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Abstract

This thesis deals with the modelling of two-dimensional coupling of quasi one-
dimensional domains and turbulence within a quasi one-dimensional combustion
chamber. Also an interpolation-free �nite volume moving mesh method is described.

First, the basic framework of a gas turbine is introduced including an uncom-
mon approach for constant volume combustion: the shockless explosion combustion
(SEC). In a preceding work a simulation code for this combustion process solving
quasi one-dimensional reactive Euler equations with a �nite volume (FV) Riemann
solver has been developed and was extended for the thesis at hand.

A network model is presented, allowing for the investigation of interaction of
multiple pulsating combustion chambers of an SEC gas turbine with the plenums and
each other. It couples the quasi one-dimensional domains using boundary conditions
and �ux corrections such that interactions of slanted combustion chambers with the
plenums are possible. A series of simulations utilising this model is carried out to
show possible �elds of research for this tool.

As the simulation of combustion processes are especially sensitive to spacial
resolution but complex chemistry also imposes restrictions on the number of grid
cells a feature for adaptive remeshing is described. It uses the moving mesh idea
within the FV solver. As interpolation introduces too much numerical di�usion a
�ux correction is given which evolves governing equations and mesh simultaneously
without changing the Euler equations themselves. The performance of this feature
is demonstrated with simulations of a detonation and a cyclic SEC.

Finally, the prerequisites for the research of the starting process of an SEC gas
turbine are created by including molecular transport and turbulence in the SEC-
code. Towards this aim, the one-dimensional turbulence (ODT) model is adjusted
for this application. The ODT-line on which the stochastic eddy events, representing
the turbulence, occur is aligned with the streamwise direction of the long-stretched
combustion chamber. Also ODT is used as a stand-alone and subgrid-scale model.
The main features of turbulence and ODT are compared to the new variant ODT-
FHD. This study reveals that the ODT-FHD is able to generally reproduce the
correct dependency of turbulence on mean �ow velocity along with a plausible dis-
tribution of eddy sizes and kinetic energies. While lacking the possibility to generate
new extrema of �ow properties along the ODT-line it incorporates turbulent di�u-
sion very well. The in�uence of the three model parameter is shown in addition to
the simulation of a turbulent �ame and a turbulent single-tube SEC.
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Chapter 1

Introduction

Energy is the secret star in most of our lives. We use it to travel far, stay up late, en-
tertain or educate ourselves and even to wash our hands. The infrastructure around
us breathes energy and although we are starting to realise it should get less, we are
consuming more and more. Since going back to a new �candle light age� as a whole
global society is unthinkable, it is vital to rethink our energy production processes.
Surely, clean, renewable energies need to be our �nal goal but until this point is
reached, it still helps to improve established production techniques by saving fuel
and emissions as well as by gaining knowledge. One of these classical energy pro-
ducing machines is a gas turbine. Although the sketch in Figure 1.1 depicts a jet
engine which is not used in a power plant but in air planes, the general architecture
and working principle is the same: First air is sucked in from the environment and
densi�ed by several stages of a compressor. This air is blown through a connecting
volume called plenum into typically 5 to 6 combustion chambers. There it gets mixed
with a fuel and burned continuously in a turbulent, subsonic �ame. The hot gas
expands and thereby drives a turbine which lies behind the combustion chambers
and a second plenum. Its shaft is usually coupled with the compressor shaft, to keep
driving it once the turbine started to run, and a generator. The latter converts the
kinetic energy from the rotating turbine shaft to electricity. Over the past decades
a lot of e�orts have been made to increase the e�ciency of such stationary gas tur-
bines and eventually the curve reached its saturation point. There is not much left
to enhance today if we stick to the basic principles of the work�ow. Therefore, we
change it.

In the last century new concepts for burning fuels have arisen and been studied.
What they have in common is the idea of replacing the constant pressure combustion
(CPC) of nowadays de�agration with a constant volume combustion (CVC). From
theoretical thermodynamic cycle analysis (see e.g. [31]) we know that a perfect
CVC is much more e�cient than a perfect CPC thanks to the substitution of the
Brayton cycle (also known as Joule cycle) by the Humphrey cycle. Actually, this
ansatz has already been realised in combustion engines because cars and motorcycles
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Figure 1.1: Scheme of a jet engine showing the gas �ow from left (upstream) to right
(downstream) through the main machine parts [17].

have worked like that since the beginning of the last century. The one but critical
di�erence is that the combustion chambers in such a piston engine are closed and the
ones in gas turbines are not. This means that the hot gas in a car engine has no other
chance but to keep its volume and instead raise the pressure while in a gas turbine
it can freely expand. It is of course possible to close the combustion chambers in
gas turbines but that would overthrow the complete working and design principle
of it. The other option is to burn the fuel as fast as - or even faster than - the
gas can expand, thus with the speed of sound within the combustion chamber. To
achieve this the pulse detonation combustion (PDC) has been investigated since the
1940s. The main idea here is to begin with a de�agration and accelerate the �ame
such that a detonation develops, sending a strong shock wave downstream through
the fuelled gas which ignites it. Afterwards the combustion chamber is purged and
refuelled starting the cycle again. The major drawbacks of this concept are the loss
of e�ciency due to the de�agration-detonation-transition and the material stress
emerging from the high pressure peak of the shock wave.

Several approaches like the rotating detonation combustion (a PDC running in
circles) tried to overcome these issues with varying success but there is another pos-
sibility to approximate CVC: homogeneous auto-ignition. This can be attained by
�lling the combustion chamber with a fuel-air mixture that is strati�ed such that it
ignites simultaneously everywhere. This leads to a much weaker and broader pres-
sure wave travelling downstream and being re�ected as a suction wave at the open
end due to acoustic reasons. This suction wave than re�lls the combustion chamber
with a fresh air bu�er to purge some of the hot exhaust gas and than starting the
cycle anew as strati�ed fuel is taken in. This concept, as depicted in Figure 1.2,
is called shockless explosion combustion (SEC) and is original to the Collaborative
Research Centre (CRC) 1029, funded by the German Research Foundation (DFG),
which this thesis' author was part of. For two four-year phases the project A03 of
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1.1 First Phase

this CRC was dedicated to investigating the SEC through simulations and real-life
experiments. A brief overview of the e�orts and achievements of the �rst phase will
be given in Section 1.1 while Section 1.2 will introduce the reader to the simulation-
related questions of the second phase which this thesis will be about.
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Figure 1.2: Schematic representation of an SEC cycle in a diagram over space and time.
A pressure waves travels down the combustion chamber re�ecting at the open end, refuels
the chamber and the mixture auto-ignites again.

1.1 First Phase

Beginning in 2012 the �rst phase of project A03 of CRC 1029 established an initial
and general understanding of the SEC process, its requirements, challenges and
bene�ts (see [10], [11] and [7]). Alongside a real-life experimental set-up, that was
able to produce a single-shot quasi-homogeneous auto-ignition by the end of the
phase, a simulation software was developed by Berndt to prove the concept of the
SEC and guide the way for the experiments. A short overview of its possibilities
and methods is given here, for more information the reader is referred to [7].

The SEC-code's design is chosen carefully to meet the special requirements of
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1.1 First Phase

the task. It solves the one-dimensional reacting Euler equations

∂

∂t



ϱ

ϱu

ϱE

ϱY


= − ∂

∂x



ϱu

ϱu2 + p

(ϱE + p)u

ϱY u


+



0

0

ϱĖchem

ϱẎchem


, (1.1)

where the following notation is used throughout this work: t denotes time, x �rst
(axial) spacial direction, ϱ density, u axial �ow velocity, E total speci�c energy, p
pressure, Y the vector of species mass fractions, Ėchem and Ẏchem are the energy
and species mass fraction source terms from chemical reaction. The ideal gas law is
provided to close (1.1)

p = ϱRsT,

ϱE =
1

2
ϱu2 + ϱe,

e =

T∫
T0

cV (θ, Y ) dθ + e0(Y )

(1.2)

with Rs being the speci�c gas constant, T temperature, e internal energy, cV spe-
ci�c heat-capacity at constant volume, e0 energy stored in chemical bonds at some
reference temperature T0. In [7] and the SEC-code e0 is treated as zero. Within the
scope of the thesis at hand this fact will have no impact on the considered concepts
and will hence be omitted from discussions. Please consult the original thesis for
details on this idea.

The Euler equations (1.1) with the equations of state (1.2) model an ideal, reac-
tive, compressible but inviscid �uid �ow in one spacial dimension, which is a good
approximation of the vital processes taking place in the combustion chambers once
the SEC runs. The one-dimensionality is justi�ed because these chambers, also
called SEC-tubes, are typically shaped like cylinders with small diameter of 1 to 4
cm compared to their length of about 1 m. Of course all �ow properties must be un-
derstood as cross-sectional averages. This cross-sectional area A may also vary over
x thanks to a feature of the code which enables the quasi one-dimensional solution
of (1.1) as will be described in Subsection 3.2.2.

To solve (1.1) the SEC-code uses a �nite volume method (FVM), which is per se
conservative, in conjunction with common �ux, limiter and reconstruction methods
(see [44] or [60] for a very detailed insight to FVM). Let

q(x, t) := (ϱ, ϱu, ϱE, ϱY )T
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1.1 First Phase

be the vector of conserved �ow quantities as a continuous function of space x and
time t and f(q(x, t)) be the �ux function of the Euler equation

f(q(x, t)) := (ϱu, ϱu2 + p, (ϱE + p)u, ϱY u)T .

We also de�ne xi, xi±1/2 and ∆x for all i ∈ {1, ..., N} as the cell midpoints, interfaces
and width, respectively, of the spacial grid over the simulation domain and tk and
∆tk for all k ∈ N as the discrete time levels and current adaptive step width.
Henceforth, we assume i ∈ {1, ..., N} and k ∈ N, unless otherwise indicated, and
omit �∀i ∈ {1, ..., N}� and �∀k ∈ N� in equations. Introducing the vector of cell-
averaged integral conserved �ow quantities

Qk
i :=

1

∆x

xi+1/2∫
xi−1/2

q(ζ, tk) dζ,

we formulate the main idea of FVMs by

d

dt
∆xQk

i = f(q(xi−1/2, tk))− f(q(xi+1/2, tk)). (1.3)

This means that the conserved quantity within [xi−1/2, xi+1/2] can only change due
to its �ux over the grid cell boundaries. The time update of the solution to (1.1)
implemented in the SEC-code is realised as

Qk+1
i = Qk

i −
∆tk

∆x
(F

k+1/2
i+1/2 − F

k+1/2
i−1/2 ), (1.4)

where F
k+1/2
i−1/2 is the numerical form of f(q(xi−1/2, tk+1/2)). Usually, much e�ort is

taken to �nd a �ux function meeting special requirements. As one constant value
Q is assigned to each grid cell, a Riemann problem arises at every cell interface.
Accordingly, a Riemann solver was to be implemented. For the distinct applications
of the SEC-code, the well-established HLL �ux [29] with Einfeldt's correction [23]
was a good choice. It only had to be adjusted to multi-species �ows [7]. To achieve
second order accuracy, this �ux function is evaluated using an estimation of the
�ow states at tk + ∆tk/2 and xi±1/2 referred to as reconstruction. The spacial and
temporal approximation of q is here piecewise linear, yielding the so-called MUSCL-
Hancock scheme (see [60], section 13.4). As recommended for MUSCL-type schemes
limiter functions are provided, enhancing the stability of the approximation at the
interfaces in the presence of shock waves.

Chemistry and �uid dynamics are handled separately via the second-order oper-
ator splitting method Strang splitting [53]. This means, the �uxes or source terms,
respectively, from the di�erent parts of the process are computed sequentially: e.g.
�rst the chemistry time update is calculated for half a time step width, then a full
gasdynamics time update is done and �nally, another half chemistry step, yielding a
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1.2 Second Phase, Outline and Beyond

scheme like Qk+1
i = Chemistry∆tk/2(Gasdynamics∆tk(Chemistry∆tk/2(Q

k
i ))). This idea

of splitting the solution process into independent steps makes modularised imple-
mentation possible as well as an acceleration of the computations. For convenience,
update steps like (1.4) are formulated only with respect to the current operator,
omitting fractional time stepping due to the splitting throughout the following chap-
ters.

Beside the inclusion of complex, realistic chemistry, a simpli�ed perfect gas ki-
netic model was developed in [8] to enable fast studies of the general processes
governing the SEC. In this thesis it will be referred to as �3-species ignition delay
kinetics� because it works with only three generic species representing a fuel, a rad-
ical, and a product species. The reaction from fuel to radical serves as an ignition
delay clock, whereas energy is released during the transition from radical to prod-
uct. This is also the only reaction path possible within this model. The reaction
rate constants r have the general form of Arrhenius equations r ∼ exp(1− EA/T ),
EA being the activation energy and T the temperature (see [35], section 10.2 for
a theoretical insight to this assumption). Ignition delay time and heat release rate
were calibrated to imitate the behaviour of a realistic fuel igniting in one stage. This
scheme was also extended to implement a two-stage ignition using �ve species. The
models introduce reference values coming from hot gas. Whenever these kinetics are
used in the following, the �ow properties are understood as non-dimensional with
reference values: pref = 105 Pa, Tref = 1000 K, xref = 0.8 m and tref = 1−3 s.

As common for FVM boundary conditions are imposed via ghost cells: additional
grid cells adjacent to the computational domain which are computed according to
the condition that is to be ful�lled. Currently, they allow for re�ecting walls, zero-
gradient, expansion into an in�nitely large plenum chamber with �xed pressure and
periodic boundaries as well as simply presetting any (time-dependent) state.

In the �rst phase of the CRC 1029 one was able to show that, once it is started,
the SEC is a promising concept - not only in simulations but also in reality. Sugges-
tions for possible fuel mixtures, axial tube radius variations and operation temper-
atures have been concluded from the SEC-code. The latter has been validated via
well-known model problems and proven to meet the demand for SEC-speci�c accu-
racy, stability and e�ciency. This left us with further questions pointing towards
the realisation of the SEC within a gas turbine and a handy software foundation to
tackle them in the second phase.

1.2 Second Phase, Outline and Beyond

After the elementary work of the �rst phase, the next step was to investigate the
bene�ts, challenges, and overall possibilities of an implementation of the SEC in a
gas turbine. This aim includes studying the starting process of such a machine as
well as the interaction of multiple SEC-tubes with adjacent plenum chambers and
each other when it is operating.

6



1.2 Second Phase, Outline and Beyond

A �rst approach towards simulating the in�uence of the periodic �uctuations
from the SEC-tube on a turbine plenum was made in the �rst phase using the feature
of axial variation of the cross-sectional area. Albeit, such a set-up is unemployable
when researching the interaction of multiple SEC-tubes. Therefore, a new feature
was needed combining multiple quasi one-dimensional domains and coupling them
in a network model. The preliminary work of [59] has been extended and improved
for this thesis. The current implementation is described in Chapter 2 in addition to a
simulation series of di�erent placements of combustions chambers along the plenums.

Since the SEC-code was also used by partner projects some changes stem from
the requirements of other groups' research. The largest of these adaptations is the
implementation of an adaptive remeshing algorithm called �moving mesh method�
as explained in Chapter 3. This algorithm is based on the idea of keeping the num-
ber of grid cells constant while changing their width and thereby resolving regions
of high gradients better than others. Inherently, it is best used with travelling waves
which we �nd plenty in the applications of the SEC-code. It is also very suitable to
keep the computational cost from complex chemistry at bay which was one of the
most relevant demands from our partner project A08.

A conventional gas turbine is started by accelerating the shaft of turbine and
compressor with an auxiliary device. Then one ignites the de�agration �ames in
the combustion chambers and slowly raises the continuous fuel supply until the
turbine reaches the desired speed. For an SEC gas turbine the proposed starting
process begins just the same. However, when a prede�ned goal pressure is reached
in the combustion chamber the fuelling valve operation is changed to �rst insert an
air bu�er and then inject a strati�ed fuel pro�le to create a homogeneously auto-
igniting fuel package which than starts the SEC cycle. Hence, the investigation
of this process requires the simulation of a de�agration �ame and consequentially
molecular transport and turbulence. These features have been realised and described
in Chapter 4.

To simulate a simple de�agration �ame, the kinetic model described in Sec-
tion 1.1 has been stripped o� its ignition delay by cancelling the radical species and
letting the fuel species release energy right away when reacting to product species.
Thereby, we get a perfect gas model we will call �2-species Arrhenius kinetics�. As
this model is made for starting the SEC from a de�agration �ame its point of ref-
erence is gas at room temperature, generating a slightly di�erent set of reference
values than the one of the 3-species ignition delay kinetics, which is designed for
evaluation of an already working SEC: pref = 105 Pa, Tref = 300 K, xref = 1 m,
tref ≈ 3.4×10−3 s. Both kinetic models were also augmented by constant molecular
transport coe�cients: dynamic viscosity µ = 5 × 10−5 Pa·s, thermal conductivity
κ = 0.2 W/(m·K) and mass di�usion coe�cient D = 4 × 10−5 m2/s. All val-
ues have been chosen to lie within a range reasonable for gases like hydrogen or
methane at high temperatures (cf. [24, 19]) and are non-dimensionalised with the
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1.2 Second Phase, Outline and Beyond

respective reference values. There is also one version of the �2-species Arrhenius ki-
netics� with di�erent transport coe�cients obeying a thickened �ame ansatz yielding
µ = κ = D = 0.009. This approach, dating back to [12], broadens the reaction front
of a �ame while keeping the �ame speed to be able to resolve the usually very thin
�ame front within a simulation of bigger framework with a comfortable number of
grid cells.

Since the CRC 1029 was terminated after the second phase but a lot of questions
still remain the SEC will be studied further in a di�erent scienti�c context. The
next step will be the full simulation of an SEC gas turbine starting and operating at
di�erent stages of work load. The foundation for this goal is lain with the precedent
work of phase one, research from partner projects as well as project partners and
this thesis.

8



Chapter 2

One-Dimensional Network Model

The basic SEC-code by Berndt (described in detail in [7]) was designed to simulate
a one-dimensional approximation to a single SEC-tube for the study of operating
points, chemical models and the fuelling process in general. As already stated in
Chapter 1, a real-life gas turbine works with more than only one combustion cham-
ber. Usually 5 to 6 are bundled in an annular array in the combustor section. The
combustion chambers suck air from an upstream compressor and �re into a plenum
connected to the turbine. In order to simulate and examine such a one-dimensional
network con�guration it was necessary to extend the basic SEC-code. A �rst step
towards this goal has already been taken in [59]. The code was improved since then,
enhancing the computational e�ciency as well as the accuracy and �exibility. Sec-
tion 2.1 will be about the details of the current implementation. Di�erences from
the �rst version will be highlighted wherever relevant. Simulation results, expand-
ing the study from [59] researching the placement of combustion chambers along
the plenum, are shown in Section 2.2. Conclusions and a short outlook on possible
future work are given in Section 2.3.

