participants.

Risky prospects in Molter et al. (2021) were tailored to individuals’ risk prefer-

ences using an integrated adaptive staircase procedure. Importantly they were also

designed to elicit context effects by adding different third prospects to a constant core

set of two alternatives: Asymmetrically dominated prospects (that had lower p and

m than one other available prospect) were added to elicit attraction effects. Extreme

prospects (with very high p and low m or vice versa) were added to make one of the

original options appear intermediate, and thereby elicit compromise effects.

While choices in Thomas et al. (2019) and Molter et al. (2021) were made

without time limit and participants could freely inspect all choice alternatives, Molter

and Mohr (2021) used a different approach to investigate the causal direction of

the association between these variables and choice: Here, each trial was divided
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into a presentation- and a choice phase. Participants first learned about the two

prospects’ attributes in a sequential presentation over five seconds and were then

prompted to indicate their choice within three seconds. Crucially, presentation

duration, order, and format were experimentally controlled and varied, such that

individual alternatives or attributes were shown longer and/or last in the sequence.

All value-based choices tasks (i.e., excluding the perceptual-choice data set in

Thomas et al., 2019) involved repeated incentivized choices that had real consequences

to the participants. This ensured that participants were motivated to choose according

to their preferences. In snack food choices, they were asked to refrain from eating

for three (Krajbich et al., 2010; Krajbich & Rangel, 2011) to four (Folke et al., 2016)

hours prior to the task and could only eat an item they chose in a randomly selected

trial afterwards. In risky choice tasks, one risky prospect the participant chose in a

randomly selected trial would be played out for a real money bonus, paid in addition

to the base compensation. This procedure was used to prevent participants from

building "portfolios" of prospects with their choices (i.e., strategically combining

prospects with different winning probabilities), yet ensuring that they had an incentive

to treat each trial as if it was relevant for their bonus payment.

In all tasks of Thomas et al. (2019) and Molter et al. (2021), participants’ eye

movements during the decision phase were recorded (see Eye tracking). Importantly,

all available choice alternatives (and their attributes in Molter et al., 2021) were

presented on different positions on the screen, and there were no implicit default

alternatives that were not represented on the screen. This allowed eye movement

recordings to be linked to information pertaining to different choice alternatives (and

their attributes).

In summary, the different studies measured choice behaviour across multiple

decision-making domains, multiple set sizes, and different stimulus categories with

both implicit and explicit representations of multiple attributes (including designs

to elicit complex context-dependent choice), allowing for the analysis of gaze-bias
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effects across a wide range of different choice scenarios. Additionally, one task

was specifically designed to investigate causal effects by experimentally controlling

multiple aspects of stimulus presentation.

5.2 Eye tracking

Eye tracking, that is, the recording of eye movements, was used in multiple studies

of this thesis to obtain process data about the duration for and order in which

participants attended to choice options and their attribute values during the course

of decision making. Experiments from Thomas et al. (2019) and Molter et al.

(2021) collected eye movement data using different video-based eye tracking systems

(Holmqvist, 2011), with sampling rates ranging from 50 Hz to 1000 Hz.

All eye tracking analyses focused on eye fixations, referring to the periods in

which participants’ gaze rests on a screen location and visual information is brought

into the eyes’ fovea before gaze is shifted to the next location (Liversedge et al.,

2011). Saccades (the fast, jerky eye movements between fixations), blinks, and other

types of eye movements were discarded. Fixations were detected from the raw stream

of timestamped gaze coordinates using specific algorithms (Holmqvist, 2011) and

assigned to the different choice options (and their attributes in Molter et al., 2021)

on the screen by matching their positions to areas of interest constructed around the

stimulus positions on the screen. Finally, multiple different variables (e.g., the overall

duration a choice alternative was fixated in a trial) pertaining to the duration and

sequence of information search during deliberation were constructed and analysed.

In general, the use of eye movements for analyses of choice behaviour served

two purposes: First, we used eye movement data to describe and characterise

participants’ information search behaviour during deliberation. Since we were

particularly interested in gaze bias effects, these analyses also included descriptions

of the association between gaze and choice. For example, in Thomas et al. (2019),

we devised a behavioural measure of gaze influence, quantifying the change in choice
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probability associated with looking at an item longer than others. This measure

was then used to quantify individual differences in gaze bias strengths. In Molter

et al. (2021), we computed relative dwell times (i.e., the relative amount of total

fixation time) towards each choice alternative to test whether — like their choices —

participants’ gaze was subject to context effects. In addition to regressing dwell times

onto trial characteristics to gain a more complete understanding of their distributions,

we analysed the direction of information search. Similarly, other descriptive measures

were used to evaluate absolute model performance in Thomas et al. (2019) and

Molter et al. (2021) (see Model comparison).

Crucially, for most model-based analyses of this thesis, eye tracking data also

served as additional input to the computational models. Gaze-dependent accumula-

tion models (including the aDDM and related models) posit that decision variables

depend on momentarily fixated alternatives or attributes. The application of these

models, therefore, involved empirically measured eye tracking data. Specifically, the

model developed in Thomas et al. (2019) and Molter et al. (2019) uses relative gaze

durations towards each alternative to discount and weight value signals. Similarly,

models in Molter et al. (2021) used the sequence of fixated alternatives and attributes

in each trial to predict choices.

5.3 Computational modelling of decision making

Across the studies of this thesis, computational modelling of decision making was a

main tool of analysis. Computational models of decision making are quantitatively

precise theories about how decisions are made. In contrast to verbally stated theories,

they involve mathematical definitions of all relevant external and internal information

(e.g., stimulus attributes like outcomes and their probabilities, or idiosyncratic values

of choice items), their representations, and computational algorithms acting on them

to generate observable choice (and often RT) behaviour.

In the context of this thesis, the use of computational models serves multiple
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purposes: First, studies involved the comparison of different competing computational

models with the goal to identify the most likely process underlying individual decision

behaviour in the different experiments. Second, computational modelling was used

to quantify individual differences in the expression of particular mechanisms of the

decision making process: In Thomas et al. (2019) and Molter et al. (2021), we

estimated gaze discount parameters, quantifying the degree to which unattended

information is discounted in the accumulation process. Third, acting as theories

of decision making, we derived hypotheses about choice behaviour from the class

of gaze-dependent accumulation models: In Molter and Mohr (2021), we tested

model-predicted effects of presentation duration and order on risky choice behaviour.

In the next sections, I provide additional details about the individual steps of

the computational modelling analyses.

5.3.1 Specification of models and model spaces

The first step for a model-based analysis of decision making is to define the set of

models to be included (the model space). The selection of models is consequential as

it defines and limits the possible results from subsequent model comparison analyses.

Depending on the specific goals, different approaches to this were taken in the studies

of this thesis:

In Thomas et al. (2019) and Molter et al. (2019), we developed a novel

gaze-dependent accumulation model (the Gaze-weighted Linear Accumulator Model

(GLAM)) that builds on the aDDM from prior work (Krajbich & Rangel, 2011), but

is more suited for the application to data from individual participants. The model

space included this novel model and a restricted variant without gaze-dependence,

allowing us to test the presence of gaze discount mechanisms on an individual level.

In Molter et al. (2021), we first aimed to compare performance of gaze-dependent

accumulation in context-dependent risky choice against a set of established reference

models of risky (EUT; Von Neumann & Morgenstern, 1947) and context-dependent
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choice (MDFT; Roe et al., 2001), and multiple control models. In a second step, we

tested the a priori defined gaze-dependent accumulation model against a systemati-

cally defined, large space of variants: Here, different model mechanisms and their

different implementations were identified (e.g., from prior work) and exhaustively

combined to create novel hybrid models that mix and match individual mechanisms.

This approach can generate a much more dense and complete space of models to

select from than a selection of a priori defined models and has the added advantage

that the relative contribution to overall model fit of individual model mechanisms

can be estimated by averaging performance over all variants that use it.

5.3.2 Model fitting (parameter estimation)

Model fitting refers to the step in which the free parameters (e.g., the utility parameter

α in EUT, or the gaze discount parameter θ in the aDDM) of a behavioural model are

optimized for the model to best describe the observed choice (and in some cases RT)

data. In other words, model fitting is the search for a parameter set that maximises

the model-predicted probability (or likelihood) of the observed choice in each trial. In

Bayesian parameter estimation (used in Thomas et al., 2019, and by the GLAMbox

software package), the prior distribution of parameter values is also incorporated,

such that parameter values that are unlikely a priori are less likely to be estimated.

For a given data set, model fitting yields the set of parameter estimates and an

estimate of the likelihood of the data under the model. This likelihood indicates

how well the fitted model describes the data and is one criterion on which multiple

models are compared (see Model comparison). Parameter estimates from cognitive

models often act as interpretable latent variables that are associated with an assumed

cognitive mechanism. For example, the estimate of an individual’s gaze discount

parameter θ̂ in the aDDM quantifies by how much the value representation of

unattended alternatives is dampened. In Thomas et al. (2019), these individual

parameter estimates were used to investigate individual differences in gaze discounts
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and their relationship to different metrics of choice behaviour.

5.3.3 Model comparison

Across studies, the comparison and selection between multiple competing models

was a central part of the model-based analyses. The goal of model comparisons is to

identify the model that described the observed data best and infer from this that

people’s choices are made similar to its assumed decision process.

One difficulty when comparing computational models of different complexity

(e.g., with different numbers of free parameters) is that more complex models can

generally fit data better but might also fit features of the data that are not relevant.

They overfit the data. Added model complexity must therefore be justified by

a significant improvement of overall fit. We compared models using the Widely

Applicable Information Criterion (WAIC) (Thomas et al. 2019; Vehtari et al., 2017)

and Bayesian Information Criterion (BIC) (Molter et al., 2021; Schwarz, 1978), which

both take this into account.

In addition to this relative type of comparison, it is important to assess different

models’ predictive performance on an absolute level (Heathcote et al., 2015; Palminteri

et al., 2017; Wilson & Collins, 2019). To this end, we simulated synthetic data from

fitted models and tested whether key patterns in the behavioural data could be

reproduced: In Thomas et al. (2019), we tested the two model variants’ ability to

reproduce individual differences across three behavioural metrics, and the winning

model’s ability to capture the shapes of individual and aggregate response time

distributions. In Molter et al. (2021), we used the different models’ predicted

association between gaze and choice and their ability to predict individual differences

in context effects as an additional absolute model comparison criterion.
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5.3.4 Individual level of analysis

All computational models were fit to the data of individual participants. First, this

circumvents the potential issue that fits to aggregate data might not be represen-

tative of the underlying individual processes in which we are ultimately interested

(Box 1; Busemeyer & Diederich, 2014; Farrell & Lewandowsky, 2015, 2018). Second,

individual model fits are a prerequisite for the model-based analysis of individual

differences, which took a central role in Thomas et al. (2019) and Molter et al.

(2021).

Likewise, model comparisons were performed to identify the best model for

each individual first. Model performance on the aggregate level (e.g., lowest mean

BIC across participants) only complemented these findings. This approach was

particularly important in Thomas et al. (2019), where we specifically aimed to

address whether prior work on the group-level held on the level of individuals, and in

Molter et al. (2021), where substantial differences in participants’ context-dependent

choice behaviour were present.

5.3.5 Validation of modelling analyses

When using computational models for data analysis, either by (i) estimating and

interpreting or comparing their parameters (e.g., interpreting gaze discount strength)

or by (ii) selecting a best-fitting model from a set of models and inferring that the

true data generating process is best described by it, the validity of these claims can

be systematically evaluated. To address the first point, it is recommended to test

whether a model’s parameters can be recovered (Heathcote et al., 2015; Lee et al.,

2019; Palminteri et al., 2017; Wilson & Collins, 2019). This refers to simulating

synthetic data from a model with known parameters, re-fitting the model to the

synthetic data set, and testing whether the estimated parameters correspond to

the known generating ones. We performed parameter recoveries in multiple studies

and further illustrated the steps to perform a parameter recovery using the newly
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developed model and corresponding toolbox in Molter et al. (2019).

Similarly, model comparison analyses can be validated by performing model

recoveries (Heathcote et al., 2015; Palminteri et al., 2017; Wilson & Collins, 2019).

Here, synthetic data is generated from all competing models, after which each model

is fit to each of the synthetic data sets. Finally, model comparison and selection

procedures are run, identifying best-fitting models for the data generated from each

model.

5.4 Software and data repositories

All statistical analyses including computational modelling analyses, and visualization

reported in this thesis were performed in Python (Python Software Foundation) using

the numpy (Harris et al., 2020), pandas (McKinney, 2012), PyMC3 (Salvatier et al.,

2016), bambi (Capretto et al., 2021), matplotlib (Hunter, 2007), and seaborn (Waskom

& seaborn development team, 2020) packages. Data and analysis code for Thomas

et al. (2019) are available at https://github.com/glamlab/gaze-bias-differences.

GLAMbox (Molter et al., 2019) code is available at https://github.com/glamlab/

glambox. GLAMbox documentation including detailed usage examples can be

found at https://glambox.readthedocs.io. For Molter et al. (2021), behavioural

and eye tracking data, MATLAB (The Mathworks Inc., USA) based task code and

Python analysis scripts and models are available at https://github.com/moltaire/

gda-context. For Molter and Mohr (2021), jsPsych (de Leeuw, 2015) task code and

Python analysis scripts and models are available at https://github.com/moltaire/

gaze-choice-causality. The corresponding behavioural task can be run online at

https://moltaire.github.io/causality_task.
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6 Summary of dissertation studies

In this chapter, I summarise the three empirical studies of the dissertation and briefly

highlight the software toolbox developed in the context of the first study.

6.1 Study 1: Investigating individual differences in gaze-biases

In Thomas et al. (2019), we investigated to what extent gaze-dependent evidence

accumulation, shown by prior work to describe aggregate choice behaviour well

(Krajbich et al., 2010; Krajbich & Rangel, 2011), holds as an adequate model of

individuals’ decision-making processes. This project involved two lines of work:

1. First, a computational modelling framework suitable for application of gaze-

dependent accumulation model to data of individual participants had to be

developed.

2. Second, this model framework was applied to multiple decision-making data

sets to systematically evaluate its performance on the individual level and

investigate individual differences in model parameters.

6.1.1 Model development: Gaze-weighted linear accumulator model

In the first step, we developed a computational model serving as an analytical

tool to investigate gaze discount effects on the level of the individual. This was

necessary, as existing approaches like the aDDM were practically limited in multiple

ways: First, because no analytical likelihood of its distribution of first-passage

times is available, fitting the aDDM (Figure 1) involved repeated simulation of the

accumulation process and comparing the simulated distributions of choices and RTs

to the observed empirical data. This procedure is computationally expensive and

requires reasonably large amounts of data to obtain stable estimates of the empirical

distribution of choices and RTs. Both factors limit the application of this procedure
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Figure 4. Gaze-weighted linear accumulator model. In the Gaze-weighted linear accumulator model
(GLAM), preference construction during the decision process depends on the decision maker’s allocation of gaze
(A). For each item in the choice set, an average absolute decision signal Āi is computed (dashed lines in A). The
magnitude of this signal is determined by the momentary allocation of gaze: While an item is currently not fixated,
its signal is discounted by parameter γ (γ ≤ 1; discounting illustrated by gray arrows; A). Absolute evidence signals
are transformed in two steps to determine a relative decision signal Ri for each item in the (B): First, the difference
between each average absolute decision signal Āi and the maximum of all others Āj is taken. Second, the resulting
differences are scaled through a logistic transform, as the GLAM assumes an adaptive representation of the relative
decision signals that is especially sensitive to differences close to 0 (where the absolute signal for an item is very
close to the maximum of all others). The resulting relative decision signals Ri can be used to predict choice and
RTs, by determining the speed of the accumulation process in a linear stochastic race (C). The stochastic race then
provides first-passage time distributions pi, describing the likelihood of each item being chosen at each time point.
Figure and caption adapted from Molter et al. (2019).

to individual level data. Second, since the model’s accumulation process depends on

visual fixations, the fixation process had to be simulated, too. The development of

models predicting fixations’ locations and durations is a challenging task by itself,

and it grows exponentially more complex for choice settings involving larger choice

sets or alternatives with multiple attributes. Additionally, search processes might

also differ between individuals, so fixation models would also need to be applicable

to each individual.

With the GLAM, we have developed an analytical tool that circumvents these

limitations and allows the model-based investigation of the relationship between gaze

allocation and choice behaviour at the individual level. It applies to choice situations

involving more than two alternatives, and only participants’ choices, RTs and relative

gaze for each alternative are necessary to apply it, in addition to estimates of the

choice alternatives’ values. Like the aDDM, the GLAM assumes that the decision
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process depends on allocation of gaze, as value representations are discounted while

the corresponding items are not fixated. The GLAM, however, differs from the

aDDM in other important aspects: The fixation-dependent value signals are averaged

across the trial by weighting them with the relative amount of time individuals spent

fixating the items. This abstracts away the specific sequence of fixations in a trial

that are included by the aDDM. On the other hand, this simplification allows for

the construction of trial-wise constant drift rates that can enter a basic stochastic

race framework.

The framing of the decision process in a race model has two practical advantages:

First, race models like the one used by the GLAM often have analytical solutions to

their first-passage density distributions, and secondly, they naturally generalize to

choice scenarios involving more than two alternatives. The analytical tractability of

the race framework further allows for efficient parameter estimation in a hierarchical

Bayesian manner. This offers additional advantages like reduced bias, simultaneous

estimation of variability, and an intuitive way to quantify uncertainty in parameter

estimates (Farrell & Lewandowsky, 2018; Kruschke, 2014; Lee & Wagenmakers,

2013).

To make this tool available to other researchers, we packaged the model code

into a Python package called GLAMbox (see Box 1) that can be installed and

used without advanced programming knowledge. This toolbox includes additional

functionality that goes beyond the model’s application in Thomas et al. (2019), like

the possibility of estimating model parameters in a hierarchical Bayesian fashion or

modeling parameters dependencies on conditions or experimental groups.
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Box 1| GLAMbox (Molter et al., 2019)

GLAMbox is a Python-based toolbox that is built upon PyMC3 (Salvatier et al., 2016) and allows the
easy application of the GLAM to experimental choice data. The GLAM assumes gaze-dependent evidence
accumulation in a linear stochastic race that extends to decision scenarios with many choice alternatives.
GLAMbox enables Bayesian parameter estimation of the GLAM for individual, pooled or hierarchical models,
provides an easy-to-use interface to predict choice behaviour and visualize choice data, and benefits from all
of PyMC3’s Bayesian statistical modeling functionality. Further documentation, resources and links to the
toolbox itself are available at https://glambox.readthedocs.io.

Feature overview
GLAMbox is published as a Python package on pypi.org (https://pypi.org/project/glambox/). It depends
on PyMC3 (Salvatier et al., 2016) for probabilistic programming of the model and parameter estimation,
pandas (McKinney, 2012) and numpy (Harris et al., 2020) for data representation and manipulation, and
matplotlib (Hunter, 2007) and seaborn (Waskom & seaborn development team, 2020) for visualization. The
toolbox and its dependencies can be installed into any Python 3.7 environment with a single command.

1 pip install glambox

Listing 6.1. Installing glambox and dependencies.

With a formatted data set called data at hand, fitting a basic GLAM takes only a few lines of code:

1 import glambox as gb
2

3 model = gb.GLAM(data=data)
4 model. make_model ()
5 model.fit ()

Listing 6.2. The basic commands to fit a GLAM to data.

Hierarchical Bayesian parameter estimation
The toolbox supports specification and estimation of hierarchical versions of the GLAM, where individ-
ual parameter estimates are assumed to be drawn from a group level distribution. This way, individual
parameter estimates are informed by the data from the entire group, exploiting the similarities between par-
ticipants while not assuming full independence. What is more, a hierarchical model simultaneously models
the variance between individuals. This approach can yield less biased parameter estimates and improved
parameter estimation especially in the face of limited amounts of data (Farrell & Lewandowsky, 2018; Rat-
cliff & Childers, 2015; Wiecki et al., 2013). Hierarchical models can be built by setting the model kind to
"hierarchical":

1 model. make_model (kind=" hierarchical ")

Listing 6.3. Building a hierarchical GLAM.

Model comparison tools
As in Thomas et al. (2019), it is often necessary to fit and compare multiple competing models. This can
be done using the compare_models function from the analysis module, which returns a data frame with the
desired comparison criterion (e.g., WAIC or leave-one-out cross-validation) for each model:
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1 from gb. analysis import compare_models
2 comparison = compare_models ( models =[ model_1 , model_2 ],
3 ic=’WAIC ’)

Listing 6.4. Comparing two GLAM variants.

Dependency setup for comparisons between groups and conditions
Other research questions might require comparison of parameter values between groups or conditions in-
stead of (or complementary to) the comparison of full models. For these situations, the toolbox adapts
the depends_on keyword from other modelling toolboxes (Wiecki et al., 2013). This keyword allows the
user to specify conditional dependencies (both within- and between-subjects) of each model parameter, for
individual, pooled and hierarchical models. The model then automatically includes single parameters for
each level of the specified condition.

1 model = gb.GLAM(data=data)
2 model. make_model (kind=" hierarchical ",
3 depends_on ={"gamma": " condition "})

Listing 6.5. Using a parameter dependency to compare parameter values between conditions.

Simulation and prediction methods
Model instances have multiple methods that enable fast prediction (simulation) of choice and RT data for
a given data set and parameter set. These can for example be used to evaluate absolute model fit, run
parameter and model recoveries, or explore model predictions. Below is an example of an out-of-sample
prediction routine: The model is fit on a data frame training. Then the attached data is exchanged to
a test data set, and model predictions (50 per trial in test) are generated using the parameter values
estimated from training.

1 model = gb.GLAM(data= training )
2 model.fit ()
3 model. exchange_data (test)
4 model. predict ( n_repeats =50)

Listing 6.6. Example of out-of-sample prediction.

Visualization
The toolbox contains convenient functions to quickly visualize different behavioural measures and their
associations, absolute model fit, and posterior parameter distributions. We refer the reader to the examples
in the documentation and the original publication for more details.

Publications using GLAMbox
• Sepulveda, P., Usher, M., Davies, N., Benson, A. A., Ortoleva, P., & De Martino, B. (2020). Visual

attention modulates the integration of goal-relevant evidence and not value. eLife, 9, e60705. https:
//doi.org/10.7554/eLife.60705
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• Thomas, A. W., Molter, F., & Krajbich, I. (2021). Uncovering the computational mechanisms
underlying many-alternative choice. eLife, 10, e57012. https://doi.org/10.7554/eLife.57012

• Weilbächer, R. A., Krajbich, I., Rieskamp, J., & Gluth, S. (2021). The influence of visual attention
on memory-based preferential choice. Cognition, 215, 104804. https://doi.org/10.1016/j.cognition.
2021.104804

• Kaanders, P., Sepulveda, P., Folke, T., Ortoleva, P., & De Martino, B. (2021). Cherry-picking
information: Humans actively sample evidence to support prior beliefs. bioRxiv. https://doi.org/
10.1101/2021.06.29.450332

• Brus, J., Aebersold, H., Grueschow, M., & Polania, R. (2021). Sources of confidence in value-based
choice. PsyArXiv. https://doi.org/10.31234/osf.io/3wnf7

• Lupkin, S. M., & McGinty, V. B. (2021). Monkey see, monkey choose: A nonhuman primate
model of gaze biases in economic choice. Poster presented at the Society for Neuroscience Global
Connectome Virtual Meeting
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6.1.2 Empirical analysis of individual differences in gaze-dependent evidence

accumulation

With the GLAM developed, we set out to empirically test the extent of individual

differences in gaze-dependent evidence accumulation processes across four existing

data sets spanning two- and three-alternative choices in value-based and perceptual

choice domains (Krajbich et al., 2010; Krajbich and Rangel, 2011; Experiment 2

from Folke et al., 2016; Experiment 1 from Tavares et al., 2017).

First, we investigated individual differences in key measures of decision making:

The probability of choosing the best item in a trial, the time it took to make the

choice, and the estimated influence of gaze on choice. This last measure represents

the average increase in choice probability for an item that is looked at longer than

others in a trial, when value is taken into account and was devised as a model-free

descriptor of an individual’s association between gaze and choice.

Next, the GLAM and a variant without gaze-dependence were fitted to the data

of each individual using Bayesian parameter estimation. This allowed us to perform

a principled model comparison on an individual level and address the question

of whether the finding that group-level data are well-described by gaze-dependent

accumulation holds on the individual level. We found that 109 out of 118 (92%)

participants were better described by the model with gaze-dependence, providing

strong empirical evidence that a gaze bias mechanism is present for most individuals

across tasks and choice domains. This analysis also revealed substantial individual

differences in the gaze-discount parameter γ in each data set, such that unattended

values were strongly discounted for some participants but much less affected by gaze

for others.

We then analysed the absolute fit of the model to the data by testing whether

the model could accurately predict individual differences across the three behavioural

metrics and generally capture the shape of individual and aggregate response time

distributions. We found that the model with gaze-discount predicted individual
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differences in all metrics, within and across data sets and that a model without

gaze-discount failed to account for the association between gaze and choice, as

expected.

Finally, we tested whether model parameters could be used to predict individual

differences in behaviour. Our analyses suggest that individual differences in gaze-

discount strength are associated with individual differences in the ability to choose

items that are valued higher than others when evaluated individually.

In summary, leveraging the developed GLAM framework and toolbox (Box 1),

we found strong support that gaze-dependent accumulation is a good model of

individuals’ choice behaviour across decision-making domains and choice set sizes

(two vs. three alternatives): It captures key characteristics like RT, gaze-influence

on choice, the choice itself and, crucially, individual differences in these measures,

while models without gaze-dependence fail to account for the observed relationship

between gaze and choice. Importantly, we identified gaze-discount strength as a

potential source of sub-optimal choice behaviour.

6.2 Study 2: Gaze-dependent accumulation in

context-dependent risky choice

Thomas et al. (2019) confirmed that gaze-dependent evidence accumulation provides

a good characterisation of individual choice behaviour in simple decision-making

tasks. In Molter et al. (2021) we aimed to further investigate whether this finding

holds, even when choices are influenced by the context of available alternatives as in

the presence of context effects in risky choice.

To this end, we recorded participants’ eye movements while they made choices

between three risky gambles, each described by a probability p to win an amount m

and nothing otherwise. This multi-alternative, multi-attribute choice task on its own

presented a more complex decision setting than those tasks analysed in Thomas et

al. (2019). Furthermore, however, choice sets were designed to elicit compromise
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(Simonson, 1989) and attraction effects (Huber et al., 1982) known to violate axioms

of rational choice, posing a significant challenge to models of preferential choice.

In line with previous findings, we found choice behaviour to be context-dependent:

Choices were influenced by the context of available alternatives, and participants

showed both compromise and attraction effects. The degree to which participants

exhibited these effects, however, was subject to large interindividual differences,

with some participants preferring dominant alternatives in trials designed to elicit

attraction effects, particularly frequently. These behavioural results provided a

complex testing scenario to compare the gaze-dependent accumulation with competing

theoretical accounts of both standard risky and context-dependent multi-alternative,

multi-attribute choice.

Importantly, and a prerequisite for a simple gaze-dependent evidence accumula-

tion model to capture context effects in participants’ choices, we found that gaze

allocation was also modulated by the context of available alternatives such that

dominant and compromise alternatives received longer relative gaze during the course

of the decision.

This allowed a simple gaze-dependent evidence accumulation model derived

from prior work on binary risky choice (Glickman et al., 2019) to outperform both

established models of risky (EUT; Von Neumann & Morgenstern, 1947) and context-

dependent multi-alternative multi-attribute choice (MDFT; Roe et al., 2001), and

provide the best description of choice data. In addition, this model quantitatively

captured the association between gaze (specifically, the relative amount of time an

alternative was looked at more than others) and choice. We found, however, that the

model underestimated particularly strong attraction effects because eye movements

were distributed more evenly between alternatives than choices (e.g., dominated

decoys were rarely chosen but still looked at for a significant portion of deliberation),

limiting the model’s predictive range.

Finally, we performed a systematic search across a large space of possible model
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variants, combining single mechanisms of multiple model classes, and exploring

additional mechanisms of gaze-dependence (e.g., gaze-dependent accumulation leak

and inhibition). In this switchboard analysis (cf. Turner et al., 2018) we showed that

all participants’ behaviour was still best described by some form of gaze-dependent

accumulation and that the variant describing most participants best coincided with

the a priori defined, winning model. Additionally, however, this analysis revealed

that predicting data from participants with particularly strong attraction effects

required an additional similarity-based inhibition mechanism.

In summary, this study provided additional support of gaze-dependent evidence

accumulation as a framework of value-based choice, even in risky choices that are

more complex than simple choice between multiple snack foods, and even when

choices are context-dependent as in attraction and compromise effects, although the

basic model needed to be extended to capture extreme effects.

6.3 Study 3: Causal effects of presentation duration and order

on binary risky choice

Thomas et al. (2019) and Molter et al. (2021) generally confirmed positive as-

sociations between gaze allocation and choice behaviour and demonstrated that

gaze-dependent evidence accumulation can provide precise descriptions of these

variables’ interactions, even on the individual level and in the presence of contextual

influences on choice.