2.1 Implementation

The original SEC-code solves the one-dimensional reactive Euler equations (1.1) in
one computational domain. Thus, it can simulate chemistry and inviscid �uid dy-
namics in a single SEC-tube. To be able to look at the phenomena of interaction
between multiple combustion chambers with and via one or two plenum chambers
an extension was added such that every component can be model by an own com-
putational domain. Interactions are realised through suitable boundary conditions
coupling domains in a two-dimensional framework. In [59] it has already been shown,
that such an approach is possible and desirable, yielding an e�cient tool for con-
�guring a multi-tube test rig as well as developing control algorithms for a working
SEC gas turbine. Most of the modelling e�ort actually lies in the coupling method
requiring pseudo two-dimensional treatment of boundary conditions and a posteriori
�ux correction to ensure conservation. These are also the main �elds of improvement
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2.1 Implementation

for j = 1 to ndomains do
set up domain j (see Appendix B.4 for instructions);

end
while t < tend do

for j = 1 to ndomains do
calculate the maximal time step size ∆tkj ;

end
set global time step size ∆tk = min

j
(∆tkj );

for j = 1 to ndomains do
current domain number = j;
store edge cells;
solve governing equations through Strang splitting;
if interacting domain number > j then

restore edge cells;
end
if two-dimensional interaction then

begin second dimension boundary handling:
add lateral momentum of 0 to Q;
compute upper and lower boundaries;
reconstruct states at upper and lower cell interfaces;
compute �ux over upper and lower cell interfaces;
update state vectors using FV scheme (1.4);
rotate �ux for �ux correction;
store �ux;
remove lateral momentum;

end

end

end
begin �ux correction:

for j = 1 to ndomains do
if interacting domain number > j then

advance interactive cell with stored �ux;
end

end

end
t← t+∆tk;

end

Figure 2.1: SEC-code work�ow with multiple domains
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in comparison to the preceding work.
Figure 2.1 shows the full work�ow of a network simulation. Roughly, the pro-

cedure is as follows: After setting up all domains separately, �xing an order, the
simulation is started. The time step size ∆tk equals the minimum of all maximal
time step sizes for all domains. This is an improvement, for in the �rst version a
global time step size was de�ned manually for the complete simulation time. Hence,
the new implementation is more robust and e�cient. Using this step size ∆tk each
domain's solution gets evolved in time exploiting Strang splitting for chemistry,
molecular transport and gasdynamics. If the current domain is coupled to another
one in a two-dimensional fashion, the second dimension is evolved in time after-
wards as in common dimensional splitting schemes. Finally, the �uxes between the
domains are corrected to ensure conservation of mass, momentum, energy density
and species. The details of domain coupling and �ux correction are described in
Subsection 2.1.1. It will be explained using the example of multiple combustion
chambers meeting a plenum as it was designed for this case but of course the con�g-
uration could be anything. Subsection 2.1.2 provides information about the turbine
and compressor models implemented for the usage in this network con�guration.

2.1.1 Coupling of Domains

Simulating multiple quasi one-dimensional domains is easily done as long as they
are separated from each other: simply loop over the simulation process with dif-
ferent con�gurations representing the current domain. Conversely, this means that
the most interesting part is the region where two domains meet. To get into the
subject, let us consider the simplest possible arrangement �rst: Suppose, we have
two domains being aligned like they were just one big domain cut in halves. We
start the simulation by advancing the solution of the �rst domain adding cells from
the second one as boundary condition ghost cells to one end. Now, store the �ux
over this boundary interface and update the second domain using this �ux for the
corresponding interface. This sounds straightforward which it actually is for this
case.

Figure 2.2: A three-dimensional model of the torus-shaped turbine plenum with six slanted
combustion chambers.
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The complexity of the current implementation results from the aspiration to con-
nect domains not only on a one-dimensional line but in a two-dimensional plane.
Thereby, multiple combustion chambers can meet a plenum even being slanted. A
�rst approach towards this issue was described in [59] and the general idea remained
the same, changing only the minutiae of execution. To connect two domains in a
two-dimensional way, we obviously need a second spacial dimension, i.e., boundary
conditions and a solution update step in the lateral direction y. Naturally, this could
be achieved by extending the code to two dimensions in general, necessitating two-
dimensional grid management, evolution of all grid cells in two dimensions, lateral
momentum and more. To avoid this computational overhead, keeping the simple
one-dimensional structure for e�ciency, a trick is needed enabling two-dimensional
interaction of essentially one-dimensional domains. Consider the case of three SEC
combustion chambers being connected to a turbine plenum. As depicted in Fig-
ure 2.2, the plenum is modelled as a torus employing periodic boundary conditions,
while the combustion chambers largely remain straight cylinders. For the sake of
simplicity let us assume the junctions are orthogonal for now. An SEC-tube might
be connected to more than one plenum cell. We require integers here as we do not
involve complex cut-cell algorithms or the like. Therefore, we need to average the
�ow properties over these interacting cells to gain a boundary condition ghost cell.
Also, the momentum stored in the state vector of the plenum cells will be in the
lateral direction seen from the combustion chamber. The lateral momentum of the
plenum cells which we need for the combustion chamber boundary is supposed to
be zero. Consequentially, the ghost cells will have zero momentum. Here is where
slanting domains adds complexity but we will postpone this issue a little further.
At this point, we already see a problem, when coping with the plenum boundaries
as we have averaged plenum cells to compute one �ux over one interface but for the
plenum cells we need the �ux over multiple interfaces. The �ner resolution of the
interaction interface calls for the favouring of the �ux calculated from the plenum
domain instead. So the possible work�ow described in the case of aligned domains
changes. We now restore the edge cell of the combustion chamber which interacts
with the plenum and advance it again later when the �ux from the plenum is avail-
able. This approach is common in the handling of multi-dimensional coarse-�ne grid
interfaces (see e.g. [6]).

Now, let us turn to the plenum. After the solution was updated in the axial
direction (following the perimeter of the torus in this case) we rearrange our view
on the plenum as a two dimensional domain with only one cell in the lateral di-
rection. Figure 2.3 illustrates this picture with already added ghost cells for the
lateral direction. As the plenum is a closed torus, most cells represent a re�ecting
wall boundary condition. The only exceptions are the ones adjacent to the plenum
cells which interact with the SEC-tubes. These are copies of the downstream state
of the corresponding combustion chamber domains. Reinterpreting the combustion
chambers' axial momentum as lateral for the plenum, we �nd ourselves in a situation
similar to advancing the solution in a one-dimensional domain. We merely need to
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reflecting wall

plenum

SEC-tube 1 SEC-tube 2

lateral (y)

axial (x)

Figure 2.3: Interaction of SEC-tubes and a plenum. White cells show the pseudo one-
dimensional domain of the plenum, dark grey cells are solid wall boundary cells and light
grey cells are copies of SEC-tubes' states.

repeat the �ux computation and �nite volume scheme (1.4) for every plenum cell in
the second direction. As we stay with our one-dimensional view the lateral momen-
tum produced in the plenum must dissipate and, therefore, is converted implicitly
to internal energy by keeping the energy density but setting the lateral momentum
to zero.

If we now consider slanted combustion chambers we can transform their momen-
tum vector to the plenum's coordinate system, keep the axial part and dissipate
the lateral. Generally speaking, this was the approach applied in [59] based on the
groundwork of Berndt.

Q̂k
N

Q̂k
j,1 Q̂k

j+1,1

combustion chamber

turbine plenum

Figure 2.4: Example of a slanted combustion chamber joining the turbine plenum involving
two cells. Gray arrows indicate the direction of quasi one-dimensional domains. Q̂ and Q̂
are two-dimensional states of the combustion chamber or plenum, respectively.

For the thesis at hand the process was re�ned to include a more realistic view
on the slanted con�guration since e.g. the interface area actually changes with the
angle. Please keep in mind, that we still require the junction to be resolved by
an integer number of cells from the plenum's side. We will call it s. Figure 2.4
depicts a quasi one-dimensional SEC-tube meeting the plenum in a non-orthogonal
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∆xT

∆y

∆xn ∆xS

ϑ

∆y

F
k+1/2
n−1/2

G
k+1/2
j G

k+1/2
j+1

x

y

Figure 2.5: Zoom into the junction of Figure 2.4 showing the three coupled grid cells. Fluxes

over cell interfaces F
k+1/2
N−1/2, G

k+1/2
j , G

k+1/2
j+1 , angle ϑ, combustion chamber's cell width ∆xT ,

last cell's average width ∆xN , long side length ∆xS and plenum diameter ∆y are marked.

fashion. To avoid a confusing amount of indices we will write combustion chamber
states as Qk

i and plenum states as Qk
j,i using two subscripts for the latter, denoting

axial and lateral direction, respectively. We also indicate a two-dimensional state
vector by giving it a hat: Q̂k

i or Q̂k
i , respectively. Moreover, we stick to the one

combustion chamber as an instance for all possible junctions. Let us work through
the second dimension boundary handling once again looking at all the details of the
current implementation. Figure 2.1 shows us the path we have to follow. At �rst,
all plenum cells get a lateral momentum component of zero, making them fully two-
dimensional. Afterwards the ghost cells for the y-direction are computed. As before
the ones representing the combustion chamber are s copies of the corresponding
domain's state. Since we consider the case of a combustion chamber interacting
with a turbine plenum this will be the downstream cell's state. Suppressing an
index to indicate that the number of cells N belongs to the combustion chamber to
avoid double subscripts we write Qk

N . Remember that we restored this value, so k is
the correct time index. To �t in with the current coordinate system of the plenum,
these state vectors need to be transformed by rotation. Hence, they gain a lateral
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momentum component, too

Qk
N = ϱN



1

uN

EN

YN


−→ Q̂k

N := ϱN



1

−uN cos(ϑ)

−uN sin(ϑ)

EN

YN


. (2.1)

Here ϑ is the angle between the x-axis of the combustion chamber and the one of the
plenum as can be seen in Figure 2.5 which is the close up sketch of the interacting
cells. Regarding such a slanted combustion chamber cell we �nd that it is no longer
a square but a trapezoid. Now, the states are reconstructed at the interfaces. These
parts are new for the current version of the domain coupling. For the plenum cells
this is a straightforward adaptation from the axial direction, simply exchanging ∆x
for ∆y, the plenum diameter

Q̂k+1/2
i,1/2 = Q̂k

i,1 −
∆y

2

∂Q̂
∂y

+
∆tk

2

∂Q̂
∂t
, ∀i ∈ {j, ..., j + s− 1}.

For the combustion chamber cell, we need to rede�ne∆x as the downstream interface
is not parallel to the upstream interface. When computing the volume of this cell
through VN = AN ·∆xN it is clear from Figure 2.5, that ∆xN has to be the average
of the short and the long side of the trapezoid, i.e., ∆xN := ∆xT+∆xS

2
. Hence, we

can reconstruct the state at the cell's edge using ∆xN
2

Q̂
k+1/2
N+1/2 = Q̂k

N +
∆xN
2

∂Q̂

∂x
+

∆tk

2

∂Q̂

∂t
.

Another option that is implemented is the reconstruction of the combustion cham-
ber's state at each partial face that coincides with a face of the turbine plenum cell.
In this case, we would need to de�ne a ∆xNi

for each of the s faces which should
satisfy ∆xNi

= χi − (xN−1/2 +
∆xN
2

), with χi being the midpoint of face i, and then
compute

Q̂
k+1/2
N+1/2,i = Q̂k

N +∆xNi

∂Q̂

∂x
+

∆tk

2

∂Q̂

∂t
, ∀i ∈ {j, ..., j + s− 1}.

Now, to advance the plenum cells which interact with the combustion chamber
in time, we have to use the lateral �ux g from the two-dimensional reactive Euler
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equations

g(q) =



ϱv

ϱuv

ϱv2 + p

(ϱE + p)v

ϱY v


.

Here, v denotes the lateral velocity. Its numerical counterparts G
k+1/2
i , ∀i ∈

{j, ..., j + s− 1} can readily be calculated from reconstructed values by an already
available HLLE-�ux function written for perfect gases in three dimensions. As there
is no �ux opposite to the interaction face due to a re�ecting wall boundary, the
update step is computed by

Q̂k+1
i,1 = Q̂k

i,1 +
∆tk

∆y
G
k+1/2
i , ∀i ∈ {j, ..., j + s− 1}.

Employing the technique described in Subsection 3.2.2, area variation is also in-
cluded for the lateral time stepping. As before, the lateral moment is set to zero
afterwards to meet the dissipation assumption.

What remains is to transform the s two-dimensional �uxes from the plenum
coordinate system into one one-dimensional �ux for the combustion chamber.To
this aim, we reconsider the rotation applied to the combustion chamber state Qk

N in
(2.1) and insert this general state into the lateral �ux function g yielding

g(q̂) =



ϱu sin(ϑ)

ϱu2 cos(ϑ) sin(ϑ)

ϱ(u sin(ϑ))2 + p

(ϱE + p)u sin(ϑ)

ϱY u sin(ϑ)


.
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To regain the form of the axial two-dimensional �ux f we compute

ĝ(q) =



g(q)1/ sin(ϑ)

g(q)2/(cos(ϑ) sin(ϑ) + p)

(g(q)3 − p)/(sin(ϑ))2

g(q)4/ sin(ϑ)

g(q)5/ sin(ϑ)


.

Actually, we drop the lateral momentum �ux as the dissipation via conversion to
internal energy is already done by keeping the energy density �ux. Now, using
the transformed �uxes Ĝ

k+1/2
i , the combustion chamber cell at the junction to the

plenum can be advanced in time through

Q̂k+1
N = Q̂k

N −
∆tk

∆xN

(
1

s

j+s−1∑
i=j

Ĝ
k+1/2
i − F k+1/2

N−1/2

)
.

Although we have always spoken about combustion chambers and plenums, this
has only been an illustrating example. The described method for coupling domains
is valid in general and can be used with any con�guration of domains.

2.1.2 Turbine and Compressor Model

In the considerations so far, the turbine plenum has been closed. For a simulation
of multiple SEC-tubes �ring into that plenum for a long time we would run into a
problem as of course a real-world gas turbine does not keep the �ow parcels from
the combustion chambers but pass them on to a turbine driving its blades thereby.
Hence, we need a model of this process. In [59] a �rst version has already been
implemented which was now extended to simulate not only the mass loss through a
turbine but also the gain through a compressor.

A compressor or turbine uses the energy of rotating blades to enhance the pres-
sure of a �uid or the energy of an expanding �uid to drive a rotor, respectively.
Since the focus of this work is the interaction of combustion chambers and plenums,
it su�ces to reduce the turbomachine to its net e�ects on the �ow, yielding a zero-
dimensional model, instead of fully simulating it. For now, we are only interested in
the mass �ux coming from or vanishing into the compressor or turbine, respectively.
To express the working characteristics of a speci�ed turbomachine, it is common
practice to use non-dimensional quantities for mass �ux ṁ (dot notation emerges
from classical engineering notation), rotational speed, temperature and pressure (see
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[15], section 4.5). For temperature and pressure, one uses the ratios of outgoing Tout,
pout to incoming Tin, pin �ow property. For mass �ux

ṁ
√
RsT in

ATpin
(2.2)

has proven useful. Rs denotes the speci�c gas constant, AT the cross-sectional area
of the turbomachine. As both are mostly constant over a certain con�guration, one
even reduces the expression to the so-called corrected (dimensional) mass �ux

ṁcorr :=
ṁ
√
Tin

pin
. (2.3)

For a our simple turbomachine model, we assume the point of operation does not
greatly change. Hence, we �x ṁcorr over one con�guration, essentially depending on
AT . This gives us an equation for the mass �ux by rearranging (2.3).

For the calculation of the mass �ux to the turbine, we insert ps and Ts, the
stagnation pressure and temperature, respectively. We compute these from �ow
states in the turbine plenum using the following equations

ps = p

(
1 +

γ − 1

2
M2

) γ−1
γ

,

Ts = T

(
1 +

γ − 1

2
M2

)
with isentropic exponent γ. We assume that the �uid reaches the speed of sound,
thus Mach numberM = 1. This is reasonable for turbomachines operating at full
power only. Since we knowm = ϱV , V being the volume, and ṁ = ∆m

∆t
the di�erence

in density in a plenum ∆ϱ that is produced by the turbine within a time step ∆tk

can be expressed by

∆ϱ = ṁ
∆tk

AP∆x
. (2.4)

AP denotes the cross-sectional area of the plenum. An update of the turbine plenum
state thus looks as follows

Qk+1
i =

ϱ−∆ϱ

ϱ
Qk
i ,

The minus sign emerges from our knowledge that gas expands into the turbine to
drive the rotor.

Since we need the ingoing pressure and temperature for (2.3), the mass �ux from
the compressor uses a prede�ned pressure pc and temperature Tc. (2.4) is still valid
for the compressor but the new density is calculated by ϱn = ϱ+∆ϱ. We calculate
the new pressure pn and energy density ϱnEn of the plenum state by assuming an
isentropic expansion, for which we know pV γ is constant throughout the process.
We call this constant ce and compute

p = ceϱ
γ. (2.5)
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Inserting the ideal gas law ϱ = p
RsT

into (2.5) for the compressor state we get

ce =
(RsTc)

γ

pγ−1
c

.

Now we use (2.5) again for pn yielding

pn =
(RsTc)

γ

pγ−1
c

ϱγn

With this new pressure we compute the updated energy density by ϱnEn = pn
(γ−1)

+
u2

2ϱn
. The remaining compressor plenum quantities mass, momentum and species are

updated through multiplication by ϱn
ϱ
as in the turbine plenum. Please note, that

Rs is the speci�c gas constant of the gas mixture. According to [35], equation (16.3),
Rs is calculated from

Rs = Ru

Nspec∑
i=1

Yi
Mi

with Ru being the universal gas constant, Nspec the number of species and Mi the
molar mass of species i. For non-dimensional quantities Rs cancels out due to
division by reference values.

With these equations the mass �ow from the compressor remains constant over
time scaling only with the time step size. Therefore, it is designed to stop �lling at
a certain threshold. Although the turbine changes the mass �ow according to the
state within the plenum, a threshold is needed, too. This is due to the fact that
we �xed the point of operation, so that the turbine would not stop working, even
when the ambient pressure is reached in the plenum. The threshold values hence
represent the maximum and the minimum output pressure, respectively.

2.2 Simulations

governing equations quasi one-dimensional Euler

chemistry 3-species ignition delay kinetics

domains

combustion chambers
number: 3, length: 1, radius: 0.025, widening towards
turbine plenum

connection pieces
number 3, length: 0.05, radius: 0.075, tightening to-
wards combustion chamber
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compressor plenum number: 1, length: 5, radius: 0.075, no variation

turbine plenum number: 1, length: 5, radius: 0.1, no variation

initial values

combustion chambers stabilised cyclic SEC at ignition

connection pieces T = 1, p = 1, u = 0, product species everywhere

compressor plenum T = 1, p = 1, u = 0, product species everywhere

turbine plenum T = 2.6, p = 1, u = 0, product species everywhere

boundaries

combustion chambers
left: connection piece with pressure valve,
right: 45◦ connection to turbine plenum

connection pieces
left: 45◦ connection to compressor plenum,
right: combustion chamber with pressure valve

compressor plenum
left and right: periodic, top: re�ecting wall, bottom:
45◦ connections to connection pieces at (0.8, 2.5, 4.2),
(1.5, 2.5, 3.5), (2, 2.5, 3) and (1.5, 2.5, 4.5), resp.

turbine plenum
left and right: periodic, top: 45◦ connections to combus-
tion chambers at (0.8, 2.5, 4.2), (1.5, 2.5, 3.5), (2, 2.5, 3)
and (1.5, 2.5, 4.5), resp., bottom: re�ecting wall

grid cells
combustion chambers: 600, connection pieces: 30,
compressor plenum: 354, turbine plenum: 266

time steps
step size chosen automatically, snapshots stored at mul-
tiples of 4× 10−3

Table 2.1: Settings for network model simulations.

Of course the con�guration introduced in this chapter has been simulated with the
network feature. To outline the setting, Table 2.1 holds the important informa-
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tion to replicate the simulations. It includes three combustion chambers and two
plenums - one for the upstream compressor, one for the downstream turbine. For
stability reasons three connection pieces between compressor plenum and combus-
tion chambers were added. They ensure the proper operation of the pressure valve
which is used to fuel the combustion chambers. As this value is unity and equal to
the compressor input pressure as well as the minimum turbine output pressure, the
compressor plenum works as a transition chamber in this case. Due to this fact, we
do not expect high amplitudes for pressure in the turbine plenum.

The plenums are set up as toruses with periodic boundary conditions and without
cross-sectional area variation. The diameter for the turbine plenum was extracted
from the studies in [59]. The stability of the SEC is less sensitive to the compres-
sor plenum diameter which is hence set to be just sensibly smaller than the turbine
plenum's. Both domains have the same length of 5 which corresponds to the perime-
ter of the toruses. The connection pieces and combustion chambers, respectively,
are coupled to these domains via second dimension boundaries as described in Sub-
section 2.1.1. All non-interactive boundary cells represent a re�ecting wall. Both
plenums are started with p = 1, u = 0 and product species everywhere. For a �rst
trial, also both plenums were initialised with T = 1 but for the presented simulation,
the turbine plenum was preheated to T = 2.6, which was the mean temperature at
t = 20 in the preliminary study. The resolution is set to a �fth of each radius.

The connection pieces interact with the compressor plenum at the upstream side
and the combustion chambers at the downstream side. They are used to perform the
tightening of the cross-sectional area from compressor plenum value to combustion
chamber value. They are only as short as 0.05 but this intermediate step is crucial
for the operation of the pressure valve as a suction wave travelling upstream would
be weakened to much by the area variation if it was implemented in the combustion
chambers before the pressure valve preventing a proper �ushing and re�lling of
the SEC-tube. Hence, the valve is included in the interaction interface between
combustion chamber and connection piece. The connection pieces are initialised just
as the compressor plenum. Since they are aligned with the combustion chambers
they are slanted by 45◦ and resolved by the same grid width.

The combustion chambers surely form the heart of the network and feature the
most pronounced gas dynamical processes. Therefore, they are resolved quite high
with 600 grid cells at a domain length of 1. The radius variation towards the
turbine plenum is not separated for this direction as there is no sensitive valve to
pay attention to. The upstream boundary is formed by the pressure valve of the
corresponding connection piece while the downstream boundary interacts with the
turbine plenum. The valve, will open when the pressure in the leftmost grid cell
of the combustion chamber drops below the pressure of the adjacent grid cell of
the corresponding connection piece. When opened the left boundary switches from
re�ecting wall to simple domain interaction and the leftmost combustion chamber
cell is directly supplied with an air bu�er �rst, then a strati�ed fuel pro�le which
is con�gured to auto-ignite homogeneously in a single SEC-tube as simulated in
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the �rst phase of the CRC 1029. Since they are slanted by 45◦, each combustion
chamber domain ends with a trapezoidal grid cell of a much bigger width than
the other cells equal to 0.1. Consequentially, SEC-tubes are actually a bit longer
than 1. This rather big trapezoidal grid cell is also the main reason for di�erences
between the simulation at hand and the ones carried out in [59] with a similar
setting though without compressor plenum. Since the full starting process of the
machine would go beyond the scope of this thesis, the combustion chambers where
initialised right before ignition (when the radical mass fraction is at its peak value)
of a stabilised SEC-cycle taken from the before mentioned preliminary study for this
network simulation.

Beside the proof of concept for the network model described within this chapter,
this series of simulations aims to study the in�uence of the combustion chambers'
placement on the plenums' perimeters. One simulation was carried out with equidis-
tantly distributed combustion chambers, two were set up with bundled tubes with
minimal distance of 1 and 0.5. The forth is a more asymmetric distribution with
two bundled combustion chambers at distance 1 and the third being separated as
far as possible from both.

Figure 2.6: Equidistant case as representative example of radical mass fraction (left), pres-
sure (middle) and temperature (right) over space and time for a combustion chamber in
network simulation.

First of all, it is important to notice that the SEC works stably in all cases.
The di�erences within the combustion chambers between the four placement cases
are only minor for our setting. An exemplary insight is given in Figure 2.6 for the
equidistant case and combustion chamber one - leftmost as seen from the turbine
plenum. A slight di�erence in the cycle length is the most interesting point here
because for a real-life gas turbine which runs very much longer than simulated and
features more combustion chambers a shorter cycle might be advantageous in terms
of e�ciency. In this view, the asymmetric fourth positioning option would be best,
followed by the equidistant one.

Figure 2.7 shows velocity, pressure and temperature over space and time for the
compressor plenum. Due to its transitional character for this simulation series the
amplitudes are very low. Nonetheless, we can detect tendencies towards some char-
acteristic patterns for the distinct cases. Especially, the fully bundled positioning
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Figure 2.7: Comparison of velocity (left), pressure (middle) and temperature (right) map
over space and time for compressor plenum in network simulation with di�erent placement:
equidistant (�rst row), bundled with minimal distance 1 (second row), bundled with minimal
distance 0.5 (third row) and two bundled and one isolated combustion chamber (last row).

options two and three show weaker and more locally bounded perturbation waves.
Strong locality of peaks can be disadvantageous in terms of material stress and must
be considered seriously, when deciding for a design layout. Case four gives the im-
pression of a mixture of bundled and equidistant case as the waves are weaker than
the equidistantly distributed case but also wider spread over the full plenum length
than in the fully bundled cases.

The most interesting part is the in�uence of the combustion chamber placement
on the turbine plenum. As has been expected, the pressure peaks are not yet very
high but the speci�c patters can be studied, nonetheless. From Figure 2.8 we can
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Figure 2.8: Comparison of velocity (left), pressure (middle) and temperature (right) for
turbine plenum in network simulation with di�erent placement: equidistant (�rst row),
bundled with minimal distance 1 (second row), bundled with minimal distance 0.5 (third
row) and two bundled and one isolated combustion chamber (last row).

deduce that the fully bundled cases feature higher pressure amplitudes. Although
the more distant case two takes longer, both con�gurations bound the highest and
lowest pressures in the plenum centre at x = 2.5, hence, establishing the same
locality found in the compressor plenum. This shows best in Figure 2.10 where the
pressure over space for the last time point t = 20 is depicted in the middle panel.
For the other two cases the pressure peaks are lower, although case four again looks
like a mixture between bundled and equally distributed placement as can be seen in
the pressure function over time at the plenum centre in Figure 2.9.

The velocity shows a clear uptrend over time in Figure 2.9, which implies that
the slanting of combustion chambers leads to a corresponding mean �ow in the
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2.2 Simulations

Figure 2.9: Comparison of velocity (left), pressure (middle) and temperature (right) over
time at x = 2.5 for turbine plenum in network simulation with di�erent placement: equidis-
tant (�rst row), bundled with minimal distance 1 (second row), bundled with minimal dis-
tance 0.5 (third row) and two bundled and one isolated combustion chamber (last row).

turbine plenum as would be expected in a real-life experiment. Which might be
most confusing is the comparably high amplitude in velocity for case four. Figure 2.8
and Figure 2.10 give us a clearer view here. The bundled cases have actually higher
velocity amplitudes but only to the left and right of the centre x = 2.5. For case
four the in�uence of the tube to the right is much smaller than the one of the left
tube and of course the middle one at x = 2.5 resulting in stronger amplitudes at
this location. This gives us an impression of how the tube placement and angle
between combustion chamber and turbine plenum might play a role for the velocity
distribution in the turbine plenum.

The described di�erences in the pressure and velocity map in�uence the temper-
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Figure 2.10: Comparison of velocity (left), pressure (middle) and temperature (right) over
space at t = 20 for turbine plenum in network simulation with di�erent placement: equidis-
tant (�rst row), bundled with minimal distance 1 (second row), bundled with minimal dis-
tance 0.5 (third row) and two bundled and one isolated combustion chamber (last row).

ature distribution within the turbine plenum. The locally strong velocity amplitudes
in the bundled cases carry away the temperature peaks coming from the combustion
chambers very fast also giving rise to hotter and colder spots than in case one and
four (see Figure 2.10). As the pressure is not only highest but also lowest in the
centre for the bundled cases, it is also cooler compared to the rest of the plenum
perimeter although a combustion chamber directly �res into that region. Figure 2.9
suggests that while in all cases the mean temperature rises in the turbine plenum,
the bundled cases might settle with a lower mean temperature in the end, which
could be desirable to enhance the e�ciency of turbine blade cooling. Case one and
four show quite similar behaviour for the temperature so far.
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2.3 Conclusions

The simulations of Section 2.2 have proven that the one-dimensional network model
is a useful tool for the investigation of interaction behaviour in di�erent gas turbine
con�gurations. Its computational e�ciency allows for in-depth parameter studies as
well as the development and tuning of optimal control schemes. The simulations have
also given hints about how the distribution of combustion chambers along the turbine
plenum perimeter can change the �ow property patterns therein so it will be worth
a more intensive study. For now, we conclude that the bundled cases can generate
higher velocities but also locally higher material stress than the equidistant one.
Hence, for a gas turbine with about six combustion chambers, it might be bene�cial
to combine both options by equally spacing bundles of combustion chambers out as
has been done in case four.

For future studies, a more detailed model of the turbomachinery is already on the
anvil. It will couple compressor and turbine as should be in a real-life gas turbine and
thereby enable the simulation of the starting process and optimisation of plenum
parameters. It might also be interesting to have a look at �ring patterns as has
been done for the PDC in [62] instead of running the SEC-tubes simultaneously. A
thorough investigation of mis�ring resistance of the SEC as well as the restarting
of a choked o� combustion chamber as has been teased in [59] should also help to
gain some more insight of the possible advantageous and challenges of a full SEC
gas turbine.

27



Chapter 3

Moving Mesh Method

When hot spots in the SEC setting are to be examined, a high spacial resolution
of at least 5 × 10−5 m is crucial since they can lead to detonations. Usually, such
high resolutions would violate the assumption of cross-sectional averaging but hot
spot studies have a slightly di�erent mindset. In this case the legitimation of one-
dimensional simulation follows from spherical symmetry, interpreting the spacial
dimension as the radius. Such an investigation was to be conducted by a partner
project within the CRC using the SEC-code (see [63]). Therefore the code needed to
be extended by the possibility to handle �ne resolved grids in a computationally e�-
cient way. A classical ansatz for such a challenge is adaptive mesh re�nement but in
this chapter an alternative called �moving mesh method� (MMM) is shown. At �rst,
a short introduction to adaptive remeshing is given in Section 3.1, afterwards the
speci�c implementation into the SEC-code is described in detail in Section 3.2 and
last a hot spot and an SEC simulation using the MMM are presented in Section 3.3,
followed by the concluding remarks of Section 3.4.

3.1 Introduction to the MMM

As high spacial grid resolution is essential for accuracy of solutions but also one of
the biggest consumers of computation time in most applications of numerical simu-
lation, adaptive mesh re�nement strategies have been around for decades now. The
general idea is as simple as can be: equidistant grids can only have a high resolution
everywhere but one often just needs speci�c areas to have such a costly resolution
(e.g. due to edgy geometry of the domain or steep gradients of the solution). So only
these critical regions should have many grid points while elsewhere the mesh can be
coarser. As the optimal resolution might be unknown a priori or the critical regions
change over time, one needs a procedure which automatically decides where the nu-
merical grid has to be re�ned or coarsened. The best known approach for adaptive
meshing methods is to identify critical and uncritical areas and add or subtract grid
points. This is usually referred to as h-adaptivity and leads to a varying number of
grid points over time. For problems where the solution develops waves of steep gra-
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dients travelling rapidly through the domain, like the SEC, this approach is rather
impractical. Furthermore, computational costs emerging from chemical reactions
scale with the number of grid cells. This is because simulating complex chemistry
requires solving a mostly sti� system of ordinary di�erential equations with as many
equations as there are designated reactions per grid cell. Consequentially, an alter-
native to h-adaptive mesh re�nement is used, which shifts the grid cell interfaces
along with the critical regions, maintaining their number. This class of methods is
called r-adaptive or moving mesh and especially suited for our speci�c application.
For an extensive overview of adaptive moving mesh methods see [58], [30], [56] and
[32].

Most of the MMM are formulated for �nite di�erences and �nite elements but for
the SEC-code a proposal from van Dam and Zegeling for a moving mesh �nite vol-
ume algorithm for hyperbolic partial di�erential equation (PDE) systems published
in [61] was adapted and will be outlined in the following. The original algorithm is
based on the approach introduced by Tang and Tang in [55] combined with a mon-
itor function, which is the driving force behind the remeshing process, developed
by Beckett et al. in [5]. Roughly, the algorithm works like this: Compute monitor
function values for each grid cell based on the current solution and move grid in-
terfaces accordingly, then rematch the solution with the new grid via interpolation
and, �nally, advance the solution to the new time level using any numerical scheme
suitable for the problem at hand.

As simple as this sounds, the brainpower is in the details as usual, beginning
with the de�nition of the adaptive mesh. As a scope of reference Ωc := [0, 1] with
cell interfaces ξi−1/2, i ∈ {1, ..., N +1} is introduced. This will be the computational
domain which is subdivided equidistantly into N cells. To switch between Ωc and
the physical domain Ωp := [xL, xR] with cell interfaces xi−1/2, a transformation is
used

x = x(ξ), ξ ∈ Ωc or ξ = ξ(x), x ∈ Ωp, (3.1)

respectively. The continuous solution with s quantities is again denoted by q(x, t) ∈
(Ωp × R≥0 → Rs). Over many numerical studies in the past years it has proven
advantageous to impose an equidistribution condition on the mesh (see [58] for
details)

xi+1/2∫
xi−1/2

ω(q(ζ, t)) dζ = constant, ∀t ∈ R≥0, i ∈ {1, ..., N}. (3.2)

This
ω : (Ωp × R≥0 → Rs)→ R>0

will be called monitor function. The application of (3.2) results in small grid cells
where ω is large and big grid cells where ω is small. This makes sense if ω is some
kind of error-related function. In the case at hand, it will be a function of solution
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gradients (see (3.7) below). In a discrete form, (3.2) reads

∆xiωi = constant, ∀i ∈ {1, ..., N} (3.3)

with ∆xi := xi+1/2−xi−1/2 and ωi := ω(q(xi, t)) as shorthands. In a more generalised
notation one �nds

∆xi =
∂x

∂ξ

∣∣∣∣
i

∆ξ =
∂x

∂ξ

∣∣∣∣
i

N−1, ∀i ∈ {1, ..., N}. (3.4)

The last equation uses the fact that the mesh on Ωc is equidistant and thus ∆ξ =
N−1. Inserting (3.4) into (3.3) yields an implicit de�nition of the mesh transforma-
tion function (3.1)

ωi
∂x

∂ξ

∣∣∣∣
i

= constant⇔ ∂

∂ξ

(
ωi
∂x

∂ξ

∣∣∣∣
i

)
= 0, ∀i ∈ {1, ..., N}. (3.5)

From (3.5) a linear equation system in (x3/2, ..., xN−1/2) can be calculated by insert-

ing the monitor values of the current solution and central di�erences for
∂x

∂ξ

∣∣∣∣
i

. We

now proceed to using the discrete Qk
i , which is the integral solution average of the

i-th grid cell at the current time level tk. We will suppress the time step index k
here and use the iteration instead, yielding Q

[ν]
i . Hereafter, we imply ν ∈ N and

omit �∀ν ∈ N� from equations. The ν-th step in the Gauss-Seidel (GS) iteration for
the linear equation system of grid cell interfaces then looks as follows

x
[ν+1]
i−1/2 =

ω(Q
[ν]
i−1)x

[ν+1]
i−3/2 + ω(Q

[ν]
i )x

[ν]
i+1/2

ω(Q
[ν]
i−1) + ω(Q

[ν]
i )

, ∀i ∈ {2, ..., N}. (3.6)

It has been proven in [55] that the mesh interfaces maintain their order when com-
puted with (3.6) which is crucial for any sensible mesh redistribution. To keep the
additional computational costs low a rather generous tolerance value or small num-
ber of maximum iteration steps is recommended for the iterative GS solver. Finding
the new mesh with high accuracy is not the main subject here. For every iteration
of the GS solver the solution must be interpolated on the new mesh (see Subsec-
tion 3.2.1).

As the monitor function ω is the core of any MMM and crucial for its performance
in terms of computational e�ciency and accuracy much care must be taken when
deciding for a distinct function. Van Dam and Zegeling adapted suggestions from
[5] for systems of PDEs with s quantities qj. Their approach is as follows

ω(q) =
s∑
j=1

[
(1− βM)αj(q) + βM

∣∣∣∣∂qj∂ξ
∣∣∣∣1/2
]

(3.7)

30



3.2 Implementation

with

αj(q) =

∫
Ωc

∣∣∣∣∂qj∂ξ
∣∣∣∣1/2 dξ, ∀j ∈ {1, ..., s}.

The value αj(q) is a �oor value which depends on the solution and prevents the mesh
from collapsing at very steep gradients. βM ∈ (0, 1) is a constant model parameter
and represents the ratio of points in critical regions.

Since very fast mesh movements imply an issue for the solution interpolation after
this movement, it is recommended in [61] to apply at least one step of smoothening
to the monitor function with a low-pass �lter

ωi ←
1

4
(ωi−1 + 2ωi + ωi+1) , ∀i ∈ {2, ..., N − 1}. (3.8)

After having determined a su�ciently good approximation to the new mesh and
the solution's interpolation on it, the next step is to advance the solution forward in
time. Van Dam and Zegeling use a MUSCL-type method with local Lax�Friedrichs
�ux and Runge-Kutta time-stepping scheme while any other method will also do
because this step is completely independent from the remeshing.