A remaining concern, which we addressed in Molter and Mohr (2021), is the

question of causality: Do aspects of information search like gaze duration causally

affect people’s choices, or do they rather only reflect emerging preferences? As gaze-

dependent computational models of choice (including GLAM and models used in

Molter et al., 2021 do not imply a causal direction in the association between gaze and

choice, and answering this question ultimately requires experimental manipulation

of decision makers’ information search process.
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In addition to the duration for which alternatives are inspected, other aspects

of information search have been associated with choice behaviour: There are, for

example, multiple findings relating the order in which information is acquired to

choice. The gaze cascade effect describes the finding that chosen alternatives are

attended increasingly over the course of deliberation. Similarly, chosen alternatives

are typically fixated last, just before a choice is indicated. Furthermore, the winning

model from Molter et al. (2021) predicted an effect of presentation order, as it

included a leak mechanism whereby information acquired later in the decision is

weighted more heavily than earlier acquired information.

With viewing duration and order both linked to choice, one potential pitfall in

the study of these individual factors is that they can be easily confounded. This

might be especially true in simple, fast, and repeated choices often studied in the

laboratory (e.g., as in the data sets analysed in Thomas et al., 2019), where decision

makers make only a few fixations before their choice.

Here, we therefore investigated independent causal effects of viewing duration

and order on decision making in a task involving choices between two risky gambles,

each described by a winning probability p to win an amount m and nothing otherwise

(as in Molter et al., 2021). Importantly, information about the two gambles’ attributes

was presented sequentially, allowing the precise control of presentation duration and

order. Our task further included alternative-wise and attribute-wise presentation

formats.

All data collection and analysis procedures were fully preregistered (Molter &

Mohr, 2021a).

Against our hypotheses derived from causal interpretations of gaze-dependent

accumulation models, we found evidence against causal effects of presentation du-

ration on choice in this task (both in attribute- and alternative-wise presentation

formats). In contrast, we found presentation order to causally affect choices, such

that alternatives that were shown last before a choice was prompted were more likely
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to be chosen. Evidence also favoured an order effect in attribute-wise presentation,

such that alternatives with better values on the last-presented attribute were chosen

more frequently.
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In this final chapter, I will begin by first discussing how the three studies addressed

the research questions. After this, the studies’ results will be discussed more generally

in the broader context of constructed preferences and computational modelling of

decision making. To this end, I will embed the thesis’ results into an updated version

of the framework of decision making introduced earlier.

7.1 Discussion of the research questions

Question 1. How can individual gaze-bias mechanisms be investigated efficiently

using computational modelling? In Thomas et al. (2019) and Molter et al. (2019),

we developed a novel gaze-dependent evidence accumulation model inspired by a

multi-alternative version of the aDDM (Krajbich & Rangel, 2011), that applies

to choice scenarios involving an arbitrary number of choice alternatives, while

remaining analytically tractable. It enables estimation of gaze discount parameters

on the individual level and advanced modelling techniques like Bayesian hierarchical

parameter estimation.

The GLAM offers a way to circumvent the complex requirement of other gaze-

dependent modelling approaches (like the aDDM) to build generative models of the

visual search process. Although researchers have started to explore such models in

simple decision-making tasks and to integrate them with accumulation-based models

of choice (Callaway et al., 2021; Gluth et al., 2020; Jang et al., 2020; Towal et al.,

2013), these solutions remain difficult to apply to new tasks. Also, specific fixation

sequences might not be of main interest to the researcher but rather their aggregate

association with choice. Here, the GLAM provides a tractable, but simplified,

alternative to the aDDM.

Other approaches using similar forms of simplification in favour of computational

tractability exist for the case of two-alternative choice (e.g., Cavanagh et al., 2014;
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Smith et al., 2019). First applications of the GLAM by other researchers enabled by

our Python toolbox (Box 1), however, highlight another advantage associated with its

race architecture (Brus et al., 2021; Sepulveda et al., 2020): The difference between

accumulated evidence in favour of each alternative at the time of choice is often

construed as a measure of decision confidence (De Martino et al., 2013; Vickers, 1979).

Traditional diffusion models (including the DDM and aDDM) use a relative choice

rule, where the relative evidence of one alternative over the other is accumulated until

a threshold is reached. This, however, implies that the evidence difference at time of

choice is constant, and cannot be associated with variance in confidence judgments.

Notably, however, while the GLAM’s accumulation process occurs independently

for each item, the drifts are constructed comparatively, combining elements of fully

independent race models (e.g., Vickers, 1970) , and comparative accumulation models

(e.g., Krajbich & Rangel, 2011; Ratcliff, 1978; Roe et al., 2001). This way, Brus

et al. (2021) and Sepulveda et al. (2020) were able to investigate associations of gaze,

choice, and confidence using the GLAM.

In sum, our work demonstrated a way to model individual gaze bias effects

efficiently by aggregating within-trial dynamics and embedding a gaze-discount

mechanism into a computationally tractable framework.

Question 2. Does gaze-dependent evidence accumulation capture simple choice be-

haviour on the individual level? Extending prior work which reported gaze-dependent

evidence accumulation to accurately describe aggregate choice behaviour (Krajbich

et al., 2010; Krajbich & Rangel, 2011), our different lines of work established gaze-

dependent evidence accumulation as a general model of decision making on the

level of the individual: In Thomas et al. (2019), we found that across four data

sets spanning two- and three-alternative, perceptual, and value-based (snack food)

choices, collected in different laboratories, almost all individuals were best described

by GLAM variants with gaze bias mechanisms. Importantly, the model also accu-

rately predicted individual choice behaviour across multiple metrics on an absolute
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scale. Similarly, in Molter et al. (2021), where we investigated choices between

three risky gambles, all participants’ choice behaviour was best described by models

that included forms of gaze-dependence. In recent related work we could show

gaze-dependent accumulation to also capture individual choices, response times, and

associations with information search in even larger choice sets with up to 36 snack

food items (Thomas et al., 2021).

Across studies, we demonstrated that models without gaze-dependence fail to

capture the robust associations between gaze and choice that are observed empirically,

challenging existing models of decision making that do not include links to visual

attention.

There are, however, limitations to the applicability of basic gaze-duration-

dependent models like the aDDM or GLAM, as additional mechanisms were neces-

sary to explain some patterns of choices in Molter et al. (2021), and no effect of

presentation duration on choice could be identified in Molter and Mohr (2021; see

below). Furthermore, Smith and Krajbich (2018) found that a group of participants

in a social decision-making task rather followed a simple choice rule where they

searched for the alternative with the highest outcome for themselves, inconsistent

with gaze-dependent evidence accumulation. The specific conditions under which

decision makers’ choice behaviour follow gaze-dependent accumulation versus when

other processes or strategies are used and how decision makers arbitrate between

strategies, remain important questions for future work.

In sum, our findings provide strong evidence for group-to-individual generaliz-

ability (A. J. Fisher et al., 2018) across decision domains and set sizes, and thereby

an increased understanding of individual decision making. Assessing mechanisms

like the gaze discount on the individual level furthermore lays the foundation for the

model-based analyses of individual differences in decision making discussed in the

next section.
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Question 3. Which interindividual differences exist in gaze-bias strength and how

do they relate to individual differences in choice behaviour? Across studies, we found

that the large majority of people show a positive association between gaze and choice

such that alternatives that are looked at longer are also more likely to be chosen.

Importantly, however, individual strengths of this gaze bias varied substantially,

with some participants’ choices being strongly associated with their gaze allocation,

whereas the association was weak for others.

Individual estimates of gaze discount parameters in Thomas et al. (2019) reliably

predicted decision makers’ ability to choose the best item from a choice set, suggesting

the gaze discount mechanism as a source of individual differences in the ability to

choose consistently.

Our findings thereby suggest that individual gaze bias strength — and the

gaze discount as its underlying mechanism — are meaningful measures of individual

differences in decision making whose association with other individual measures

should be investigated further. Initial work found that gaze bias strength can be

associated with psychophysical metrics like the degree of "tunnel vision", that is, the

spatial extent of a person’s visual attentional scope (Smith & Krajbich, 2018). This

view implies that gaze discount strength can be considered a trait that is constant

for each person across decision scenarios. Other work (Brus et al., 2021) building on

the GLAM framework, found that gaze discounts should be construed as variable

between trials. The relative contribution of variability between and within individuals

will need to be addressed in the future.

The model-based analysis of behaviour and individual differences therein has also

seen increasing application in clinical settings (Huys et al., 2021; Huys et al., 2016):

Computational psychiatry uses algorithmic models of behaviour (like the DDM or

reinforcement learning models) to test mechanistic hypotheses about the processes

underlying psychological disorders. In addition, computational models are useful

measurement devices, which enable the measurement of hidden variables associated
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with distinct psychological mechanisms. Resulting estimates can be compared across

groups or related to individual symptoms (Huys et al., 2016). Finally, an increased

understanding of the generative processes underlying disease can help motivate novel

therapeutic approaches and interventions (Huys et al., 2021; Huys et al., 2016).

In this context, Vaidya and Fellows (2015) found that patients with frontal-lobe-

lesions exhibited less consistent decision making in a preferential choice task. Using

computational modelling, they found that patients had steeper gaze discounts than

controls. The use of the computational model in this case provided an improved

understanding about the functional origin of the observed behavioural change, namely

the exaggerated discounting of unattended information.

In a similar vein, lifespan differences in decision making might be associated

with differences in information search and gaze biases: Older adults often search for

less information and use different information search strategies (M. M. S. Johnson,

1990). Diminished working memory capacity has been suggested as a potential cause

(Mather, 2006), and could possibly be related to gaze discount mechanisms that

also act on momentarily unattended but memorized information. In a meta-analysis

of older adults’ risky decision making Mata et al. (2011) found that inconsistent

results on older adults’ differences in risk attitudes could be explained by different

choice tasks’ learning requirements. Similarly, the way information must be searched

in different tasks or ageing-related changes in gaze bias strengths (or both) could

explain behavioural differences.

To understand adolescents’ risk preferences, Ciranka and van den Bos (2021)

argue for a more ecological perspective which emphasizes adolescents’ environments

and exploration behaviour. As the deployment of visual attention constitutes a core

aspect of exploration behaviour, this also suggests the potential relevance of gaze

bias mechanisms in understanding adolescents’ decision behaviour. Experimental

evidence for an association of adolescents’ search and choice behaviour comes from

Kwak et al. (2015) who find adolescents’ choices to be more risk averse compared to
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young adults, with eye movements showing more systematic, analytic information

search. Notably, this result conflicts with the typical observation of adolescents acting

more impulsively (Blakemore & Robbins, 2012). Here, the analysis of adolescents’

decision behaviour using gaze-dependent computational models of decision making

might provide novel insight into differences in adolescents’ preference construction.

In this regard, recent work has demonstrated links between measures of attention

and risk preferences characterized in PT’ parameters (Pachur et al., 2018; Zilker &

Pachur, 2021). The computational nature of the GLAM might further help move

the field of developmental cognitive neuroscience towards more specific and testable

theories (van den Bos & Eppinger, 2015).

In sum, our work revealed large interindividual differences in gaze discounts,

which were associated with individual differences in choice consistency and can inform

potential future clinical and lifespan decision-making research.

Question 4. To what extent can gaze-dependent evidence accumulation explain

complex multi-attribute, multi-alternative risky choice?

Molter et al. (2021) showed that gaze-dependent evidence accumulation models

outperformed both traditional accounts of risky choice (EUT) and an established

dynamic cognitive model of context-dependent choice (MDFT) in a task setting where

participants’ choices between three risky gambles were systematically influenced by

the context of available alternatives. The model with the best fit to the data was a

straightforward extension of a model proposed for two-alternative choice (Glickman

et al., 2019), which assumes leaky accumulation of alternative-wise subjective values,

with a simple gaze discount, similar to the aDDM and GLAM. As in Thomas et al.

(2019), only gaze-dependent models were able to account for the positive association

of gaze duration and choice. The fact that prediction of particularly strong attraction

effects required inclusion of an additional similarity-dependent inhibition mechanism,

however, highlights possible limitations of the most basic forms of gaze-dependent

discounting and accumulation leakage. Yet, even in these cases, gaze-dependence
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remained an important feature of the model.

Notably, in contrast to most other cognitive models of context-dependent choice

able to predict context effects (e.g., Roe et al., 2001; Tversky, 1972; Tversky &

Simonson, 1993; Usher & McClelland, 2004), the best-performing model in Molter et

al. (2021) employed alternative-wise valuation (i.e., integration of an alternative’s

winning probability and amount attributes), not comparisons between multiple alter-

natives’ attribute values within single attribute dimensions. Prior work has argued

that these attribute comparisons are essential to predicting context effects (Noguchi

& Stewart, 2014). Our results demonstrate that context effects can also emerge

from models with alternative-wise valuation in conjunction with gaze-dependence, as

decision makers’ gaze allocation itself is context-dependent.

Taken together, we found gaze-dependent evidence accumulation to generalize to

multi-attribute, multi-alternative risky choice, and gaze-dependence as a prerequisite

to account for the association of gaze and choice. Our results, however, also illustrate

potential limitations of gaze-dependent accumulation in its most basic forms.

Question 5. Can binary risky choices be causally influenced by external control

of presentation duration? In contrast to our predictions and causal interpretations

of gaze-dependent accumulation models we could not replicate a causal effect of

presentation duration on choice reported in prior work (Armel et al., 2008; Shimojo

et al., 2003) in Molter and Mohr (2021).

Prior work already found effects of experimentally manipulating viewing or

presentation duration on choice to be smaller than reported associations in free

viewing tasks (Krajbich, 2019). There are multiple possible explanations for this:

First, in paradigms where presentation duration is controlled, presentation durations

might not translate directly into viewing durations, for example, due to decision

makers needing to shift their gaze synchronously to the presentation stream, or

them not fixating only information on the screen. Second, viewing the presented

information does not necessarily imply conscious, attentive processing (Orquin &
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Holmqvist, 2018), which could be required to obtain influencing effects. Externally

controlled presentation paradigms in particular — necessarily — show stimulus

information either for shorter or longer than the time participants would have taken

to make their choice in a self-paced and free-viewing setting. Therefore, participants

might have implicitly made their decisions before they were prompted to indicate

their choice, preventing the full presentation sequence and duration differences from

affecting their choice process. Third, decision makers could rely on peripheral vision

and not orient their gaze towards the presented information. Shimojo et al. (2003)

reported these orienting movements to be required to observe causal duration effects.

Finally, a bi-directional association between gaze and choice in decision making with

natural viewing, as postulated by the gaze cascade theory and described in recent

work (Gluth et al., 2020), would also result in a weaker association when information

presentation is controlled and preferential viewing thereby suppressed. Designs using

gaze-contingent choice prompts can ameliorate some, but not all of these drawbacks:

On the one hand, while decision makers can inspect information freely, they might

still be prompted to make a choice only after they already committed to an alternative

implicitly. On the other hand, the conditions triggering the choice prompt (e.g.,

difference in viewing duration between alternatives) might never be fulfilled in a trial.

Such "ineffective trials" can further induce artificial effects if they are removed from

analyses (Ghaffari & Fiedler, 2018; Newell & Le Pelley, 2018)

Investigating the causal contribution of aspects of the information search process

on choice, therefore, remains challenging, as experimental manipulations often inter-

fere with participants’ natural decision-making routines. One recently used approach

provides an elegant solution to reducing this interference: Gwinn et al. (2019) used

a separate visual search task to induce an attention bias towards one screen side,

which was carried over to the main choice task. This way, participants could freely

search for information and indicate their choice naturally, without interference by

the experimenters. Importantly, the authors found the attentional manipulation
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to produce downstream effects on choice. Notably, this effect was mediated by

the location of the first fixation and not viewing duration, suggesting an effect of

acquisition order.

In sum, unlike prior work (Armel et al., 2008; Liu, Lyu, et al., 2020; Pärnamets

et al., 2015; Shimojo et al., 2003; Sui et al., 2020; Tavares et al., 2017), we did not

find a causal effect of presentation duration on choice, suggesting that its presence

is not universal. Possible factors moderating this effect need to be investigated in

future work, which will also allow a better judgment over the relevance of these

effects in real-world scenarios.

Question 6. Can binary risky choices be causally influenced by external control of

presentation order? In Study 3 (Molter & Mohr, 2021b), instead of the predicted

effect of presentation duration, we found strong evidence in favour of an effect of

presentation order on binary risky choice behaviour, such that alternatives presented

last, just before a choice was prompted, were chosen more frequently. Our data also

suggested an order effect on the level of attribute dimensions, where alternatives with

better values on the attribute dimension shown last were chosen more frequently.

This effect is consistent with models of gaze-dependent evidence accumulation that

use a form of accumulation leak (like the winning model in Molter et al. (2021), where

changes to the order of information result in changes to the resulting choices, as later

acquired information is weighted more heavily relative to information acquired early.

Interestingly, this kind of recency effect in decision making has been demonstrated in

decisions-from-experience and related paradigms, where decision makers repeatedly

sample outcomes from risky prospects and have to learn the outcomes’ probabilities

(Hertwig et al., 2004; Tsetsos et al., 2012). In these paradigms, decision makers also

encounter information in a sequential fashion. Our results indicate that a similar,

causally directed effect is also present in decisions from description, where information

is also encountered sequentially, including settings when the decision maker seeks

information by herself.
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Furthermore, our results can be linked to literature on decisions from memory

(Gluth et al., 2015; Weilbächer et al., 2021). There, a memory bias can be found,

where better remembered alternatives are chosen more frequently across trials, even

though their value is below average. The recency effect we find can be interpreted

similarly, as the last presented information is least likely to be forgotten or confused.

If participants had a bias for alternatives that they remember, this recency effect

would be expected.

Finally, together with the evidence against a causal effect of presentation duration

on choice, we see the possibility that some prior work might have confounded duration

and order effects, as chosen alternatives are typically looked at last and also longer.

This pattern might be particularly prevalent in fast-paced, repeated decisions in

an experimental setting, where viewing patterns like "chosen-unchosen-chosen" are

common.

Taken together, we identified a causal effect of presentation order, in the direction

of a recency effect, in binary risky choice. Our results highlight the importance of

controlling and differentiating causal duration and order effects.

7.2 A constructive role of visual attention in decision making

All studies contained in this thesis contribute to a broad body of research on the

constructive nature of preferential choice, with the core assumption that observed

preferences are not the results from referencing a "master list [of values] in memory"

(Payne et al., 1992, p. 89), but actively constructed by the decision maker’s interaction

with the choice problem and its context:

In Thomas et al. (2019) and Molter et al. (2021), we found choice, RT, and

gaze data to be well described by a gaze-dependent evidence accumulation model,

where choices are constructed in a dynamic context-dependent process. Notably,

emphasizing its constructive character, the model was also able to account for

individuals’ RT distributions, that is, predict how long decision makers would take
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to make their choice, on a trial-to-trial basis (Thomas et al., 2019).

Assuming an active role of visual attention in the decision process (e.g., in

the form of a gaze discount mechanism) can account for both description- and

procedure invariances, as differences in the presentation of choice alternatives or

the task procedure (e.g., choosing vs. pricing) can be associated with changes to

decision makers’ gaze allocation (Kim et al., 2012; Orquin & Mueller Loose, 2013).

Furthermore, as shown in Molter et al. (2021), the context-dependent allocation of

gaze can result in context-dependent and, therefore, constructed choice behaviour.

In the classification of explanations by Payne et al. (1992), gaze-dependent

evidence accumulation generally provides a perceptual explanation of constructed

preference phenomena. As Payne et al. (1992) notice, however, integration with

cost/benefit oriented frameworks, specifically with regard to the adaptive selection

of strategies, is possible. To this end, future work might explore and explicitly model

different strategies of attention allocation (see below) or different quantities (e.g.,

ordinal comparisons instead of alternative-wise values; Noguchi & Stewart, 2018)

that are integrated in a gaze-dependent fashion.

One concern with these explanations is the question of causality. If gaze merely

reflected other constructive processes during choice, no additional insight would be

gained by using it to explain choice. However, together with prior work demonstrating

causal influences of viewing duration and other aspects of information search (Armel

et al., 2008; Gwinn et al., 2019; Liu, Lyu, et al., 2020; Liu, Zhou, et al., 2020;

Pärnamets et al., 2015; Shimojo et al., 2003; Sui et al., 2020; Tavares et al., 2017),

Molter and Mohr (2021) refutes this account of "epiphenomenal" gaze, as we found

evidence for a causal influence of presentation order on choice.

This order effect highlights that another temporal dimension of information

search can cause description invariance, which goes beyond differences in relative

gaze duration: Factors which affect the temporal order of information acquisition

(e.g., when information is delivered in a controlled sequential way, as in video
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advertisements; or a decision maker’s tendency to search information in a certain

way) are actively involved in the decision maker’s preference construction process.

The gaze-dependent account of preferential choice applied in this thesis falls

between two different perspectives on the constructive roles of information acqui-

sition and use, taken previously: On the one hand, judgment and decision-making

phenomena have been attributed to congruent biases in the sampling or use of

information within the decision maker (e.g., increased sensitivity to losses by PT’s

asymmetric value function; Weber & Johnson, 2009). On the other hand, the more

ecological perspective on judgment and decision making by K. Fiedler (2000) assumes

behavioural biases to emerge from sampling biases caused by environment. Since

visual attention in decision making is influenced both by factors of the environment

(e.g., the context of available alternatives), as well as factors internal to the decision

maker (Corbetta & Shulman, 2002; Orquin & Mueller Loose, 2013), gaze-dependent

evidence accumulation models of choice lie between these two perspectives.

Our work differs from earlier literature that also attributed behavioural evidence

of constructed preference to "attention", often taking the role of information weights

(for a review see Weber & Johnson, 2009), in that it instead directly refers to eye

movement data. The use of "attention" as a general explanatory device has recently

been criticized (B. Anderson, 2011; Hommel et al., 2019; Krauzlis et al., 2021), in

part to the many meanings it can take and the risk of circular arguments. Instead,

focusing on eye movement recordings reduces such ambiguities and, importantly,

establishes a clear connection to operationalized and observable process data.

This thesis’ results complement recent other work reporting evidence accumula-

tion informed by eye movements to account for different decision making patterns:

Gluth et al. (2020) and Gluth et al. (2018) demonstrated that models derived from

the multi-alternative aDDM (Krajbich & Rangel, 2011) can predict certain distractor

effects better than two competing accounts, when the choice alternatives’ values can

affect allocation of visual attention. In the context of risky choice, Zilker and Pachur
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(2021) found that attentional biases in the aDDM are reflected in PT’s probability

weighting parameters, suggesting that behavioural effects typically associated with

and explained by PT’s non-linear probability weighting might also be the effect of

simple attentional biases (see also Pachur et al., 2018).

7.2.1 Visual attention and limited resources accounts

The analysis of visual attention during the decision process is also linked to the

theoretical perspectives of bounded (Simon, 1955), or resource rationality (Lieder

& Griffiths, 2020), which stress inherent constraints on human cognition: Decision

makers acquire information about available choice alternatives, their attributes,

and associated actions (e.g., derived from different alternatives’ position on the

screen) sequentially, and do not extract all of this information from the environment

instantaneously. Similarly, and in contrast to theories of rational choice, not all

available information is acquired every time (e.g., some alternatives are not fixated

in large choice sets; Thomas et al., 2021). Our work confirmed these limitations on

information search to be important components of the decision-making process. The

kind of gaze-dependent evidence accumulation models used in our studies formally

include this sequential property of information search and can thereby form the

basis for resource-rational analyses (Lieder & Griffiths, 2020) of decision making, as

performed recently (Callaway et al., 2021). In this study, the authors used the aDDM

and, crucially, approximated the optimal policy in which agents should allocate their

gaze given the constrains by the model’s gaze-dependence and the cognitive costs

associated with shifting gaze. This way, they found that attending alternatives whose

value estimates are high and uncertain, which aligns with empirical data in two- and

three-alternative simple choice (Gluth et al., 2020; Krajbich et al., 2010; Krajbich &

Rangel, 2011).
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7.3 Dwelling on computational modelling of choice

Given this thesis’ focus on computational modelling of choice as an analytical

method, and theory of the decision-making process, this section will summarize

implications for future model- and (viewing models as formally specified theories;

J. G. Johnson & Frame, 2019; Lewandowsky & Farrell, 2010) theory building, and

discuss methodological issues and possible solutions.

The most pervasive finding of this thesis’ studies with respect to the behavioural

modelling of choice is the significance of incorporating a modulating effect of gaze

on the choice process. Across tasks and data sets, models that make this assumption

outperformed competing accounts in predicting choices (and RTs), and were the only

models able to account for observed relationships between gaze duration and choice.

Conversely, its omission repeatedly showed to miss robust features of the data.

In addition to explaining differences in behaviour between participants (Thomas

et al., 2019), gaze-dependence can account for variability within individuals, across

occasions: Human choices are inherently stochastic (Luce, 1959; Nesselroade & Ram,

2004; Rieskamp, 2008) so that decision makers do not make perfectly identical choices

across otherwise similar occasions. This "noise" (Kahneman et al., 2021) is often

modelled using probabilistic choice rules (Luce, 1959; Sutton & Barto, 2018) without

clear process interpretations, or assuming variance in hypothetical utility signals

(McFadden, 1973). Here, choice models including explicit gaze-dependence allow

part of this choice variability to be attributed to the allocation of gaze, which can be

scrutinized further.

A second feature that Molter et al. (2021) and Molter and Mohr (2021) suggest

to be an important feature of evidence accumulation models of decision making is a

form of accumulation leak (Usher & McClelland, 2001) or similar mechanisms able to

reproduce the causal effect of the order in which information is considered. Future

iterations of the GLAM will likely benefit from such an extension, even though adding

a leak term to it is not trivial, as it was explicitly designed to average across the
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temporal dynamics within a trial. Including serial position into the gaze-weighting

mechanism could be one possible solution.

Given the constructive role of gaze on the decision process, the question of

what drives gaze during deliberation gains new relevance. Numerous studies have

addressed this question in a wide range of settings (for a review see Orquin &

Mueller Loose, 2013), including risky choice (S. Fiedler & Glöckner, 2012; Glöckner

& Herbold, 2011; Stewart et al., 2016). While these insights are sometimes used to

inform theory or model development (Noguchi & Stewart, 2014), a more frequent use

for them is to aid selection between extant models. This way, process data have been

interpreted to either support, or contradict different decision-making theories by

comparing them with theoretically inferred predictions (e.g., S. Fiedler & Glöckner,

2012; Glöckner & Herbold, 2011; E. J. Johnson et al., 2008; Noguchi & Stewart,

2014; Orquin & Mueller Loose, 2013; Stewart et al., 2016). Process data appearing

to be compatible with a theory, however, remain difficult to use as a criterion of

model selection for multiple reasons: First, there might be other compatible models

that were not considered. This highlights the importance of selecting an appropriate

model space, as, trivially, only models included in the model space can be declared

the best account of the data. In Molter et al. (2021), we therefore adopted an

approach to systematically generate a large space of possible models, which included

variants of competing accounts (i.e., one variant resembled MDFT in many details).

Please note, however, that this large model space is also far from exhaustive, as it

did not, for example, cover heuristic models of choice.

Second, the important step of model falsification (see Palminteri et al., 2017)

using process data can be limited too when models do not make clear predictions

about the recorded process data. EUT or PT, for example, are agnostic about the

choice process and do not specify which eye movements should be made during choice.

It is only with additional assumptions (e.g., E. J. Johnson et al., 2008) that those

predictions are derived. Many decision making models, for example, predict weights
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with which a given attribute (e.g., an alternative’s quality) contributes to choice

(e.g. MDFT, Roe et al., 2001). Does a lack of correlation between gaze duration

towards this attribute and the model-predicted weight imply that the model should

be rejected? No, because the model does not specify a relationship between its

attribute weight and gaze data. It could still be that decision weights are rather

reflected in fixation counts (or, alternatively, not in any type of eye movement data

at all). As long as the model is not specific about its components’ relationship to

observable types of process data, these inferences remain difficult to make confidently.

There are multiple ways to increase the link between decision-making models

and process data like eye movement recordings, and thereby allow stronger inferences

based on the process data: The first, which Thomas et al. (2019) and Molter et

al. (2021) followed, is the direct input (Turner et al., 2017) of process data into the

decision model. This way, models made quantitative and testable predictions about

the relationship between gaze and choice data.

Molter et al. (2021) further show that the inclusion of gaze-data also acts

as a constraint for the models’ predictions, as the simpler gaze-dependent model

(without additional mechanisms) predicted choices of dominated decoy alternatives

too frequently, due to distribution of gaze between alternatives not being as extreme

as choices (decoys were looked at more than they were chosen).

A more involved, second way is simultaneous modelling (Turner et al., 2017)

of both the choice process and the way in which process data are generated. In

the context of this thesis, this means not only having a gaze-dependent evidence

accumulation process but also including a theory on how gaze is allocated. In this

case, process data can still be used to evaluate the joint model, by comparing either

the observed process- or choice data to those predicted by the model.

Crucially, this approach represents a way to integrate decision making theory

with theories concerning the allocation of visual attention (Itti & Koch, 2000, 2001;

Orquin & Mueller Loose, 2013), and helps understand how different drivers of gaze
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affect decision making. For example, we found gaze to be allocated in a context-

dependent manner in Molter et al. (2021), yet the question of why it is distributed

this way remains to be addressed. While initial work using the aDDM included basic

fixation-generating models assuming positional effects on gaze (e.g., an initial bias

towards the left side; Krajbich et al., 2010; Krajbich & Rangel, 2011), more recent

accounts revealed influences of visual saliency (Towal et al., 2013), option value

(Gluth et al., 2018), and momentary level of favourable evidence (Gluth et al., 2020)

on gaze allocation (and thereby indirectly on choice) using simultaneous modelling.

7.4 Contributions in the framework of decision making

The results of our studies integrate into and extend the framework of decision making

presented earlier (Figure 3), emphasizing the constructive role of visual attention in

the decision-making process:

Processes of representation were not specifically addressed by this thesis’ studies.

It can be argued, however, that the consideration of decision makers’ visual attention

provides a direct and measurable way to assess their representations of the choice

set. A recent study related to the work presented here supports the notion that

decision makers use visual attention to select and represent only a subset of all

available items for further consideration: Thomas et al. (2021) found gaze-dependent

evidence accumulation successfully predicted choices between snack foods in large

choice sets with up to 36 items. Notably, decision makers did not fixate all items.

The GLAM variant which best predicted behaviour included only fixated items into

the decision process, thereby effectively implementing a gaze-dependent formation of

consideration sets.

While not the main focus of this thesis, our studies showed models which assume

alternative-wise valuation to provide the best descriptions of choice behaviour. For

the choice between risky prospects specifically, in line with prior work (Glickman

et al., 2019) valuation by within-alternative integration of attributes was favoured
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Figure 5. A refined role of visual attention in the framework of decision making. The studies from
this thesis have further extended and refined the framework of decision making (Figure 3), particularly the role of
visual attention in action selection, in multiple ways. In Thomas et al. (2019) (blue), we confirmed the generally
positive association between gaze duration and action selection. Using our novel GLAM framework and toolbox,
we confirmed gaze-dependent evidence accumulation to capture individual choice behaviour. We revealed, however,
large interindividual differences in gaze discounts. Molter et al. (2021) (red) similarly confirmed the positive
association between gaze duration and choice. In addition, we established a novel possible path in which the context
of available alternatives affects the decision-making process, namely mediated by gaze allocation. In Molter and
Mohr (2021) (purple), we probed the causal direction between action selection and information search, specifically
presentation duration and order of stimulus information. We found acquisition order to causally affect choices, as
last-shown alternatives were chosen more frequently.

over attribute-wise comparisons in Molter et al. (2021). It remains, however, debated

to what extent decision makers perform alternative-wise valuation (Hayden & Niv,

2021; Vlaev et al., 2011) or select actions without explicit values, as predicted by more

comparative constructive (e.g., MDFT) or heuristic (e.g., Tversky, 1972) theories.

With respect to action selection, we find gaze-dependent evidence accumulation

as described by the aDDM and the GLAM to accurately capture choices, RTs, and

associations with eye tracking measures on the individual level. Concerning the role

of visual attention in action selection, all our studies align with prior work positively

associating visual attention with choice. In Molter and Mohr (2021), we additionally
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differentiate between effects of viewing duration and order and demonstrate a causal

effect of order on action selection. A further aspect of the role of visual attention

in the decision process was illustrated in Molter et al. (2021), where gaze was

modulated by the context of available alternatives, allowing gaze-dependent evidence

accumulation to also account for context-dependence in action selection.

7.4.1 Methodological contribution

In addition to the empirical and theoretical contributions outlined above, the work

contained in this thesis also makes a methodological contribution to the field of

decision research: The GLAM and the associated open-source Python toolbox

(Box 1) enable other researchers to apply the framework of gaze-dependent evidence

accumulation in their research. I happily note that these tools are already used by

different research groups, addressing a variety of research questions regarding value-

based choice, including decision making from memory (Weilbächer et al., 2021), effects

of task framing (Sepulveda et al., 2020), mechanisms underlying decision confidence

(Brus et al., 2021; Kaanders et al., 2021), and gaze-bias effects in non-human primates

(Lupkin & McGinty, 2021).

7.5 Conclusion

To conclude, this thesis offers a refined view on the role of visual attention in

constructive preferential choice. Our studies have advanced understanding, raised

additional questions, and provided the research community with new tools to address

them.
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9 Appendix

9.1 Deutsche Zusammenfassung

Wie treffen Menschen einfache Entscheidungen, zum Beispiel die Auswahl eines Früh-

stücks am Hotelbuffet? Anders, als es normative Theorien zur Entscheidungsfindung

voraussetzen, sind unsere Präferenzen oft nicht starr, sondern werden erst zum

Zeitpunkt der Entscheidung durch die Interaktion des Entscheiders mit seiner Umge-

bung konstruiert. Empirische Befunde zeigen, dass die Verteilung visueller Aufmerk-

samkeit während des Entscheidungsprozesses eng mit den getroffenen Entscheidungen

zusammenhängt, wobei ein längerer Blick auf eine Alternative mit einer höheren

Wahrscheinlichkeit verbunden ist, diese auszuwählen.

Frühere Arbeiten haben die Prozesse, die solchen einfachen Entscheidungen

zugrunde liegen, als Akkumulation von Evidenz über Zeit charakterisiert, wobei

die Akkumulationsrate zu jedem Zeitpunkt von der Blickrichtung des Entscheiders

abhängt. Danach wird eine Entscheidung getroffen, sobald die Evidenz für eine

Alternative einen bestimmten Grenzwert überschreitet. Es ist jedoch in mehrerlei

Hinsicht unklar, inwiefern diese Theorie von blickabhängiger Evidenzakkumulation

generalisierbar ist. Zum einen ist nicht sichergestellt, dass blickabhängige Evidenza-

kkumulation das Verhalten einzelner Entscheider erfasst, und in welchem Ausmaß

der Zusammenhang visueller Aufmerksamkeit und Entscheidung zwischen Perso-

nen variiert. Zum anderen ist unklar, ob dieser Erklärungsansatz in Situationen

Bestand hat, in denen Entscheidungen deutlich von normativen Vorhersagen ab-

weichen. Zuletzt bleibt umstritten, ob visuelle Aufmerksamkeit kausalen Einfluss

auf Entscheidungsprozesse hat oder vielmehr die Konstruktion von Präferenzen nur

abbildet.

Die vorliegende Dissertation soll diese Fragen in drei empirischen Studien unter

Nutzung computerbasierter Modelle des Entscheidungsprozesses beantworten.

In Studie 1 (Molter et al., 2019; Thomas et al., 2019) wurde zunächst ein neuar-
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tiges blickabhängiges Evidenzakkumulationsmodell entwickelt, das die Untersuchung

des Entscheidungsprozesses einzelner Entscheider erlaubt. Hierzu wurde zusätzlich

eine Python-Software-Toolbox veröffentlicht, die auch anderen Forschungsgruppen

eine Anwendung des Modells ermöglicht. In vier verschiedenen Datensätzen konnten

wir mithilfe dieses Werkzeugs zeigen, dass blickabhängige Evidenzakkumulation

präzise Vorhersagen über Entscheidungen, Antwortzeiten und deren Zusammenhänge

mit visueller Aufmerksamkeit für einzelne Entscheider macht. Unsere Analysen

zeigten jedoch auch, dass Individuen große Unterschiede beim Zusammenhang von

visueller Aufmerksamkeit und Entscheidung aufwiesen. Diese individuellen Unter-

schiede gingen zudem mit individuellen Unterschieden in der Konsistenz, mit der

Entscheidungen getroffen wurden, einher.

In Studie 2 (Molter et al., 2021) wurde das Konzept blickabhängiger Eviden-

zakkumulation in einer Entscheidungsaufgabe geprüft, in der drei risikobehaftete

Lotterien als Alternativen mit mehreren Attributen zur Auswahl standen. Die Auf-

gabe wurde so entwickelt, dass Kontexteffekte im Entscheidungsverhalten auftreten

sollten. Kontexteffekte beschreiben Präferenzänderungen in Abhängigkeit der verfüg-

baren Alternativen und stellen starke Abweichungen von normativen Vorhersagen

dar. Die Ergebnisse zeigten, dass nicht nur das Entscheidungsverhalten, sondern

auch die Verteilung visueller Aufmerksamkeit vom Kontext der verfügbaren Alter-

nativen moduliert wurde. Dies ermöglichte es einem aus Vorarbeiten abgeleiteten

blickabhängigen Evidenzakkumulationsmodell, Entscheidungsverhalten in diesem

komplexen Szenario zu erfassen.

Zuletzt wurde in einer prä-registrierten dritten Studie (Molter & Mohr, 2021b)

die Richtung des Kausalitätszusammenhangs zwischen visueller Aufmerksamkeit und

Entscheidung beleuchtet. In unserem Experiment trafen Teilnehmer wiederholte

Entscheidungen zwischen zwei Lotterien, deren Attribute sequenziell präsentiert

wurden. Dies ermöglichte die experimentelle Kontrolle von Präsentationsdauer und

Reihenfolge der Stimulusinformation. Die Ergebnisse bestätigten einen kausalen
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9.1 Deutsche Zusammenfassung

Einfluss der Informationssuche auf die Präferenzkonstruktion. Jedoch wurde hier die

Präsentationsreihenfolge, nicht die Präsentationsdauer als Einflussfaktor identifiziert.

Bemerkenswert ist hierbei, dass nur manche blickabhängigen Evidenzakkumulations-

modelle solche kausalen Einflüsse der Reihenfolge vorhersagen. Unsere Ergebnisse

zeigen dementsprechend ein mögliches Potenzial für zukünftige Theorieentwicklung

auf.

Unsere Studien bestätigten grundsätzlich den positiven Zusammenhang zwis-

chen visueller Aufmerksamkeit und Entscheidungen. Zudem unterstützen sie Theo-

rien blickabhängiger Evidenzakkumulation im Rahmen individueller und komplexer

Entscheidungen. Die Analysen haben allerdings auch bedeutende individuelle Un-

terschiede und mögliche Grenzen aktueller Modelle sichtbar gemacht. Hier konnten

wir jedoch zeigen, dass die Berücksichtigung solcher Unterschiede und die Hinzu-

nahme zusätzlicher Mechanismen wie imperfekter Akkumulation die Vorhersage

individuellen Verhaltens erheblich verbessert.

Zum Abschluss der Arbeit werden diese Ergebnisse einer aktiven Rolle vi-

sueller Aufmerksamkeit im Entscheidungsprozess sowie das theoretische Modell

blickabhängiger Evidenzakkumulation im weiteren Kontext konstruierter Präferenzen

diskutiert und mögliche Implikationen für die computermodellbasierte Analyse von

Entscheidungs- und Blickbewegungsdaten aufgezeigt.
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Abstract

Recent empirical findings have indicated that gaze allocation plays a crucial role in simple

decision behaviour. Many of these findings point towards an influence of gaze allocation

onto the speed of evidence accumulation in an accumulation-to-bound decision process

(resulting in generally higher choice probabilities for items that have been looked at longer).

Further, researchers have shown that the strength of the association between gaze and

choice behaviour is highly variable between individuals, encouraging future work to study

this association on the individual level. However, few decision models exist that enable a

straightforward characterization of the gaze-choice association at the individual level, due to

the high cost of developing and implementing them. The model space is particularly scarce

for choice sets with more than two choice alternatives. Here, we present GLAMbox, a

Python-based toolbox that is built upon PyMC3 and allows the easy application of the gaze-

weighted linear accumulator model (GLAM) to experimental choice data. The GLAM

assumes gaze-dependent evidence accumulation in a linear stochastic race that extends to

decision scenarios with many choice alternatives. GLAMbox enables Bayesian parameter

estimation of the GLAM for individual, pooled or hierarchical models, provides an easy-to-

use interface to predict choice behaviour and visualize choice data, and benefits from all of

PyMC3’s Bayesian statistical modeling functionality. Further documentation, resources and

the toolbox itself are available at https://glambox.readthedocs.io.

Introduction

A plethora of empirical findings has established an association between gaze allocation and

decision behaviour on the group-level. For example, in value-based decision making, it has

been repeatedly shown that longer gaze towards one option is associated with a higher choice
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probability for that option [1–13] and that external manipulation of gaze allocation changes

choice probabilities accordingly [1, 9, 10, 14]. Such gaze bias effects are not limited to value-

based decisions, but have recently also been observed in perceptual choices, where participants

judge the perceptual attributes of stimuli based on available sensory information [14].

These findings have led to the development of a set of computational models, aimed at cap-

turing the empirically observed association between gaze allocation and choice behaviour by

utilizing gaze data to inform the momentary accumulation rates of diffusion decision processes

[2, 7, 8, 14–17]. Specifically, these models assume that evidence accumulation in favour of an

item continues while it is not looked at, but at a discounted rate. The application of these mod-

els is limited so far, as fitting them to empirical data depends on computationally expensive

simulations, involving the simulation of fixation trajectories. These simulations, as well as the

creation of models of the underlying fixation process, become increasingly difficult with

increasing complexity of the decision setting (e.g., growing choice set sizes or number of

option attributes, etc). Existing approaches that circumvent the need for simulations, model

the evidence accumulation process as a single diffusion process between two decision bounds

and are therefore limited to binary decisions [2, 18].

However, researchers are increasingly interested in choice settings involving more than two

alternatives. Choices outside the laboratory usually involve larger choice sets or describe items

on multiple attributes. Besides, many established behavioural effects only occur in multi-alter-

native and multi-attribute choice situations [19].

Furthermore, recent findings indicate strong individual differences in the association

between gaze allocation and choice behaviour [20, 21] as well as individual differences in the

decision mechanisms used [15]. While the nature of individual differences in gaze biases is still

not fully understood, different mechanisms have been suggested: Smith and Krajbich [20]

showed that gaze bias differences can be related to individual differences in attentional scope

(“tunnel vision”). Vaidya and Fellows [13] found stronger gaze biases in patients with damage

in dorsomedial prefrontal cortex (PFC). Further, recent empirical work has investigated the

roles of learning and attitude accessibility in gaze dependent decision making [22, 23]. How-

ever, more systematic investigations of these differences are needed, as the majority of model-

based investigations of the relationship between gaze allocation and choice behaviour were

focused on the group level, disregarding differences between individuals.

With the Gaze-weighted linear accumulator model (GLAM; [21]), we have proposed an

analytical tool that allows the model-based investigation of the relationship between gaze allo-

cation and choice behaviour at the level of the individual, in choice situations involving more

than two alternatives, solely requiring participants’ choice, response time (RT) and gaze data,

in addition to estimates of the items’ values.

Like the attentional Drift Diffusion Model (aDDM) [7, 8, 17], the GLAM assumes that the

decision process is biased by momentary gaze behaviour: While an item is not fixated, its value

representation is discounted. The GLAM, however, differs from the aDDM in other important

aspects: In contrast to the aDDM, the fixation-dependent value signals are averaged across the

trial, using the relative amount of time individuals spend fixating the items. This step abstracts

away the specific sequence of fixations in a trial, that can be investigated with the aDDM. On

the other hand, this simplification allows for the construction of trial-wise constant drift rates

that can enter a basic stochastic race framework. While race models like the GLAM are not sta-

tistically optimal [24] the GLAM has been shown to provide a good fit to empirical data [21].

In general, race models have at least two practical advantages: First, they often have analytical

solutions to their first-passage density distributions, and secondly, they naturally generalize to

choice scenarios involving more than two alternatives. The analytical tractability of the race

GLAMbox
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framework further allows for efficient parameter estimation in a hierarchical Bayesian manner.

The GLAM thereby integrates gaze-dependent accumulation into a practical race model shell.

To make GLAM more accessible, we now introduce GLAMbox, a Python-based toolbox for

the application of the GLAM to empirical choice, RT and gaze data. GLAMbox allows for indi-

vidual and hierarchical estimation of the GLAM parameters, simulation of response data and

model-based comparisons between experimental conditions and groups. It further contains a

set of visualization functions to inspect choice and gaze data and evaluate model fit. We illus-

trate three application examples of the toolbox: In Example 1, we illustrate how GLAMbox can

be used to analyze individual participant data with the GLAM. In particular, we perform an

exemplary model comparison between multiple model variants on the individual level, as well

as an out-of-sample prediction of participants’ choice and RT data. In Example 2, we demon-

strate the application of the GLAM to perform a comparison of group-level parameters in a

setting with limited amounts of data, using hierarchical parameter estimation. Lastly, in Exam-

ple 3, we walk the reader through a step-by-step parameter recovery study with the GLAM,

which is encouraged to increase confidence in the estimated parameter values.

Materials and methods

Gaze-weighted linear accumulator model details

Like the aDDM, the GLAM assumes that preference formation, during a simple choice pro-

cess, is guided by the allocation of visual gaze (for an overview, see Fig 1). Particularly, the deci-

sion process is guided by a set of decision signals: An absolute and relative decision signal.

Throughout the trial, the absolute signal of an item i can be in two states: An unbiased state,

Fig 1. Gaze-weighted linear accumulator model. In the GLAM, preference formation during the decision process is dependent on the allocation of

visual gaze (A). For each item in the choice set, an average absolute decision signal �Ai is computed (dashed lines in A). The magnitude of this signal is

determined by the momentary allocation of visual gaze: While an item is currently not looked at, its signal is discounted by parameter γ (γ� 1;

discounting is illustrated by gray arrows) (A). To determine a relative decision signal Ri for each item in the choice set, absolute evidence signals are

transformed in two steps (B): First, the difference between each average absolute decision signal �Ai and the maximum of all others is determined.

Second, the resulting differences are scaled through a logistic transform, as the GLAM assumes an adaptive representation of the relative decision

signals that is especially sensitive to differences close to 0 (where the absolute signal for an item is very close to the maximum of all others). The

resulting relative decision signals Ri can be used to predict choice and RT, by determining the speed of the accumulation process in a linear stochastic

race (C). The stochastic race then provides first-passage time distributions pi, describing the likelihood of each item being chosen at each time point.

https://doi.org/10.1371/journal.pone.0226428.g001
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equal to the item’s value ri while the item is looked at, and a biased state while any other item is

looked at, where the item value ri is discounted by a parameter γ. The average absolute decision

signal �Ai is given by

�Ai ¼ giri þ ð1 � giÞgri; ð1Þ

where gi is defined as the fraction of total trial time that item i was looked at. If γ = 1, there is

no difference between the biased and unbiased state, resulting in no influence of gaze alloca-

tion on choice behaviour. For γ values less than 1, the absolute decision signal Ai is discounted,

resulting in generally higher choice probabilities for items that have been looked at longer. For

γ values less than 0, the sign of the absolute decision signal Ai changes, when the item is not

looked at, leading to an overall even stronger gaze bias, as evidence for these items is actively

lost, when they are not looked at. This type of gaze-dependent leakage mechanism is supported

by a variety of recent empirical findings [15, 21].

To determine the relative decision signals, the average absolute decision signals �Ai are

transformed in two steps: First, for each item i, the relative evidence R�i is computed as the dif-

ference between the average absolute decision signal of the item �Ai (Eq 1) and the maximum

of all other average absolute decision signals �Aj6¼i (also obtained from Eq 2) is computed:

R�i ¼ �Ai � max
j6¼i

�Aj : ð2Þ

Second, the resulting difference signals R�i are scaled through a logistic transform s(x). The

GLAM assumes an adaptive representation of the relative decision signals, which is maximally

sensitive to small differences in the absolute decision signals close to 0 (where the difference

between the absolute decision signal of an item and the maximum of all others is small):

Ri ¼ sðR�i Þ ð3Þ

sðxÞ ¼
1

1þ exp ð� txÞ
ð4Þ

The sensitivity of this transform is determined by the temperature parameter τ of the logis-

tic function. Larger values of τ indicate stronger sensitivity to small differences in the average

absolute decision signals �Ai .

Unlike more traditional diffusion models (including the aDDM), the GLAM employs a lin-

ear stochastic race to capture response behaviour as well as RTs. The relative signals Ri enter a

race process, where one item accumulator Ei is defined for each item in the choice set:

EiðtÞ ¼ Eiðt � 1Þ þ vRi þ Nð0; s2Þ;with Eið0Þ ¼ 0 ð5Þ

At each time step t, the amount of accumulated evidence is determined by the accumulation

rate vRi, and zero-centered normally distributed noise with standard deviation σ. The velocity

parameter v linearly scales the item drift rates in the race process and thereby affects the

response times produced by the model: Lower values of v produce longer response times,

larger vs result in shorter response times. A choice for an item is made as soon as one accumu-

lator reaches the decision boundary b. To avoid underdetermination of the model, either the

velocity parameter v, the noise parameter σ or the boundary has to be fixed. Similar to the

aDDM, the GLAM fixes the boundary to a value of 1. The first passage time density fi(t) of a

single linear stochastic accumulator Ei, with decision boundary b, is given by the inverse

GLAMbox
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Gaussian distribution:

fiðtÞ ¼
l

2pt3

� �1
2

exp
� lðt � mÞ2

2m2t

� �

ð6Þ

with m ¼
b
vRi

and l ¼
b2

s2

However, this density does not take into account that there are multiple accumulators in

each trial racing towards the same boundary. For this reason, fi(t) must be corrected for the

probability that any other accumulator crosses the boundary first. The probability that an

accumulator crosses the boundary prior to t, is given by its cumulative distribution function

Fi(t):

FiðtÞ ¼ F

ffiffiffi
l

t

r
t
m
� 1

� � !

þ exp
2l

m

� �

� F �

ffiffiffi
l

t

r
t
m
þ 1

� � !

ð7Þ

Here, F(x) defines the standard normal cumulative distribution function. Hence, the joint

probability pi(t) that accumulator Ei crosses b at time t, and that no other accumulator Ej6¼i has

reached b first, is given by:

piðtÞ ¼ fiðtÞ
Y

j6¼i

ð1 � FjðtÞÞ ð8Þ

Contaminant response model. To reduce the influence of erroneous responses (e.g.,

when the participant presses a button by accident or has a lapse of attention during the task)

on parameter estimation, we include a model of contaminant response processes in all estima-

tion procedures: In line with existing drift diffusion modelling toolboxes [25], we assume a

fixed 5% rate of erroneous responses � that is modeled as a participant-specific uniform likeli-

hood distribution us(t). This likelihood describes the probability of a random choice for any of

the N available choice items at a random time point in the interval of empirically observed RTs

[25, 26]:

usðtÞ ¼
1

Nðmax rts � min rtsÞ
ð9Þ

The resulting likelihood for participant s choosing item i, accounting for erroneous

responses, is then given by:

liðtÞ ¼ ð1 � �Þ � piðtÞ þ � � usðtÞ ð10Þ

The rate of error responses � can be specified by the user to a different value than the default

of 5% using the error_weight keyword in the make_model method (see below).

Individual parameter estimation details. The GLAM is implemented in a Bayesian

framework using the Python library PyMC3 [27]. The model has four parameters (v, γ, σ, τ).

By default, uninformative, uniform priors between sensible limits (derived from earlier

GLAMbox
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applications to four different datasets: [21]) are placed on all parameters:

v � Uð0; 4Þ

g � Uð� 2; 1Þ

s � Uð0; 4Þ

t � Uð0; 10Þ

These limits were derived by extending the range of observed parameter estimates in earlier

applications of the GLAM to four different empirical choice datasets. These datasets encom-

pass data of 117 participants in value-based and perceptual choice tasks with up to three choice

alternatives (including a wide range of possible response times, gaze bias strengths and choice

accuracies; for further details [21]). Parameter estimates for these datasets are illustrated and

summarised in S1 Table, S1 Fig and S1 Fig.

The velocity parameter v and the noise parameter σ must be strictly positive. Smaller v pro-

duce slower and less accurate responses (for constant σ), while smaller σ produce more accu-

rate and slower responses (for constant v). The gaze bias parameter γ has a natural upper

bound at 1 (indicating no gaze bias), while decreasing γ values indicate an increasing gaze bias

strength. The sensitivity parameter τ has a natural lower bound at 0 (resulting in no sensitivity

to differences in average absolute decision signals �Ai), with larger values indicating increased

sensitivity.

Hierarchical parameter estimation details. For hierarchical models, individual parame-

ters are assumed to be drawn from Truncated Normal distributions, parameterized by mean

and standard deviation, over which weakly informative, Truncated Normal priors are assumed

(based on the distribution of group level parameter estimates obtained from four different

datasets in [21]; see Fig 2, S1 and S2 Figs and S1 Table):

vm � Nð0:63; 10 � 0:26Þ; truncated to ½0; 2�

vs � Nð0:26; 10 � 0:11Þ; truncated to ½0; 1�

gm � Nð0:12; 10 � 0:11Þ; truncated to ½� 2; 1�

gs � Nð0:35; 10 � 0:1Þ; truncated to ½0; 1�

sm � Nð0:27; 10 � 0:08Þ; truncated to ½0; 1�

ss � Nð0:05; 10 � 0:01Þ; truncated to ½0; 0:2�

tm � Nð1:03; 10 � 0:58Þ; truncated to ½0; 5�

ts � Nð0:62; 10 � 0:26Þ; truncated to ½0; 3�

Basic usage

Data format, the GLAM class. The core functionality of the GLAMbox is implemented in

the GLAM model class. To apply the GLAM to data, an instance of the model class needs to be

instantiated and supplied with the experimental data, first:

import glambox as gb
glam = gb.GLAM(data=data)

The data must be a pandas [28] DataFrame with one row per trial, containing the following

variable entries:

• subject: Subject index (integer, first subject should be 0)

GLAMbox

PLOS ONE | https://doi.org/10.1371/journal.pone.0226428 December 16, 2019 6 / 23



• trial: Trial index (integer, first trial should be 0)

• choice: Chosen item in this trial (integer, items should be 0, 1, . . ., N)

• rt: Response time (float, in seconds)

• for each item i in the choice set:

• item_value_i: The item value (float, we recommend to re-scale all item values to a

range between 1 and 10 to allow comparison of parameter estimates between studies)

• gaze_i: The fraction of total time in this trial that the participant spent looking at this

item (float, between 0 and 1)

• additional variables coding groups or conditions (string or integer)

For reference, the first two rows of a pandas DataFrame ready to be used with

GLAMbox are shown in Table 1.

Next, the respective PyMC3 model, which will later be used to estimate the model’s parame-

ters, can be built using the make_model method. Here, the researcher specifies the kind of

the model: ‘individual’ if the parameters should be estimated for each subject individu-

ally, ‘hierarchical’ for hierarchical parameter estimation, or ‘pooled’ to estimate a

single parameter set for all subjects. At this stage, the researcher can also specify experimental

parameter dependencies: For example, a parameter could be expected to vary between groups

or conditions. In line with existing modeling toolboxes (e.g., [25, 29]) dependencies are

Table 1. The first two rows of a pandas DataFrame ready to be used with GLAM.

subject trial choice rt item_value_0 item_value_1 item_value_2 gaze_0 gaze_1 gaze_2 speed

0 0 0 2.056 5 1 3 0.16 0.62 0.22 ‘fast’

0 1 2 3.685 3 6 9 0.44 0.22 0.34 ‘slow’

https://doi.org/10.1371/journal.pone.0226428.t001

Fig 2. Hierarchical model structure. In the hierarchical model, individual subject parameters γi, vi. σi, and τi (subject

plate) are drawn from Truncated Normal group level distributions with means μ and standard deviations σ (outside of

the subject plate). Weakly informative Truncated Normal priors are placed on the group level parameters. RT and

choice data xi,t for each trial t is distributed according to the subject parameters and the GLAM likelihood (Eq (8);

inner trial plate).

https://doi.org/10.1371/journal.pone.0226428.g002

GLAMbox

PLOS ONE | https://doi.org/10.1371/journal.pone.0226428 December 16, 2019 7 / 23



defined using the depends_on argument. depends_on expects a dictionary with parame-

ters as keys and experimental factors as values (e.g., depends_on=dict(v=’speed’) for

factor ‘speed’ with conditions ‘fast’ and ‘slow’ in the data). The toolbox internally

handles within- and between subject designs and assigns parameters accordingly. If multiple

conditions are given for a factor, one parameter will be designated for each condition. Finally,

the make_model method allows parameters to be fixed to a specific value using the �_val
arguments (e.g., gamma_val=1 for a model without gaze bias). If parameters should be fixed

for individual subjects, a list of individual values needs to be passed.

model.make_model(kind=‘individual’,
depends_on=dict(v=‘speed’),
gamma_val=1)

Inference. Once the PyMC3 model is built, parameters can be estimated using the fit
method:

model.fit(method=‘MCMC’)

The fit method defaults to Markov-Chain-Monte-Carlo (MCMC; [30]) sampling, but

also allows for Variational Inference (see below).

Markov-Chain-Monte-Carlo. MCMC methods approximate the Bayesian posterior

parameter distributions, describing the probability of a parameter taking certain values given

the data and prior probabilities, through repeated sampling. GLAMbox can utilize all available

MCMC step methods provided by PyMC3. The resulting MCMC traces can be accessed using

the trace attribute of the model instance (note that a list of traces is stored for models of

kind ‘individual’). They should always be checked for convergence, to ascertain that the

posterior distribution is approximated well. Both qualitative visual and more quantitative

numerical checks of convergence, such as the Gelman-Rubin statistic R̂ and the number of

effective samples are recommended (for detailed recommendations, see [31, 32]). PyMC3 con-

tains a range of diagnostic tools to perform such checks (such as the summary function).

Variational inference. Estimation can also be done using all other estimation procedures

provided in the PyMC3 library. This includes variational methods like Automatic Differentia-

tion Variational Inference (ADVI; [33]). To use variational inference, the method argument

can be set to ‘VI’, defaulting to the default variational method in PyMC3. We found varia-

tional methods to quickly yield usable, but sometimes inaccurate parameter estimates, and

therefore recommend using MCMC for final analyses.

Accessing parameter estimates. After parameter estimation is completed, the resulting

estimates can be accessed with the estimates attribute of the GLAM model instance. This

returns a table with one row for each set of parameter estimates for each individual and condi-

tion in the data. For each parameter, a maximum a posteriori (MAP) estimate is given, in addi-

tion to the 95% Highest-Posterior Density Interval (HPD). If the parameters were estimated

hierarchically, the table also contains estimates of the group-level parameters.