3.2 Implementation

Van Dam and Zegeling set great value on universal applicability of their algorithm
which makes it a good basis. To adapt it to the SEC-code and the challenges of
its applications, some adjustments have been implemented. As a minor change,
the direction from which the GS iterative solver begins, i.e., left or right side of
domain, is selectable including the option to solve with both directions and use
the averaged grid which is the most unbiased but also computationally expensive
variant. The solution derivatives for the monitor function can now be evaluated on
the non-equidistant physical domain. Moreover, usage of the MM feature is enabled
not only within the context of spherical symmetry but also for our cross-sectional
averaged SEC simulations through introduction of a lower bound for ∆xki in the
calculation of the new mesh, stopping the GS iterations when a grid cell gets too
small otherwise.

The most interesting question that has come up during the implementation of
the MM feature pertained to the matter of interpolation. As such, the interpolation
smears the solution, aggravating numerical di�usion - a property which is undesirable
within the scope of the SEC-code. Thus a di�erent approach was realised, that solves
the PDEs directly jumping from one grid to the next. To the literature it is known
as an interpolation-free MMM albeit realised di�erent from the common approach:
A mere correction of the numerical �ux had to be implemented to achieve this.
More detailed descriptions are given in Subsection 3.2.1. Furthermore, the quasi
one-dimensionality was restored as explained in Subsection 3.2.2. The full work�ow
considering the discretised formulations is shown in Subsection 3.2.3.
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3.2.1 Interpolated versus Simultaneous Solving

Clearly, the discrete solution changes, if the grid is renewed. Thus, in [61] an in-
terpolation step is suggested after every step ν of the GS solver. First we de�ne
V(x[ν+1]

i−1/2) := x
[ν]
i−1/2 − x

[ν+1]
i−1/2, ∀i ∈ {1, ..., N + 1}, the di�erence between old and

new mesh which is assumed to be small. This has been quanti�ed by [55] with
|V(x) << 1|, ∀x ∈ Ωp. Then, in resemblance to (1.4), we write a conservative
interpolation scheme

Q
[ν+1]
i =

(
x
[ν]
i+1/2 − x

[ν]
i−1/2

)
Q

[ν]
i −

(
(VQ)[ν+1]

i+1/2 − (VQ)[ν+1]
i−1/2

)
x
[ν+1]
i+1/2 − x

[ν+1]
i−1/2

, (3.9)

where we keep suppressing the time step index k for the grid cell values Q. (VQ)i−1/2

can be interpreted as a numerical �ux and computed employing e.g. the Van Leer
�ux

(VQ)[ν+1]
i−1/2 =

V [ν+1]
i−1/2

2
(Q+

i−1/2 +Q−
i−1/2)−

∣∣∣V [ν+1]
i−1/2

∣∣∣
2

(Q+
i−1/2 −Q−

i−1/2), (3.10)

with V [ν+1]
i−1/2

:= V(x[ν+1]
i−1/2) and Q

+
i−1/2 and Q

−
i−1/2, ∀i ∈ {1, ..., N+1}, being estimations

of the solution's value at x
[ν]
i−1/2 from the right and from the left, respectively. Clas-

sical reconstruction methods like linear approximation by spacial derivatives can be
used to determine these values.

As a �rst approach to the implementation of MM into the SEC-code, interpola-
tion was realised in a similar manner but found to di�usive. Of course more educated
numerical �uxes - just like the one used to solve the Euler equations - could have
been used instead of (3.10) and a few still simple ones have been tested. Nonetheless,
the result was unsatisfactory considering accuracy. Because MM is supposed to save
computation time and very sophisticated numerical �uxes can produce too much
computational overhead, it has proven prohibitive to stick to that course. There-
fore, a di�erent ansatz was chosen which is part of the current implementation of the
SEC-code: simultaneous updating of mesh and �ow properties. In the literature this
is most often realised by including the mesh equation into the PDE system which
is to be solved. According to [56] this approach helps with large gradients, reduces
time variation and saves time due to skipping the interpolation steps. The draw-
backs are increased sti�ness of the di�erential equations and an additional variable
which is hard to determine optimally. Since the MMM was already implemented
and one of the driving ideas of the code's design is operator splitting, following [25]
a solution was found which lies in-between these two strategies. The calculation of
the new mesh is still carried out as a stand-alone function. Afterwards the governing
equations are solved on a linearly moving mesh. The advantages of this method are
mixed: there is no extra sti�ness and variable, while it is still easier to resolve steep
gradients without needing interpolations.

32



3.2 Implementation

x

t

tk

tk+1

xk
i−3/2

xk+1
i−3/2

xk
i−1/2

xk+1
i−1/2

xk
i+1/2

xk+1
i+1/2

xk
i+3/2

xk+1
i+3/2

Figure 3.1: Diagram showing linearised movement of grid cell interfaces between two time
levels tk and tk+1.
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Figure 3.2: Close-up of one trapezoidal element from time-space diagram

To achieve this new goal we need to consider trapezoidal space-time elements
rather than rectangular ones as can be seen in Figure 3.2. Denoting the normal
vector of the domain boundary as n⃗ we rethink the conservation law (1.3) in integral
form as

d

dt

∫
Ωp

q(x, t) dx = −
∫
∂Ωp

f(q)n⃗ds.

We will understand these equations as componentwise for q and f(q). With the
trapezoidal elements the �ux over one cell interface K can be written as∫

K

(f(q), q) · n⃗ dK. (3.11)

The need of a vector (f(q), q) might not seem evident at a �rst glance. So just
imagine that no stream would cause a �ux of quantity q over the boundary over
time but the boundary itself moves. This movement causes more or less q to be in
that distinct cell. This implication is depicted by the t-entry of the normal vector
and must thus be multiplied by q whereas the x-entry is multiplied by f(q). This
means a correction term must be found to include the mesh movement into the
computation of the �ux. First, we want to rewrite (3.11) to �nd the �ux of the
Euler equations on a simultaneously moving mesh. For this purpose, we use the
following geometrical arguments as can be extracted from Figure 3.2
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V =
dx

dt
,

n⃗ =
1

∥n⃗∥

 1

−V

 =
1√

1 + V2

 1

−V

 ,

dK =
√
dt2 + dx2 =

√
dt2
(
1 +

dx2

dt2

)
=
√
(1 + V2) dt.

With these identities the integral (3.11) reads

tk+1∫
tk

(f(q), q) · 1√
1 + V2

 1

−V

√1 + V2 dt =

tk+1∫
tk

f(q)− Vq dt.

So, f(q)−Vq is our moving mesh �ux. It is desirable to reuse the original numerical
�ux function to exploit its advantages. To achieve this, we introduce the relative
�ow velocity u− V to the static-grid �ux f(q) as

f rel(q) :=



ϱ(u− V)

ϱ(u− V)2 + p(
ϱe+ ϱ

(u− V)2
2

+ p

)
(u− V)

ϱY (u− V)


.

f(q) − Vq can be recast to equal f rel(q) plus some correction term which will be
derived in the following equations. For this purpose, we rearrange the moving mesh
�ux

f(q)− Vq =



ϱu− Vϱ

ϱu2 + p− Vϱu

(ϱE + p)u− VϱE

ϱY u− VϱY



34



3.2 Implementation

=



ϱ(u− V)

ϱ(u− V)u+ p− ϱ(u− V)V + ϱ(u− V)V

ϱE(u− V) + pu− pV + pV

ϱY (u− V)



=



ϱ(u− V)

ϱ(u− V)2 + p+ ϱ(u− V)V

(ϱE + p)(u− V) + pV

ϱY (u− V)


.

So only the third component needs some more e�ort. We write

E = e+
u2

2
→ Erel := e+

(u− V)2
2

.

Using these equations the third component of f(q)− Vq can be recast

(f(q)− Vq)3 =ϱ
(
e+

u2

2

)
(u− V) + p(u− V) + pV

=ϱ

(
e+

1

2
(u2 − 2uV + V2) +

1

2
(2uV − V2)

)
(u− V)

+ p(u− V) + pV

=
(
ϱErel + p

)
(u− V) + ϱ(u− V)

(
u− V

2

)
V + pV

=f rel(q)3 + ϱ

(
(u− V)2 + 1

2
(uV − V2)

)
V + pV

=f rel(q)3 + V
(
ϱ(u− V)2 + p

)
+
V2

2
ϱ(u− V)

=f rel(q)3 + Vf rel(q)2 +
V2

2
f rel(q)1.

Now we can write the moving mesh �ux f(q)− Vq in terms of the relative velocity
�ux f rel(q)
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f(q)− Vq = f rel(q) + f rel(q)1



0

V
V2

2

0


+ f rel(q)2



0

0

V

0


. (3.12)

This �ux will be applied to reconstructed values of the discrete solution Q. They
are approximated with the same MUSCL-Hancock scheme as in the basic SEC-code,
only taking the non-equidistant mesh and its movement during the time step into ac-
count. Figure 3.3 shows a space-time trapezoid element in close up. Approximating
the mesh movement linearly, we get

Q
k+1/2
i−1/2 = Qk

i +

(
xki−1/2 + xk+1

i−1/2

2
− xki

)
∂Q

∂x
+

∆tk

2

∂Q

∂t
, ∀i ∈ {1, ..., N +1}. (3.13)
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Figure 3.3: Points of reconstruction for half-time grid cell interface values of solution
within a moving mesh simulation.

To calculate the relative velocity �ux f rel(q) we need the solution q to be trans-
formed to the relative system in a fashion similar to the �ux correction

qrel :=



ϱ

ϱ(u− V)

ϱe+ ϱ
(u− V)2

2

ϱY


=



ϱ

ϱu− ϱV

ϱe+ ϱ
u2

2
− ϱu

2

2
+ ϱ

(u− V)2
2

ϱY


(3.14)
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=q +



0

−ϱV
ϱ

2
((u− V)2 − u2)

0


. (3.15)

Now everything we need to advance the solution on a simultaneously moving
mesh is gathered. Subsection 3.2.3 will walk the reader through the work�ow in
detail. In the preliminary work, it has been seen that this approach is a better �t
to the requirements of the SEC-code, which is why the method was kept as the only
possible treatment.

3.2.2 Quasi One-Dimensionality and Its Well-Balancing

One of the interesting features of the SEC-code originating from [7] is the support
of axial variation of the cross-sectional area A of the simulated domain. Surely, it
is desirable to keep this feature within the MM scope. Only slight changes had to
be made to incorporate the MM idea in the existing code. The major di�erence is
the fact that this area is now necessarily given by a function since the cell interfaces
can and should move a lot during one simulation, thus discrete values would yield a
very bad approximation. Hence, A must be kept up to date for every new mesh.

When implementing the MM feature for the partner project another hurdle ap-
peared in its proximity. That is why it will be discussed here although it is not
directly related to the MM topic. To understand the challenge, we must know
how the original feature for quasi one-dimensional problems was realised. It was
implemented following [52] yielding a conservative scheme. Solving the quasi one-
dimensional Euler equations

∂

∂t



ϱA

ϱAu

ϱAE

ϱAY


+

∂

∂x



ϱuA

ϱu2A+ pA

uA(ϱE + p)

ϱuAY


= p

∂

∂x



0

A

0

0


(3.16)

simply involved multiplying all conservative states with A, updating the momentum
with a second order term

ϱu← ϱu+
p

A

∂A

∂x

∆tk

2
+

1

A

(
∂p

∂t

∂A

∂x

(∆tk)2

8

)
(3.17)
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and solving the Euler equations (1.1) like before.
As convenient as this method is, there is one major drawback: Due to the split-

ted solution of momentum source term (3.17) and Euler equations, it is not well-
balanced. This means, that steady-state solutions with zero �ow velocity cannot be
maintained. Since sometimes simulations with �owless initial condition are needed,
e.g. because the chemistry is to be observed, a di�erent approach was developed in
the scope of this thesis. Starting with (3.16) and rearranging with the help of the
chain rule of di�erentiation as well as the obvious fact that ∂A

∂t
= 0 we arrive at the

non-conservative formulation

∂

∂t



ϱ

ϱu

ϱE

ϱY


+

∂

∂x



ϱu

ϱu2 + p

u(ϱE + p)

ϱuY


= − u

A

∂A

∂x



ϱ

ϱu

ϱE + p

ϱY


. (3.18)

To solve (3.18) we can again follow the operator splitting idea. To �nd an easier
expression for the energy equation, we execute the following steps which result in an
equation for pressure. Unfortunately, this involves the restricting assumption that
the speci�c heat-capacity at constant volume cV is a constant. Nevertheless, this
approximation is most often justi�ed for there is no chemistry changing cV rapidly
in this step. For the sake of readability we will use a common shorthand for partial
derivatives, namely (.)t and (.)x for the derivation with respect to time or space,
respectively. The set of equations to begin with then looks as follows

ϱt = = −ϱuAx
A

by (3.18), (3.19)

(ϱE)t = −ϱu
Ax
A

(
E +

p

ϱ

)
by (3.18), (3.20)

E = e+
u2

2
by (1.2), (3.21)

ut = 0 by (3.18), (3.22)

e = cvT =
p

(γ − 1)ϱ
if cV is a constant. (3.23)

Now inserting (3.21) into the energy equation (3.20) yields

(ϱe)t +

(
ϱ
u2

2

)
t

= −ϱuAx
A

(
e+

u2

2
+
p

ϱ

)
.
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Substituting the factor in front of the bracket on the right-hand side via (3.19) and
employing the chain rule yields

(ϱe)t + ϱt
u2

2
+ ϱ

(
u2

2

)
t

= ϱte+ ϱt
u2

2
+ ϱt

p

ϱ
.

With the help of (3.22) all terms involving u cancel out and we replace e using (3.23)

pt
γ − 1

=
ϱt
ϱ

(
p

γ − 1
+ p

)
=

1

γ − 1

ϱt
ϱ
γp.

Multiplying by γ − 1 �nally gets us

pt =
ϱt
ϱ
γp. (3.24)

Replacing the energy equation from (3.18) by (3.24) the system can be solved ana-
lytically through

ϱ(t) =ϱ(t0) exp

(
−uAx

A
(t− t0)

)
,

u(t) =u(t0),

p(t) =p(t0) exp

(
−uAx

A
(t− t0)

)
,

Y (t) =Y (t0).

Naturally, t0 is chosen to be the old time level, such that t− t0 = ∆tk

2
. Please keep

in mind that due to the Strang splitting two half time steps are calculated. It is
easy to see, that for u = 0 everywhere, the solution will not experience unphysical
changes due to variation of A any longer. For the Euler equations the original solver
can be used since only the source term di�ers from (1.1).

As the implementation of the well-balanced method described above has proven
to be a huge improvement in some applications, a scheme was derived which com-
bines conservation with well-balancing and removes the restriction of cV being a
constant. In Chapter 1 we de�ned the discrete solution Q as a cell-averaged integral
value. Now, for the quasi one-dimensional formulation, we need the weighting with
A(x), rede�ning

Qk
i :=

1

Aki∆x
k
i

xi+1/2∫
xi−1/2

q(ζ, t)A(ζ) dζ. (3.25)

Employing this notion, it turns out one only needs a smart discretisation of (3.16).

Using again F
k+1/2
i−1/2 and Aki−1/2 as the numerical �ux and cross-sectional area value
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at xi−1/2, respectively, we can write

(
Qk+1
i

)
1,3,4

=
(
Qk
i

)
1,3,4
− ∆tk

∆xki

Aki+1/2F
k+1/2
i+1/2 − Aki−1/2F

k+1/2
i−1/2

1
2

(
Aki+1/2 + Aki−1/2

)


1,3,4

(3.26)

for ϱ,ϱE and ϱY . The momentum ϱu needs the additional pressure source term

(
Qk+1
i

)
2
=
(
Qk
i

)
2
− ∆tk

∆xki

Aki+1/2

(
F
k+1/2
i+1/2 − p∗i

)
− Aki−1/2

(
F
k+1/2
i−1/2 − p∗i

)
1
2

(
Aki+1/2 + Aki−1/2

)


2

.

(3.27)
Since (3.16) and (1.4) are basis for this scheme it clearly is conservative. To make
sure it is also well-balanced, the pressure p∗i must be chosen correctly. For a steady
state solution, the only remaining contribution to the �ux f is p in the momen-
tum component. Considering px = 0, p∗i must be chosen as the average of the
pressures p∗i+1/2 and p

∗
i−1/2 that the numerical �ux function calculates to achieve a

well-balanced formulation. This is the way quasi one-dimensionality is carried out
in the current SEC-code.

3.2.3 Discretised Work�ow

The main parts of the MM algorithm have been described above. In this subsection
a complete overview of the work�ow of the SEC-code in MM-mode as depicted in
Figure 3.4 is given supplying further insight to the discrete structures.

After the simulation domain is set up with �tting MM con�gurations the algo-
rithm starts the time stepping. It begins with the calculation of the new mesh. To
be able to follow speci�c features of the solution and e.g. let the mesh react to tem-
perature and pressure only, the user can simply select the quantities which in�uence
the monitor function. For this purpose, Q is reduced to Q which contains only the
chosen quantities.

In order to evaluate the monitor functionQ is numerically di�erentiated on either
the computational (uniform) grid or the physical (non-equidistant) grid. Although
the latter makes the algorithm less stable, it is sometimes bene�cial for resolving
really sharp gradients which can occur at detonation fronts. For the di�erentiation
on a non-equidistant grid a new method had to be implemented. According to
common practice, let the approximation scheme be

∂jh

∂xj
(ζ) ≈

nR∑
i=nL

wjih(xi)

for any function h, order of derivation j, weights wji , grid points xi and evaluation
point ζ. The stencil width nR − nL depends on the order of accuracy chosen. The
weights are calculated by the most commonly used Fornberg algorithm (see [27]).
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set up domain with MM con�guration (see Appendix B.2 for instructions);
while t < tend do

begin mesh movement:
begin calculate monitor values:

extract chosen guiding quantities from state vectors;
calculate numerical derivatives on uniform computational or
non-equidistant physical domain;
if dimensional then

divide by reference value;
end
evaluate monitor function;
for number of smoothing steps do

apply low-pass �lter (3.8);
end

end
for GS iterations do

compute new mesh according to (3.6);
end
if CFL condition (3.29) not met then

rewind mesh as far as necessary;
end

end
calculate ∆tk using the new mesh;
if switched on then

apply chemistry and/or molecular transport;
end
begin solve Euler equations with MM:

reconstruct solution on grid cell interface midtime (3.13);
transform reconstructed values of solution to relative scope (3.14);
calculate numerical �ux as usual;
apply �ux correction (3.12);
update mesh;
if A varies then

update A;
end
apply �ux in state update for changing mesh (3.30);

end
if switched on then

apply chemistry and/or molecular transport;
end
t← t+∆tk;

end

Figure 3.4: Work�ow of MM set-up
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The basic idea is to di�erentiate the Lagrange interpolation polynomial of h and
compute the weights wji recursively from lower orders. It is formulated generally for
any grid, evaluation point, order of derivation and accuracy. The implementation
in the SEC-code follows [33] and [26] making extensive usage of Matlab's matrix
notation for speed-up. Since it is not necessary to �nd ∂Q

∂x
with high accuracy, the

stencil size is chosen to be at the lower bound to save computation time.
If the solution is given in dimensional form, the derivatives are divided by a

time-dependent reference value

Qk
ref :=

∣∣∣∣ max
i∈{1,...,N}

(Qk
i )− min

i∈{1,...,N}
(Qk

i )

∣∣∣∣ . (3.28)

This procedure compensates for the possibly great di�erences in value scales between
the �ow quantities. If (3.28) yields 0 then the value is set to 1.