Comparing parameters between groups or conditions. Parameter estimates can be com-

pared between different experimental groups or conditions (specified with the depends_on
keyword when calling make_model) using the compare_parameters function from the

analysis module. It takes as input the fitted GLAM instance, a list of parameters (‘v’,

‘s’, ‘gamma’, ‘tau’), and a list of pairwise comparisons between groups or conditions.

The comparison argument expects a list of tuples (e.g., [(‘group1’, ‘group2’),
(’group1’, ‘group3’)). For example, given a fitted model instance (here glam) a

comparison of the γ parameter between two groups (group1 and group2) can be computed

as:

GLAMbox
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from gb.analysis import compare_parameters
comparison = compare_parameters(model=glam,

parameters=[‘gamma’],
comparisons=[(‘group1’, ‘group2’)])

The function then returns a table with one row per specified comparison, and columns con-

taining the mean posterior difference, percentage of the posterior above zero, and correspond-

ing 95% HPD interval. If supplied with a hierarchical model, the function computes

differences between group-level parameters. If an individual type model is given, it returns

comparison statistics for each individual.

Comparisons can be visualized using the compare_parameters function from the

plots module. It takes the same input as its analogue in the alysis module. It plots poste-

rior distributions of parameters and the posterior distributions of any differences specified

using the comparisons argument. For a usage example and plot see Example 2.

Comparing model variants. Model comparisons between multiple GLAM variants (e.g.,

full and restricted variants) can be performed using the compare_models function, which

wraps the function of the same name from the PyMC3 library. The compare_models func-

tion takes as input a list of fitted model instances that are to be compared. Additional keyword

arguments can be given and are passed on to the underlying PyMC3 compare function. This

allows the user, for example, to specify the information criterion used for the comparison via

the ic argument (‘WAIC’ or ‘LOO’ for Leave-One-Out cross validation). It returns a table

containing an estimate of the specified information criterion, standard errors, difference to

the best-fitting model, standard error of the difference, and other output variables from

PyMC3 for each inputted model (and subject, if individually estimated models were given).

We refer the reader to Example 1 for a usage example and exemplary output from the

compare_models function.

Predicting choices and response times. Choices and RTs can be predicted with the

GLAM by the use of the predict method:

model.predict(n_repeats=50)

For each trial of the dataset that is attached to the model instance, this method predicts a

choice and RT according to Eq (10), using the previously determined MAP parameter esti-

mates. To obtain a stable estimate of the GLAM’s predictions, as well as the noise contained

within them, it is recommended to repeat every trial multiple times during the prediction. The

number of trial repeats can be specified with the n_repeats argument. After the prediction

is completed, the predicted data can be accessed with the prediction attribute of the

model.

Results

Example 1: Individual level data & model comparison

Our first example is based on the study by [21]. Here, the authors study the association

between gaze allocation and choice behaviour on the level of the individual. In particular, they

explore whether (1) gaze biases are present on the individual level and (2) the strength of this

association varies between individuals. In this example, we replicate this type of individual

model-based analysis, including parameter estimation, comparison between multiple model

variants, and out-of-sample prediction of choice and RT data.

Simulating data. First, we simulate a dataset containing 30 subjects, each performing 300

simple value-based choice trials. We assume that in each trial participants are asked to choose

the item that they like most out of a set of three presented alternatives (e.g., snack food items;

GLAMbox
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similar to the task described in [8]). While participants perform the task, their eye movements,

choices and RTs are measured. Before completing the choice trials, participants were asked to

indicate their liking rating for each of the items used in the choice task on a liking rating scale

between 1 and 10 (with 10 indicating strong liking and 1 indicating little liking). The resulting

dataset contains a liking value for each item in a trial, the participants’ choice and RT, as well

as the participant’s gaze towards each item in a trial (describing the fraction of trial time that

the participant spent looking at each item in the choice set).

To simulate individuals’ response behaviour, we utilize the parameter estimates that were

obtained by [21] for the individuals in the three item choice dataset by [8] (see S1 Fig). Impor-

tantly, we assume that ten individuals do not exhibit a gaze bias, meaning that their choices are

independent of the time that they spend looking at each item. To this end, we set the γ value of

ten randomly selected individuals to 1. We further assume that individuals’ gaze is distributed

randomly with respect to the values of the items in a choice set. An overview of the generating

parameter estimates is given in S3 Fig.

We first instantiate a GLAM model instance using gb.GLAM() and then use its

simulate_group method. This method requires us to specify whether the individuals of

the group are either simulated individually (and thereby independent of one another) or as

part of a group with hierarchical parameter structure (where the individual model parameters

are drawn from a group distribution, see below). For the former, the generating model param-

eters (indicated in the following as gen_parameters) are provided as a dictionary, contain-

ing a list of the individual participant values for each model parameter:

import glambox as gb
import numpy as np
glam = gb.GLAM()
no_bias_subjects = np.random.choice(a=gen_parameters
[’gamma’].size,

size=10,
replace=False)

gen_parameters[’gamma’][no_bias_subjects] = 1
glam.simulate_group(kind=’individual’,

n_individuals=30,
n_trials=300,
n_items=3,
parameters=gen_parameters)

As this example is focused on the individual level, we can further create a summary

table, describing individuals’ response behaviour on three behavioural metrics, using the

aggregate_subject_level_data function from the analysis module. The result-

ing table contains individuals’ mean RT, their probability of choosing the item with the highest

item value from a choice set and a behavioural measure of the strength of the association

between individuals’ gaze allocation and choice behaviour (indicating the mean increase in

choice probability for an item that was fixated on longer than the others, after correcting for

the influence of the item value on choice behaviour; for further details, see [21]).

from glambox.analysis import aggregate_subject_level_data
subject_data_summary = aggregate_subject_level_data
(data=glam.data,

n_items=3)

Exploring the behavioural data. In a first step of our analysis, we explore differences in

individuals’ response behaviour. To this end, we plot the distributions of individuals’ scores on

GLAMbox
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the three behavioural metrics, and their associations, using the plot_behaviour_asso-
ciations function implemented in the plots module:

gb.plots.plot_behaviour_associations(data=data)

The resulting plot is displayed in Fig 3 and shows that individuals’ probability of choosing

the best item, as well as the strength of their behavioural association of gaze and choice, are not

associated with their mean RT (Fig 3D and 3E). However, individuals’ probability of choosing

the best item increases with decreasing strength of the behavioural association of gaze and

choice (Fig 3F).

Likelihood-based model comparison. In a second step of our analysis, we want to test

whether the response behaviour of each individual is better described by a decision model with

or without gaze bias. To this end, we set up the two GLAM variants:

glam_bias = gb.GLAM(data=data)
glam_bias.make_model(kind=’individual’, name=’glam_bias’)

glam_nobias = gb.GLAM(data=data)
glam_nobias.make_model(kind=’individual’, gamma_val=1,
name=’glam_nobias’)

For the GLAM variant without gaze bias mechanism, we use the gamma_val argument

and set it to a value of 1 (fixing γ to 1 for all subjects). We also assign different names to each

model with the name attribute to better identify them in our subsequent analyses.

Fig 3. Individual differences in the data. A-C: distributions of individuals’ mean RT (A), probability of choosing the highest-valued item in a trial (B),

and behavioural influence of gaze allocation on choice behaviour (C). D-F: associations between individuals’ probability of choosing the highest-valued

item and mean RT (D), individuals’ behavioural influence of gaze allocation on choice behaviour and their mean RT (E), individuals’ behavioural

influence of gaze allocation on choice behaviour and their probability of choosing the highest-valued item (F). Red lines indicate linear regression fits

with confidence bands surrounding them. Pearson’s r coefficients with corresponding P-values are reported for each association in D-F.

https://doi.org/10.1371/journal.pone.0226428.g003
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Subsequently, we fit both models to the data of each individual and compare their fit by

means of the Widely Applicable Information Criterion (WAIC; [34]):

glam_bias.fit(method=’MCMC’,
tune=5000,
draws=5000,
chains=4)

glam_nobias.fit(method=’MCMC’,
tune=5000,
draws=5000,
chains=4)

The fit method defaults to Metropolis-Hastings MCMC sampling (for methodological

details, see Methods Section). The draws argument sets the number of samples to be drawn.

This excludes the tuning (or burn-in) samples, which can be set with the tune argument. In

addition, the fit method accepts the same keyword arguments as the PyMC3 sample func-

tion, which it wraps (see the PyMC3 documentation for additional details). The chains argu-

ment sets the number of MCMC traces (it defaults to four and should be set to at least two, in

order to allow convergence diagnostics).

After convergence has been established for all parameter traces (for details on the suggested

convergence criteria, see Methods), we perform a model comparison on the individual level,

using the compare_models function from the analysis (see Basic Usage: Comparing

model variants):

comparison_df = gb.analysis.compare_models(models=[glam_bias,
glam_nobias],

ic=’WAIC’)

The resulting table (shown in Table 2) can be used to identify the best fitting model (indi-

cated by the lowest WAIC score) per individual.

With this comparison, we are able to identify those participants whose response behaviour

matches the assumption of gaze-biased evidence accumulation. In particular, we find that we

accurately recover whether an individual has a gaze bias or not for 29 out of 30 individuals.

Looking at the individual parameter estimates (defined as MAP of the posterior distribu-

tions), we find that the individually fitted γ values (Fig 4A) cover a wide range between -0.8

and 1, indicating strong variability in the strength of individuals’ gaze bias. We also find that γ
estimates have a strong negative correlation with individuals’ scores on the behavioural gaze

bias measure (Fig 4B).

Out-of-sample prediction. We have identified those participants whose response behav-

iour is better described by a GLAM variant with gaze-bias than one without. Yet, this analysis

does not indicate whether the GLAM is a good model of individuals’ response behaviour on

an absolute level. To test this, we perform an out-of-sample prediction exercise.

Table 2. Output from compare_models function for the first two subjects.

subject model WAIC pWAIC dWAIC weight SE dSE var_warn

0 glam_bias 523.6 5.75 0 0.94 50.25 0 0

0 glam_nobias 645.09 3.64 121.49 0.06 44.15 23.56 0

1 glam_bias 1097.86 3.69 0 1 40.32 0 0

1 glam_nobias 1185.02 2.85 87.16 0 38.22 18 0

https://doi.org/10.1371/journal.pone.0226428.t002
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We divide the data of each subject into even- and odd-numbered experiment trials and use

the data of the even-numbered trials to fit both GLAM variants:

glam_bias.exchange_data(data_even)
glam_bias.fit(method=’MCMC’,

tune=5000,
draws=5000,
chains=4)

glam_nobias.exchange_data(data_even)
glam_nobias.fit(method=’MCMC’,

tune=5000,
draws=5000,
chains=4)

Subsequently, we evaluate the performance of both models in predicting individuals’

response behaviour using the MAP estimates and item value and gaze data from the odd-

numbered trials. To predict response behaviour for the odd-numbered trials, we use the

predict method. We repeat every trial 50 times in the prediction (as specified through the

n_repeats argument) to obtain a stable pattern of predictions:

glam_bias.exchange_data(data_odd)
glam_bias.predict(n_repeats=50)

glam_nobias.exchange_data(data_odd)
glam_nobias.predict(n_repeats=50)

Lastly, to determine the absolute fit of both model variants to the data, we plot the individu-

ally predicted against the individually observed data on all three behavioural metrics. To do

this, we use the plot_individual_fit function of the plots module. This function

takes as input the observed data, as well as a list of the predictions of all model variants that

ought to be compared. The argument prediction_labels specifies the naming used for

Fig 4. Individual differences in the strength of the association of gaze allocation and choice behaviour. A: Distribution of γ estimates resulting from

the in-sample individual model fits. B: Association of γ estimates and individuals’ values on the behavioural gaze bias measure. The red line indicates a

linear regression fit, with surrounding 95% confidence bands. Pearson’s r correlation with P-value is given.

https://doi.org/10.1371/journal.pone.0226428.g004
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each model in the resulting figure. For each model variant, the function creates a row of panels,

plotting the observed against the predicted data:

from glambox.plots import plot_individual_fit
plot_individual_fit(observed = data_odd,

predictions=[glam_bias.prediction,
glam_nobias.prediction],

prediction_labels=[’gaze-bias’,
‘no gaze-bias’])

The resulting plot is displayed in Fig 5. We find that both model variants perform well in

capturing individuals’ RTs and probability of choosing the best item (Fig 5A, 5D, 5B and 5E).

Importantly, only the GLAM variant with gaze bias is able to also recover the strength of the

association between individuals’ choice behaviour and gaze allocation (Fig 5C).

Conclusion. GLAMbox provides an easy-to-use tool to test the presence (and variability)

of gaze biases on the individual level. With GLAMbox, we can easily fit the GLAM to individ-

ual participant data, compare different model variants and predict individuals’ response

behaviour. It also provides a set of analysis functions to explore behavioural differences

between individuals and to compare the fit of different model variants to observed response

behaviour.

Fig 5. Out-of-sample model fits. Comparison of individuals’ simulated observed response behaviour with the out-of-sample predictions of a GLAM

variant with (A-C) and without gaze bias (D-F): Individuals’ mean RT (A, D), probability of choosing the best item (B, E), and influence of gaze

allocation on choice probability (C, F). Points indicate individual participant means.

https://doi.org/10.1371/journal.pone.0226428.g005
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Example 2: Hierarchical parameter estimation in cases with limited data

In some research settings, the total amount of data one can collect per individual is limited,

conflicting with the large amounts of data required to obtain reliable and precise individual

parameter estimates from diffusion models [35, 36]. Hierarchical modeling can offer a solution

to this problem. Here, each individual’s parameter estimates are assumed to be drawn from a

group level distribution. Thereby, during parameter estimation, individual parameter esti-

mates are informed by the data of the entire group. This can greatly improve parameter esti-

mation, especially in the face of limited amounts of data [25, 37]. In this example, we will

simulate a clinical application setting, in which different patient groups are to be compared on

the strengths of their gaze biases, during a simple value-based choice task that includes eye

tracking. It is reasonable to assume that the amount of data that can be collected in such a set-

ting is limited on at least two accounts:

1. The number of patients available for the experiment might be low

2. The number of trials that can be performed by each participant might be low, for clinical

reasons (e.g., patients feel exhausted more quickly, time to perform tests is limited, etc.)

Therefore, we simulate a dataset with a low number of individuals within each group

(between 5 and 15 per group), and a low number of trials per participant (50 trials). We then

estimate model parameters in a hierarchical fashion, and compare the group level gaze bias

parameter estimates between groups.

Simulating data. We simulate data of three patient groups (N1 = 5, N2 = 10, N3 = 15),

with 50 trials per individual, in a simple three item value-based choice task, where participants

are instructed to simply choose the item they like the best. These numbers are roughly based

on a recent clinical study on the role of the prefrontal cortex in fixation-dependent value repre-

sentations [13]. Here, the authors found no systematic differences between frontal lobe

patients and controls on integration speed or the decision threshold, controlling speed-accu-

racy trade-offs. Therefore, in our example we only let the gaze bias parameter γ differ systemat-

ically between the groups, with means of γ1 = 0.7 (weak gaze bias), γ2 = 0.1 (moderate gaze

bias) and γ3 = −0.5 (strong gaze bias), respectively. We do not assume any other systematic dif-

ferences between the groups and sample all other model parameters from the estimates

obtained from fitting the model to the data of [8] (for an overview of the generating parame-

ters, see S4 Fig).

Behavioural differences between the three groups are plotted in Fig 6, using the

plot_behaviour_aggregate function from the plots module. Group-level

Fig 6. Aggregate view of the simulated data for Example 2. (A) Mean RT binned by trial difficulty (the difference between the highest item value in a

choice set and the maximum value of all other items). (B) The probability that an item is chosen based on its relative value (the difference of the item’s

value and the maximum value of all other items in the choice set). (C) The probability of choosing an item based on its relative gaze (the difference

between the gaze towards this item and the maximum gaze towards a different item). (D) The probability of choosing an item based on its relative gaze,

when correcting for the influence of its value. Bars correspond to the pooled data, while coloured lines indicate individual groups.

https://doi.org/10.1371/journal.pone.0226428.g006
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summary tables can be created using the aggregate_group_level_data from the

analysis module. Even though the groups only differ in the gaze bias parameter, they also

exhibit differences in RT (Group 1 mean ± s.d. = 1.96 ± 0.33 s, Group 2 mean ± s.d. =

2.38 ± 1.4 s; Group 3 mean ± s.d. = 2.59 ± 1.26 ms; Fig 6A) and choice accuracy (Group 1

mean ± s.d. = 0.88 ± 0.06, Group 2 mean ± s.d. = 0.71 ± 0.07, Group 3 mean ± s.d. =

0.50 ± 0.16; Fig 6B). As is to be expected, we can also observe behavioural differences in gaze

influence measure (Group 1 mean ± s.d. = 0.08 ± 0.07, Group 2 mean ± s.d. = 0.26 ± 0.11,

Group 3 mean ± s.d. = 0.38 ± 0.11; Fig 6C and 6D, where the choices of Group 3 are driven by

gaze more than those of the other groups.

Building the hierarchical model. When specifying the hierarchical model, we allow all

model parameters to differ between the three groups. This way, we will subsequently be able to

address the question whether individuals from different groups differ on one or more model

parameters (including the gaze bias parameter γ, which we are mainly interested in here).

As for the individual models, we first initialize the model object using the GLAM class and

supply it with the behavioural data using the data argument. Here, we set the model kind to

‘hierarchical’ (in contrast to ‘individual’). Further, we specify that each model

parameter can vary between groups (referring to a ‘group’ variable in the data):

hglam = gb.GLAM(data=data)
hglam.make_model(kind=’hierarchical’,

depends_on = dict(v=’group’,
gamma=’group’,
s=’group’,
tau=’group’))

In this model, each parameter is set up hierarchically within each group, so that individual

estimates are informed by other individuals in that group. If the researcher does not

expect group differences on a parameter, this parameter can simply be omitted from the

depends_on dictionary. The resulting model would then have a hierarchical setup of this

parameter across groups, so that individual parameter estimates were informed by all other

individuals (not only those in the same group).

Parameter estimation with MCMC. After the model is built, the next step is to perform

statistical inference over its parameters. As we have done with the individual models, we can

use MCMC to approximate the parameters’ posterior distributions (see Methods for details).

Due to the more complex structure and drastically increased number of parameters, the chains

from the hierarchical model usually have higher levels autocorrelation. To still obtain a reason-

able number of effective samples [32], we increase the number of tuning- and draw steps:

hglam.fit(method=’MCMC’,
draws=20000,
tune=20000,
chains=4)

Evaluating parameter estimates, interpreting results. After sampling is finished, and the

chains were checked for convergence, we can turn back to the research question: Do the

groups differ with respect to their gaze biases? Questions about differences between group-

level parameters can be addressed by inspecting their posterior distributions. For example, the

probability that the mean γ1,μ for Group 1 is larger than the mean γ2,μ of Group 2 is given by

the proportion of posterior samples in which this was the case.

GLAMbox includes a compare_parameters function that plots posterior distributions

of group level parameters. Additionally, the user can specify a list of comparisons between
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groups or conditions. If comparisons are specified, the posterior distributions of their differ-

ence and corresponding relevant statistics are added to the figure:

from glambox.plots import compare_parameters
parameters = [’v’, ‘gamma’, ‘s’, ‘tau’]
comparisons = [(’group1’, ‘group2’),

(’group1’, ‘group3’),
(’group2’, ‘group3’)]

compare_parameters(model=hglam,
parameters=parameters,
comparisons=comparisons)

With the resulting plot (Fig 7), the researcher can infer that the groups did not differ with

respect to their mean velocity parameters vi,μ (top row, pairwise comparisons), mean accumu-

lation noise σi,μ (third row), or scaling parameters τi,μ. The groups differ, however, in the

strength of their mean gaze bias γi,μ (second row): All differences between the groups were

Fig 7. Pairwise comparison of posterior group-level parameter estimates between groups. Each row corresponds to one model parameter. The

leftmost column shows the estimated posterior distributions for each parameter and group. Pairwise differences between the group posterior

distributions are shown in all other columns. For each posterior distribution of the difference, the mean and 95% HPD are indicated, as well as the

proportion of samples below and above zero (in red). All three groups differ on the γ parameter (row B). No evidence for differences on any of the other

model parameters is found (the 95% HPD of the pairwise differences between groups all include zero).

https://doi.org/10.1371/journal.pone.0226428.g007
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statistically meaningful (as inferred by the fact that the corresponding 95% HPD did not con-

tain zero; second row, columns 2-4).

Conclusion. When faced with limited data, GLAMbox allows users to easily build and

estimate hierarchical GLAM variants, including conditional dependencies of model parame-

ters. The Bayesian inference framework allows the researcher to answer relevant questions in a

straightforward fashion. To this end, GLAMbox provides basic functions for computation and

visualization.

Example 3: Parameter recovery

When performing model-based analyses of behaviour that include the interpretation of

parameter estimates, or comparisons of parameter estimates between groups or conditions,

the researcher should be confident that the model’s parameters are actually identifiable. In par-

ticular, the researcher needs to be confident that the set of estimated parameters unambigu-

ously describes the observed data better than any other set of parameters. A straightforward

way of testing this is to perform a parameter recovery: The general intuition of a parameter

recovery analysis is to first generate a synthetic dataset from a model using a set of known

parameters, and then fitting the model to the synthetic data. Finally, the estimated parameters

can be compared to the known generating parameters. If they match to a satisfying degree, the

parameters were recovered successfully. Previous analyses have already indicated that the

GLAM’s parameters can be recovered to a satisfying degree [21]. Yet, the ability to identify a

given set of parameters always depends on the specific features of a given dataset. The most

obvious feature of a dataset that influences recoverability of model parameters is the number

of data points included. Usually this quantity refers to the number of trials that participants

performed. For hierarchical models, the precision of group-level estimates also depends on the

number of individuals per group. Additional features that vary between datasets and that

could influence parameter estimation are the observed distribution of gaze, the distribution of

item values or the number of items in each trial. For this reason, it is recommended to test

whether the estimated parameters of a model can be recovered in the context of a specific data-

set. slac To demonstrate the procedure of a basic parameter recovery analysis using GLAMbox,

suppose we have collected and loaded a dataset called data. In the first step, we perform

parameter estimation as in the previous examples:

glam = gb.GLAM(data=data)
glam.make_model(kind=’individual’)
glam.fit(method=’MCMC’,

draws=5000,
tune=5000,
chains=4)

The next step is to create a synthetic, model-generated dataset using the model parameters

estimated from the empirical data, together with the empirically observed stimulus and gaze

data using the predict method. Setting n_repeats to 1 results in a dataset of the same

size as the observed one:

glam.predict(n_repeats=1)
synthetic = glam.prediction

The synthetic dataset should resemble the empirically observed data closely. If there are

major discrepancies between the synthetic and observed data, this indicates that GLAM might

not be a good candidate model for the data at hand. Next, we create a new model instance,

attach the synthetic data, build a model and re-estimate its parameters:

GLAMbox
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glam_rec = gb.GLAM(data=synthetic)
glam_rec.make_model(kind=’individual’)
glam_rec.fit(method=’MCMC’,

draws=5000,
tune=5000,
chains=4)

Finally, the recovered and generating parameters can be compared. If the recovered param-

eters do not match the generating parameters, the parameters cannot be identified given this

specific dataset. In this case, parameter estimates should not be interpreted.

If, on the other hand, generating and recovered parameters do align, the parameters have

been recovered successfully. This indicates that the model’s parameters can be identified

unambiguously given the general characteristics of the dataset and thereby increases confi-

dence that the parameters obtained from the empirical data are valid and can be interpreted.

Here, all parameters could be recovered as illustrated in Fig 8. For most individuals, the

MAP estimates and their 95% HPDs are close to the known generating parameters. Across

individuals, no systematic biases in the estimation can be identified.

Conclusion. In this example, we demonstrated how to perform a basic parameter recov-

ery for a given dataset. When successful, this increases confidence that the parameters can be

identified with the given dataset.

Discussion

Researchers have recently started to systematically investigate the role of visual gaze in the

decision making process. By now, it is established that eye movements do not merely serve to

sample information that is then processed independently to produce a choice, but that they are

actively involved in the construction of preferences [2, 4, 6–8, 10, 14, 15, 21, 38]. The dominant

theoretical perspective is that evidence accumulation in favor of each option is modulated by

gaze allocation, so that accumulation for non-fixated options is attenuated. This mechanism is

formally specified in various models of gaze-dependent decision making, such as the atten-

tional Drift Diffusion Model (aDDM; [7, 8]) and the conceptually related Gaze-weighted Lin-

ear Accumulator Model (GLAM; [21]). In contrast to analyses based on behavioural and eye

Fig 8. Results from a basic parameter recovery. The lower row (E-H) shows deviations between known generating parameter values and recovered

MAP estimates (circles) and their 95% HPDs (horizontal error bars) for each participant. Green (red) colour indicates that the true value is within

(outside) the 95% HPD. Most parameters were recovered with small deviations. Panels A-D show distributions of deviations across individuals.

Distributions are mostly centered around zero, indicating no systematic under- or overestimation (bias) across individuals.

https://doi.org/10.1371/journal.pone.0226428.g008
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tracking data alone, these models can act as analytical tools that enable researchers to address

questions regarding specific mechanisms in the decision process, like the gaze bias.

The goal of GLAM is to provide a model-based estimate of the gaze bias on the level of an

individual (as indicated by GLAM’s γ parameter), in choice situations involving more than

two choice alternatives. To estimate the gaze bias, GLAM describes the decision process in the

form of a linear stochastic race and aggregates over the specific sequence of fixations during

the decision process (by only utilizing the fraction of the decision time that each item was

looked at). These two characteristics distinguish the GLAM from other existing approaches of

obtaining an estimate of individuals’ gaze bias:

First, the GLAM is focused on quantifying the gaze bias on the individual level. It does

not capture dynamics of the decision process on the level of single fixations. If these fine-

grained dynamics are of interest to the researcher, the aDDM can be used. Here, the fixa-

tion-dependent changes in evidence accumulation rates throughout the trial are not aver-

aged out. Keeping this level of detail, however, comes at a cost: Fitting the aDDM relies on

extensive model simulations (including a simulation of the fixation process; for a more

detailed discussion see [21]). The GLAM, on the other hand, aggregates over the fixation-

dependent changes in the accumulator’s drift rate in order to simplify the estimation process

of the gaze bias.

Second, the GLAM directly applies to choice situations involving more than two choice

alternatives. While the GLAM has been shown to also capture individuals’ gaze bias and

choice behaviour well in two-alternative choice situations [21], there exist other computa-

tional approaches that can estimate the gaze bias of an individual in binary decisions: If

response times are of interest to the researcher, the gaze bias can be estimated in the form of a

gaze-weighted DDM (see for example [2, 18]). Similar to the GLAM, this approach also aggre-

gates over the dynamics of the fixation process within a trial, by only utilizing the fraction of

trial time that each item was looked at. In contrast to the GLAM, however, gaze-weighted

DDM approaches describe the decision process in the form of a single accumulator that

evolves between two decision bounds (each representing one of the two choice alternatives).

For two-alternative choice scenarios, where response times are not of interest to the

researcher, Smith and colleagues [39] proposed a method of estimating the aDDM gaze-bias

parameter through a random utility model. Here, the gaze bias can be estimated in a simple

logit model.

Even though the advantages of applying these types of models are apparent, their use is

often limited by their complexity and the high cost of implementing, validating and optimizing

them. Further, there are only few off-the-shelf solutions researchers can turn to, if they want to

perform model-based analyses of gaze-dependent choice data, particularly for choice settings

involving more than two alternatives.

With GLAMbox, we present a Python-based toolbox, built on top of PyMC3, that allows

researchers to perform model-based analyses of gaze-bias effects in decision making easily. We

have provided step-by-step instructions and code to perform essential modeling analyses using

the GLAM. These entail application of the GLAM to individual and group-level data, specifica-

tion of parameter dependencies for both within- and between-subject designs, (hierarchical)

Bayesian parameter estimation, comparisons between multiple model variants, out-of-sample

prediction of choice and RT data, data visualization, Bayesian comparison of posterior param-

eter estimates between conditions, and parameter recovery. We hope that GLAMbox will

make studying the association between gaze allocation and choice behaviour more accessible.

We also hope that the resulting findings will ultimately help us better understand this associa-

tion, its inter-individual variability and link to brain activity.

GLAMbox
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Supporting information

S1 Fig. Distribution of individual parameter estimates from four datasets analysed in

Thomas et al. (2019). The top row contains distributions of parameter estimates across data-

sets. Subsequent rows show distributions per dataset: Krajbich et al. (2010; blue), Krajbich &

Rangel (2011; orange), Experiment 2 from Folke et al. (2017; green) and Experiment 1 from

Tavares et al. (2017; red).

(TIFF)

S2 Fig. Illustration of hyperpriors. Different hyperpriors based on group-averaged parameter

values were obtained from fitting the model to four different datasets (Folke et al., 2017; Kraj-

bich et al., 2010; Krajbich & Rangel, 2011; Tavares et al., 2017; see S1 Table and S1 Fig). Panels

show prior distributions on group level mean (upper row) and standard deviation (lower row)

for each model parameter (columns; from left to right: v, γ, σ, τ). Observed group level esti-

mates from the four datasets are indicated as red ticks in each panel. Blue, orange and green

lines represent prior distributions with increasing levels of vagueness f. They are constructed

as normal distributions with mean equal to the mean of the observed group level parameters

across datasets (M), and standard deviation equal to f times the observed standard deviation

across datasets (SD). Higher values of f correspond to wider, less informative priors. Prior dis-

tributions are further bounded between sensible limits. The user can specify the factor f during

specification of hierarchical models. By default, hyperpriors with f = 10 (orange lines) are

used.