The discretisation of the �oor value vector α slightly depends on the chosen
domain of di�erentiation

α =


L−1

N∑
i=1

∆xki

(∣∣∣∣∂Q∂x
∣∣∣∣
i

)1/2

for physical domain,

N−1

N∑
i=1

(∣∣∣∣∂Q∂ξ
∣∣∣∣
i

)1/2

for computational domain.

with L being the physical domain's length. For the computational domain |Ωc| = 1
by de�nition and ∆ξ = N−1 . Afterwards the monitor function values are computed
according to (3.7) and the smoothening (3.8) is applied.

With the monitor function values the new mesh is calculated as suggested in
(3.6). A user de�ned maximum number of GS iterations will be executed to �nd
the new mesh. A threshold for the minimal mesh movement is not implemented be-
cause even van Dam and Zegeling say, a sensible tolerance threshold will unlikely be
reached. The monitor function is only evaluated once before the GS algorithm since
it was found more suitable to save the computation time than to more accurately
weight the grid points. Moreover, we would need the interpolated solution which we
substituted by the simultaneous evolution.

If the mesh is to shift too fast, there will be a di�erent control mechanism anyway:
a CFL-like condition. The time step is chosen, such that the solution waves do not
intersect. Hence, to ensure that the numerical domain of dependence still includes
the true domain of dependence, a grid point must not move more than half a grid
cell to either side

− ∆xki−1

2
≤ Vk+1

i−1/2 ≤
∆xki
2
, ∀i ∈ {2, ..., N}. (3.29)

If this condition is not met, the mesh is calculated such that it maximally moves
linearly towards the last calculated position without violating (3.29).
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With this new mesh at hand but the old one still applied, the maximum time
step ∆tk is calculated using the new grid and, following the Strang splitting idea,
chemistry and molecular transport are computed if switched on. Next, the one-
dimensional Euler equations must be solved. For that, the interface values of the
solution are reconstructed via (3.13) and transformed into the relative system by
(3.14) to compute the numerical �ux F as usual before correcting it using (3.12).
Now the new mesh and cross-sectional area, if applicable, are set to be the current
ones. The last step is to incorporate the �ux estimation F into the time stepping
scheme to advance the solution to the next time level tk+1. Since the SEC-code
works with a FVM it is crucial to account for the possible change of cell width. This
is done similar to the interpolation step (3.9)

Qk+1
i =

∆xki Q
k
i −∆tk

(
Fk+1/2
i+1/2 −F

k+1/2
i−1/2

)
∆xk+1

i

. (3.30)

For a simulation with cross-sectional area variation we simply need to take one
more aspect into account: the recalculation of the area Ak to Ak+1. Denoting the

cell area averaged over the edges as Aki :=
1
2

(
Aki−1/2 + Aki+1/2

)
and the midtime area

as A
k+1/2
i−1/2

:= 1
2

(
Aki−1/2 + Ak+1

i−1/2

)
, this yields the following discretised update step

for all components but momentum

(
Qk+1
i

)
1,3,4

=

∆xkiA
k
iQ

k
i −∆tk

(
A
k+1/2
i+1/2 · F

k+1/2
i+1/2 − A

k+1/2
i−1/2 · F

k+1/2
i−1/2

)
∆xk+1

i Ak+1
i


1,3,4

.

The momentum component needs the additional pressure source term

(
Qk+1
i

)
2
=

∆xkiA
k
iQ

k
i −∆tk

(
A
k+1/2
i+1/2 ·

(
Fk+1/2
i+1/2 − p∗i

)
− Ak+1/2

i−1/2 ·
(
Fk+1/2
i−1/2 − p∗i

))
∆xk+1

i Ak+1
i


2

.

Finally, the time update is completed applying half a time step for chemistry and
molecular transport if activated.

3.3 Simulations

To demonstrate the moving mesh feature, two examples will be described and shown
in the following section. Recommendations for default settings and the overall usage
of MM within the SEC-code are given in Appendix B.2. All simulations with MM
are started with a preprocessed grid using the included automatic grid initialisation
function with 1000 iterations and 10 smoothing steps, while static grid simulations
use an equidistant mesh.
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governing equations one-dimensional Euler (with MM)

chemistry 3-species ignition delay kinetics

domain length: 0.5, no cross-sectional area variation

initial values
T (x) = 1 − 0.2(x − 0.01)/0.01 for 0 < x < 0.01 and 1
else, p = 1, u = 0, fuel species for 0 < x < 0.2 and
product species else

boundaries left: re�ecting wall, right: continuous

MM setting
βM = 0.9, monitor function: on computational domain,
GS: from left with 5 iterations, smoothing steps: 1,
followed quantities: ϱ, ϱu, ϱE

grid cells 200, 1000 and 3000 (static); 200 (MM)

time steps
step size chosen automatically, snapshots stored at mul-
tiples of 10−3

Table 3.1: Settings for hot spot simulations.

3.3.1 Hot Spot

As the impulsion to implement a method for adaptive meshing came from the ob-
jective to investigate hot spots, this is the �rst example which will be given. In
this simulation, the domain of length 0.5 is set up such that it triggers a premature
ignition. On that account, we chose p = 1 and u = 0 everywhere, the leftmost two
�fth of the domain are �lled with fuel whereas the rest contains product species.
The simulation name stems from the temperature pro�le which features a strong
peak of maximum 1.2 at x = 0 rapidly degrading to 1 at x = 0.01. Since this is
a simulation with spherical symmetry the left boundary must be a re�ecting wall
modelling the centre of the sphere while the right boundary is continuous.

In Figure 3.5 the temperature and pressure within the simulation domain are
shown over space and time. We can see immediately that the static grid solutions
di�er a lot from each other as the resolution is re�ned and it is also obvious that
the 200-grid-cells-solution with moving mesh matches the highly resolved static grid
solution with 3000 grid cells quite well. It is notable that not only the temperature
curve is properly met but the pressure wave patterns also look alike. This comes at
the cost of the moved mesh temperature being a little blurry at the right edge, but
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Figure 3.5: Temperature (left) and pressure (right) of a hot spot simulation over space and
time with static grid with 200, 1000 and 3000 grid cells and with MM with 200 grid cells
(top to bottom).
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that is the behaviour one expects from this method as the pressure gradients are
steeper.

It is save to say that MM is a very helpful tool when exploring new settings
where the correct resolution might be unknown, because it is able to catch important
features of the solution nonetheless. In terms of computation time there is also a
big pro�t as the moving mesh simulation only needed about 30 seconds to initialise
the grid and 244 seconds to compute the solution whereas the highly resolved static
grid simulation took about 641 seconds on the same machine. This comparison of
course assumes that one knows the number of grid cells needed otherwise some more
simulations with an under-resolved grid would add to the static grid time budget.
Such a comparison would be even more impressive if a complex chemistry mechanism
was used since the number of cells has a much bigger impact on computation time
in that case.

3.3.2 SEC

governing equations quasi one-dimensional Euler (with MM)

chemistry 3-species ignition delay kinetics

domain length: 1, area variation: Laval nozzle

initial values
p = 1, T : 1 for x < 0.5 and 2.5 else, u = 0, radical
species for x < 0.4 and product species else

boundaries
left: fuelling pressure valve,
right: isentropic expansion to p = 1

MM setting
βM = 0.9, monitor function: on computational domain,
GS: average from both sides with 5 iterations, smoothing
steps: 1, followed quantities: ϱ, ϱu, ϱE, ϱYradical

grid cells 100, 300 (static); 100, min(∆x) ≥ 10−3 (MM)

time steps
step size chosen automatically, snapshots stored at mul-
tiples of 10−3

Table 3.2: Settings for moving mesh SEC simulations.

Since the MM was equipped with a lower bound for ∆xki we are able to apply
the adaptive remeshing to an SEC-setting. Hence, this simulation is set up to
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Figure 3.6: Radius of combustion chamber with Laval nozzle con�guration.

Figure 3.7: Trajectories of the grid cell interfaces for an SEC simulation with MM.

model a working SEC. The simulation domain of length 1 features a Laval nozzle
as depicted in Figure 3.6 demonstrating quasi one-dimensionality in the MM frame.
The initial values are chosen, such that a parcel of radical species, �lling x = [0, 0.4]
at T = 1 is followed by an �air� bu�er with product species at the same temperature
separating the reactive �ow from the hot exhaust gas modelled by product species at
T = 2.5 in the downstream half of the combustion chamber. Pressure and velocity
are constantly p = 1 and u = 0 everywhere at �rst. The right boundary represents
an in�nitely large plenum at constant pressure p = 1 while the left boundary is
con�gured as a pressure valve, opening when the pressure in the leftmost grid cell
of the combustion chamber drops below p = 1, injecting an �air� bu�er �rst, then
a strati�ed fuel pro�le which is tuned to auto-ignite homogeneously when generally
undisturbed.

Figure 3.8 shows the comparison of temperature and pressure in the combustion
chamber over space and time of two static grid and the MM simulation of this SEC
example. The adaptive mesh is able to produce results as good as with thrice the
grid cells in a static grid simulation. The trajectories of the grid cell interfaces in
Figure 3.7 show how well the highly resolved regions follow the pressure wave emerg-
ing from the ignition area and still manage to catch lesser gradients as temperature
and radical mass fraction.
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Figure 3.8: Temperature (left) and pressure (right) of an SEC simulation over space and
time with static grid with 200 and 300 grid cells and MM with 100 grid cells (top to bottom).
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3.4 Conclusions

The simulations from Section 3.3 have made it obvious that an adaptive mesh is
highly bene�cial for the SEC-code. The MMM ful�ls the requirements of being
computationally lightweight, accurate and easy to handle even without having any
a priori knowledge of the solution which will be computed. It does a very good
job resolving the relevant patterns with extremely few grid points and thus saves
computation time even with the simple 3-species ignition delay kinetics. What also
comes with the small number of grid cells is the saving of memory which can be an
interesting factor for simulations with a lot of stored time steps, multiple domains
or when using the code on a laptop. Actually, there is only one major drawback to
this method which is rather little compared to its advantages: it is not possible to
control the resolution directly. If the users know what resolution is needed for their
application, they can only guess the correct combination of βM and the number of
grid cells that yields the desired resolution locally. This behaviour also leads to not
being able to guess the computation time in advance, if the lower bound for ∆xki
is not activated, as time steps sizes depend on the minimum cell width. The most
important improvement to this tool would be its applicability to network simulations
in the sense of Chapter 2, saving computation time and memory on more than one
domain simultaneously.

49



Chapter 4

One-Dimensional Turbulence

In phase one of the CRC 1029, the simulations were restricted to an SEC which was
already working to examine the overall concept. In this context - a full-�edged cyclic
auto-igniting combustion process - molecular transport was justi�ably neglected as
gasdynamics are much faster. Turbulence was omitted to establish the SEC-code
in the �rst place. In phase two, however, it was planned to investigate the starting
process. As described in Section 1.2 it takes a di�usion �ame to raise the pressure
so the SEC can be started. To simulate this process, molecular transport and tur-
bulence must be taken into account.

Fortunately, molecular transport simply implies adding another source term to
(1.1) which can easily be coped with in the current code (see Subsection 4.3.2).
Turbulence on the other hand is a much more troubling task. There are a lot of ap-
proaches with di�erent advantages and drawbacks like direct numerical simulation
(DNS), Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation (LES)
along with the linear eddy model (LEM) and one-dimensional turbulence (ODT). It
was necessary to �nd a method which works well with one-dimensionality and the
current code structure. Also we wanted a turbulence model which would not only
give us mean quantities but lets us see the possible variance of outcomes to study
the robustness of the combustion processes. This narrows down the variety to the
LEM and ODT. LEM is ODT's predecessor and rather a model for mixing than
combustion ([37]) and therefore it is unsuitable. Until now ODT has been used in
various applications as a sub-grid scale model for LES (introduced by [13]) as well
as a stand-alone model for sundry applications from non-reacting buoyancy-driven
�ow (e.g. [39]) to jet �ames (e.g. [22]). Thus ODT is the method of choice, for it
matches the requirements of the process to be simulated and the existing software
environment very well. Nonetheless, it needs some adjustment.

As a brief introduction or reminder the �rst section will be about the basics of
the physical phenomenon of turbulence and its numerical modelling. A short in-
troduction to ODT will be given in Section 4.2. Section 4.3 will walk the reader
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through the changes applied to the original ODT idea and the implementation re-
alised in the code at hand. In Section 4.4 an overview of the features of the new ODT
formulation is given along with the in�uences of the model parameters. Results of
turbulent �ame and SEC simulations will be shown. Conclusions on the new ODT
in Section 4.5 and a short outlook therein complete this chapter.

4.1 Basics of Turbulence

Turbulence appertains to this peculiar and fascinating class of natural phenomena
which are at once ubiquitous and enigmatic. Fittingly, among others, famous sci-
entists as Richard Feynman and Sir Horace Lamb have categorized turbulence as
(most) important and (most) puzzling [20], which is still true today. Thus, this
section will not aim to solve this big mystery but rather shed some light on what
we know about it and how we try to include it in simulations of �uid dynamics.
The struggle with turbulence already begins with de�ning it. Intuitively, most

Figure 4.1: Visualization of a turbulent jet via laser-induced �uorescence [28].

people have a rough idea of what is meant by a turbulent �ow (like in Figure 4.1),
thinking of wild rivers and harsh winds in street canyons. Nonetheless, it gets messy
when trying to �nd the onset of turbulence in an accelerating non-turbulent (usually
called laminar) �ow undergoing di�erent stages of transition. In our everyday lan-
guage, things are said to be �turbulent� if they are restless, unruly and unpredictable
- somewhat chaotic. This is what de�nitions of turbulence always include. So our
short working de�nition will be in the style of [18]:

A �ow is turbulent if its velocity �eld �uctuates randomly in time and is
highly disordered in space. It is exceedingly sensitive to changes of initial
and boundary conditions, hence mathematically chaotic in the sense of
chaos theory.

Note that there are no rotational structures in the de�nition although they seem to
be the �rst thing which comes to mind, when thinking of turbulent �ows. This is
due to the fact that turbulence always involves vortices, but vortices do not always

51



4.1 Basics of Turbulence

indicate turbulence. As already mentioned, between a fully laminar and a fully
turbulent �ow there are some more stages of �ow regimes. Figure 4.2 shows the
example of an air stream passing a cylinder at growing mean �ow velocity. The
�rst three stages are laminar although we �nd the famous Karman vortex street in
stage three. Nonetheless, the �ow is periodic and predictable though more complex.
Turbulence only begins in the forth regime as indicated by the ripples in the stream
lines, and is fully established in the last one. Figure 4.2 also shows that di�erent
scales of length are involved in a turbulent �ow.

1) 2) 3)

4) 5)

Figure 4.2: Schematic depiction of �ve stages of a stream passing a cylinder at growing
velocity. 1) - 3): laminar, 4) and 5): turbulent. [46]

Now how does turbulence come into existence? It is due to viscosity. When air
�ows through a pipe, the molecules close to the walls stand still (no-slip condition)
while those on the centreline are the fastest. This generates friction between the
layers of di�erent velocity. In this case we speak of boundary layers. A similar
picture is presented by free shear �ows e.g. oil which spills into the quiescent sea:
the water molecules rest while the stream of oil carries lots of kinetic energy so
there are friction forces at work between the two �uids. Accordingly, viscosity is a
prerequisite for friction and friction is the force behind the disturbances of velocity
�elds and hence the development of complex �ows and �nally turbulence. But a �uid
with high viscosity (think of syrup or resin) is very unlikely to be the protagonist
of a turbulent play. This is because high viscosity dissipates the kinetic energy
needed for the destabilisation of the �ow. Consequentially, what we need to develop
turbulence is a minimum ratio of inertial to friction forces

Re :=
ϱuclc
µ

.

Re is called Reynolds number and is widely used in �uid dynamics to quantify the
state of a �ow with respect to its laminar or turbulent behaviour. uc and lc are
characteristic velocity and length, which depend on the context, while µ is the dy-
namic viscosity of the �uid and ϱ denotes its density again. If Re exceeds a critical
value, which depends on the (experimental) set-up, a formerly laminar �ow develops
evermore rotational structures of ever smaller length scales until we �nally call it
fully turbulent, as seen in Figure 4.2.

If we want to simulate turbulent �ows we should know about the features of
turbulence. What do �ows falling within our de�nition have in common? Which
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characteristics must be modelled by our equations? Altogether it is quite hard to
talk of a characteristic turbulent �ow since most details seem to depend heavily on
the speci�cs. Until today there is no complete overarching theory, just snippets of
knowledge based on in-depth observations of a certain set of set-ups. All the more
astounding are the hypothesis which have proven to be useful in a wide variety of
situations as the energy cascade and Kolmogorov's length scales.

The observation that turbulent �ows at high Re numbers exhibit a certain self-
similarity due to the fact that their structures span a lot of length scales, led scientist
Lewis F. Richardson to the idea of an energy cascade. He brilliantly condensed the
concept in his famous poem ([51])

Big whirls have little whirls
that feed on their velocity,
And little whirls have lesser whirls
and so on to viscosity.

So the biggest eddies are generated by instabilities of the mean �ow and pass
their kinetic energy on to smaller eddies and so forth until Re based on the smallest
vortices is of order unity and viscosity takes on its part to dissipate that energy
�nally. The life of an eddy is rather short and of the order of its turnover time
τ ∼ ℓ/ue, where ue is the eddy's velocity and ℓ its spacial expansion. This hypothesis
of the energy cascade includes that, at high Re numbers there exists a so-called
inertial subrange with eddies decisively smaller than the biggest ones and as well
much bigger than the smallest ones as sketched in Figure 4.3. Within this range
the turbulent kinetic energy Ekin expressed as a function of eddy wavenumber 1/ℓ

is expected to follow Kolmogorov's �ve-thirds law: Ekin ∼ (1/ℓ)−
5
3 . The energy

cascade and the inertial subrange have been seen in turbulent �ows under very
di�erent conditions. Nonetheless, when it comes to turbulence, nothing seems to be
absolutely universal.

Holding on to the energy cascade, there is another question which has been
answered to a surprisingly broad extend: At which length scale η will viscosity take
its toll? By using the assumptions that Re for the smallest eddies must be of order
unity, passing of energy takes about a turnover time and considering a statistically
steady cascade (that is generation and dissipation rate are balanced), one �nds

η ∼ L

Re
3
4

. (4.1)

The biggest eddies are of length scale L which is called integral scale. η is called
Kolmogorov length scale, together with the velocity of these smallest eddies, it
belongs to the Kolmogorov microscales.

From an engineering point of view these results might be pretty but they do not
really depict what turbulence does to a �ow. Consider two �ows - one being laminar,
one turbulent - with nominally the same boundary and initial conditions, especially
having the same Re number. What would be di�erent in the turbulent �ow? At
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log(1/`)L−1

log(Ekin)

inertial subrange
η−1

Figure 4.3: Schematic illustration of the turbulent energy cascade with inertial subrange.
Ekin denotes kinetic energy, ℓ eddy length, L the integral length scale and η the Kolmogorov
length scale.

�rst, of course, we have the random �uctuations of quantities as the velocity and
pressure �eld, the rotation from eddies of all sizes and its dissipation. These things
could be seen through velocity probes. But the e�ects for applications reach deeper:
A turbulent �ow shows new random extrema but also decays and di�uses faster - all
surely due to the eddies and their structure. Turbulent di�usion actually exceeds
molecular di�usion by a long shot and hence increases momentum, heat, mass and
species transfer remarkably.

Since we now have some examples, pictures and words for turbulent �ows at
hand, let us take a look at the equations. As we have seen, we need to add viscosity
to our system for the development of turbulence. Thus, the Navier-Stokes equations
are our candidates. We will regard only the three-dimensional but incompressible
version of the momentum equation as it is the most e�cient and common way to
clarify which problem arises

ϱ
Du⃗

Dt
= ϱ

(
∂u⃗

∂t
+ (u⃗ · ∇)u⃗

)
= −∇p+ µ∆u⃗, (4.2)

with µ being the dynamic viscosity. This equation is deterministic but nonlinear
which is the reason for its tendency towards strong reactions to small perturbations
in the initial conditions. This is why real world experiments with turbulent �u-
ids show the typical �random� behaviour: The conditions of two realisations of an
experiment can never be exactly the same. So for mathematicians turbulence is de-
terministic chaos, for experimentalists it is not. Hence, it seems reasonable to take
on a statistical view on turbulence. Experiments told us that the velocity �uctuation
of one point in space and time u′(x, t) is normally distributed over the realisations of
the same experiment. So we can de�ne an ensemble averaged �ow velocity ⟨u(x, t)⟩
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(sometimes named ū which we will use for a di�erent average) which will simply be
the mean value of all the measurements in the limit of statistical convergence. Now
we perform the so-called Reynolds decomposition by separating the instantaneous
velocity �eld into mean and �uctuation component u(x, t) = ⟨u(x, t)⟩ + u′(x, t).
Surely, this can be done to other quantities as well. In many applications it is su�-
cient to know about the average behaviour of a �ow, so the idea of reformulating the
Navier-Stokes equations (4.2) in terms of the mean values seems natural. The result
are the Reynolds-averaged Navier�Stokes equations (RANS) for every mean velocity
component ⟨ui⟩, i ∈ {1, 2, 3}. The summation convention will be used throughout
this section - but this section only - as it is a very common practice in the �eld
and enhances readability while maintaining the comprehensibility. So the RANS
equations read

ϱ
∂⟨ui⟩
∂t

+ ϱ
∂⟨ui⟩⟨uj⟩
∂xj

= −∂⟨p⟩
∂xi

+
∂

∂xj

[
2µ⟨Sij⟩ − ϱ⟨u′iu′j⟩

]
(4.3)

with mean strain-rate tensor ⟨Sij⟩ :=
1

2

(
∂⟨ui⟩
∂xj

+
∂⟨uj⟩
∂xi

)
. At �rst, this might look

promising, but a second glance reveals that the term τRij := −ϱ⟨u′iu′j⟩ appeared and
cannot be resolved by what we know. For its impact on the equations it is called
Reynolds stress (tensor) and it gives rise to the closure problem of turbulence theory
since we cannot express it as a function of mean �ow quantities but need additional
assumptions to cope with it. The closure models most common are called eddy
viscosity or turbulent viscosity models. They try to estimate the dynamic turbulent
viscosity µT in Boussinesq's equations which complement the RANS equations

τRij = 2µT ⟨Sij⟩ −
ϱ

3
⟨u′ku′k⟩δij. (4.4)

The �rst proposition was Prandtl's mixing length model µT = ϱl2m

∣∣∣∣∂⟨ui⟩∂xj

∣∣∣∣, where
lm is that very mixing length, which is situation-dependent and hence to be found
through experiments. Within engineering applications the most popular closure
attempt is the k-ε model. It describes the eddy viscosity in terms of turbulent
kinetic energy k and dissipation rate ε

µT =ϱcµ
k2

ε
, (4.5)

∂k

∂t
+ (⟨u⟩ · ∇)k =∇ ·

(
µT
ϱσk
∇k
)
+

(
τRij
ϱ

)
⟨Sij⟩ − ε, (4.6)

∂ε

∂t
+ (⟨u⟩ · ∇)ε =∇ ·

(
µT
ϱσε
∇ε
)
+ c1

(
τRij
ϱ

)
⟨Sij⟩

ε

k
− c2

ε2

k
. (4.7)
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We see that there are some constants left, which are usually taken to be cµ =
0.09, σk = 1, σε = 1.3, c1 = 1.44, c2 = 1.92 out of empiricism. Some of the advantages
and disadvantages of this (kind of) model are obvious: The additional computational
e�ort is manageable but the model is a rather heuristic interpolation of experimental
data: e.g. (4.7) even is a model and not derived as (4.6). The results it yields can
be su�cient for a lot of applications where just an estimation of the net e�ect of
turbulence is needed. Studying the turbulence itself is impossible due to averaging.
On the more subtle side, we �nd that the assumption (4.4) leads to problems with
strongly anisotropic and non-homogeneous �ows.

So let us turn to the alternatives. One could be tempted to just solve the Navier-
Stokes equations and at �rst, there would be nothing wrong about it. This method is
commonly called direct numerical simulation (DNS) and used to conduct research on
simple forms of turbulence and validate coarser modelling suggestions. The necessity
of these limitations is instantly clear, when recalling that the full range of length
and time scales must be resolved in order for DNS to yield sensible results. Yet,
for reasonable Re numbers of e.g. 106 and a domain length scale of order unity, this
means hundreds of thousands of grid cells - for each dimension. Even if restricted
to two dimensions (which we need to generate turbulence at all in this context) it
requires billions of grid cells. Of course the argument stretches out to time scales
in a similar way. Therefore, until today DNS can only be used for small domains
with low Re numbers and simple boundary conditions and thus strongly reduced
closeness to reality even on very powerful state-of-the-art computers - at least if we
want to see the results within our own lifespan.

Within the scope of this work, there is not much more to say about the advantages
and drawbacks of DNS so we move on to something more enticing: large-eddy
simulations (LES). It has been found that (for a lot of set-ups) the largest vortices
are the most important structures in terms of turbulent transport. On that account,
the somewhat compromising LES was invented. The idea is reminiscent of the RANS
ansatz, decomposing the �ow quantities into a resolved �ltered and an unresolved
residual component. In the case of LES we resolve the large scale eddies, hence
turbulence is included, and model the small scales for energy dissipation. In a little
more detail: We smooth out the quantity - let us stick with velocity here - by
convolving the instantaneous function u with a �lter function h, e.g.

û1(x) = (u1 ∗ h)(x) =
∞∫

−∞

u1(x− r)h(r)dr,

h(r) =

{
1/L |r| ≤ L/2,

0 |r| > L/2.

The e�ect of this �ltering is that we even out �uctuations much smaller than L.
Surly, there are a lot of possible �ltering functions and the procedure carries over
to more dimensions. Now, we write the new decomposition u = û+ ù and insert it
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into the Navier-Stokes equations

ϱ
∂ûi
∂t

+ ϱ
∂(ûiûj)

∂xj
=− ∂p̂

∂xi
+
∂τ rij
∂xj

+ µ∇2ûi,

τ rij = ϱ(ûiûj − ûiuj).

This resembles (4.3) very much and again we ran into notional stresses, the residual
stresses τ rij, and need to employ a model guessing them. Here, too, we can use eddy
viscosity models - preferable one that has been created especially for LES like the
Smagorinsky model or its o�spring - where our �ltering scale L is included. With
LES we can use much coarser grids of width L instead of η giving us a wider range
of possible applications than DNS and still we see the big structures of turbulence
yielding more accuracy than RANS simulations. Self-evidently, LES has its restric-
tions, too. The computations are, nevertheless, much more demanding in terms of
resources than k-ε models and the like and although the �eld of reasonable applica-
tions for LES is very large, there are set-ups where the small scales are too important
to be neglected like that, e.g. when studying turbulent �ows near a wall.

The modelling concepts we have seen so far either use the underlying equations
directly or average the �ow quantities to di�erent extends. For some this might
seem as if we have exhausted all possibilities here but then again we have not yet
scraped the bottom of the barrel. When de�ning turbulence, we used the term �ran-
domly� but none of the models above has actually considered simulating the mean
�ow plus random �uctuations. Naturally, great care must be taken, when deciding
for distribution functions but the same applies to closure models, so this should not
stop us from going that way. In fact, this notion is the basis of the one-dimensional
turbulence model - though it is not the only one - which will be discussed and worked
with in the remainder of this chapter.

For a more detailed introduction on turbulence, the reader is referred to [18],
[49], [48], [57], to name only the literature on which this section is based.

4.2 Introduction to ODT

When thinking of turbulence, one-dimensionality seems to be counter-intuitive. Of
course turbulence is a highly three-dimensional phenomenon and it is not a coin-
cidence that extremely costly computations are needed to simulate it in a direct
manner. Nonetheless, decades of investigations gave some insight on the processes
that drive turbulence and are driven by it. These �ndings enabled the development
of phenomenological simulations of turbulence which can also be executed in one
dimension. There are di�erent methods of simulating individual realisations of tur-
bulent �ows via evolution equations, e.g. one-dimensional Biot-Savart formulation
[16], one-dimensional binary-tree formulations [3] and using a stochastic approach,
like the linear eddy model (LEM) [36] and the one-dimensional turbulence (ODT)
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[39]. We decide for the latter as it is the most advanced in the �eld of turbulent
combustion, exploiting knowledge about the forces behind and characteristics of
turbulence in a computationally e�cient way.

The most important features of turbulence have been introduced in Section 4.1:
random velocity �uctuations, meaningful mean values, wide ranges of time and
length scales, high turbulent di�usion and rotational structures. We have also dis-
cussed some of the more universal theories: the energy cascade, Kolmogorov's �ve-
thirds law and the Kolmogorov microscales, as well as the generation of turbulence
by viscous forcing through velocity di�erences. ODT is able to reproduce these
features without directly simulating turbulence but stochastically choosing eddies
which compress and rotate states. The sophisticated algorithm makes the interac-
tion of eddies and current stream possible and reasonable. In the following, ODT
will be presented as formulated originally.

φ(y)

y

→
φ(y)

y

Figure 4.4: E�ect of a rotation on a scalar function in one space dimension.

x

y

Pipe

Stream ODT-line

Figure 4.5: Sketch of pipe �ow with stream lines, ODT-line and corresponding axis direc-
tions x and y.

In 1999 ODT was presented by Kerstein in [39] as a stochastic model, which is
to be used in a Monte Carlo simulation. It produces single realisations of a turbu-
lent �ow simulation which can be averaged over the ensemble but also studied by
themselves. This is a feature which makes ODT more attractive for the application
within the SEC-code than RANS or LES as combustion is a highly sensitive process
and it might be possible that one realisation yields a proper SEC while another one
does not.
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Turbulent advection and thus the cause of random quantity �uctuations, is rep-
resented by so-called eddy events. These eddy events are the one-dimensional net
e�ect of a vortex, a kind of projection of a rotation (see Figure 4.4). In ODT they
are realised as simple mappings which act on an ODT-line with direction y that is
perpendicular to the streamwise direction x as illustrated in Figure 4.5. This formu-
lation is due to the shear �ow frame where the streamwise velocity pro�le u(y) drives
the turbulence. Generally, the ODT direction y would be the one with the steepest
gradients of properties. Calling ℓ length of the eddy and y0 its bottom corner, an
eddy event is implemented as a mapping of the domain segment [y0, y0 + ℓ] onto
itself by the three-valued triplet map

ŷ(y) :=


y0 + c1(y − y0),

y0 + c2ℓ− (c2 − c1)(y − y0),

y0 + c2ℓ+ (c2 − c1)(y − y0)

(4.8)

with 0 < c1 < c2 < 1. In most cases a symmetric formulation with c1 =
1
3
and c2 =

2
3

is used, but other options might be advantageous for a speci�c application. This
mapping is measure-preserving and hence, all velocity moments like momentum and
kinetic energy are preserved, too. Also its inverse is continuous. Applying this map
to any given pro�le Φ(y) on [y0, y0 + ℓ] results in three compressed images of this
pro�le with the middle one mirrored for continuity. This produces a pro�le similar
to the one seen in Figure 4.4. Thus ŷ re�ects the compressive and rotational e�ects
of real turbulence and rightly increases strain intensity as well as it decreases strain
length-scale. This is how ODT realises self-similar eddy cascades and therefore the
energy cascade. The map can be implemented as a permutation of grid cells which
makes it particularly e�cient in terms of computation time ([38]). The basis of
this mapping is Kerstein's incompressibility condition. For the scope of this thesis
we will go along with it to gain a �rst insight to the new formulation we want to
develop.

The application of ŷ to the ODT-line presumes that y0 and ℓ are chosen before-
hand. In the ODT context, they are random variables representing a candidate eddy
which might be implemented. These variables could just be drawn from a uniform
distribution which would not have much e�ect on the outcomes of the simulation due
to the ensuing steps. Nonetheless, at least for ℓ it is computationally advantageous
to use a more elaborate distribution ([47]) which we will see later on.

Until now, there was no interaction of eddies and stream condition. This changes
when coping with the question of when to implement the sampled eddy. Considering
waiting processes, it is common to regard events as Poisson distributed. This means,
that

δ∆teddy := R(t)e−R(t)t
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with rate

R(t) =
ymax∫
ymin

ℓmax∫
ℓmin

λ(ℓ, y0; t) dℓ dy0.

The function λ(ℓ, y0; t) plays the role of a rate distribution of eddies. λ(ℓ, y0; t)dℓ
represents the frequency of eddy events of size [ℓ, ℓ + dℓ] per unit length along the
ODT-line. Due to dimensional arguments

λ(ℓ, y0; t) :=
1

ℓ2τ(ℓ, y0; t)
.

Kerstein explicitly refrains from inserting a free parameter in his scope of application.
Later in this chapter, we will introduce a factor as C. τ is named eddy time scale
- usually interpreted as a fraction or multiple of the turnover time βT τ , with βT
being another model parameter which we will use later on. We know that it is the
di�erence in the streamwise velocity along the y-axis that drives the turbulence in a
real-world experiment. Hence, the same applies for the eddy within the frame of [39]
and therefore ∆u(ℓ, y0; t) is introduced along with a free parameter A to compute τ

τ(ℓ, y0; t) :=
ℓ

A∆u(ℓ, y0; t)
. (4.9)

A accounts for di�erent de�nitions of ∆u(ℓ, y0; t) for there is no preferable one.
Kerstein chooses

∆u(ℓ, y0; t) := 2|uℓ(y0 + 0.5ℓ, t)− uℓ(y0, t)|
with

uℓ(y, t) :=
2

ℓ

y+ℓ/2∫
y

u(ζ, t)dζ. (4.10)

(4.10) smoothes the velocity pro�le because preceding eddies have made it spiky.
With this set of equations, one could compute λ(ℓ, y0; t) for the current state of

the �ow and all possible combinations of ℓ and y0. As this is not a very feasible
approach a di�erent technique is exploited instead: thinning (see e.g. [43]). The
general idea of this method is to oversample the Poisson distributed variable - the
time step ∆teddy until the next eddy is sampled - by using a majorant λ∗ of R as rate
for the Poisson process. Afterwards the event is only accepted with a probability of

φa :=
real distribution

numerical distribution
=
λ(ℓ, y0; t)

Λ(ℓ, y0, t)
.

As we can write the numerical rate distribution as a product of the numerical rate
∆t−1

eddy and the joint probability density function (PDF) of y0 and ℓ - assuming
independence - δy0δℓ ([40],[1]), the acceptance probability reads ([39], Appendix A)

φa(ℓ, y0; t,∆teddy) =
λ(ℓ, y0; t)∆teddy

δy0δℓ
. (4.11)
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Combining the two steps of sampling candidate eddies and rejecting a suitable
portion of them recovers the true distribution if R∆teddy ≪ 1 (oversampling condi-
tion). The advantage of this method is that it only needs the evaluation of λ(ℓ, y0; t)
of one distinct eddy with �xed size and position. With reasonable ratios of sampled
to accepted eddies under the oversampling condition, this approach saves a lot of
computation time.

Last but not least, two suppression mechanisms are part of every ODT simu-
lation: small and large eddy suppression. The former is useful for the likelihood
λ(ℓ, x0; t) is proportional to ℓ

−2 but the in�uence of very small eddies on the �ow
properties is usually minor. A small eddy suppression also is inline with viscous
e�ects at Kolmogorov microscales and formulated as such. Kerstein suggests, that
eddies are applied only if

τ < τd := ϱℓ2/16µ. (4.12)

Large eddy suppression on the other hand is necessary for, depending on the cho-
sen distribution, unphysically large values of ℓ may be drawn occasionally. These
rare events would dominate the �ow contributing to transport with a square of their
size ([39], [41]). To restore scale locality Kerstein's implementation rejects eddies
which contain more than a given fraction of laminar �uid. The latter is de�ned
to still have the initial velocity within a reasonable tolerance. The choice of the
fraction value is empirical or arbitrary.

Over the past 20 years a lot of di�erent formulations of and extensions to ODT
have been developed along with various mechanisms to cover more set-ups (see [54]
and [21] for an elaborate overview). In the next section yet another adaptation which
was developed to serve the special needs of the SEC simulations will be shown.

4.3 Implementation

The current implementation of ODT within the SEC-code is inspired by the aODT-
code of Heiko Schmidt's group at BTU Cottbus-Senftenberg. Although this code
can deal with adaptivity of the mesh, the moving mesh feature described in Chap-
ter 3 is disabled for the ODT feature of the SEC-code, as the notion of ODT in the
SEC context is a di�erent one. In lieu of involving some of the later extension yield-
ing a more complex mechanism which is included in the aODT-code, the formulae
used in the current SEC-code are following the original ODT paper [39] described
in Section 4.2 very closely. Since there is no evaluation of the streamwise velocity
pro�le in a perpendicular (lateral) direction in the SEC-code, one of the most im-
portant di�erences to the ideas stated in Section 4.2 is that the ODT-line will not be
orthogonal to the space direction x. Instead it will be aligned with this streamwise
direction and thus henceforth y0 will be substituted by x0. This means that eddies
now occur on the centreline of the �ow (centreline assumption), where their own
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centres will be (see Figure 4.6). Nonetheless, as the turbulence-driving force is the
di�erence in streamwise velocity in the lateral y-direction, we make a guess about the
u(y)-pro�le based on the cell-averaged momentum that is resolved by the SEC-code.

x

y

Pipe

Eddy

x0 x0 + `

Figure 4.6: ODT eddies in pipe �ow in streamwise direction.