(TIFF)

S3 Fig. Distribution of individual generating GLAM parameters of Example 1. Colours

indicate whether a subject was simulated with or without gaze bias.

(TIFF)

S4 Fig. Distributions of data-generating parameters for the three groups in Example 2.

The top row shows distributions pooled across groups. The bottom three rows show distribu-

tions per group. Note that the groups do not differ systematically with respect to the velocity

parameter v, the noise parameter σ, or the scaling parameter τ (first, second and last column;

even though there is some variability between individuals). The groups differ, however, on the

gaze bias parameter γ (third column): Group 1 only has a weak gaze bias (large γ), group 2 has

a medium strong gaze bias (smaller γ), and group 3 has a very strong gaze bias (even smaller,

negative γ).
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S1 Table. Description of individual parameter estimates from four datasets analysed in

Thomas et al. (2019). The datasets are originally from Folke et al., 2017 (Experiment 2); Kraj-

bich et al., 2010; Krajbich & Rangel, 2011 and Tavares et al., 2017 (Experiment 1).
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Abstract

Choices are influenced by gaze allocation during deliberation, so that fixating an alternative longer
leads to increased probability of choosing it. Gaze-dependent evidence accumulation provides a parsi-
monious account of choices, response times and gaze-behaviour in many simple decision scenarios. Here,
we test whether this framework can also predict more complex context-dependent patterns of choice in a
three-alternative risky choice task, where choices and eye movements were subject to attraction and com-
promise effects. Choices were best described by a gaze-dependent evidence accumulation model, where
subjective values of alternatives are discounted while not fixated. Finally, we performed a systematic
search over a large model space, allowing us to evaluate the relative contribution of different forms of
gaze-dependence and additional mechanisms previously not considered by gaze-dependent accumulation
models. Gaze-dependence remained the most important mechanism, but participants with strong attrac-
tion effects employed an additional similarity-dependent inhibition mechanism found in other models of
multi-alternative multi-attribute choice.

Introduction

Imagine you inherited money from a distant relative and you need to decide how to invest it. You
reach out to your trusted investment advisor who swiftly sends you a brochure with different investment
alternatives. After reading the brochure, you look at the overview table provided on the final page
and deliberate between two alternatives that particularly interest you, visually inspecting them, one at
a time, comparing expected returns, associated risks, fees, and other attributes. Previous work has
established that the role of visual attention in decision making under risk exceeds mere information
sampling1–3. Instead, as in other forms of preferential and perceptual decision making, visual fixations
have a constructive role in the decision process, so that alternatives that are looked at for a longer time
are generally more likely to be chosen4–10.

This association between gaze and choice has been formalized in gaze-dependent evidence accumulation
models1,2,5,6,10–13. The attentional Drift Diffusion Model (aDDM)6, Gaze-weighted Linear Accumulator
Model12,13, and others that apply explicitly to risky choice1 assume that decision makers accumulate
evidence in favour of each alternative until evidence for one alternative reaches a threshold and a decision
is made. Crucially, accumulation rates are assumed to depend on gaze allocation, so that evidence for
an alternative is discounted while it is not fixated. Prior work has tested these assumptions in simple
decisions under risk, involving two risky gambles with two equally probable outcomes3 or two risky gambles
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described by outcome and probability1. Like the example of choosing an investment plan, however, many
real-life decisions are more complex than simple binary choice. For example, investment decisions can
involve more than two alternatives that vary on multiple attributes (such as expected return, associated
risk, and fees), including both sets of options with similarly low expected returns (e.g., government
bonds, fixed deposits) and sets of other riskier options promising larger gains at higher risk (e.g., stocks
or derivatives).

Crucially, choices in these multi-alternative, multi-attribute settings pose a challenge to many tradi-
tional models of risky choice, including Expected Utility Theory (EU)14 and Prospect Theory15,16, which
obey basic axioms of rational choice like independence of irrelevant alternatives (IIA)17. Briefly, IIA as-
serts that the preference between two alternatives should not depend on other alternatives. At least three
context effects – the attraction18, compromise19, and similarity20 effects – show that IIA is frequently
violated: The attraction effect describes an increase in preference for an alternative following the addition
of a similar, but slightly inferior alternative. The compromise effect describes an increase in preference
for an alternative after a third alternative was added that makes it appear as intermediate. The similar-
ity effect predicts that adding a third option that is similar to one of the original options, and equally
appealing, will increase relative preference for the other, dissimilar alternative. While these effects are
predominantly investigated using consumer goods, some studies also found them to affect choices between
risky gambles18,20–23.

Generally, models that assume that each alternative can independently be assigned a single scale value
denoting its utility (fixed utility or simple scalability models24) cannot account for the observed viola-
tions. In contrast, models that can predict the effects often assume that preferences are constructed by
means of comparisons between alternatives on different attribute dimensions20,25–28, and employ addi-
tional psychological or neurobiologically-inspired mechanisms, such as loss-aversion or inhibition between
alternatives.

While current gaze-dependent accumulation models of risky choice assume that each alternative can
be assigned a singular underlying scale value (e.g., expected utilities for each alternative), choices are also
assumed to be constructed in an accumulation process that remains malleable due to its dependence on
gaze. Therefore, gaze-dependent accumulation models potentially could account for violations of IIA or
regularity if the distribution of gaze itself changed depending on the decision context (e.g., shift towards
dominant alternatives in the attraction effect, compromise alternatives in the attraction effect, or dissimilar
alternatives in the similarity effect). Initial evidence for such an attention-shift in the attraction effect
comes from a study of intertemporal choice29. Furthermore, recent work has suggested gaze-dependent
evidence accumulation as a model of multi-alternative, multi-attribute choice in the absence of context
effects2,30.

Here, we test to what extent gaze-dependent accumulation can explain risky choices in the presence
of context effects. We replicate the attraction and compromise effects in a task where participants made
repeated choices in a multi-alternative, multi-attribute setting involving risky gambles. We compare
a model of gaze-dependent accumulation adapted from previous work on binary risky choice1 with an
established model of context-dependent multi-alternative, multi-attribute choice without gaze-dependence
and with other traditional models of risky choice. Notably, the gaze-dependent accumulation model did
not include any dedicated mechanisms to produce context effects. Our task induced a set of context effects
across the group, with substantial variability between individuals, providing a complex testing scenario
to compare gaze-dependent accumulation models with competing theoretical accounts. We found the
gaze-dependent model to give the overall best account of the choice data, while underestimating strong
attraction effects of some individuals. A systematic search over a large model space combining features
across model classes confirmed that all participants’ behaviour was best described by a gaze-dependent
accumulation process, but that individual differences in attraction effect strengths are predicted best by
variants integrating mechanisms from other models.

Results

Choice task

In our experiment, 40 participants made repeated decisions between three all-or-nothing gambles, each
described by a probability p to win an outcome m and nothing otherwise (Fig. 1a). We recorded
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Figure 1. Choice task and attribute space
of stimuli. (a) Choice task. Trials started with
a central fixation cross for 1.5 s. Next, three gam-
bles were presented. Participants made a choice by
button press, without time limit. Eye movements
were recorded during the choice phase. Finally,
brief feedback on the choice (but not on the gam-
ble outcome) was displayed. (b) Attribute space.
Each gamble is described by two attributes: Prob-
ability p and outcome m. The core options A
and B were presented in every trial, along with
one of four decoy alternatives: Compromise de-
coys (CA or CB) and asymmetrically dominated
decoys (DA or DB) are expected to elicit compro-
mise and attraction effects, respectively. Dashed
lines indicate possible stimulus placements. (c)
Exact positions for CB , A and CA were calibrated
for pairwise indifference in separate binary choice
estimation blocks for each individual. Differences
in outcome between neighbouring alternatives was
not less than 2 EUR. Dominated decoys DA and
DB were always 2% and 1 EUR worse than A and
B respectively.

participants’ eye movements during the task with an eye tracker (see Methods for details). Participants
were instructed that after completing the task, their chosen gamble from one randomly determined trial
would be played out for an additional bonus payment. In contrast to hypothetical choices between
consumer goods described on attribute dimensions like quality and price, risky gamble stimuli offer a high
amount of control over their attributes and a straightforward way to incentivise choices. The gamble
stimuli were designed to elicit attraction and compromise effects and were individually tailored to account
for each participant’s risk preferences (Fig. 1b). Participants performed three pairs of indifference-
estimation and experimental blocks, for a total of 225 experimental trials (see Methods for additional
details on the experimental procedure and gamble stimuli). In indifference-estimation blocks, participants
made repeated choices between pairs of gambles with different probabilities (Fig. 1c). Gamble outcomes m
were adjusted according to participants’ choices so that four approximately equally preferred gambles CB ,
B, A, and CA were constructed with winning probabilities p = 55%, 65%, 75%, and 85%. Additionally,
two asymmetrically dominated decoys DA and DB were defined to be 2% and 1 EUR worse than gambles
A and B, respectively. Following this indifference estimation, participants performed an experimental
block of 75 ternary choice trials, 32 of which were compromise trials balanced with respect to the target
option (i.e., 16 choice sets {A, B, CA}, 16 choice sets {A, B, CB}), 32 attraction trials (16 choice sets
{A, B ,DA}, 16 choice sets {A, B, DB}) and 11 distractor trials showing randomly created options with
expected value of 10 EUR and low (5–33%), medium (34–64%) and high (65–95%) probability p. Uniform
noise was added to all outcomes m (±0 EUR, +1 EUR) and probabilities p (–3%, ±0%, +3%) in each
trial. Asymmetrically dominated decoys DA and DB received the same noise as the target option to
preserve the dominance relation.

Context effects

We first analysed participants’ choice behaviour to test whether their choices could be influenced by the
set of available alternatives (see Table 1 and Fig. 2). Participants rarely chose the dominated decoys in
attraction trials (mean ± s.d. = 0.02 ± 0.02 of attraction trials), indicating that participants understood
the dominance relationships among the stimuli. In compromise trials, participants chose (non-dominated)
decoy alternatives more frequently (mean ± s.d. = 0.27 ± 0.16). In particular, the decoy with the highest
possible outcome CB (p ≈ 55%, m ≈ 18 EUR) was chosen most frequently when it was available. Note
that decoy choices in compromise trials are expected, as extreme decoys were specifically calibrated to be
approximately equally preferred to the core options.

We tested the presence of the attraction and compromise effects by first computing the relative choice
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Trial type Target Competitor Decoy

DA 0.60 0.39 0.01
DB 0.53 0.45 0.02
CA 0.46 0.37 0.16
CB 0.32 0.31 0.37

Table 1. Relative choice frequencies across participants in the four trial types. Across the group,
target options were chosen more frequently than competitors in both types of attraction (DA and DB) and
compromise trials (CA, CB). Dominated decoys were almost never chosen. In compromise trials including
the high-outcome decoy CB , the decoy was chosen more frequently than core options.

share of the target alternative (RST)31 for each individual, and separately for attraction and compromise
trials. The RST is computed as

RST =
Ntarget

Ntarget +Ncompetitor
(1)

where N is the number of times an alternative was chosen. Given the balanced design, where each
core alternative acts as a target and competitor equally often, the RST should be close to 0.5 if no context
effects are present. If, however, the RST is different from 0.5, a systematic context effect is indicated.
We tested whether the mean RST significantly differed from 0.5 across participants by computing its 95%
highest posterior density interval (HDI95) using Bayesian estimation (BEST)32,33.

We find evidence for the attraction effect: The mean RST in attraction trials differed meaningfully
from 0.5 (mean RST = 0.56, HDI95 = [0.51, 0.60], mean d = 0.49, HDI95 = [0.10, 0.80]). 25 of 40 (62.5%)
participants had an RST above 0.5 in attraction trials. Notably, similar to previous work34 a subgroup
of participants (9 of 40, 22.5%) showed particularly strong attraction effects with individual RSTs above
0.7. We could not, however, find evidence that these individuals used the dominance relationship as
a simplifying choice rule (see Supplementary Note 2). To allow comparisons with other studies that
quantified context effects as the difference between choice shares between targets and competitors, we
also report these differences: In attraction trials, the average difference was 0.12 (HDI95 = [0.01, 0.20],
mean d = 0.48, HDI95 = [0.10, 0.85], Fig. 2b).

We only found weak evidence for the compromise effect using the gamble stimuli: The mean RST in
compromise trials was 0.53, but its estimated HDI95 did not exclude 0.5 (HDI95 = [0.49, 0.57], 91.1%
of posterior mass above 0.5, mean d = 0.23, HDI95 = [-0.11, 0.59]). 26 of 40 (65%) participants showed
an RST above 0.5 in compromise trials. The mean difference between choice shares for targets and
competitors was 0.05 (HDI95 = [-0.01, 0.11], mean d = 0.29, HDI95 = [-0.04, 0.62], 95.8 % of posterior
mass above 0; Fig. 2e). These results are similar to the marginal effects obtained using perceptual stimuli
in previous work35,36.

Similar to other work26,31, we found a positive correlation between the effects across participants, even
though it was weaker in our task (r = 0.24, HDI95 = [-0.05, 0.51], 94.5% of posterior mass above 0).

Taken together, we successfully induced context effects within our participant sample, with non-trivial
variability in the strength of those effects across individuals. These data provide a complex testing scenario
to investigate gaze-bias effects in multi-alternative multi-attribute choice and to compare gaze-dependent
accumulation models with competing theories.

Context effects are present in relative dwell times

Next, we tested whether participants’ eye movements were affected by the set of available alternatives,
similar to their choices. We therefore computed each alternative’s relative dwell time in a trial by summing
the duration of all fixations durations towards it, and normalizing to the sum of all fixations in the trial.
Both patterns of context effects of choice behaviour were present in the relative dwell data: Target options
received greater relative dwell time than competitors in attraction (mean difference = 0.014, HDI95 =
[0.004, 0.024], mean d = 0.53, HDI95 = [0.15, 0.93], Fig. 2c) and compromise trials (mean difference =
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Figure 2. Context effects are present in choices and relative dwell time. Participants choices
were influenced by asymmetrically dominated decoys and, to a lesser extent, by extreme compromise-making
decoys. (a, d) Ternary plots of individual relative choice frequencies for target (lower left, teal), competitor
(top, pink), and decoy (lower right, yellow) alternatives in attraction (a) and compromise (d) trials. Each dot
represents one participant. The position on the simplex indicates relative choice frequencies for alternatives.
Straight lines from the centre indicate equal frequencies for two alternatives. The red ”x” indicates the group
average. (b, e) Relative choice frequencies in attraction (b) and compromise (e) trials. In attraction trials,
some participants strongly favoured the target alternative and almost no decoy choices were made. While
target alternatives are still chosen more frequently than competitors in compromise trials, the effect is less
pronounced, and extreme decoys are still chosen frequently. (c, f) Relative dwell time towards alternatives.
In both, attraction (c) and compromise (f) trials, target alternatives received greater relative dwell times
than competitors. d denotes Cohen’s d from paired BEST analysis with HDI95 given in brackets. Violin
plots show kernel density estimates of distributions of individual values. Box plots mark lower and upper
quartiles and median. Whiskers extend from first and last datum within 1.5 times the interquartile range
from lower and upper quartiles, respectively. Values outside this range are indicated by open circles.

0.022, HDI95 = [0.014, 0.030], mean d = 0.90, HDI95 = [0.53, 1.30], Fig. 2f). Targets and competitors
also received greater relative dwell time than decoys in both trial types.

To better understand participants’ eye movements over the course of the trial, we performed additional
exploratory analyses of gaze location and transitions. We found an increasing association between gaze
and choice over the trial, and longer gaze towards targets, even accounting for choice. Information search
occurred both within and between alternatives, with slightly more transitions within alternatives. We
refer to Supplementary Note 1 for additional details on these analyses.

Behavioural modeling and model comparison

Given that participants’ choices and eye movements exhibited modulation by the context of available
options, we next tested whether their behaviour could be described using a gaze-dependent accumu-
lation model, and how such a model performs in comparison to extant theories of multi-alternative
multi-attribute choice. To this end, we adapted a recently developed, gaze-dependent leaky accumu-
lator model of two-alternative risky choice1 to the three-alternative scenario. We refer to this model as
the Gaze-dependent Leaky Accumulator (GLA). It assumes that subjective utilities for each alternative
i are constructed as in Cumulative Prospect Theory16 by first applying a probability weighting function,
that transforms objective probabilities p into subjective decision weights. Outcomes m are transformed
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Figure 3. Model comparison and predictions. (a) The gaze-dependent leaky accumulator (GLA)
provided the best fit (lowest mean BIC) across participants, followed by the dynamic gaze baseline model,
MDFT, EU, and the static gaze baseline model. The dashed line indicates the BIC of the random choice
baseline model. Violin plots show kernel density estimates of distributions of individual values. Box plots
mark lower and upper quartiles and median. Whiskers extend from first and last datum within 1.5 times
the interquartile range from lower and upper quartiles, respectively. Values outside this range are indicated
by open circles. (b) The GLA fitted most (36 of 40, 90%) participants best, with a protected exceedance
probability of 1 (inset). (c-h) Observed and model-predicted probability of choosing the target (c, d),
competitor (e, f), or decoy (g, h) alternatives in attraction (c, e, g) and compromise trials (d, f, h) as a
function of relative dwell time advantage. Relative dwell time advantage was computed as relative dwell time
towards an alternative minus the mean relative dwell time to all other alternatives. White bars and error bars
show mean ± s.e. observed data from even-numbered trials. Model predictions (coloured lines) are based
on 50 simulations of each odd-numbered trial. (i, j) Observed and predicted RST of the best-fitting GLA
for attraction (i) and compromise (j) trials. Each circle represents one participant. The winning model’s
predicted context effect sizes correlated significantly with the observed ones. Strong context effects, however,
were underestimated, as indicated by the reduced slopes.

into utilities using a power function. Next, this model assumes that for each alternative i subjective utili-
ties xGLAi are accumulated with leakage over the time course of each trial and that utilities are discounted
while they are not fixated. At each fixation n, accumulators evolve according to

XGLA
i (n) =

{
(1− λ) ·XGLA

i (n− 1) + 1 · xGLAi if i fixated

(1− λ) ·XGLA
i (n− 1) + θ · xGLAi otherwise

(2)

where all Xi(0) = 0. Similar to the aDDM, the θ parameter (0 ≤ θ ≤ 1) controls discounting of
unattended alternative utilities. The λ parameter (0 ≤ λ ≤ 1) controls the strength of the accumulation
leak. We computed choice probabilities from this model by applying the soft-max choice rule (Eq. (4))
over the final accumulator values XGLA

i .
Additionally, we fitted an implementation of Multialternative Decision Field Theory (MDFT)25, rep-

resenting the class of dynamic multi-attribute, multi-alternative choice theories that have been designed
to explain context effects. In contrast to GLA, MDFT assumes that preferences evolve dynamically over
time by accumulation of attribute-wise comparisons between alternatives, and alternatives inhibit each
other depending on their distance (or similarity). MDFT does not assume any influence of gaze on the
decision process. We also included three baseline models in our comparison. First was a standard Ex-
pected Utility model (EU)14 that did not consider gaze data. Second, a static gaze baseline model GBstat
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predicted choices only from trial-aggregated gaze towards each alternative, ignoring outcome values and
outcome probabilities. Third, we constructed a dynamic gaze baseline model GBdyn that, like GLA, as-
sumed leaky evidence accumulation over fixations, but ignored attribute values, using only the sequence
of fixations in each trial to predict choices. See Methods for details on these models’ implementation and
parameter estimation.

All models were fit individually to the choice data of each participant. We compared the models using
the Bayesian Information Criterion (BIC)37, which penalizes more complex models and therefore accounts
for differences in complexity between models.

Across the group, all models performed better than the random baseline model (Fig. 3a). The GLA
had the lowest BIC (mean ± s.d. = 230.63 ± 66.80), followed by the dynamic gaze baseline model GBdyn

(mean ± s.d. = 302.46 ± 86.15), MDFT (mean ± s.d. = 345.77 ± 82.44), EU (mean ± s.d. = 360.57 ±
72.56) and the static gaze baseline GBstat (mean ± s.d. = 414.81 ± 36.81). Simulating choices from the
models using maximum-likelihood estimates, the proportion of correctly predicted choices was 74.2% for
GLA, 62.8% for GBdyn, 57.9% for MDFT, 53.8% for EU and 45.7% for GBstat (see Supplementary Fig. 4
for distributions of model-predicted choice probabilities). Note, that target and competitor options (and
decoys in compromise trials) were designed to be closely matched in value, resulting in trials with high
choice difficulty, limiting overall model performance. On the individual level, based on lowest BIC scores,
the majority (36 of 40, 90%) of participants were best described by GLA. Three participants (7.5%) were
best described by MDFT, and one by the dynamic gaze-baseline model (Fig. 3b). Protected exceedance
probabilities38, which measure the likelihood that model is more frequent than all others, unambiguously
identified GLA as the most likely model (pXPGLA = 1, Fig. 3b inset).

The estimates for GLA’s gaze-discount parameter θ, which describes the degree to which alternative’s
values are attenuated while not fixated, indicate that participants exhibited a moderate gaze-discount
on average: θ estimates ranged from 0.13 (strong gaze-discount) to 0.95 (almost no gaze-discount), with
mean ± s.d. = 0.69 ± 0.18. Estimates for the leak parameter ranged from 0.08 (almost no leak) to 0.65
(moderately strong leak), with mean ± s.d. = 0.29 ± 0.20. Individual parameter estimates of all GLA
parameters are plotted in Supplemental Fig. 3 and summarised in Supplemental Table 1.

Given that MDFT outperforms utility-based models when choices are influenced by context31, we
tested whether model fit of MDFT (relative to GLA) was higher for participants with higher RST. In
other words: Does MDFT perform better for stronger context effects? Overall, 7 out of 9 participants
with an RST above 0.7 in attraction trials were clearly best described by GLA. While we found that the
relative superiority of GLA over MDFT decreased with strong attraction effects, this was not the case
for compromise trials (Supplemental Fig. 5), suggesting that some features of MDFT might help capture
strong attraction effects.

As an additional indicator of model fit, we tested whether the models could quantitatively reproduce
the observed positive association of gaze and choice (Supplemental Fig.s 1d, j, 2). Specifically, following
previous work6,11, we inspected the model-predicted probability of choosing an alternative as a function
of its relative dwell time advantage: the difference in relative dwell time towards an alternative minus
the mean relative dwell time to other alternatives. The probability of choosing an alternative generally
increased with its relative dwell time advantage (Fig. 3c-h), except for dominated decoys in attraction
trials, which were not chosen even if looked at longer than other alternatives (Fig. 3g).

All gaze-dependent models were able to capture this positive association. Note, however, that they
also predicted choices of dominated decoys in attraction trials, if decoys had a large dwell time advantage
(Fig. 3g). In this case, GLA performed better than GBdyn and GBstat, as it predicted fewer decoy choices.
However, MDFT and EU generally could not capture the empirical association of gaze and choice; they
predicted too many choices of alternatives with negative dwell time advantage, and too few choices of
alternatives with positive dwell time advantage. Nor did they predict choices of dominated decoys, even
if the decoy was looked at longer.

Finally, we investigated the ability of the best-performing model to predict individual differences in
context effect strengths. Therefore, we predicted choices from the fitted GLA model and correlated the
resulting RST with the observed data. Predicted RST correlated significantly with observed ones in
attraction (r = 0.76, HDI95 = [0.62, 0.90], Fig. 3i) and compromise (r = 0.82, HDI95 = [0.72, 0.92],
Fig. 3j) trials. However, the model underestimates large deviations from RST = 0.5, suggesting that its
gaze-discount mechanism can capture the qualitative pattern of context effects but not their expression
in participants with extreme RSTs.
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Inspection of predicted choice probabilities (Supplemental Fig. 4) shows that, on average, GLA pre-
dicted high probabilities for the empirically chosen alternative (indicating good overall fit), but comparable
proportions of target and competitor choices (resulting in reduced RST). Other models, like MDFT, pre-
dicted larger differences between target and competitor choices for some participants, but assigned lower
probability to empirically chosen alternatives (resulting in overall inferior fit).

Systematic exploration of a large model space

The model comparison identified the advantage of the gaze-dependent accumulation model over its com-
petitors. To better understand the contribution of individual model mechanisms (such as accumulation
leak, inhibition between alternatives, or the gaze-dependent discount) to model performance, we performed
a search across a large, systematically designed model space, in a so-called ”switchboard analysis”39. Here,
the idea is to isolate, group and exhaustively combine mechanistic assumptions of different models. Each
group of mechanisms is considered a switch that can take different levels (e.g., an ”inhibition” switch could
take the levels ”distance-dependent” as in MDFT, ”constant” or ”none”). Ultimately, this approach can
be used to gauge the contribution of individual model mechanisms (opposed to evaluating whole models
or model classes as in the more traditional model comparison presented above). In addition, it provides
a systematic way to generate novel hybrid models, combining mechanisms from different a priori defined
models.

This analysis approach further allowed us to test different assumptions about the functional forms of
the gaze bias mechanism (e.g., as discounting non-fixated alternatives’ values, controlling accumulation
leak, among others40). We therefore expanded the range of gaze-dependent mechanisms from the original
set of models to include additional eye-movement related switches, like attribute- and alternative-wise
gaze-discounts, gaze-dependent leakage and inhibition. This allowed us to test if gaze-bias implementa-
tions different from the ones usually used in gaze-dependent accumulation3,6,10–13,41,42.

Our switchboard comprised a total of 192 model variants, derived from six switches that were com-
bined exhaustively: Attribute integration (additive vs. multiplicative), evidence comparison (independent
accumulation for each alternative or comparative accumulation of evidence relative to other alternatives),
alternative-wise and attribute-wise gaze-discount (included or not), accumulation leak (none, constant
or gaze-dependent) and inhibition between alternatives (none, constant, gaze-dependent or distance-
dependent). The models generally resembled the form of the a priori defined GLA, but with substantial
differences depending on the specific set of switch levels (Fig. 4a; see Methods and Supplemental Table
2 for details on the framework and switch levels). As before, each model variant was fit to the individ-
ual data of each participant and model performance was evaluated based on the BIC score. Note that
the GLA coincides with one of the 192 variants (variant A in Table 2; multiplicative attribute integra-
tion, alternative-wise gaze-discount, constant leak, no inhibition, no comparison). Similarly, one variant
(not in Table 2) conceptually resembles MDFT in some, but not all aspects (additive attribute integra-
tion, comparative evidence accumulation, constant leak, distance-based inhibition, strong attribute-wise
gaze-discount).

Best model mechanisms

On the level of model mechanisms, multiplicative attribute integration outperformed additive integration
(mean BICmul. = 312.25, mean BICadd. = 333.20; Fig. 4b), inclusion of an alternative-wise gaze-discount
(mean BICGD alt. = 289.13, mean BICno GD alt. = 356.32), but not attribute-wise gaze-discount yielded
lower BIC scores (mean BICGD att. = 324.11, mean BICno GD att. = 321.33). Other gaze-dependent
mechanisms also improved model fit: Variants with gaze-dependent leak yielded lower BIC scores than
variants with constant or no leak (BICgaze = 292.06, BICconstant = 304.84, BICnone = 381.49). Gaze-
dependent inhibition performed better than constant, none or distance-dependent inhibition (BICgaze =
305.64, BICconstant = 316.06, BICnone = 311.75, BICdistance = 351.57). In summary, all mechanisms that
allowed a model to exploit the positive association between gaze and choice improved model fit on average.

Counting switch-values of individually best fitting variants, most participants were best described by
model variants with multiplicative integration, with alternative-wise and no attribute-wise gaze-discount,
with constant accumulation leak parameter and no inhibition (Supplemental Fig. 6).
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Figure 4. Switchboard analysis. (a) Overview of general switchboard framework and individual switches
from which individual variants are constructed by setting the switches to a set of levels. Gaze-dependent
switch levels are shaded blue. Attributes can be discounted based on gaze (lower level) and are integrated
into alternative values (middle level). Alternative values can be discounted based on gaze, compared, and
integrated (upper level) with leak and inhibition. (b) Average model fit associated with each switch’s levels.
Each bar shows the average BIC for all model variants that had the respective switch set to this level (e.g., first
panel, top bar: average BIC of all variants with gaze-dependent inhibition). Gaze-dependent inhibition and
leak, independent evidence accumulation, alternative-wise gaze-discount, multiplicative attribute integration,
and no attribute-wise gaze-discount yielded lower BIC on average. (c) Overview of mean BIC for each of 192
model variants. More yellow colours indicate lower BIC and better model fit. The variant with the lowest BIC
is identical to the GLA (alternative-wise, no attribute-wise gaze-discount, multiplicative attribute integration,
constant leak, and no inhibition) and is outlined in white. Note that some variants were mathematically
equivalent (see main text and Methods) including the variant with lowest BIC, which is therefore highlighted
twice.

Best model variants

The overall best-fitting model variant was the variant identical to the GLA (Fig. 4c, Supplemental Table
3): It included multiplicative attribute integration, an alternative-wise gaze-discount, and constant leak.
Note that our analysis did not allow us to distinguish independent and comparative accumulation for this
variant, because they yield equivalent results. All of the ten best performing models used multiplicative
attribute integration, and most used an alternative-wise but no attribute-wise gaze-discount and constant
leak (Supplemental Table 3). Results were more ambiguous for the comparison and inhibition mechanisms.