The other di�erence emerges from the usage as a stand-alone subgrid-scale model.
Most applications include ODT as a stand-alone turbulence model for fully resolved
simulations as in [39] and publications following this path. That would mean∆x ≤ η
(Kolmogorov length scale), which grows smaller with higher Reynolds number as
can be seen in (4.15). Here ODT is the only turbulence model included. The other
type of application is as a subgrid-scale closure model for under-resolved three-
dimensional simulations with turbulence-capturing solution methods, e.g. LES (see
Section 4.1 for an overview or [13] for details).

The implementation at hand merges the two approaches applying ODT as the
only turbulence model but in a subgrid-scale mode. That means we assume∆x to be
of the same scale as the maximum eddy size, which is the SEC-tube's diameter. This
approach enables the inclusion of a variable cross-sectional area and is justi�ed by
the one-dimensional rather qualitative character of the code. Therefore, in contrast
to [39], there will not be a discrete triplet map switching cell values. Instead we
assume continuous triplet maps working on a scale which is not resolved by our grid.
Because they are measure-preserving triplet maps only change a grid cell's state value
if they cross the interface between two cells. The current implementation only allows
for two cells to be involved in an eddy event. In this case a linear approximation
of the �ow properties within each grid cell is applied before the triplet mapping as
shown in Figure 4.7. By comparing the new cell integral to the old one, the �ux
between the two cells is computed and hence axial area variation of the domain can
be accounted for, using the notion of (3.26) and (3.27). The details to this procedure
and more on the current implementation can be found in Subsection 4.3.1.

4.3.1 Detailed Work�ow

The overall work�ow of an SEC simulation with ODT is shown in Figure 4.8, where
we see that the code executes the following steps: At �rst the sampling time step
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xi−1/2 xi xi+1/2 xi+1 xi+3/2

Qk
i

Qk
i+1

q(x, tk)

→

xi−1/2 xi+1/2 xi+3/2

x0 x0 + `

q(x, tk + teddy)

Figure 4.7: Subgrid-scale triplet mapping over the interface of two grid cells.

∆teddy must be drawn from the exponential distribution

δ∆teddy(t) = λ∗e−λ
∗t.

λ∗ is the majorant of the real eddy rate R needed for the thinning method as
discussed in Section 4.2. Its �rst value is chosen by the user. Afterwards the
algorithm will change it according to its settings (see below). If the sampling time
falls in between the current and next overall time level, the ODT algorithm will be
started. It is implemented in C++, which saves some computation time. Needing
to simulate a lot of realisations and possibly drawing a huge number of eddies (most
of them being rejected or not in�uencing the cell values), this can be very helpful.
The ODT function itself begins with sampling ℓ and x0 for the potential eddy's size
and position. As outlined in [39], the choice of the PDFs δℓ and δx0 is arbitrary but
will e�ect the algorithm's computational e�ciency. This is why S. Wunsch (see [47])
developed a function which is widely used to sample the eddy size from. Generally
it looks like

δℓ(ℓ) = aℓb exp

(
c

(
ℓp
ℓ

)−(b+1)
)
. (4.13)

Naturally, a is the normalisation factor which includes ℓmin and ℓmax, the user-
de�ned minimum and maximum eddy size, respectively

a =
(b+ 1)cℓ

−(b+1)
p

exp

(
c

(
ℓp
ℓmax

)−(b+1)
)
− exp

(
c

(
ℓp
ℓmin

)−(b+1)
) .

b is a scaling factor which could be b = −8/3 if the assumptions leading to Kol-
mogorov scaling hold true or b = −2 like advised in [47] and used in [45], [50] and
many others as a precaution. In this way we oversample bigger eddies rather than
smaller ones, ensuring to include enough of the energy-containing large scales. To
force the distribution to have its maximum at the user-speci�ed ℓp, one sets c =

−b
b+1

,
making ℓp the most probable eddy size by de�nition. Inserting the above choices in
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set up domain with ODT parameter (see Appendix B.3 for instructions);
sample �rst ∆teddy;
while t < tend do

compute ∆tk;
if ∆tk > ∆teddy then start ODT function

tODT = t;
while tODT < t+∆tk do

begin sample eddy:
sample size ℓ from (4.14);
sample position x0 from (4.16);
compute τ (4.9);
compute acceptance probability φa (4.11);

end
check acceptance;
raise or lower λ∗;
if eddy accepted then

add eddy to statistics;
if eddy crosses cell interface then

set ∆tk = tODT − t;
sample next ∆teddy;
break;

end

end
set tODT = tODT +∆teddy;
sample next ∆teddy;

end

end
if last sampled eddy crosses cell interface then

apply triplet map;
update statistics;

end
advance governing equations;
t← t+∆tk;

end

Figure 4.8: Work�ow with ODT
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(4.13) yields

δℓ(ℓ) = aℓ−2 exp

(
−2ℓp

ℓ

)
(4.14)

with

a =
2ℓp

exp

(
− 2ℓp
ℓmax

)
− exp

(
− 2ℓp
ℓmin

) .
Of course, an exponential function never really reaches zero so the support of δℓ
actually is R. Still, we can prevent drawing eddies that are too big or too small by
computing ℓ as

ℓ = −2ℓp
[
log

(
σ exp

(−2ℓp
ℓmax

)
− (σ + 1) exp

(−2ℓp
ℓmin

))]−1

,

where σ is drawn from the uniform distribution over [0, 1]

σ ∼ U(0, 1).

This gets us the desired distribution of sizes but only within [ℓmin, ℓmax] ([50]). In [50]
the user-set lengths are linked to turbulence theory (cf. (4.1)) and scaling analysis
by choosing

η =
ℓmax
Re0.75

, ℓmin = 6η, ℓp = exp

(
ln(ℓmax) + ln(η)

2

)
=
√
lmaxη. (4.15)

Again Re is the Reynolds number of the �ow and ℓmax is reasonably chosen to match
the integral length scale. ℓmin is set to six times Kolmogorov length scale because
in the framework of [50] the triplet maps are discontinuous and implemented to
permute grid cell values. The resolution of said grid is ∆x = η, hence an eddy event
can only be performed if at least six grid cells are involved. As the triplet map
implemented in the SEC-code is continuous, ℓmin could just as well be set to η. An
example of δℓ for Re = 106, (a value relevant to the simulations of Section 4.4) is
shown in Figure 4.9.

Figure 4.9: Example probability distribution function for eddy sizes after Wunsch with
Re = 106.
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Examining the simulations in Section 4.4, we will see that the position distribu-
tion greatly depends on the setting and therefore any other ansatz would be very
speci�c to the task at hand and need a fair portion of a priori knowledge. Accord-
ingly, no complex functions have been created for the eddy's leftmost edge x0 and a
uniform distribution is used

δx0(x0; ℓ) =
1

L − ℓ, (4.16)

where L is the domain's size.

ln(R− y)

u

visous
sublayer

buffer
layer

logarithmic
region

outer
region

Figure 4.10: Qualitative comparison of implemented lateral u pro�le (left) with �law of the
wall� (right), y ∈ [0, R] from centreline to wall.

Afterwards the eddy's time scale τ is computed using Kerstein's original formu-
lation τ(ℓ, x0; t) =

ℓ
A∆u(ℓ,x0;t)

, A being a model parameter. To be able to evaluate

∆u(ℓ, x0; t) we need an assumption for the pro�le of the streamwise velocity in lat-
eral direction because we do not resolve the velocity along this dimension. Since the
SEC-code is designed for pipe �ows an expression close to the �law of the wall� (see
[18], section 4.2, for details), which describes the desired pro�le in a fully developed
turbulent �ow between walls, seems to be the obvious choice. Looking into the de-
tails, though, it divides the �ow into four regions. This is already too complex for
the question at hand. We just need a rough estimation for the turbulence driving
force, i.e., the velocity di�erence ∆u between eddy centre and eddy edge. This can
be done by a much simpler formula common in technical applications (see [4], p.
182)

u(y) := umax

(
1− y

R

)1/ψ
with ψ = 2.1 log10(Re)− 1.9. (4.17)

The spacial variable y is de�ned from the centreline y = 0 to the wall y = R,
where R is the radius of the pipe (in our case: the combustion chamber). Please
note that the de�nition of Re in this context is

Re =
2Rϱu

µ
.
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Figure 4.10 shows an exemplary pro�le based on (4.17) in comparison to the much
more complex �law of the wall�. Our chosen pro�le seems to be a good approximation
under the given requirements. Since we only have the momentum averaged over the
control volume ϱu available, a link between ϱu and umax is needed. First, we estimate
ū through ϱu

ϱ̄
. Next, we follow the approach of [34] (ansatz can be checked in [4],

p.338, 1.28). Using the de�nition of the volume �ow V̇ as ū times cross-sectional
area A and inserting (4.17) yields

ū = V̇ /A =
1

πR2

R∫
−R

πyu(y)dy =
2

R2

R∫
0

yu(y)dy = 2

1∫
0

ru(r)dr

= 2umax

1∫
0

r (1− r)1/ψ dr = 2umax ·
ψ2

2ψ2 + 3ψ + 1
.

For the partial integration in the last step we used ψ > 0, which is always true for
Re > 1. This is a reasonable assumption for turbulent �ows. Now ∆u can be set to
|umax−u(ℓ/2)|. A smoothed out function for u is not necessary in our context since
the u(y)-pro�le is not subject to triplet mapping as in [39] but already a smooth
analytic function.

Having found an estimation for ∆u, we can compute τ . Small and large eddy
suppression mechanisms are included in this substep. In reality small eddies fall
prey to viscous dissipation, which is modelled following Kerstein's suggestion in [39]
by demanding τ < ϱℓ2/16µ and otherwise rejecting the sampled eddy. Overly large
eddies are not as big a problem in our subgrid-scale framework since eddy size is
restricted to combustion chamber diameter and still smaller than or equal to ∆x.
Nonetheless, there is a mechanism included which gives the user control over the
onset of slow eddies. Like in e.g. [22], the eddy turnover time is interpreted as some
model parameter βT times eddy time scale τ . Unphysically slow eddies are now
avoided by simply imposing the restriction that the elapsed simulation time must
be greater than the eddy turnover time: t ≥ βT τ . This seems to be a sensible
requirement. Why this does actually not suppress large eddies although it is a large
eddy suppression mechanism will be explained in Subsection 4.4.3.

With τ and the model parameter C, λ(ℓ, x0; t) = C
τ ·ℓ2 can be calculated and there-

fore the acceptance probability. As our triplet map is used continuously, we do not
need to account for di�erent mean-square displacement of the discrete triplet map
([40]) and readily compute φa from (4.11). The sampled eddy is implemented, if a
number randomly drawn from U(0,1) is lower than φa. Please note that it is not
guaranteed that φa < 1, at least because A and C are involved but it is also true if
both parameters are set to unity. If φa is greater than 1, ∆teddy is too big and λ∗

not a majorant of the true eddy rate as required for the thinning procedure. This
is why there is a mechanism raising λ∗ if φa is greater than some given constant in
(0, 1). Also, after a preset number of drawn eddies λ∗ may be lowered to enhance
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computational e�ciency.

If the sampled eddy is rejected, the next waiting time and corresponding eddy will
be sampled until the governing equations of the �ow need to be advanced. Properties
of accepted eddies are stored for statistical evaluation. If the eddy does not cross
a grid cell interface, the ODT algorithm continues sampling eddies. Otherwise, the
eddy is to be implemented and the global ∆tk is changed to match the eddy's time
of occurrence, which is current time level plus the waiting time of all eddies sampled
within this step (including the rejected ones).

If an eddy occured which spans two grid cells i ∈ {1, ..., N − 1} and i + 1, the
triplet map must be applied. To this end, we adopt a linear approximation of q
over the two involved cells (see Figure 4.7). If there is no variation of cross-sectional
area, we only need to compute the new cell-averaged integral values Qk

i and Qk
i+1

and we are done. Otherwise, we need to �nd the �ux per unit area. Remember

Qk
i =

1

Ai∆x

xi+1/2∫
xi−1/2

q(ζ, tk)A(ζ)dζ

with Ai =
1
2

(
Ai−1/2 + Ai+1/2

)
. Now the �ux over the cell interface equals the dif-

ference of the grid cell integrals after and before the eddy divided by its turnover
time

Eki+1/2 :=
1

βT τ

 xi+1/2∫
xi−1/2

q(ζ, tk + βT τ) dζ −
xi+1/2∫
xi−1/2

q(ζ, tk) dζ

 . (4.18)

Because only one interface is involved, we just need to calculate the �ux once for grid
cell i, due to conservation laws. Also it follows that Eki−1/2 = Eki+3/2 = 0. Accordingly,

the new state vectors of the cells are calculated like in (3.26) and (3.27) via

Qk+1
i =Qk

i +
βT τ

∆x

Ai+1/2Eki+1/2

Ai
, (4.19)

Qk+1
i+1 =Qk

i+1 −
βT τ

∆x

Ai+1/2Eki+1/2

Ai+1

. (4.20)

Notice that βT τ cancels out.
After this step λ∗ and the statistics of implemented eddies are updated and the

governing equations are advanced to catch up with the eddy time line.
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4.3.2 Molecular Transport

Since turbulence requires viscosity to come to life the governing equations (1.1) were
extended to the full set of Navier-Stokes equations with chemistry

∂

∂t



ϱ

ϱu

ϱE

ϱY


= − ∂

∂x



ϱu

ϱu2 + p

(ϱE + p)u

ϱY u


+



0

0

ϱĖchem

ϱẎchem


+

∂

∂x



0

4
3
µ∂u
∂x

4
3
µ∂u
∂x
u+ κ∂T

∂x

ϱD ∂Y
∂x


(4.21)

with the transport coe�cients dynamic viscosity µ, thermal conductivity κ and
vector of mass di�usion coe�cientsD. All of these coe�cients depend on the speci�c
composition of the gas and its temperature. Therefore, for real chemistry set-ups,
they are calculated as mixture-averaged values following [35], which is also the basis
of the often used Cantera code

κ =
1

2


Nspec∑
i=1

Xiκi +
1

Nspec∑
j=1

Xj/κj

 ,

Di =
1− Yi

Nspec∑
j=1
j ̸=i

Xj/Dij

, ∀i ∈ {1, ..., Nspec},

µ =

Nspec∑
i=1

µi
Yi

Nspec∑
j=1

Γij
Mi

Mj
Yj

with

Γij =
1√
8

(
1 +

Mi

Mj

)−1/2
[(

1 +
µi
µj

)−1/2(
Mj

Mi

)1/4
]2
.

Here Xi are mole fractions, Nspec the number of species, µi and κi refer to single
species viscosity or conductivity, respectively. Dij is the binary mass di�usion co-
e�cient. As Di is not de�ned should the considered state be composed of a single
species, we use Di = Dii, the self-di�usion coe�cient, as a fall back solution for
this case. Additionally, [35] notes that mixture-averaged mass di�usion coe�cients
violate mass conservation. Hence, a �ux correction was incorporated following the
�conservation di�usion velocity� idea of [14] as stated in [35]. First we rewrite the
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species di�usion �ux from (4.21) using the di�usion velocity W

ϱD
∂Y

∂x
→ ϱYW. (4.22)

Now we decompose W = W̃ +Wc, where W̃ is the di�usion velocity as usual

W̃ =


D

1

Y

∂Y

∂x
Y > 0,

0 Y = 0

and Wc the correction

Wc = −
Nspec∑
i=1

YiW̃i.

Note, that the latter only depends on space and time and no longer on the species.

Molecular transport is included in the SEC-code via Strang splitting. The nu-
merical �ux functionD is taken directly from (4.21), employing (4.22), and evaluated
for states reconstructed at the cell edges by common linear approximation

Qk
i−1/2 =

(
Qk
i−1 +Qk

i

)
/2, ∀i ∈ {2, ..., N}.

Derivatives are calculated as central di�erences. For the time update, an explicit-
Euler-like one-step method

Qk+1
i = Qk

i +
∆tk

∆x

(
Dki+1/2 −Dki−1/2

)
and a Runge-Kutta-like two-step method

Q
k+1/2
i = Qk

i +
∆tk

2∆x

(
Dki+1/2 −Dki−1/2

)
,

Qk+1
i = Qk

i +
∆tk

∆x

(
Dk+1/2
i+1/2 −D

k+1/2
i+1/2

)
were implemented in FV formulation.

Molecular transport has also been introduced in the MM-variant of the SEC-code
although it is not used with the full ODT. To achieve this, the above approximations
had to be adjusted for the non-equidistant mesh. The derivatives are evaluated using
the Fornberg-algorithm described in Subsection 3.2.3 and one of the limiter functions
included in the SEC-code. The quantities on cell edges are calculated using these
derivatives.
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governing equations quasi one-dimensional Euler with ODT-FHD

chemistry 2-species Arrhenius kinetics; turned o�

domain length: 1, area variation: none

initial values
p = 2, T = 1.219, u = 1, fuel at x ∈ [0, 0.1] and product
else

boundaries
left: p = 2, T = 1.219, u = 1, product species;
right: isentropic expansion to p = 2

ODT setting
150 realisations, A, C ∈ {0.5, 1, 2, 3, 5},
βT ∈ {0.1, 0.5, 1, 2, 3, 5, 10}, ℓmin = 10−5, ℓmax = 0.01

grid cells 100

time steps
step size chosen automatically, snapshots stored at mul-
tiples of 4× 10−3

Table 4.1: Settings for homogeneous pipe �ow simulations.

4.4 The ODT-FHD

The ODT implementation in the current SEC-code di�ers conceptually from the
original ODT and therefore, surely bears other features which will be studied in the
following. Towards this aim, an idealised simulation of a classic experiment has been
carried out: a homogeneous steady pipe �ow with transported fuel species package
(see Table 4.1). The domain of length 1 is initialised with p = 2, T = 1.219, u = 1
everywhere. Fuel species is set to the �rst 10% of the domain, product species �lls
the rest. Chemistry is disabled to rededicate the fuel species as a tracker. The
boundary conditions keep the �ow steady for the left one is constant with p = 2,
T = 1.219, u = 1 and the right one is an isentropic expansion to p = 2. 150
realisations are simulated for each set of model parameter which were taken from a
small range. ℓmax is set to 0.01 which is the order of a combustion chamber diameter
and equal to ∆x, ℓmin = 10−5 for no smaller eddies are accepted by the algorithm
(cf. Subsection 4.4.3).

All �ow properties except the fuel species remain untouched by turbulence and
unchanged by gasdynamics as there are no gradients within them. Hence, this
setting is eminently suitable to investigate this ODT's features without having to
account for complex mutual interaction of turbulence and mean �ow. The mean
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�ow merely drives the turbulence in this case and advects the fuel package.