Notably, one of the best ten variants employed a distance-dependent inhibition mechanism, and used
other features resembling MDFT like constant leak, and accumulation of comparative values. Unlike
MDFT, but like GLA, this variant used an alternative-wise gaze-discount, no attribute-wise mechanism
of attention, and multiplicative integration of attributes. While not achieving the best overall fit, this
hybrid variant performed significantly better than the original MDFT implementation (mean BICMDFT

= 345.77; Fig. 3a).
The GLA variant also described 17 of 40 (42.5%) participants best (Table 2). Another similar variant

with additive attribute integration described an additional four participants best. An additive relationship
between attributes is typically assumed by models of multi-attribute multi-alternative choice25,27. Fur-
thermore, additive integration of probability and outcome has recently been suggested as an alternative
to multiplicative mechanisms and has been demonstrated to be equivalent for particular parameterisa-
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N GDAlt GDAtt Leak Inhibition Integration Comparison

A 17 Yes No Constant None Multiplicative n.d.
B 9 Yes No Constant Distance Multiplicative Comparative
C 4 Yes No Constant None Additive n.d.
D 3 No No Gaze None Multiplicative Independent
E 2 No No Constant Gaze Multiplicative Independent
F 1 Yes No Gaze Distance Multiplicative Comparative
G 1 Yes No Gaze Constant Multiplicative Comparative
H 1 Yes Yes Constant Distance Multiplicative Independent
I 1 Yes No Constant Gaze Multiplicative Comparative
J 1 Yes No Gaze None Multiplicative Comparative

Table 2. Overview of individually best fitting model variants. N indicates the number of partic-
ipants best described by the variant described in the row. The top variant (A) coincided with the GLA
model. Note that all individually best fitting models had some form of gaze-dependence (blue shaded cells,
mostly alternative-wise gaze-discount). ”n.d.” denotes variants where comparison mechanisms were not
distinguishable by the analysis.

tions and parameter values43. Five participants were best described by variants similar to the GLA,
but using gaze-dependent leakage or inhibition instead of an alternative-wise gaze-discount. Note that
gaze-dependent inhibition and leakage mechanisms can act similarly to an alternative-wise gaze-discount:
All three mechanisms effectively reduce accumulated evidence of non-fixated alternatives. While the
alternative-wise gaze bias mechanism applies a constant discount to the accumulation inputs, the gaze-
dependent inhibition mechanism is proportional to the accumulated evidence of the currently fixated
alternative, and applies to the already accumulated evidence of other options, not the inputs to the accu-
mulation process. Gaze-dependent leakage similarly reduces already accumulated evidence, proportional
to the momentary accumulator value.

Notably, nine participants (22.5%) were best described by the previously described hybrid variant using
a distance-dependent inhibition mechanism (Table 2). Additional two participants were best described by
other variants using distance-dependent inhibition in conjunction with an alternative-wise gaze-discount.

Hybrid variant

Finally, we analysed the hybrid model variant in more detail (variant B in Table 2), which described
9 participants best. This variant performed especially well for participants with large attraction effects
(Fig. 5a), whereas GLA best described the majority of participants with attraction RST around 0.5.
In contrast, better-performing variants could not be separated by compromise effect strength (Fig. 5b).
The hybrid variant correctly predicted individual differences in the attraction effect (correlation between
observed and predicted RST: r = 0.92, HDI95 = [0.86 0.96]; Fig. 5c). Here, it performed better than the
GLA model (Fig. 3i), as it was also able to capture the behaviour of participants with particularly strong
attraction effects: Using distance-dependent inhibition, it was able to predict high choice probabilities
for target alternatives in attraction trials for some participants, and fewer choices of competitor and
dominated decoy alternatives (Supplementary Fig. 4f). Predictions of individual RST in compromise
trials were almost identical between the two models (r = 0.81, HDI95 = [0.70, 0.91]; Fig. 5d, see Fig. 3j
for GLA).

The hybrid variant used an alternative-wise gaze-discount and could thus accurately capture the
relationship between relative dwell advantage and choice (Fig. 5e, f). Again, it predicted an overall
higher probability of target choices than GLA (Fig. 5e), and this was primarily driven by the hybrid
variant’s predictions for individuals with strong attraction effects (Supplemental Fig. 7). There was no
meaningful difference between the two models in compromise trials (Fig. 5f).
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Figure 5. Hybrid model variant de-
tails. (a, b) Number of participants better
described by the hybrid variant (pink) or the
GLA (grey), dependent on strength of attrac-
tion (a) and compromise (b) effects. Partici-
pants with strong attraction effects were bet-
ter described by the hybrid variant. (c, d)
Individual observed and predicted RST in at-
traction (c) and compromise trials (d). Com-
pared to GLA (Fig. 3i, j), the hybrid model
better predicted strong attraction effects for
some participants. Predictions of compro-
mise effects are similar. (e, f) Observed and
model-predicted probability of choosing the
target alternative, depending on the target’s
relative dwell time advantage. Like other
gaze-dependent models (Fig. 3), the hybrid
variant generally captured the positive associ-
ation between gaze and choice. In contrast to
GLA, however, it predicted an overall higher
probability of choosing the target in attrac-
tion trials (e). Predictions in compromise
trials (f) are similar to GLA. White bars
and error bars indicate mean ± s.e. observed
data from even-numbered trials. Model pre-
dictions are based on 50 simulations for each
odd-numbered trial.

Discussion

In this study, we investigated whether risky choice behaviour could be characterized by a gaze-dependent
evidence accumulation framework, especially when choices are influenced by the context of available al-
ternatives. In line with previous findings, we found choice behaviour to be context-dependent44, but also
subject to large interindividual differences. Importantly, participants’ gaze behaviour was also modulated
by the context of available alternatives, allowing a simple gaze-dependent evidence accumulation model
derived from prior work on binary risky choice1 to provide the best description of their choices. Finally,
in a systematic search across a large space of possible model variants, we showed that gaze-dependent
accumulation describes all participants’ behaviour best. Predicting data from participants with partic-
ularly strong attraction effects, however, required inclusion of an additional similarity-based inhibition
mechanism.

Prior work could already demonstrate that choices between risky prospects can be influenced by the
set of available alternatives, producing attraction18,21–23, similarity20, and other decoy effects22. These
findings show that risky prospects, described by their winning probability and outcome, are subject
to the same context-dependent influences as other multi-attribute stimuli, even though the natural (or
normative) relationship between their attributes is multiplicative and not additive.

Our findings add to this literature, replicating the attraction effect and providing novel evidence for
the compromise effect in risky choice. Notably, we find substantial individual differences in the strength
of the attraction effect, ranging from almost no to large effects. The observed pattern includes a subgroup
of participants predominantly choosing the target in attraction trials, that is also present in previous
work in inference34 and risky choice tasks21. Importantly, we could not find any evidence that these
participants used simplifying choice rules based on the dominance relationship. The observed variability
further emphasizes the importance of focusing on individuals’ behaviour instead of group aggregates, if
the goal is to understand the processes underlying individuals’ choices45.

Our study involved choices within sets of three risky gambles designed to elicit context effects. Prior
research makes contradicting predictions about the direction of information search in this scenario: In the
context of risky choice, empirical studies find a tendency towards within-alternative processing, disagreeing
with non-compensatory, heuristic approaches and providing better support for compensatory strategies
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that assume integration of outcomes and probabilities46–48 (but see refs.49,50, or in the related domain
of intertemporal choice: ref.51). In the domain of context effects, however, Noguchi & Stewart found
pairwise comparisons between alternatives on single attribute dimensions to be the dominant pattern of
information search52. They argue that these comparisons should form the basis of choice models describing
context effects. Similarly, Marini et al. found that adding an asymmetrically dominated decoy to a choice
set shifts eye movements towards the target’s dominant attribute, and results in more transitions between
target and decoy29. Cataldo & Cohen showed that the way information is displayed can influence the
size and direction of context effects53: Alternative-wise presentation yielded similarity effects, whereas
attribute-wise presentation, thought to induce comparisons between alternatives on single attributes,
produced attraction and compromise effects. In line with the risky choice and context effects literature,
we found participants to shift their gaze both within and between alternatives. While this does not
constitute strong evidence for any particular process, this finding is compatible with current models of
gaze-dependent accumulation in risky choice1,3 and the GLA that assume within-alternative integration
of probabilities and outcomes, and gaze-dependent accumulation and comparison processes to reach a
decision.

Across decision making domains longer gaze towards an alternative is generally associated with a
higher probability of choosing it3–6,8,10,11,40,54–57. This association is also present in choices between risky
prospects1,3,46,58. While these results are mostly correlational, multiple studies found that manipulation
of gaze towards an alternative increases its likelihood of being chosen, suggesting that gaze allocation
influences choice4,7–10,59.

The positive association between gaze and choice is also present in our data: Chosen gambles were
looked at longer than others, and the effect increased over the course of a trial (see Supplementary
Information). In addition, the probability of choosing an alternative increased with increasing relative
dwell time. Gaze-dependent accumulation provides a formal account of the association between choice
and gaze data, as unattended alternatives’ accumulation is diminished, making them less likely to be
chosen. Conversely, if context effects were present in participants’ gaze, this would enable such models to
predict context-dependent choice. Our data illustrate that this contextual modulation of gaze is indeed
present.

Note that, in principle, GLA could produce a choice bias towards the alternative fixated last, by
combining strong leakage with a strong gaze-discount: With a strong leak, predicted choices are influ-
enced mainly by the information acquired in the final fixation. A strong gaze-discount could then bias
choice towards the fixated alternative. The obtained parameter estimates, however suggest only moderate
strengths of leak and discounting, indicating that the model’s good performance was not purely driven
by effects of last fixations, which are often directed to the chosen alternative.

Our results are closely related to recent work showing that another behavioural effect in multi-
alternative, multi-attribute choice is mediated by visual attention: Addition of a third alternative to
a choice set has been shown to affect choice accuracy through value-based attentional capture in choices
between risky prospects2 and food items55. This mediation through gaze, formalized by a gaze-dependent
accumulation model, provided a better description of the observed data than competing accounts. Adding
to other work implicating mechanisms of visual attention in the emergence of context effects53,60, our work
shows how gaze can mediate context effects in a similar way: Choice sets affect the distribution of gaze,
which in turn affects the choice process.

Many traditional models of risky decision making assume that one scale value is assigned to each alter-
native independent of the presence of others, and that choice probabilities are directly derived from these
values (e.g., Luce, 1959). These ”simple scalability” theories include the most influential models of risky
decision making (e.g., Expected Utility Theory14; and Prospect Theory,15). They obey rational axioms
of choice like IIA and therefore cannot account for context effects by design24. To explain context effects,
multiple competing accounts have been proposed22,25–27,61–64 (see ref.39, for a taxonomy of mechanisms
and overview).

These models often assume that an alternative’s value is computed in comparisons to other alternatives
on single attributes25,27, that the considered attribute dimension switches stochastically from moment
to moment25,27,61, and that choices result from accumulation (often imperfect, i.e., leaky) of evidence
until a threshold is reached25–27,61. Switching between attribute dimensions can introduce correlations
between accumulators for similar alternatives, generating similarity effects25,27,39,61. In order to account
for other context effects, these models employ additional mechanisms: For example, loss aversion, that
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is, differential weighting of advantageous and disadvantageous comparisons can produce attraction and
compromise effects27. Distance-dependent inhibition between alternatives can yield similar results, by
inhibiting similar alternatives more strongly and bolstering alternatives that are similar but dominant25.
Non-linear value functions discounting alternatives with extreme attribute values can produce compromise
effects26.

However, while they propose precise psychological processes leading up to decisions, their relationship
to observable process data, like eye movement recordings, remains implicit. For example, the switching
between attribute dimensions is often considered an attentional mechanism25,27,39,61, yet it is assumed to
occur at every time-step (e.g., millisecond), and therefore cannot be mapped to observable eye-movement
data without additional assumptions. Notably, thus far models of context-dependent choice do not in-
clude any gaze-dependency in the decision process. This is in contrast to gaze-dependent accumulation
models1,5,6,11–13, which propose a formal account of the association between gaze and choice.

In our study, context-dependent choices were best explained by a straightforward three-alternative ex-
tension of a gaze-dependent accumulation model that was previously applied to binary risky choices1. This
model assumes that each alternative can be assigned a value by multiplicative integration of probability
and outcome attributes, independently of other alternatives. Unlike simple scalable theories, however, it
accumulates these values in a gaze-dependent fashion until a choice is made. Through its gaze-dependence,
this model was able to predict individual differences in context effects. It performed best even across a
large space of models, which included variants using additive attribute integration, attribute-wise gaze-
discount and accumulation of comparative values. Such variants resemble extant models of context-
dependent choice (e.g., MDFT25), as they accumulate results from single attribute comparisons. Yet they
performed worse, even when they included gaze-dependency. Our results thus question whether models
of context-dependent choice must use attribute-wise comparisons over alternative-wise integration of at-
tributes. However, we also found that strong context effects could be predicted best using an additional
inhibition mechanism based on alternatives’ similarity (which is comparative in nature), while still us-
ing alternative-wise valuation at its core, suggesting multiple parallel processes (i.e., within-alternative
valuation and comparative mechanisms).

More generally, our results suggest that extant models of context-dependent choice are likely to benefit
from implementing gaze-dependence. Even further, explicitly formalizing the relationship between model
variables and eye movements yields testable predictions that can help distinguish and evaluate competing
theories about the role of attention in context-dependent risky choice. The identified class of models is
compatible with observed transition data, quantitatively captures the association of dwell time and choice
probability, and uses the contextual modulation of gaze in addition to a distance-dependent inhibition
mechanism to predict context effects.
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Methods

Participants

We recruited 44 participants for the experiment. All participants were required to have normal or corrected
to normal vision with soft contact lenses. Participants relying on glasses or hard contact lenses were
excluded from participation to ensure good eye tracking quality. Four participants were excluded from
the analyses: one due to a computer crash, two due to eye tracking calibration worse than 1.0° of visual
angle, and one because of misunderstanding task instructions. The remaining 40 participants (25 female,
15 male) had mean ± s.d. age 27.2 ± 4.7. All participants received a base compensation of 8 Euros
per hour and could win an additional bonus based on their choices during the experiment (see below).
Written informed consent was obtained from all participants prior to the experiment. The experimental
procedures were approved by Freie Universität’s ethics committee.

Task and stimuli

Participants performed a value-based choice task with stimuli designed to elicit attraction and compromise
effects (Fig. 1). Each trial started with a 1.5 s fixation cross at the screen centre. Then, three all-or-
nothing gambles were presented next to each other on the screen. Gambles were described by a probability
p to win outcome m (and winning nothing otherwise). Each gamble was enclosed by a rectangle. Gamble
attributes p and m were arranged so that the vertical distance between two attributes of one option was
equal to the horizontal distance between the centres of neighbouring alternatives. This distance was set
to approximately 10.0° of visual angle. Alternative positions and attribute positions within each gamble
were random in each trial. Participants were instructed to indicate their preference for one of the three
gambles using their right hand and the keyboard’s arrow keys. There was no time limit. After their choice,
participants received a brief (0.3 s) feedback about their choice (but not about a gamble outcome).

Participants were instructed that after completing the task, one of the trials would be chosen randomly
and the gamble chosen in this task would be played out for real money with a virtual wheel of fortune,
using a later to be disclosed payment multiplier. This multiplier was set at 0.5 to scale winning bonuses
to Freie Universität’s payment standards.

Participants first performed three pairs of estimation and experiment blocks. Estimation consisted
of a maximum of 30 trials with choices between two alternatives. These blocks served the purpose of
determining individual indifference points for stimuli with varying levels of winning probability p in an
adaptive and integrated fashion. Participants were asked to indicate their preference between a fixed
reference gamble B (pB = 65%, mB = 15 EUR) and less risky option A (pA = 75%, mA = 10 EUR). The
outcome mA for option A is then either increased (if B was preferred) or decreased (if A was preferred)
and the procedure repeated. Indifference points for options CA and CB with probabilities pCA = 85%
and pCB = 55% were determined interleaved and in the same fashion. A single estimation block yielded a
stimulus set with four options A, B, CA and CB designed in a way that option pairs A−B, A−CA and
B−CB were approximately equally preferred and their distance in outcome mi was not less than 2 EUR.
Additionally, asymmetrically dominated range-frequency decoy options DA and DB were introduced and
designed to be 2% and 1 EUR worse than options A and B, respectively.

The following experimental blocks had 75 ternary choice trials each, 32 of which were compromise trials
balanced with respect to the target option (i.e., 16 choice sets {A,B,CA}, 16 choice sets {A,B,CB}), 32
attraction trials (16 choice sets {A,B,DA}, 16 choice sets {A,B,DB}) and 11 distractor trials showing
randomly created options with expected value of 10 EUR and low (5–33%), medium (34–64%) and high
(65–95%) probability p. For each trial, uniform noise was added to each option’s outcome m (±0 EUR,
+1 EUR) and probability p (–3%, ±0%, +3%). Asymmetrically dominated decoys DA and DB received
the same noise as their focal option, to preserve dominance relation.

Participants performed 25 practice trials not relevant for their payout under supervision of the exper-
imenter.

Eye tracking

Participants’ eye movements were recorded at 60 Hz using a table-mounted SMI Red eye tracker (Senso-
Motoric Instruments, Teltow, Germany). Participants were placed approximately 60 cm in front of the
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screen and instructed to minimize head movements during the task. Before each block, the eye tracker
was calibrated using a 5-point calibration and validation procedure until a spatial resolution smaller than
1.0° visual angle was achieved horizontally and vertically. Participants were instructed to re-centre their
gaze on the central fixation cross between trials.

Eye tracking data was pre-processed according to the following procedures: First, fixations, saccades
and blinks were detected using SMI’s Event-Detector software. Minimum fixation duration for detection
was left at the default setting (80 ms). Blinks and saccades were discarded. Fixations were truncated
when participants made a keyboard response. Next, rectangular areas of interest (AOIs) were constructed
around the six screen locations that displayed stimulus attributes. Fixations towards non-AOI regions
of the screen were discarded if they were preceded and followed by fixations to different AOIs. If they
were preceded and followed by fixations towards the same AOI, the non-AOI fixation was re-coded to
that AOI, too6,11. Finally, the total dwell time towards each alternative and attribute in each trial was
computed by summing all fixation durations towards respective AOIs. Relative dwell time was computed
by normalisation to the sum of all dwells in the trial.

Behavioural modelling

Baseline: Random choice

The random choice model predicts equal choice probabilities p = 1
3 for all three alternatives and serves as

a benchmark against which other models can be compared.

Expected Utility

Expected Utility Theory (EU)14 assumes that choice behaviour can be described as maximization of
expected subjective utility. We computed subjective utilities of option outcomes mi using a power function
with one free parameter α:

U(mi) = mα
i (3)

Predicted choice probabilities were computed using a soft-max choice rule65 over expected utilities
xEUi = pi · U(mi):

p(xi) =
eβxi∑
j∈J e

βxj
(4)

Here, J is the set of all available alternatives. The inverse temperature parameter β controls the
degree of randomness in the choice (choices become more deterministic with larger β).

Multialternative Decision Field Theory

Multialternative Decision Field Theory (MDFT)25 is a dynamic connectionist model for multi-attribute,
multi-alternative choice. MDFT can predict similarity, attraction and compromise effects. The core
principle of MDFT is the calculation of valences V (t) at each point in time t. Valences are determined as

V (t) = CMW (t) + ε(t) (5)

where M is a matrix containing all alternatives’ attributes. W (t) is a stochastic vector indicating the
momentary weight distribution between attributes, according to a weight parameter w. C is a contrast
matrix, designed to perform attribute-wise contrasts between one option and the mean of other options’
attributes. Finally, ε(t) is a stochastic normally distributed noise component. Preferences P (t) are
generated integrating all valences V (t) up to time t:

P (t) = SP (t− 1) + V (t) (6)

Critically, S is a square feedback matrix, thought to reflect the neurobiological mechanism of lateral
inhibition between alternatives. The diagonal elements of S determine how much the current preference
state is influenced by the previous one, controlled by the decay parameter ϕ2. Off-diagonal elements
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represent the feedback connections between alternatives. MDFT assumes that the connection strength
between two alternatives depends on their perceived distance D in attribute space, scaled by sensitivity
parameter ϕ1. Taken together, the feedback matrix S is given by

S = I − ϕ2 exp (−ϕ1D
2). (7)

Here, I is the identity matrix. D is a matrix containing pairwise distances between alternatives. We
used the distance function formalized in Hotaling et al.66, where the distance between two alternatives is
expressed in dominance- and indifference-directions and additionally scaled in dominance direction with
an overweighting parameter wd. The preference vector P (t) is asymptotically normally distributed with
mean ξ and covariance matrix Ω67, from which choice probabilities are derived as in the general Thurstone
model68.

In total, this MDFT implementation includes five free parameters: The attribute weight w, the decay
parameter ϕ2 , the sensitivity parameter ϕ1, the overweighting parameter wd and the variance σ of the
noise component ε(t).

Typically, MDFT assumes an additive relationship between attributes. To accommodate for this, we
log-transformed stimulus attributes probability p and outcome m21. Stimulus attributes were also rescaled
to a range between 0 and 1 as in previous studies31.

Gaze-based models

We included three models that use gaze data to predict choices: Two baseline models that ignore stimulus
information and predict choices only based on gaze data, and one model adapted from previous work1

that combines stimulus and gaze information in a leaky accumulation framework.

Static gaze baseline model The first gaze-based model predicts choices from participants’ cumu-
lated dwell times towards each alternative. It assumes that preference strength xGBstat

i for an alternative
increases when it is fixated, irrespective of the its attributes pi and mi:

xGBstat
i = di (8)

where di is the total dwell time (in s) towards alternative i in a trial. Preference strengths xGBstat
i are

transformed into choice probabilities using the soft-max function (Eq. (4)).

Dynamic gaze baseline model The second gaze-based model uses the whole sequence of fixations
in a trial to predict choices. It assumes that at each fixation, evidence in favour of the fixated alternative
is accumulated, and that accumulated evidence is subject to leak. Formally,

X
GBdyn

i (n) =

{
(1− λ) ·XGBdyn

i (n− 1) + 1 if i fixated

(1− λ) ·XGBdyn

i (n− 1) + 0 otherwise
(9)

where all X
GBdyn

i (0) = 0. The λ parameter (0 ≤ λ ≤ 1) controls the strength of the accumulation
leak. Choice probabilities are computed from the final accumulator values using the soft-max function
(Eq. (4)).

Gaze-biased leaky accumulator model (GLA) Gaze-biased leaky accumulator model (GLA).
Finally, following a recent study on binary risky choice1, we adapted a leaky accumulator model69, where
option values are discounted depending on eye movements as in the aDDM6,11 and the related GLAM12,13.

Here, the subjective utility for each alternative is computed by first applying a probability weighting
function16, that transforms objective probabilities into subjective decision weights:

w(p) =
pγ

(pγ + (1− p)γ)
1
γ

(10)

where γ (0.28 ≤ γ ≤ 1) is a free parameter controlling the shape of the weighting function. If γ = 1,
the subjective weights equal the objective probabilities70. Outcome utilities are assumed to obtained
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from a power function as in the EU model (Eq. (3)). Subjective expected utilities are then given by
xGLAi = w(pi) · U(mi).

Next, this model assumes that for each alternative subjective expected utilities are accumulated with
leak and gaze bias over the time course of each trial. At each fixation n, accumulators evolve according
to

XGLA
i (n) =

{
(1− λ) ·Xi(n− 1) + 1 · xGLAi if i fixated

(1− λ) ·Xi(n− 1) + θ · xGLAi otherwise
(11)

where all Xi(0) = 0. The θ parameter (0 ≤ θ ≤ 1) controls discounting of unattended alternative
values. The λ parameter (0 ≤ λ ≤ 1) controls the strength of the accumulation leak.

Predicted choice probabilities are again computed from the soft-max function (Eq. (4)) over the final
accumulator values XGLA

i .

Parameter estimation

All models’ parameters were estimated by minimizing the negative summed log-likelihood − ln (L̂) of
observed choices under the model. Minimization was performed by a differential evolution algorithm71

implemented in the SciPy Python library72. The algorithm was provided sensible a priori defined bounds
for each parameter and initialized randomly.

Model comparison

Individually best-fitting models were identified based on the Bayesian Information Criterion (BIC)37,
computed for each model m as

BICm = −2 ln (L̂) + ln (ntrials)km (12)

where km is the number of free parameters of model m and ln L̂ is the summed log-likelihood of
observed choices under model m.

Switchboard analysis

We performed a switchboard analysis, similar to the one performed by Turner et al.39 to further inves-
tigate which components of the cognitive model are particularly important in predicting the data. In a
switchboard analysis, a cognitive model of the decision process is built, where individual model mech-
anisms can take different forms, or levels, which can be switched and combined with each other. One
switch, or node, could for example be the integration of attributes to form item values. This integration
could happen multiplicatively, so that expected outcomes are computed by multiplying outcome value and
probability. It could also occur in a weighted additive fashion, so that both outcome value and probability
make independent contributions to overall item value43. In the switchboard analysis, model variants using
both implementations, and combinations with all other levels of other nodes, are constructed and fit to
the behavioural data.

The switchboard analysis included different eye-movement related nodes, such as attribute and alter-
native wise gaze biases or gaze-dependent leakage and inhibition, so that the mechanisms that describe the
data best can be identified and their relative contribution to model fit can be measured. All switchboard
models resembled the general form of the gaze-dependent accumulation model presented in Glickman
et al.1 and the GLA adaptation to three items (see above and Fig. 4a for a schematic). Here, evidence
Xi in favour of each item is accumulated over individual fixations. Accumulation can be subject to
gaze-discount effects (so that non-fixated items accumulate less evidence), leak and inhibition over time.
Choice probabilities are computed using a soft-max function (Eq. (4)) over the final accumulator values.
The general accumulation framework (in vector form, parallel for each item) is then given by

X(t) = S ×X(t− 1) + ΘCx (13)

where S is a square feedback matrix, combining the effects of accumulation decay (on its diagonal
elements) and inhibition between accumulators (on off diagonal elements). Θ is the alternative-wise gaze

17



discount vector (where the ith entry is set to 1 when item i is fixated, and other entries are set to the
discount value θ, 0 ≤ θ ≤ 1). C is a contrast matrix which, as in MDFT, can perform comparisons
between the entries of the item value vector x. We now describe the different nodes and levels of the
analysis, that are combined to generate the different model variants:

Attribute integration

The attribute integration switch had two levels: First, outcome probability and outcome value could be
integrated multiplicatively, so that expected outcome values per item are constructed. This level included
the probability weighting function w (Eq. (10)) using a free parameter γ (0.28 ≤ γ ≤ 1), and a utility
function U (Eq. (3) free parameter α (0 ≤ α). The item values are given as

xi = w(pi)U(mi). (14)

Alternatively, attribute integration could be implemented in a weighted additive fashion43. In this
case, attributes were first normalized using divisive normalization73 to make them commensurable on a
single scale:

pnormi =
pi∑n
i pi

(15)

and
mnorm
i =

mi∑n
i mi

. (16)

Next, the normalized attributes would be combined additively, with weighting parameter wp (0 ≤
wp ≤ 1), controlling the relative contribution of the probability attribute:

xi = wpp
norm
i + (1− wp)mnorm

i (17)

Evidence comparison

The evidence comparison switch had two levels: First, item values xi could be accumulated independently
for each alternative, without comparison to other alternatives. In this case the contrast matrix C is set
to an identity matrix. Second, item values xi could be accumulated in a comparative fashion. Then, the
contrast matrix C is set up to perform comparisons between each input xi and the mean of all other
inputs xj 6=i, as in MDFT. To this end, diagonal entries of C are set to 1, and off-diagonal elements to
−1
N−1 , where N is the number of alternatives (here N = 3).

Alternative-wise gaze discount

This switch could take the values ”on” or ”off”. If switched on, the model included a free parameter θ
(0 ≤ θ ≤ 1) controlling the discount rate of unattended alternatives during accumulation. If switched off,
the gaze discount vector Θ was set to one.

Attribute-wise gaze discount

The analysis also included the option of attribute-wise gaze-dependent discounting (similar to the two-layer
model from Glickman et al.1 and the model presented in Fisher41. If switched on, stimulus attributes
of the currently unattended dimension (e.g., probability, when an lottery outcome was fixated) were
discounted by a free parameter η (0 ≤ η ≤ 1). In combination with additive attribute integration, the
attribute-wise gaze discount was applied after attribute normalization, but prior to the weighted addition.
For multiplicative attribute integration, attributes were discounted before entering probability-weighting
and utility functions w and U .
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Accumulation leak

We investigated three different forms of accumulation leak: First, accumulation without leak. In these
variants, the diagonal elements of the feedback matrix S were set to 1, resulting in no leak. The second
possibility was uniform constant leak, where we estimated a parameter λ (0 ≤ λ ≤ 1, where 1 indicates
perfect memory without leak, and 0 indicates leak of all prior information), occupying the diagonal
elements of the feedback matrix S. The third type of leak we investigated was gaze-dependent. Here, only
accumulators of unattended alternatives leak according to the λ parameter.

Inhibition

We considered four types of inhibition between accumulators: First, independent accumulation without
inhibition. In this case, all off-diagonal elements of S were set to 0. Second, we considered uniform
constant inhibition, where we estimated a parameter φ (0 ≤ φ ≤ 1) and set each off-diagonal element
in S to −φ, resulting in uniform inhibition (proportional to the accumulators’ activation level), across
items. Thirdly, we considered distance dependent inhibition, as implemented in MDFT (see Eq. (7)).
Here, the inhibition between accumulators is a function of the corresponding items’ distance in attribute
space. The distance is expressed in indifference and dominance directions, and the dominance direction
is overweighted by a parameter wd. As we did for MDFT, we log-transformed probability and outcome
attributes and rescaled them to a range between 0 and 1 before applying the distance function. This
implementation uses a sensitivity parameter φ, a parameter estimating the relative importance of the
probability attribute wp (this parameter is already used if attribute integration is additive), and the
overweighting parameter of the dominance direction wd. Note, we only computed off-diagonal elements of
S according to Eq. (7), as the diagonal entries were controlled by the accumulation leak switch. Finally,
we considered gaze-dependent inhibition. Here, the rationale is that only the accumulator of the currently
attended item exerts inhibition over all others. In this type of inhibition, all off-diagonal elements of S in
the column corresponding to the currently attended item are set to −φ, and others are set to 0.

Total number of variants and parameter estimation

Exhaustive combination of all switch levels yields 192 model variants. The effective number of uniquely
identifiable models was, however, reduced to 160 because for some variants comparative and independent
accumulation versions cannot be distinguished when choice probabilities are derived from a soft-max
choice rule with a freely estimated inverse temperature parameter over final accumulator values. This is
the case for variants with no or constant inhibition and leak. Each variant was fit individually to the
data from each participant by maximum-likelihood estimation, using a Differential Evolution optimization
algorithm (see above). As the number of parameters differ between model variants, we computed the BIC
for each model and participant to obtain a measure of model fit, corrected for model complexity.

The optimization algorithm failed to find a solution better than a random model for 108 of 6400
(1.69%) of estimation runs. Since all model variants used the soft-max choice rule (Eq. (4)) and therefore
could predict random choices by setting the inverse temperature parameter β to 0, this indicates non-
convergence of the optimization algorithm. All but one non-converged estimation run used distance-
dependent inhibition. We set the maximum-likelihood estimates of the failed runs to that of the nested
random model for all analyses.

Statistical modelling

We used Bayesian estimation (BEST)32,33 of differences, effect size d and associated 95% highest posterior
density intervals (HDI95) for all reported pairwise comparisons. Reported correlation coefficients and
associated HDI95 result from Bayesian correlation analyses74. Regression estimates and HDI95 result
from Bayesian regression analyses implemented in PyMC375.

Software

The task was programmed in MATLAB (The Mathworks Inc., USA) using the PsychToolBox76. Data
processing and analyses were done in Python with numpy77, scipy72 and pandas78 libraries. Bayesian
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analyses were implemented in PyMC375, mixed models used bambi79. Exceedance probabilities were
computed in MATLAB using SPM1280. Fig.s were created using matplotlib81, seaborn82 and python-
ternary83.

Data and code availability

All raw and preprocessed data, and scripts to reproduce all reported processing, analyses and figures are
available at https://github.com/moltaire/gda-context.
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Supplementary Fig. 1. Distribution of gaze over the course of the trial depending on stimulus
characteristics. Each panel shows the average dwell time towards AOIs for a given stimulus feature (e.g.,
horizontal and vertical position) across five time-bins. Data is shown separately for attraction (a-f) and
compromise (g-l) trials.

Regression analyses of gaze behaviour

We performed two linear mixed effects regressions of total dwell time towards an AOI in each trial, separate
for attraction and compromise trials (Supplemental Fig. 1). In the first (”full trial”) model, the dependent
variable was total dwell time towards an AOI across the full trial. This model used the following predictors:
Vertical position (row, centred: -0.5 = top row, +0.5, bottom row), horizontal position (column, centred:
-1 = left, 0 = centre, +1 = right), attribute (dummy coding probability attribute p), within dimension
attribute rank (centred, -1 = worst, 0 = intermediate, +1 = best on attribute), target (dummy coded),
decoy (dummy coded) and a dummy coded predictor for the ultimately chosen alternative. For the second
model, we partitioned the dwell-data into five equally sized time-bins. The dependent variable in this
model then was total dwell time towards an AOI within a time-bin. This model included the same
predictors as the ”full trial” model. Crucially, it also included interaction terms for each predictor with
the time-bin variable, and time-bin as additional predictor. Both models included random intercepts
and slopes for each participant. Bayesian posterior distributions of the regression weights were estimated
using the bambi Python library1, with default priors2, sampling four chains with 2000 samples each, after
a tuning phase of 500 samples. Convergence was diagnosed visually and by means of the Gelman-Rubin
statistic (|1− R̂| ≤ 0.05 for all chains).

Regression weight estimates are shown in Supplemental Fig. 2. Across the trial, we find strong effects
of position on dwell time, so that dwell times towards the top and left were longer. Significant negative
interaction effects of the row and column predictors with time showed that these effects diminish across
the trial. We also find a gaze-cascade effect3,4, where dwell times to AOIs belonging to the ultimately
chosen alternative are longer across the trial (and increasingly so throughout the trial, indicated by the
positive interaction term with time). Dwell times to decoys decreased significantly during the trial, and
across the full trial, dwell times to decoys were shorter than other alternatives. Similarly, dwell times
towards probability attributes p shortened across the trial. Across the full trial, however, dwell times
towards probability AOIs were not shorter than those to outcome AOIs. Finally, dwell times to target
alternatives were longer across the trial in both compromise and attraction trials. In addition, this effect
increased throughout the trial in compromise, but not in attraction trials. Note that these effects are
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Supplementary Fig. 2. Weight estimates
from regression analyses on absolute dwell
times. We performed two mixed-effects regression
analyses of dwell time towards each AOI onto stim-
ulus properties: (a, c) Regressing the total dwell
time towards an AOI over a full trial onto AOI col-
umn, row, attribute rank (best, middle or worst
value on the attribute), two dummy predictors cod-
ing alternative, attribute (probability or outcome)
and whether the AOI belonged to the subsequently
chosen alternative. (b, d) Second, we binned dwell
times in each trial into five time-bins and added an
interaction term with time-bin for each predictor.
The panels show the interaction term weights. Anal-
yses were carried out separately for attraction (a,
b) and compromise (c, d) trials. Regression mod-
els had random intercepts and slopes across partic-
ipants. Points and intervals mark posterior mean
estimates and associated HDI95 (coloured green if
the interval excluded 0).

independent of the effect of choice, as choice is a separate predictor in the model. We could not find an
association between the attribute rank (being the worst, best, or intermediate item on an attribute) and
dwell time.

Direction of information search

We further analysed participants’ direction of information search. Therefore, we counted the number of
vertical (transitions within the same alternative), horizontal (within the same row, between alternatives)
and diagonal (between rows and alternatives) transitions. On average, participants made over 7 horizontal
transitions in attraction (mean ± s.d. = 7.28 ± 2.36) and compromise (mean ± s.d. = 7.29 ± 2.63) trials,
with no meaningful difference between effects. Participants made, however, more vertical transitions in
compromise trials (mean ± s.d. = 7.55 ± 3.11) than attraction trials (mean ± s.d. = 7.17 ± 3.06;
mean difference = 0.39, HDI95 = [0.11, 0.64], d = 0.49, HDI95 = [0.13, 0.82]). The number of diagonal
transitions was lower overall, but higher in attraction (mean ± s.d. = 2.88 ± 1.18) than compromise
trials (mean ± s.d. = 2.72 ± 1.31; mean difference = 0.19, HDI95 = [0.06, 0.32], d = 0.62, HDI95 = [0.14,
1.17]).

While vertical transitions always translate to transitions ”within alternative”, horizontal transitions
are not necessarily always ”within attribute”, since the attribute positions of each alternative were random
in the task. We therefore recoded transitions as ”within alternative”, ”within attribute” and ”between
alternatives and attributes” and computed the Payne Index5 for each trial as:

Payne Index =
Nwithin alt. −Nwithin att.

Nwithin alt. +Nwithin att.
(18)

A more positive value on the index indicates more processing within alternatives, whereas more nega-
tive values indicate more processing between alternatives, within the same attribute dimension. Overall,
the average Payne Index was slightly positive for both attraction (mean ± s.d. = 0.10 ± 0.16) and compro-
mise trials (mean ± s.d. = 0.14 ± 0.18), suggesting a mixture of within-alternative and within-attribute
processing, with slightly more processing within alternatives. It was, however, lower in attraction trials
(mean difference = 0.04, HDI95 = [0.01, 0.06], d = 0.51, HDI95 = [0.16, 0.87]), implying comparably more
processing between alternatives in attraction trials.
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mean SD min 25% 50% 75% max

α 0.47 0.35 0.05 0.25 0.37 0.61 1.67
β 6.81 9.87 0.04 1.13 3.25 8.04 49.74
γ 0.81 0.25 0.22 0.58 1.0 1.0 1.0
λ 0.29 0.2 0.08 0.14 0.23 0.46 0.65
θ 0.69 0.18 0.13 0.63 0.72 0.83 0.95

Supplementary Table 1. Summary of GLA estimates. α is the utility parameter. β is the inverse
temperature parameter of the choice rule (0 = random choice). γ is the probability weighting parameter (1
= objective probability weighting). λ is the leak parameter (0 = perfect memory, 1 = full leak of all previous
information). θ is the gaze-discount parameter (1 = no gaze-discount, 0 = maximum gaze-discount).
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Supplementary Fig. 3. GLA maximum likelihood estimates and relationships between param-
eters. α is the utility parameter. β is the inverse temperature parameter of the choice rule (0 = random
choice). γ is the probability weighting parameter (1 = linear weighting). λ is the leak parameter (0 = perfect
memory, 1 = full leak of all previous information). θ is the gaze-discount parameter (1 = no gaze-discount,
0 = maximum gaze-discount).
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Supplementary Fig. 4. Model-predicted choice probabilities. Each panel shows distributions of
participant-level mean model-predicted choice probabilities for the target, competitor, decoy and ultimately
chosen alternative. Predictions for attraction and compromise trials are displayed separately in the top (a-f)
and bottom rows (g-l). Predictions were computed using individual maximum likelihood estimates. The
hybrid model (f, l) was derived from the switchboard analysis and combines an alternative-wise gaze-discount
with a distance-dependent inhibition mechanism. Violin plots show kernel density estimates of distributions
of individual values. Box plots mark lower and upper quartiles and median. Whiskers extend from first
and last datum within 1.5 times the interquartile range from lower and upper quartiles, respectively. Values
outside this range are indicated by open circles.
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Supplementary Fig. 5. Relative model fits between GLA and MDFT in relation to RST.
Relative model fits of MDFT (indicated by BIC difference between GLA and MDFT) tended to be higher
for participants with higher RST in attraction trials (left panel; slope = 0.04, HDI95 = [-0.01, 0.09] increase
in RST per 100 unit increase in BIC difference, 93.6% of posterior mass above 0), but not compromise trials
(right panel), even though 7 out of 9 participants with attraction RST above 0.7 were better described by
GLA overall (participants left of dashed vertical line).
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Rank GDAlt GDAtt Leak Inhibition Integration Comparison BIC

1 Yes No Constant None Multiplicative n.d. 232.08
2 No No Constant Gaze Multiplicative Independent 235.94
3 Yes No Constant Gaze Multiplicative Comparative 236.75
4 Yes Yes Constant None Multiplicative n.d. 237.21
5 Yes No Constant Gaze Multiplicative Independent 237.31
6 Yes No Constant Constant Multiplicative n.d. 237.40
7 Yes No Gaze None Multiplicative Comparative 238.41
8 No Yes Constant Gaze Multiplicative Independent 241.04
9 Yes No Constant Distance Multiplicative Comparative 241.40
10 Yes Yes Constant Gaze Multiplicative Comparative 241.78

Supplementary Table 3. Overview of average best fitting model variants. All ten model variants
that fit the data best on average used some form of gaze-dependence (blue shaded cells), mostly an alternative-
wise gaze discount. ”n.d.” denotes variants where comparison mechanisms were not distinguishable by the
analysis.
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Supplementary Fig. 6. Counts of individual best fitting switches. Most participants were best
described by model variants that included multiplicative attribute integration, with alternative-wise gaze
discount, no attribute-wise gaze discount, constant leakage and no inhibition.
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Supplementary Fig. 7. Observed and model-predicted association of dwell time advantage
and choice for participants with weaker and strong attraction effects. (a-f) Data and model
predictions for participants with weaker attraction effects (RST < 0.7). (g-l) Data and model predictions
for participants with strong attraction effects (RST > 0.7) Each column refers to one choice alternative:
Target (first column; a, d, g, j); Competitor (second column; b, e, h, k); Decoy (third column; c, f, i, l).
Rows refer to trials in attraction (a-c, g-i) and compromise trials (d-f, j-l). White and grey bars and error
bars show observed mean ± s.e. choice probabilities computed from even-numbered trials, for participants
with weaker and stronger attraction effects, respectively. Coloured lines indicate model predictions derived
from 50 simulations for each odd-numbered trial.

S10



Supplementary Note 2

No process evidence that strong attraction responders follow simple choice rule

Using process measures, we performed multiple tests of the hypothesis, that individuals with strong
attraction effects follow a simple choice rule of choosing the dominant alternative. First, we tested
whether the strength of individual attraction effects (individual RST in attraction trials) was related
to differences in mean response times (RTs) in attraction trials. If individuals used a choice rule, their
choices might be made faster, as they do not engage in multiple pairwise comparisons or calculations of
expected outcomes. There was no correlation between the two measures (r = 0.06, HDI95 = [-0.24, 0.34]).
Similarly, no relationship was found between individual RST and the number of fixations in attraction
trials (r = 0.06, HDI95 = [-0.25, 0.35]). Mean RTs in attraction trials did not meaningfully differ between
trials with target choices and trials with other choices (d = -0.2, HDI95 = [-0.67, 0.25]). Next, we tested
whether individuals with strong attraction effects committed to a choice once they learned about the
dominance relationship in the stimuli, as if using the dominance relationship as a stopping rule, or if they
kept exploring the stimuli. There was, however, no relationship between individual RST and the mean
number of fixations after all target and decoy attributes were fixated at least once (r = 0.04, HDI95 =
[-0.28, 0.31]). The same analysis using fixation counts after target and decoy alternatives were both seen
at least once on any attribute revealed no effect either (r = 0.11, HDI95 = [-0.20, 0.40]). Taken together,
we did not find any evidence based on process data to support the hypothesis that strong attraction
responders used a simple choice rule.
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Abstract

Risky choice behaviour often deviates from the predictions of normative models. The information search
process has been suggested as a source of some reported ”biases”. Specifically, gaze-dependent evidence
accumulation models, where unfixated alternatives’ signals are discounted, propose a mechanistic account of
observed associations between eye movements, choices and response times, with longer fixated alternatives
being chosen more frequently. It remains debated, however, whether gaze causally influences the choice
process, or rather reflects emerging preferences. Furthermore, other aspects the information search process,
like the order in which information is inspected, can be confounded with gaze duration, complicating the
identification of their causal influences. In our preregistered study 179 participants made repeated incentivized
choices between two sequentially presented risky gambles, allowing the experimental control of presentation
duration, order, and format (i.e., alternative-wise or attribute-wise). Across presentation formats, we find
evidence against an influence of presentation duration on choice. The order in which participants were shown
stimulus information, however, causally affected choices, with alternatives shown last being chosen more
frequently. Notably, while gaze-dependent accumulation models generally capture effects of gaze duration,
causal effects of stimulus order are only predicted by some models, identifying potential for future theory
development.

Introduction

A large body of experimental research demonstrates
that human risky choices systematically differ from
those predicted by optimal, utility-maximising and
context-invariant theories of choice like Expected Util-
ity Theory (e.g., Allais, 1953; Hertwig et al., 2004;
Kahneman & Tversky, 2012; Mohr et al., 2017; Molter
et al., 2021). Many descriptive theories of risky choice
ascribe these departures to perceptual or attentional
processes (e.g., Busemeyer & Townsend, 1993; Tver-
sky & Kahneman, 1992; Yechiam & Hochman, 2013),
with the idea that the decision maker’s capacity to
process information is limited, and attention serves to

select and amplify information about the choice set-
ting (e.g., different alternatives’ attributes, outcomes,
or their probabilities). This selection and weighting
of information is then assumed to induce biases in
the decision process and ultimately affect the choice
itself.

While the specific construct of attention differs
between theories and its usefulness as a general ex-
planatory device has been questioned (Hommel et al.,
2019), eye movements are often taken as an indica-
tor of which information a decision maker processes
during the decision. The most ubiquitous finding
in eye tracking studies of decision-making (including
risky choices) is that alternatives that are looked at
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longer are more likely to be chosen (Ashby et al.,
2016; Cavanagh et al., 2014; Fiedler & Glöckner,
2012; Glöckner & Herbold, 2011; Gluth et al., 2020;
Gluth et al., 2018; Isham & Geng, 2013; Krajbich
et al., 2010; Krajbich & Rangel, 2011; Lopez-Persem
et al., 2016; Molter et al., 2021; Sepulveda et al.,
2020; Smith & Krajbich, 2018; Stewart, Gächter, et
al., 2016; Stewart, Hermens, et al., 2016; Thomas
et al., 2021; Thomas et al., 2019). Gaze-dependent
accumulation models (Glickman et al., 2019; Krajbich
et al., 2010; Krajbich et al., 2012; Krajbich & Rangel,
2011) provide a formal account of this gaze bias effect
and many other details of the empirical association
between gaze and choice. They assume that decisions
are made by repeated sampling and accumulation of
evidence in favour of each alternative until evidence
for one alternative reaches a decision threshold. Cru-
cially, accumulation is assumed to depend on gaze
allocation, such that information momentarily outside
of the decision maker’s gaze is discounted. Notably,
gaze-dependent accumulation can explain departures
from rational choice (Gluth et al., 2018; Molter et al.,
2021), providing theories positing broad attentional
effects on choice with concrete process-based evidence.

There remains, however, the question of causal-
ity: It is still debated to what extent eye movements
causally influence the choice process (and visual at-
tention has a causal role in choice and choice biases),
or if they merely reflect an emerging choice (Mor-
mann & Russo, 2021; Westbrook et al., 2020). Note
that the accuracy with which gaze-dependent accumu-
lation models predict choices and process measures
does not address the issue of causality. Even though
these models are frequently interpreted to assume a
directed effect of gaze on choice, they only formalize
the association between gaze and the choice process,
without any directional assumption of causality. For
example, it would still be possible for a third variable
to influence both choices and gaze. Identifying the
direction of causality ultimately requires experimental
manipulation.

This issue is of great interest, as a causal effect of
gaze on choice would imply that decisions could be
influenced by irrelevant, external factors that affect
the decision makers’ gaze.

Prior work has investigated different aspects in
which changes to the information search process affect
choice behaviour, experimentally controlling the per-
ceptual saliency of attributes or alternatives (Milosavl-

jevic et al., 2012; Weber & Kirsner, 1997), the du-
ration for which alternatives or attributes were seen
(Armel et al., 2008; Lim et al., 2011; Liu, Lyu, et al.,
2020; Pärnamets et al., 2015; Shimojo et al., 2003;
Sui et al., 2020; Tavares et al., 2017), the temporal
order in which alternatives are inspected (Liu, Zhou,
et al., 2020), or the direction in which decision makers
can gather information about alternatives and their
attributes (Mittone & Papi, 2020; Reeck et al., 2017):

Gaze-dependent accumulation models of risky
choice predict that a longer gaze towards an alterna-
tive is associated with a higher probability of choosing
it (unless its value is aversive; see Smith & Krajbich,
2019). If the effect of gaze on choice was causal, this
would imply that experimentally inducing longer gaze
towards one choice alternative should increase its like-
lihood of being chosen. A recent study found support
for this effect in risky choices using a gaze-contingent
decision prompt paradigm, where participants are
free to inspect choice alternatives, but are prompted
to make their decision when their viewing patterns
favour a target attribute or alternative (Sui et al.,
2020). Convergent findings have been reported in
other decision-making domains (Armel et al., 2008;
Liu, Lyu, et al., 2020; Pärnamets et al., 2015; Shimojo
et al., 2003; Tavares et al., 2017).

Similarly, as predicted by some gaze-dependent ac-
cumulation models (Glickman et al., 2019) longer
relative gaze towards individual attributes (e.g., out-
comes or probabilities) is associated with changes in
choice behaviour (Glickman et al., 2019; Kim et al.,
2012), and there is initial evidence that the effect is
causal, too (Liu, Lyu, et al., 2020). These results
are in line with other studies that, while not con-
trolling gaze duration, found that manipulation of
attribute salience affected choices accordingly (Weber
& Kirsner, 1997).

Apart from the duration for which alternatives and
attributes were evaluated, the temporal order in which
information is processed has also been associated with
choice. In particular, the last fixation before a choice is
often directed towards the chosen alternative. Again,
however, the causal direction of this association is de-
bated. The gaze cascade theory (Shimojo et al., 2003)
argues that this finding results from reciprocal posi-
tive feedback loops between valuation and information
search processes, such that preferred alternatives are
attended more, which in turn increases preference
for them. Order effects are also captured by multi-
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ple computational theories of decision making, albeit
in different ways: In the attentional Drift Diffusion
Model (aDDM) (Krajbich et al., 2010; Krajbich &
Rangel, 2011) this phenomenon is explained by the
fact that fixated alternatives are more likely to cross
the threshold, as evidence for other alternatives is
discounted. Other than this, however, the model does
not assume a special role of the last fixation, or the
serial position of any piece of inspected information.
Mullett and Stewart (2016) showed that an increasing
association between gaze and choice before a decision
is made, naturally emerges in some gaze-dependent
accumulation models and does not imply preference-
driven information search. Nevertheless, Liu, Zhou,
et al. (2020) found that manipulating which of two
snack food items was shown last before a decision
is prompted causally biased choices in favor of this
item. Other models (Ashby et al., 2016; Glickman
et al., 2019) assume a leaky integration process that
weighs information acquired later in the decision more
heavily, and thereby predicts recency effects such that
later presented information should affect choices more
strongly. Empirical evidence for recency effects in
risky choices comes from decisions from experience
(Hertwig et al., 2004), where participants learn about
alternatives’ properties by repeated sampling and re-
lated work on value integration in a rapidly presented
stream of option outcomes (Tsetsos et al., 2012).

Recent work in multiattribute decisions found that
the time point at which information about one at-
tribute dimension is considered in a decision affects
choice (Amasino et al., 2019; Maier et al., 2020; Sulli-
van & Huettel, 2021). In contrast to a simple recency
effect, however, these models predict that attributes
considered earlier than others exert more influence
on the choice process, as this also implies a longer
total duration of consideration. These results further
highlight the important issue that duration and order
effects can be closely related (i.e., last seen alterna-
tives are often also seen longer; and both factors are
associated with choice) and need to be distinguished
carefully.

Here, we add to this body of research and jointly
investigate these multiple potentially causal effects
of the information search (presentation duration and
order) on choice. We performed a preregistered study
using a task that involved incentivized choices between
two risky gambles, and was designed to investigate the
independent contributions of presentation duration

Figure 1. Hypothesized qualitative effects. H1a: Higher prob-
ability of choosing the alternative with the higher
probability (Hp) when it is shown longer. H1b:
Higher probability of choosing Hp when probabili-
ties are shown longer. H2a: Higher probability of
choosing Hp when it is shown last. H2b: Higher
probability of choosing Hp when probabilities are
shown last.

and order to and possible interactions in the choice
process. Notably, we tested the duration and order
effects on two levels, namely, the level of alternatives
and the level of attribute dimensions.

Specifically, we hypothesized that presentation du-
ration affects choices in two ways: First, in line
with gaze-dependent accumulation models, longer pre-
sented alternatives should be chosen more frequently
(Figure 1 H1a). In addition, we hypothesized that
alternatives with higher values on longer presented
attributes are chosen more frequently (Figure 1 H1b).
Analogously, we hypothesized that presentation or-
der affects choices, such that alternatives presented
last (Figure 1 H2a), and alternatives with higher val-
ues on the attribute presented last (Figure 1 H2b)
are chosen more frequently. Our preregistration con-
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tained an additional hypothesis and corresponding
analysis concerning presentation-dependent changes
in value-integration. Details are reported in the Sup-
plementary Information.

In contrast to our predictions and prior literature,
our data supports null effects of presentation duration
in both attribute- and alternative-wise presentation
formats. Instead, we find a causal effect of presen-
tation order on choice, such that alternatives shown
last were more likely to be chosen. We discuss the
implications of these results.

Results

Behavioural task

In our experiment, 179 participants performed a bi-
nary sequential presentation risky choice task (Figure
2), where they made repeated choices between two
all-or-nothing risky gambles: One alternative offering
a high chance to win a smaller amount (Hp) and a sec-
ond alternative offering a higher amount with a lower
probability (Hm). Each trial consisted of a presenta-
tion phase, where participants learned about the two
alternatives’ winning probabilities p and outcomes
m, and a choice phase. Information was presented
across four stages either alternative-wise (Figure 2a)
or attribute-wise (Figure 2b). We experimentally con-
trolled presentation duration and order in the task: In
each trial one alternative (in alternative-wise presen-
tation) or attribute (in attribute-wise presentation)
was shown longer than its competitor (3 vs. 2 seconds
across the four stages). In addition, alternatives or
attributes could be shown first and third, or second
and last in the sequence. In total, participants per-
formed 120 experimental trials based on 15 core choice
problems (Figure 2c, d), and 20 additional catch trials
with a dominant alternative (Figure 2e). See Meth-
ods for additional details on the behavioural task and
stimuli.

Choice behaviour summary

Participants successfully avoided choosing dominated
alternatives in catch trials (average ± s.d. count of
dominated choices = 0.35 ± 0.83) with a majority of
140 participants (79%) never choosing a dominated
alternative.

In experimental trials, only three participants

Presentation by Alternatives Attributes All

Duration favours Hm Hp Hm Hp
Last stage favours
Hm 0.60 0.60 0.61 0.62 0.61
Hp 0.64 0.63 0.64 0.63 0.63

All 0.62 0.62 0.63 0.62 0.62

Table 1. Mean choice probabilities for the high probability
alternative Hp across conditions.

(1.7%) exclusively chose the Hp (two participants)
or Hm (one participant) alternatives. All other par-
ticipants alternated between alternatives to varying
degrees, indicating that the selected choice problems
covered individual indifference points between high
and low probability gambles for a majority of partici-
pants (overall mean ± s.d. P(choose Hp) = 0.62 ±
0.20; Table 1).

Regression analysis: Effect of presentation
order, but not duration

We first analysed choice behaviour using a Bayesian
mixed-effects logistic regression model, predicting
choice from differences in expected value and effect-
coded predictors indicating presentation format, the
alternative favoured by presentation duration, the al-
ternative favoured by the last presentation stage, and
interaction terms of the duration and order effects
with the presentation format (see Methods; Table 2).

Choices were strongly driven by the difference in
expected value (β = 1.96 [1.77, 2.15]) such that alter-
natives with higher expected values were preferred.
In addition, the main effect of presentation order was
credibly positive (β = 0.17 [0.09, 0.25]) indicating
a preference towards alternatives favoured by infor-
mation shown last. No other main or interaction
effect was credibly different from zero (presentation
duration β = −0.02 [−0.10, 0.05]; presentation format
β = −0.06[−0.13, 0.01]; duration-by-format interac-
tion β = 0.01 [−0.13, 0.16]; order-by-format interac-
tion β = 0.09 [−0.06, 0.23]).

Next, we addressed our hypotheses regarding ef-
fects of presentation duration and order on choice
separately, using preregistered directed Bayes factor
t-tests and BEST analyses.
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Figure 2. Sequential presentation risky choice task and choice problems. In each trial, participants decided between two
all-or-nothing gambles representing the probability p to win an amount m. Information was presented sequentially
across four stages so that total presentation duration and presentation order of alternatives (in alternative-wise
presentation; a) or attributes (in attribute-wise presentation; b)) was controlled. After the presentation, participants
had 3 seconds to indicate their choice. In each trial, the target alternative or attribute was shown longer than the
other. c) 15 core choice problems used to construct choice trials. Each circle represents one choice alternative,
described by its probability p and outcome m. Each connected pair of circles indicates one pair of choices used to
construct the 120 experimental trials. Color indicates the α value for which the expected utilities of a pair are equal
(see panel d). d) Distribution of indifference implied α values of the 15 core choice problems from c). e) Catch trials.
Each connected pair of triangles represents one of 20 catch trials, where one alternative is dominated by the other on
both attributes.

No effects of presentation duration across
presentation formats

We hypothesized that alternatives shown longer (in
alternative-wise presentation) and alternatives with
better values on the attribute shown longer (in
attribute-wise presentation) would be chosen more
frequently. To this end, we computed individuals’
probabilities of choosing Hp when it was favoured by
presentation duration (because either the alternative
Hp or the attribute p was shown longer) and when it
was not. We then used directed Bayes Factor t-tests
to test the hypotheses of positive versus a null effects
in the difference of choice probabilities (see Methods).

On average and across presentation formats, par-

ticipants chose Hp with a probability of 62.0% when
it was favoured by presentation duration, and 62.3%
when it was not. There was strong evidence against
an effect of presentation duration on choice probabil-
ity across presentation formats (mean difference =
−0.2% [−1.1%, 0.6%]; mean d = −0.04 [−0.20, 0.11];
BF+0 = 0.053, BF0+ = 18.84). Separate tests for
each presentation format confirmed evidence against
an effect of presentation duration on choice prob-
ability, with strong evidence against an effect in
alternative-wise presentation (H1a; mean difference =
−0.1% [−1.5%, 1.1%]; mean d = −0.02 [−0.18, 0.13];
BF0+ = 15.43; Figure 3a) and strong evidence against
an effect in attribute-wise presentation (H1b; mean
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95% HDI

Term Mean SD Lower Upper R̂ ESS (bulk) ESS (tail)

Intercept 0.35 0.11 0.12 0.56 1.01 351 586
EV diff. (Hp−Hm; z-scored) 1.96 0.10 1.77 2.15 1.00 763 1962
Duration (Hp or p longer) −0.02 0.04 −0.10 0.05 1.00 8644 6667
Order (Hp or p last) 0.17 0.04 0.09 0.25 1.00 7602 6943
Format (by alt.) −0.06 0.04 −0.13 0.01 1.00 10598 6192
Duration × Format 0.01 0.08 −0.13 0.16 1.00 9983 6276
Order × Format 0.09 0.08 −0.06 0.23 1.00 10963 6350

Table 2. Fixed effects estimates from Bayesian mixed-effects logistic regression. Dependent variable: Hp choice.
Categorical predictors (Duration, Order, Format) were effect-coded, and positive estimates are associated with the
level indicated in parentheses. See Methods for details on predictor variables. ESS: Effective sample size. Results
obtained from two MCMC chains with 5000 posterior samples and 1000 tuning samples. Terms credibly different from
zero are shown in boldface.

difference = −0.4% [−1.6%, 0.8%]; mean d = −0.05
[−0.21, 0.10]; BF0+ = 19.34; Figure 3b).

Strong evidence for effect of presentation
order in alternative-wise presentation

We furthermore hypothesized that alternatives shown
last (in alternative-wise presentation) and alterna-
tives with better values on the attribute shown last
(in attribute-wise presentation) would be chosen more
frequently. To test the marginal effect of presenta-
tion order on choice (across presentation formats),
we computed the individual probabilities of choos-
ing Hp when it was favored by the last presentation
stage (because either the alternative Hp or the at-
tribute p was shown last) and when it was not, and
performed directed Bayes factor t-tests and Bayesian
estimation of their difference. Across presentation
formats, participants chose the Hp alternative with
a probability of 63.3% when it was favoured in the
final presentation stage, and 60.9% when it was not
(Table 1). There was extreme evidence in favour of an
effect of presentation order on choice across presen-
tation formats (mean difference = 2.4% [1.2%, 3.5%];
mean d = 0.32 [0.16, 0.47]; BF+0 = 806.85). Separate
tests for each presentation format showed that the ef-
fect was more specific to alternative-wise presentation,
with extreme evidence for an effect (H2a; mean differ-
ence = 3.0% [1.6%, 4.4%]; mean d = 0.33 [0.17, 0.49];
BF+0 = 845.71; Figure 3c). In attribute-wise pre-
sentation, evidence anecdotally favoured a positive
effect (H2b; mean difference = 1.5% [0.0%, 3.1%];
mean d = 0.15 [−0.01, 0.31]; 96.67% of posterior mass

above zero; BF+0 = 1.83; Figure 3d).

Discussion

In this study, we investigated the causal effects of
attribute- and alternative-wise presentation duration
and order in two-alternative risky choice. In contrast
to causal interpretations of simple gaze-dependent ac-
cumulation models, our data did not support a causal
role of presentation duration in either presentation
format. Instead, we found strong evidence for a causal
effect of presentation order on choice, especially when
information was presented alternative-wise.

Prior work has reported causal effects of viewing-
and presentation duration on preferential (and per-
ceptual) choice (Armel et al., 2008; Fisher, 2021; Liu,
Lyu, et al., 2020; Pärnamets et al., 2015; Shimojo
et al., 2003; Sui et al., 2020; Tavares et al., 2017) us-
ing external control of presentation durations or gaze-
contingent decision prompts. In free choice paradigms,
these effects are well described by gaze-dependent ac-
cumulation models like the aDDM, which assume that
an alternative’s value representations are discounted
while it is not fixated by (or presented to) the decision
maker.

In our task, evidence strongly favoured null effects
of presentation duration on choice, both in alternative-
and attribute-wise presentation formats.

This lack of replication suggests that more work
is needed to better understand the conditions under
which fixation- or presentation duration can affect
choice behaviour. It is possible that duration effects
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Figure 3. Effects of presentation duration and order on choice. Panels a-d show individual and mean changes in
choice probabilities of the higher probability alternative Hp, for duration (a, b) and order manipulations (c, d) in
alternative- (a, c) and attribute-wise (b, d) presentation. Each semi-transparent connected pair of dots indicates
choice probabilities for Hp of a single participant in trials where Hm vs. Hp was favoured by the presentation
manipulation. Group means are indicated by opaque slate dots and lines. Cohen’s d with HDI95% obtained from
paired BEST analysis, and the Bayes factors in favour of a positive directed over a null effect (BF+0; see Methods) or
its reciprocal in favour of a null effect (BF0+) are given for each panel. Panels e-f show corresponding distributions
of individual changes (individual slopes in panels a-d), with colors coding the size of individual changes. Small
points and horizontal lines above histograms indicate mean and HDI95% change (gray if HDI95% includes 0, red if 0
is excluded).

are moderated by specific aspects of the decision task
itself, like presentation durations, and the type and
delivery of choice stimuli.

It remains, however, an experimental challenge to
investigate the causal effects of different aspects of in-
formation search on choice: With the external control
of presentation parameters, participants are prompted
for a decision either before or after they would have
made a choice in a free response paradigm. Studies
experimentally controlling stimulus presentation (in-
cluding studies with gaze-dependent decision prompts)
thereby differ from simple decision making tasks where
participants determine the time of choice themselves;
their experimental manipulations interfere with and
alter the natural course of decision making. Here,
recent work has demonstrated an elegant possibility
to induce biases in information search, with down-
stream effects on choice: Gwinn et al. (2019) had

participants acquire attentional biases in a separate
task, which carried over to a choice task otherwise
free from interference. Notably, the authors found
that not gaze duration, but the location of the first
fixation, mediated the effect of the attentional ma-
nipulation on choice, providing additional evidence
of effects of information order on choice over viewing
duration alone.

Regarding the association between the order of in-
formation search during decision making and choice,
most eye tracking studies of decision making find the
last fixation to be predominantly directed towards the
chosen alternative (Fiedler & Glöckner, 2012; Glick-
man et al., 2019; Krajbich et al., 2010; Krajbich &
Rangel, 2011; Stewart, Hermens, et al., 2016). This
association is predicted by gaze-dependent accumula-
tion models like the aDDM, where relative evidence
for an alternative is more likely to cross the decision
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boundary while it is fixated. Notably, however, the
aDDM does not imply a causal role of information
order or the final fixation on choice in particular. In
contrast, leaky accumulator models (e.g., Ashby et
al., 2016; Glickman et al., 2019; Molter et al., 2021;
Usher & McClelland, 2001) predict that information
acquired early in the trial decays, and the relative
weight of more recent information is increased.

We found strong evidence for a causal effect of
presentation order, so that information presented last
influences decisions more than information presented
earlier. This recency effect was particularly strong in
the alternative-wise presentation format.

Our results thereby support theories of gaze-
dependent accumulation which include a form of ac-
cumulation leak and can account for causal recency
effects. Interestingly, prior work has identified re-
cency effects in decisions from experience and related
paradigms, where information about risky alterna-
tives’ outcomes is actively sampled by the decision
maker, and therefore also acquired sequentially (Her-
twig et al., 2004; Tsetsos et al., 2012). Our results
suggest that a similar, and causally directed effect
is present during decisions from description, where
stimulus information is also experienced sequentially.

One possible explanation for the observed recency
effect is that decision makers have imperfect memory
about the stimulus information (potentially reinforced
by the fast-paced presentation) and then base their
choice on more recent, better remembered information.
This would constitute a memory-bias within single
trials, similar to previously described effects on longer
timescales (Gluth et al., 2015; Weilbächer et al., 2021).

Our results further provide evidence that the ob-
served association between decision makers’ last fixa-
tion and choice goes beyond simple ”confirmation” or
response locking explanations assuming that choices
are already determined before the final fixation and
response is made.

In addition to the last fixation preferably being
directed to the chosen alternative, eye tracking studies
of decision making typically find longer gaze towards
the chosen alternative (Cavanagh et al., 2014; Fiedler
& Glöckner, 2012; Glickman et al., 2019; Krajbich et
al., 2010; Krajbich & Rangel, 2011; Molter et al., 2021;
Shimojo et al., 2003; Stewart, Hermens, et al., 2016).
Both being associated with choice, these two variables
might be confounded frequently, that is, alternatives
that are looked at last are also looked at longer during

the decision. Consequently, the effects of duration and
order can be mistaken for each other, without explicit
control. This issue can also occur in experimental
designs using gaze-dependent decision prompts, as –
depending on the specific conditions triggering the
prompt – the last fixation is potentially more likely to
be directed at the alternative determined to receive
longer gaze.

While prior work demonstrated that random or ex-
ternally induced fluctuations in visual attention can
have downstream effects on choice mainly through
viewing duration, our work highlights the importance
of the temporal order in which information is encoun-
tered. This suggests that, in situations where pre-
sentation order can be controlled, such as television-,
cinema- or online video advertisements, choices could
be systematically shifted towards certain alternatives.
We note, however, that these settings typically do
not involve the need to choose (as in our experiment).
Yet, it is conceivable that for those cinema-goers who
already decided to buy ice-cream, still deliberating
which flavour to get, choices are shifted towards the
flavour presented last (and closest to their buying
decision) in the advertisement clip. Desired (e.g.,
healthful) choices could then be promoted by remind-
ing decision makers of them just before choices are
made.

Similarly, Sullivan and Huettel (2021) argued in
favour of time-dependent interventions to promote
healthful food choices, as they found health infor-
mation to enter the decision process with a longer
latency than taste information. Reducing overall time
pressure could increase healthful choices by reducing
the gap in attribute latencies. Alternatively, they
suggest that showing health-related information first
should decrease the latency gap and thereby promote
healthy choices. Our results highlight the opposite
direction: Attribute-information shown first to par-
ticipants reduced participants’ likelihood of choosing
alternatives with better values on that attribute. Note
that our study addressed primacy and recency effects
on the same one-dimensional construct. We therefore
cannot distinguish positive recency- from negative pri-
macy effects, as information shown last was by design
not shown first. Future work could address possible
independent contributions of both effects.

A possible explanation for these apparent differ-
ences, apart from the different goods being chosen, is
that the latency construct in the model by Sullivan
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and Huettel (2021) might be more related to consid-
eration duration than order : Attributes with lower
latencies can, by definition, influence the decision pro-
cess for a longer duration than others. This way, the
order and duration effects are inherently linked in
their model.

In conclusion, we showed that presentation order
but not presentation duration had a causal effect on
risky choice behaviour, in an external presentation
paradigm. This has important implications for the-
ories of decision making, which should incorporate
mechanisms like accumulation leak, to account for
observed recency effects, and suggests an important
role of the presentation order – particularly the in-
formation presented just before a choice is made – in
real world decisions.

Methods

All data collection and analysis procedures were pre-
registered on the Open Science Framework ahead of
data collection (Molter & Mohr, 2021).

Participants

The experiment was conducted online and partici-
pants were recruited via the platform Prolific.co. Our
target sample size was 200 participants. We accepted
entries on the Prolific platform until 200 complete sub-
missions were reached. Sample size was determined to
exceed that of previous laboratory-based experiments
addressing related questions (e.g., Armel et al., 2008;
Fisher, 2021; Liu, Lyu, et al., 2020; Pärnamets et al.,
2015; Sui et al., 2020), accounting for the possibility
of lower quality data due to the online setting. Par-
ticipants were paid £3.75 for completing the study,
which took around 30 minutes. They had the chance
to win a bonus amount ranging from £0 to £9.85, as
one of their chosen gambles was randomly determined
and played out after the experiment. The experiment
included webcam-based eye tracking (see Supplemen-
tary Information), so only participants with a working
webcam using Google Chrome or Mozilla Firefox could
participate. Participants gave informed consent prior
to participation in the study.

Participants were excluded from the analysis with-
out replacement if one of the following criteria was
met: i) The participant chose a dominated alternative
more than 4 times (20% of catch trials, see below). ii)

The participant reported to be red-green colorblind or
having difficulty distinguishing the colors in the task.
iii) The participant reported having technical difficul-
ties that prevented them from diligent execution of
the task. iv) The participant’s self-reported decision
strategy suggested that task instructions were mis-
understood. v) The participant reported nonserious
participation in the task (Aust et al., 2013).

Twenty-one participants were excluded from the
analyses (16 for criterion 1, four for criterion 2, one
for criterion 4), resulting in a final sample size of 179
(mean ± s.d. age = 32.46 ± 13.85; 84 females, 94
males, one other).

Behavioral task

Participants performed a binary sequential presen-
tation risky choice task, where they made repeated
incentivized choices between two graphically displayed
all-or-nothing gambles (Figure 2). Each gamble rep-
resented the chance to win a monetary amount m
with a probability p and nothing otherwise. Winning
amounts m were represented by partially filled bars
(a fully filled bar represented an amount of 10£), and
winning probabilities p by pie charts. Each trial was
divided into a presentation phase and a choice phase.
During the presentation phase, participants learned
about the two available gambles’ attributes. Informa-
tion was presented sequentially. There were two types
of presentation: Alternative-wise and attribute-wise
presentation.

In trials with alternative-wise presentation (Figure
2a) both attributes of one gamble were shown simul-
taneously, followed by both attributes of the other
gamble. In trials with attribute-wise presentation
(Figure 2b), one attribute (e.g., winning probability
p) of both gambles was presented simultaneously, fol-
lowed by the other attribute (e.g., amount m) of both
gambles. Presentation always alternated two times be-
tween alternatives or attributes (i.e., A-B-A-B). Cru-
cially, one alternative (in trials with alternative-wise
presentation) or attribute (in trials with attribute-
wise presentation) in each trial was selected to be the
target and shown longer than the other one. Target
attributes or alternatives were always presented for
1500 ms, whereas other alternatives or attributes were
presented for 1000 ms, resulting in a final presentation
time advantage for the target of 1000 ms (2x 1500 ms
vs. 2x 1000 ms).
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After the presentation phase, stimulus information
was hidden and participants were prompted to make a
choice between the two alternatives within 3 seconds.
After completing all choice trials, one gamble chosen
by the participant in a randomly determined trial was
played out for a real bonus payment. The task can
be run at https://moltaire.github.io/causality task.

All participants made choices for the same 140
choice problems (see below) divided into two blocks.
Trial order in each block and the horizontal position of
the alternatives in each trial was randomized. Block
order was counterbalanced between participants.

Stimuli

We created a set of 15 core choice problems including
one alternative with a higher probability of winning a
lower amount (Hp) and one alternative with a lower
probability of winning a higher amount (Hm). Choice
problems were created algorithmically to cover most of
the attribute space, be maximally different from each
other, and be diagnostic of different risk attitudes. For
this last criterion, we controlled the α values for which
two alternatives in a pair would have equal expected
utility (using a standard power utility function). The
distribution of these indifference-implied α values is
shown in in Figure 2d. Core choice problems are
illustrated in Figure 2c.

Then eight trials were created for each core problem
by fully crossing the factors (i) presentation format
(alternative-wise vs. attribute-wise), (ii) target alter-
native / attribute (Hp vs. Hm; p vs. m), and (iii)
presentation order (target first and third vs. second
and last). This resulted in a total of 120 experimental
choice trials.

We added 20 catch trials with one dominant alter-
native for a total of 140 trials (Figure 2e). In catch
trials, individual presentation durations were set to
1250 ms, resulting in the same overall presentation du-
ration (5000 ms), but no presentation time advantage
for any alternative or attribute.

Statistical modelling

We performed a Bayesian logistic regression analy-
sis of choice behavior, with choice (Hp vs. Hm) as
the dependent variable and the following predictors:
Expected value difference (EVHp − EVHm; z-scored),
presentation format (by-attribute vs. by-alternative;

effect-coded), duration-favored (Hp favored vs. Hm
favored by duration manipulation; effect-coded), last-
stage-favored (Hp favored vs. Hm favored in last pre-
sentation stage; effect-coded), and interaction terms
between presentation format and duration-favored
and last-stage-favored. The model included random
intercepts and slopes over participants and used the
default priors set by the bambi library (Westfall,
2017).

We performed directed Bayes factor (BF) t-tests
(Morey & Rouder, 2011) of our main hypotheses,
testing the directed hypotheses that differences in
choice probabilities are larger than zero, over a point
null hypothesis. All Bayes factor t-tests used default
JZS priors (Cauchy distributed with scale r =

√
2/2)

implemented in the BayesFactor package (Morey &
Rouder, 2018).

Additionally, we ran paired Bayesian estimation
(BEST; Kruschke, 2013, 2014) analyses to compute
mean differences, effect sizes d and associated 95%
highest posterior density intervals (HDI95%).

We ran two chains with 5000 samples each after a
tuning phase of 1000 samples for all BEST analyses
and the Bayesian mixed-effects model. Convergence
was diagnosed visually and by means of the Gelman-
Rubin statistic (|1− R̂| ≤ 0.05 for all chains).

We determine parameters in the regression and
BEST analyses to be credibly different from zero if
HDI95% exclude zero or at least 95% of the poste-
rior mass is above (below) zero. For interpretation
of Bayes factors’ evidence strength, we follow the
conventional categorization based on Jeffreys (1998):
Anecdotal (1 < BF < 3); Moderate (3 ≤ BF < 10);
Strong (10 ≤ BF < 30); Very strong (30 ≤ BF < 100);
Extreme (100 ≤ BF).

Software

The task was programmed in jsPsych (de Leeuw,
2015). Webcam-based eye tracking was implemented
using the webgazer.js library (Papoutsaki et al., 2016).
Data processing and analyses were done in Python
with numpy (Harris et al., 2020) and pandas (McK-
inney, 2012) libraries. Bayesian analyses were im-
plemented in PyMC3 (Salvatier et al., 2016), mixed
models used bambi (Capretto et al., 2021). Bayes
Factor t-tests were performed using the R package
BayesFactor (Morey & Rouder, 2018). Figures were
created using matplotlib (Hunter, 2007).
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Data and code availability

All raw and preprocessed data and scripts to re-
produce all processing and analyses steps and fig-
ures are available at https://github.com/moltaire/
gaze-choice-causality.
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Supplementary Information

Webcam-based eye tracking

Participants’ gaze during the task was recorded us-
ing webcam-based eye tracking implemented in the
JavaScript library webgazer.js (Papoutsaki et al., 2016;
Yang & Krajbich, 2020). To this end, the task in-
cluded a webcam setup at the start of the experiment,
a 13-point calibration routine, and a 5-point valida-
tion routine before the start of each block, where
participants were instructed to focus their gaze on
indicated screen locations for three seconds. Valida-
tion points were chosen to correspond to the locations
where stimulus information would be presented during
experimental choice trials.

We assessed the quality of the collected eye tracking
data using multiple complementing metrics: First,
we measured the sampling rates obtained in each
validation, which heavily depend on the device that
runs the experimental task. Mean ± s.d. sampling
rates were 15.96 ± 7.95 Hz and ranged from 0.49 Hz
to 29.55 Hz, and 71% of blocks had sampling rates
above 10 Hz during validation.

Second, as a measure of bias, we computed the av-
erage absolute distance of the estimated gaze location
samples from the corresponding validation targets in
x- and y directions (in percent of screen width and
height, respectively). Mean ± s.d. error (clustered by
block) was 5.58 ± 7.11% in x- and 8.79 ± 9.76% in
y-direction.

Third, as a measure of accuracy, we computed the
sample variability as the standard deviation of samples
corresponding to a single validation target in x- and y-
directions. Mean ± s.d. variability was 5.81 ± 3.07%
in x- and 7.46 ± 4.70% in y-direction.

Fourth, we computed the proportion of samples
within an elliptical Area of Interest (AoI) around the
corresponding validation target. For this, we set the
AoI-width and -height to 15% of the screen width and
height, respectively (note that widths and heights of
25% would leave no white space between AoIs due to
the stimulus spacing used in the task). On average,
only 51.80 ± 26.12% of the samples were contained
within a validation target’s AoI.

Next, we set minimum thresholds on each of these
parameters to classify validation results as valid or in-
valid: We required a minimum sampling rate of 10 Hz,
a maximum average error and a maximum variability

of 20% in x- and y-directions, and a minimum of 60%
of samples within the validation target AoI. Only 33
of 356 blocks (9.27%) fulfilled these minimal quality
requirements. In addition, it can be assumed that eye
tracking quality only decreased during a block, due to
head movement or other sources of variability (e.g.,
changes in lighting conditions, etc.). We therefore did
not perform any further explorative analyses on the
eye tracking data. We note that it might be possible
to correct for systematic biases in validation (e.g.,
using clustering approaches). Future studies could
benefit from improved webcam-based eye tracking
data by performing online checks of validation accu-
racy and repeating calibration and validation steps
until an acceptable level of quality is reached.

Influence of presentation format on value
integration

Our preregistration contained the additional hypothe-
sis that presentation format (alternative- vs. attribute-
wise presentation) elicits different forms of value in-
tegration in the decision process. Specifically, we hy-
pothesized, that alternative-wise presentation would
elicit more integrative, within-alternative processing,
whereas attribute-wise presentation would be associ-
ated with more comparative processing within at-
tribute dimensions and between alternatives. To
test this hypothesis, we fit two behavioral models,
which used within-alternative and within-attribute
integration of attributes, respectively, to the choice
and response time data of each participant. Cru-
cially, the models were fit separately for trials with
alternative- and attribute-wise presentation. We then
computed the relative fit of the models for each par-
ticipant and presentation format by taking the differ-
ence of the models’ Bayesian Information Criterion
(BIC) (Schwarz, 1978). Finally, we performed di-
rected paired Bayes factor t-tests of the differences,
testing the directed hypothesis that the relative fit
of the within-alternative integration model over the
between-alternative model is increased in alternative-
wise vs. attribute-wise presentation.

Behavioural modelling

We analyzed participants’ choice and response time
data using two different behavioral models. Both
models shared a similar general structure: During the

15



presentation phase of the trial, a relative evidence
signal R is assumed to be formed (Figure S1a-b), de-
pending on the presentation format, duration, and
order. After the choice prompt, a noisy diffusion
process between two decision bounds (corresponding
to choosing Hp and Hm, respectively) is initiated
that elicits a choice at a time point t (Figure S1c).
Crucially, the drift rate of the diffusion process is
proportional to the relative evidence signal R at the
end of the presentation phase. For both models, the
diffusion process after the choice prompt is param-
eterized by a drift constant v (that scales the final
relative evidence signal R), a noise parameter s, while
the boundary separation is kept constant at a value
of 1. The two models only differed in the process of
calculating the relative evidence signal R during the
presentation phase.

Alternative-wise integration model The
alternative-wise integration model (slate-gray
in Figure S1) computes alternative-wise expected util-
ities, using a standard utility function (Ui = pim

α
i ).

During the presentation phase, the difference between
the expected utilities is assumed to accumulate over
time. Critically, the momentarily not presented alter-
native’s utility is discounted by an alternative-wise
gaze-discount θ. The final relative evidence signal
Raltwise is given by

Raltwise = gHp(UHp − θUHm) + gHmθUHp − UHm)

Where gHp and gHm are the relative presentation
durations of Hp and Hm. Note that in trials with
attribute-wise presentation, gHp and gHm are set to
0.5, as both alternatives’ attributes are presented
equally long. Additionally, the model uses a pa-
rameter blast to predict order effects in trials with
alternative-wise presentation: Positive blast shift R
towards the last-presented alternative, negative blast
shift it to the alternative presented first.

Attribute-wise integration model The attribute-
wise model (orange in Figure S1) assumes that the
relative evidence R is computed through attribute
comparisons between alternatives, weighted addition
of attribute differences, and accumulation of differ-
ences over time. Importantly, it assumes that the
momentarily not presented attributes are discounted

by an attribute-wise gaze-discount η. The final rela-
tive evidence signal Rattwise is given by

Rattwise =gp(wp∆p + η(1− wp)∆m)+

gm(ηwp∆p + (1− wp)∆m)

Where ∆p and ∆m are the attribute differences be-
tween Hp and Hm alternatives. gp and gm are relative
presentation durations for p and m attributes, respec-
tively. wp controls the relative weighting between
probability and outcome attributes. Note that at-
tributes are also normalized in each trial (by dividing
by the sum of values on the attribute). During trials
with alternative-wise presentation, the relative gaze
durations towards attributes are set to 0.5, since at
every point during the presentation phase, informa-
tion of both attributes is presented. Additionally, the
model uses a parameter blast to predict order effects
in trials with attribute-wise presentation: Positive
blast shift R towards the alternative with the higher
value on the last-presented attribute, negative blast
shift it to the alternative with the higher value on the
alternative presented first.

Parameter estimation Both models were imple-
mented in pyddm (Shinn et al., 2020) with a temporal
resolution dt = 0.01, and a resolution of the evidence
space dx = 0.01. Both models were fit separately
to trials with alternative-wise and attribute-wise pre-
sentation using pyddm’s default differential evolution
algorithm, minimizing the Bayesian Information Cri-
terion (BIC; Schwarz, 1978).

Model validation To ensure interpretability and va-
lidity of the models’ parameter estimates, we per-
formed a parameter recovery study as follows: First,
we estimated each model’s parameters from the em-
pirical data of each participant. Then we simulated
a synthetic data set of the same size as the empir-
ical one, using the individually obtained estimates.
Then we re-fit the models to the synthetic data and
compared known generating to the obtained recovered
parameters by means of Bayesian linear regression (de-
pendent variable: recovered parameter; independent
variables: Intercept, generating parameter) and corre-
lation analyses (Kruschke, 2013; Lee & Wagenmakers,
2013). The models’ parameters could be recovered to
a satisfying degree, with the gaze-discount parameters
θ and η showing the largest differences (Figure S2).

16



Figure S1. Behavioural models and their predictions. a) Construction of drift-rates in trials with alternative-wise
presentation. Only the alternative-wise model’s drift rate is sensitive to effects of presentation duration in
alternative-wise presentation. Analogously, only the alternative-wise model produces order effects in alternative-wise
presentation, controlled by the blast parameter. b) Construction of drift rates in attribute-wise presentation.
Here, only the attribute-wise model’s drift rate is sensitive to effects of presentation duration. Similarly, only the
attribute-wise model produces order effects in attribute-wise presentation, controlled by the blast parameter. c)
After construction of the drift rate in the presentation phase, choices and response times result from a diffusion
process with the previously constructed drift rate. d-e) Both models’ predicted effects of alternative-wise (d) and
attribute-wise (e) presentation duration. Slate-gray color refers to alternative-wise model. Orange color refers to
attribute-wise model.

Similarly, we performed model recovery analyses
by fitting each model to the synthetic data generated
from all models. Then, for each generating model, we
performed Bayesian model selection (Rigoux et al.,
2014; Stephan et al., 2009) to identify the most likely
generating model. The models could be recovered
almost perfectly (Figure S3).

Results

For trials with alternative-wise presentation, the mean
± s.d. BIC of the alternative-wise model was 102.16 ±
56.19 (range -24.20 to 344.44). Mean± s.d. BIC of the
attribute-wise model was 93.27 ± 57.03 (range -45.06
to 338.90), indicating a better fit of the attribute-wise
model in alternative-wise presentation.

Conversely, in trials with attribute-wise presenta-
tion, the mean ± s.d. BIC of the alternative-wise
model was 90.97 ± 55.24 (range -45.39 to 310.33),
while the attribute-wise model achieved mean ± s.d.
BIC of 97.41 ± 55.36 (range -50.91 to 321.62), indi-
cating better fit of the alternative-wise model.

Next, we took the difference between BIC of the
models for each participant and presentation format
and tested whether they credibly differed from zero,
using a directed paired Bayes factor t-test (and BEST
analysis to obtain estimates of the effect size d). Re-
sults strongly supported a result opposite to our hy-
pothesis, namely, that the attribute-wise model was
favoured in alternative-wise presentation, while the
alternative-wise model was favoured in attribute-wise
presentation (mean BIC difference = -15.34 [-14.57,
-16.20]; mean d = 2.75 [2.29, 3.23]; BF+0 = 0.0011,
BF0+ = 907.95).

In sum, these results are contrary to our prereg-
istered hypothesis: In trials with alternative-wise
presentation, the simpler attribute-wise model was
preferred. Vice versa, in trials with attribute-wise
presentation, the simpler alternative-wise model was
preferred.

We note, however, that the preregistered analysis
could not address our hypothesis optimally for multi-
ple reasons. First, model complexity differed system-
atically between conditions: In trials with alternative-
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Figure S2. Parameter recovery of the two diffusion models. Each panel shows the relationship between true data
generating, and recovered parameter values for a single model parameter. Upper and lower rows show results from
the alternative-wise and attribute-wise integration models, respectively. Generating parameters were obtained from
fitting the models to the empirical data. Annotations report Bayesian correlation coefficient r, and the slope and
intercept estimates of a Bayesian regression analysis with HDI95% given in brackets. Perfect, unbiased recovery
would show an intercept of 0 and a slope of 1, with all points on the diagonal.

Figure S3. Model recovery results. The large panel shows
a confusion matrix from the model recovery analy-
sis. Each cell shows the posterior model probabil-
ity of a fitted model (in each column) for a given
generating model (in each row). Perfect recov-
ery would show only values of 1 on the diagonal.
The smaller confusion matrix shows exceedance
probabilities, analogously.

wise presentation, the alternative-wise model uses two
free parameters more than the attribute-wise model
(namely, the alternative-wise gaze discount θ, and the
alternative-wise blast parameter), while the reverse is
true in trials with attribute-wise presentation. While
the BIC takes model complexity into account, this
issue highlights that the models differ in more aspects
than their value-integration process (namely, the dif-
ferent gaze discounts and last-stage effects), prohibit-
ing conclusions about changes in value-integration.
Furthermore, more complex models are penalized for
their inclusion of duration-dependent gaze-discount
mechanisms to explain associations of presentation
duration and choice, which our behavioural analyses
showed to be absent in our data.
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