We will see that the new ODT formulation gives us a tool for controlling turbu-
lent di�usion. As implemented, there will be di�usive �uxes rather than generation
of new extrema in �ow properties due to the under-resolved nature of the set-up.
This might remind the reader of �uctuating hydrodynamics (FHD), where one re-
treats from the solely continuous view of the Navier-Stokes equations also used
within our framework and includes the microscopic scales considering molecules.
This comes in handy e.g. when very highly resolving �uid simulations or study-
ing �ows that have an extremely low density because the �uid's behaviour is then
governed by the movement of individual particles. When looking for a method of
solving a hydrodynamic problem which includes Brownian motion but avoids costly
particle tracking one is bound to trip over FHD. Here stochastic �uxes model the
thermal �uctuations just as our stochastic �uxes model turbulence. Therefore, the
new ODT formulation will henceforth be called ODT-FHD. Interested readers may
�nd an introduction to FHD in the original text [42], in [2] (chap. 5) or briefer in [9].

As we will consider realisations of stochastic variables and sets of events a lot
hereafter, we need to introduce some symbols:

T: time of occurrence of eddy, L: length of eddy, X: left edge of eddy;
A: eddy is accepted, I: eddy gets implemented.

4.4.1 Energy Cascade and Length Scales

In Section 4.1 the energy cascade of turbulent �ows was discussed and in Section 4.2
we brie�y introduced how the original ODT formulation realises it. The key is the
compression e�ect of the triplet maps on lateral pro�les of the streamwise veloc-
ity which leads to higher strain with smaller length scales. Thus, large eddies are
followed by smaller ones and so on. On the other hand, if length scales are small
enough for viscosity to take over, gradients are generally smoothed out faster than
eddies, feeding on the velocity di�erences, can form in that region. These, of course,
are features that the ODT-FHD does not support, since the distortions within the
lateral velocity pro�les are not kept and eddies only act on the centreline. Nonethe-
less, we can look at the kinetic energy spectrum of eddies and �nd a cascade-like
structure. The evaluation of ⟨u′(x)u′(x+ r)⟩, r ∈ (0,L− x], the velocity correlation
function commonly used to compute an energy spectrum, does not stand to reason
owing to the under-resolved nature of ODT-FHD with ℓmax ≤ ∆x. However, we can
make use of the interpretation of

ϱℓ3/τ 2 = ϱℓA2(∆u)2

as a measure of the kinetic energy of eddy motion ([41], [54]). In Figure 4.11 we
see an example spectrum for the homogeneous �ow setting. Let us compare this to
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Figure 4.3, where we saw a qualitative representation of the spectrum in real tur-
bulence. We observe that the ODT-FHD spectrum is mainly governed by a power
law suddenly breaking at the lowest wavenumber which means the biggest eddies.
Unlike the spectrum in Figure 4.3, the slope rises instead of falling. Furthermore,
there is no fast energy drop at the Kolmogorov length scale. These discrepancies
are due to the chosen lateral velocity pro�le and the centreline assumption, which
entails that bigger eddies are always faster than smaller ones (illustrated by τ over
ℓ in Figure 4.21). Also we �nd that in contrast to Kolmogorov's �ve-thirds law the
exponent of the power-law part is rather -3, maximally. Hence, our eddies pass less
energy down the length scales. The in�uence of the mean �ow velocity is that of a
scaling factor as an increase just shifts the graph up.

Figure 4.11: Example spectrum of kinetic energy of eddies for homogeneous pipe �ow with
di�erent mean �ow velocity.

Figure 4.12: Normalised theoretical probability density function of accepted eddies PA and of
implemented eddies PI depending on eddy size ℓ with histogram data points of numerically
realised distribution functions from homogeneous pipe �ow simulation.

Closely related to the energy spectrum is the distribution of length scales. So
we will now regard the distribution of realised eddy sizes. This function is governed
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by the acceptance probability

P (A ∩ T ∈ [t, t+ dt]|L = ℓ ∩ X = x0)

=φa(ℓ, x0; t, dt)

=
λ(ℓ, x0; t)dt

δℓ(ℓ) · δx0(x0; ℓ)

=
C

τ(ℓ;x0, t)ℓ2
dt

δℓ(ℓ) · δx0(x0; ℓ)

=
AC∆u(ℓ, x0; t)

ℓ3
dt

δℓ(ℓ) · δx0(x0; ℓ)

(4.23)

where dt is in�nitely small. (4.23) is the probability of an eddy to be accepted
when its time of occurrence is realised within [t, t+dt] and under the condition that
its length is ℓ and its left edge is x0. By de�nition of conditional probability, the
probability of such an eddy to realise and get accepted is

P (A ∩ T ∈ [t, t+ dt] ∩ L = ℓ ∩ X = x0)

=P (A ∩ T ∈ [t, t+ dt]|L = ℓ ∩ X = x0) · δℓ · δx0

=dt
AC∆u(ℓ, x0; t)

ℓ3

=:PA.

(4.24)

With this equation at hand, we can also �nd the probability of an eddy to be
implemented

P (A ∩ I ∩ T ∈ [t, t+ dt] ∩ L = ℓ ∩ X = x0)

= PA · P (x0 ∈ (xi+1/2 − ℓ, xi+1/2), i ∈ {1, ..., N − 1})

= dtAC∆u(ℓ, x0; t)
∆xℓ2

=: PI.

(4.25)

Normalising PA and PI yields the PDFs for accepted and implemented eddies as can
be seen in Figure 4.12. The data points are produced by considering all eddies within
a small interval [ℓ, ℓ + dℓ] for any time t and position x0 over all 150 realisations.
This only makes sense because ∆u(ℓ, x0; t) - and therefore PA and PI - is actually
independent of x0 and t in the framework of our homogeneous pipe �ow simulation
and can thus be integrated over space and time easily. Figure 4.12 shows how well
the histograms of numerical realisations match the theoretic distributions and that,
in general, smaller eddies outnumber bigger ones as is expected. Apart from that,
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we recognise that the eddy sizes do stretch over some length scales but also that
there is a sudden cut-o� of small eddies at about 2×10−4 well above the Kolmogorov
length scale - in this case η = ℓmax/Re

3/4 ≈ 1.6 × 10−6. That happens because of
the small eddy suppression (4.12) which can be in�uenced by the choice of A as we
will discuss in Subsection 4.4.3. Further, we perceive the distinct favouring of larger
eddies by the implementation condition and we can also spot a slight uptrend for
the biggest eddies in both functions. This, too, is a consequence of velocity pro�le
(4.17) and the centreline assumption.

Figure 4.13: ∂PA/∂ū and ∂PI/∂ū over ℓ for two di�erent values of mean �ow velocity ū.

Figure 4.14: Number of implemented eddies over ℓ for three di�erent values of ū.

Staying with the length distributions, we turn towards their dependence on the
turbulence generating quantity. From Section 4.1 we know that with increasing mean
�ow velocity and hence Reynolds number we should see more turbulence and a wider
range of length scales, i.e., η decreases. To verify that our ODT-FHD features this
behaviour, we will derive PA and PI with respect to ū. For our purpose it su�ces to
assume, that ū > 0. We obtain

∂PA

∂ū
=
dt

ℓ3
∂∆u(ℓ, x0; t)

∂ū

=
dt

ℓ3

{(
2ψ2 + 3ψ + 1

2ψ2
− 3.15ψ + 2.1

ln(10)ψ3

)[
1−

(
1− ℓ

2R

)1/ψ
]

+ umax(x0, t)ψ
−2

(
1− ℓ

2R

)1/ψ

ln

(
1− ℓ

2R

)
· 2.1

ū(x0, t) ln(10)

}
,

(4.26)
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∂PI

∂ū
=
∂PA

∂ū

ℓ

∆x
.

Appendix A.1 provides additional computation details. In Figure 4.13 we see these
two functions over ℓ for two di�erent values of ū. It shows that increasing the mean
�ow velocity emphasises smaller eddies rather than bigger ones - except for the
biggest as in all our considerations. We can also see that the di�erence is smaller
for implemented than for the accepted eddies due to the implementation condition.
Figure 4.14 shows the overall larger number of eddies for faster �ows as well as a
shift to the left of the smallest length implemented. Therefore, we are content with
this feature.

4.4.2 Fluxes and Turbulent Di�usion

xi−1/2 xi+1/2

x0

∆1 ∆2 ∆3 ∆4

Q0 Q1

Q2

Q3

Q4

Figure 4.15: Points and distances for cell integration after eddy event (case 3).

As stated in Section 4.1 what engineers usually are most interested in when
simulating a turbulent �ow are the �uctuations and turbulent di�usion. Hence,
these are our next objects of study. First of all, it needs to be clari�ed that new
maxima and minima of �ow properties arising along the x-axis due to eddies shu�ing
the �uid, will not occur using ODT-FHD in its current form. We will see later why
this is impossible but for now we turn to what will be attained: turbulent di�usion.
Surely, for our under-resolved grid, we cannot simply track a marked particle to
evaluate turbulent di�usion. But what we can study the expected value of the �ux
(4.18) between certain grid cells i ∈ {1, ..., N − 1} and i+1 due to eddy events with
respect to the eddy's length ℓ. To this aim, we consider the expected value of

βT τ · Eki+1/2 =

xi+1/2∫
xi−1/2

q(ζ, tk + βT τ) dζ −
xi+1/2∫
xi−1/2

q(ζ, tk) dζ

under the condition that L = ℓ. In order to do this, we regard the integration

76



4.4 The ODT-FHD

procedure implemented in the SEC-code, using

xi+1/2∫
xi−1/2

q(ζ, tk + βT τ) dζ =
3∑
j=0

∆j+1

2
(Qj +Qj+1)

with Qj and ∆j as depicted in Figure 4.15. Depending on the position of the eddy,
we must distinguish three di�erent cases, which are de�ned as

case 1: 0 < xi+1/2 − x0 ≤ ℓ/3,
case 2: ℓ/3 < xi+1/2 − x0 ≤ 2ℓ/3 and
case 3: 2ℓ/3 < xi+1/2 − x0 ≤ ℓ.

If xi+1/2 − x0 > ℓ the eddy does not stretch over the interface of two grid cells
and will therefore not be implemented. Using the shorthands

S :=
Qk
i+1 −Qk

i

∆x
,

∆ζr :=xi+1/2 − x0,

∆ζl :=x0 − xi−1/2 = ∆x−∆ζr,

the according intermediate values Qj and step widths ∆j are computed as follows

case 1 case 2 case 3

Q0 Qk
i −

S

2
∆x Qk

i −
S

2
∆x Qk

i −
S

2
∆x

Q1 Q0 + S∆ζl Q0 + S∆ζl Q0 + S∆ζl

∆1 ∆ζl ∆ζl ∆ζl

Q2 Q1 + 3S∆ζr Q1 + 3S
ℓ

3
Q1 + 3S

ℓ

3

∆2 ∆ζr
ℓ

3

ℓ

3

Q3 0 Q2 − 3S

(
∆ζr −

ℓ

3

)
Q2 − 3S

ℓ

3

∆3 0 ∆ζr −
ℓ

3

ℓ

3

Q4 0 0 Q3 + 3S

(
∆ζr −

2ℓ

3

)
∆4 0 0 ∆ζr −

2ℓ

3
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Now we can turn to expressing the expected value

E

 xi+1/2∫
xi−1/2

q(ζ, tk + βT τ) dζ −
xi+1/2∫
xi−1/2

q(ζ, tk) dζ


in terms of ℓ by regarding ℓ as �xed and x0 as a uniformly distributed random
variable. As the computations follow the same rules for all three cases, only the �rst
one will be shown here. Due to extra terms, the second and third case's formulae
are much less convenient to read. Dedicated readers are referred to Appendix A.2
where the according calculations are carried out, nonetheless.

As a �rst step we will rearrange
∫ xi+1/2

xi−1/2
q(ζ, tk + βT τ) dζ using

∆1 +∆2 = ∆x

and
Q2 = Q1 + 3S∆ζr = Q0 + S∆ζl + 3S∆ζr.

Thus for case 1 with 0 < ∆ζr ≤ ℓ/3 it holds

xi+1/2∫
xi−1/2

q(ζ, tk + βT τ) dζ =
3∑
j=0

∆j+1

2
(Qj +Qj+1)

=
∆1

2
(Q0 +Q1) +

∆2

2
(Q1 +Q2)

=
1

2
[∆1Q0 +∆xQ1 +∆2Q2]

=
1

2
[∆1Q0 +∆x(Q0 + S∆ζl) + ∆2(Q0 + S∆ζl + 3S∆ζr)]

=∆xQ0 +
S

2

(
∆x∆ζl +∆ζr∆ζl + 3∆ζ2r

)
.

In the next step, we subtract ∆xQk
i and substitute ∆ζl with ∆x−∆ζr, yielding

βT τ · Eki+1/2 =−
S

2
∆x2 +

S

2

(
∆x2 −∆ζr∆x+∆x∆ζr −∆ζ2r + 3∆ζ2r

)
=S∆ζ2r .

Since ∆ζ2r depends on the random variable x0 the next step is to compute the
expected value of this variable. Note that it also depends on the case considered,
as this restricts the possible values of ∆ζr and hence we are computing conditional
expectation values. The index ℓ shall remind us, that within this considerations we
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impose the condition L = ℓ and thus ℓ is �xed instead of random. The number in
the index indicates the case regarded

Eℓ,j(X) = E

(
X

∣∣∣∣L = ℓ ∩∆ζr ∈
(
(j − 1)

ℓ

3
, j
ℓ

3

])
.

Using this shorthand we compute

Eℓ,1(∆ζ
2
r ) =

ℓ/3∫
0

ζ2 · 1

ℓ/3
dζ =

3

ℓ

[
1

3
ζ3
]ℓ/3
0

=
ℓ2

27
.

Exploiting the linearity of expectation and inserting the above value, we get the
expected value of the eddy �ux over the turnover time for case 1

Eℓ,1
(
βT τ · Eki+1/2

)
=

S

27
ℓ2.

Following this chain of arguments and computations for the other two cases, we
arrive at

Eℓ,2
(
βT τ · Eki+1/2

)
=

4

27
Sℓ2,

Eℓ,3
(
βT τ · Eki+1/2

)
=
S

27
ℓ2.

Since x0 is uniformly distributed, the three di�erent cases have the same likelihood
of 1

3
. Hence, utilising the law of total expectation, we �nd the expected value for

βT τ · Eki+1/2 disregarding the case, to be

Eℓ
(
βT τ · Eki+1/2

)
=

1

3

3∑
j=1

Eℓ,j
(
βT τ · Eki+1/2

)
=

2

27
Sℓ2.

So we see that the expected value of the �ux depends on the square of the eddy
length which was also stated by Kerstein for his version of ODT ([39]). Moreover,
we �nd, that the �ux is greatest for case 2. In fact, taking a step back and knowing
that ∆ζr = cℓ for c ∈ (0, 1), we can infer

βT τ · Eki+1/2 =



Sℓ2c2 c ∈
(
0,

1

3

]
,

Sℓ2
(
−2c2 + 2c− 1

3

)
c ∈

(
1

3
,
2

3

]
,

Sℓ2
(
c2 − 2c+ 1

)
c ∈

(
2

3
, 1

)
.

(4.27)
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It was stated before that sudden increases of gradients due to eddy events will
never arise when using ODT-FHD in its current implementation. Now we can see
why: according to (4.27) any eddy induced �ux will always decrease S mimicking
the e�ect of turbulent di�usion only. Figure 4.16 shows the �ux distribution from
(4.27) for Sℓ2 = 1 in direct comparison to a �tted and scaled normal distribution
a exp(−(x−b

d
)2). Interestingly, we see quite a close match. If S or ℓ2 change, only

the scaling factor a would need an according update.

Figure 4.16: Scaled βT τ · Eki+1/2 for all three cases of ∆ζr compared to a �tted and scaled
normal distribution.

To calculate the unconditional expected value of βT τ · Eki+1/2 we need PI, the

probability for an eddy to be implemented, which we already calculated in (4.25).
Again we assume ū > 0 yielding

E
(
βT τ · Eki+1/2

)
=

ℓmax∫
ℓmin

Eℓ
(
βT τ · Eki+1/2

)
PI dℓ

=dt
2S

27

AC
∆x

ℓmax∫
ℓmin

∆u(ℓ, x0; t)dℓ

=dt
2S

27

AC
∆x

umax(x0, t)(ℓmax − ℓmin)
[
1− ψ

ψ + 1
(ℓmax − ℓmin)

(
1− ℓmin

ℓmax

)1/ψ
]

The last line results from integrating

ℓmax∫
ℓmin

∆u(ℓ, x0; t)dℓ

=

ℓmax∫
ℓmin

umax(x0, t) dℓ−
ℓmax∫
ℓmin

umax(x0, t)

(
1− ℓ

2R

)1/ψ

dℓ
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=umax(x0, t)

(ℓmax − ℓmin)−
[

ψ

ψ + 1
(ℓ− 2R)

(
1− ℓ

2R

)1/ψ
]ℓmax

ℓmin


and using 2R = ℓmax. As in general ℓmax and ∆x are constants for any set-up and
ℓmin ≪ ℓmax, the eddy �ux is mainly governed by the mean �ow velocity and the
model parameters A and C as well as the solution gradients within the �ow which
makes sense for a turbulence model.

Actually, we were a bit lax with the term �unconditional� in the above re�ections.

When considering E
(
βT τ · Eki+1/2

)
we assumed that an eddy was implemented cross-

ing the interface xi+1/2 at tk + βT τ . If we were to compute the really unconditional
expected value of eddy �ux within a certain time interval at a speci�c interface, we
would need to incorporate the eddy occurrence distribution which heavily depends
on ∆u(ℓ, x0; t). A true calculation of the expected value of Qi at any time level
with possibly multiple eddy occurrences would even include a binary tree of the cell
interface the eddy crosses. The space and time dependence of ∆u(ℓ, x0; t) would
impose a greater complexity to say nothing of the other �uid dynamical processes
taking place in-between implemented eddies. Finally, we arrive at the reason why
all this is carried out within a numerical simulation instead of analytically solving
equations. Hence, we content ourselves using the above formulae to have a look at
the in�uence of the model parameter A, βT and C on the possible outcomes of the
simulations in the next Subsection.

4.4.3 In�uence of the Model Parameter

If we want to use ODT for a simulation, the �rst task is always to �nd the necessary
number of realisations to average over as well as �tting values for the model param-
eters. In the current implementation these are A, βT and C. To test the e�ect of
these parameters the homogeneous pipe �ow summarised in Table 4.1 is used again
here. All �ow properties shown are ensemble averages.

Number of Realisations

In Section 4.1 we have seen, that the ensemble mean of a quantity which �uctuates
due to turbulence, e.g. ⟨u(x, t)⟩, is convergent with a growing number of realisations.
Ergo, this could be a good way to �nd the needed number of realisations. For the
implementation and test case at hand, a very small number of only 20 realisation
would already meet the convergence condition but as we also want to have a close
look on the statistics of eddies 150 realisations were simulated. This ensured also
the statistical convergence of distributions.
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Figure 4.17: Dependency of numbers of accepted and implemented eddies on C.

Figure 4.18: Tracker mass fraction over space and time for C = 0.5 (left) and C = 5 (right).

Parameter C
Recall that the model parameter C is a proportionality factor in�uencing the distri-
bution rate of eddies

λ(ℓ, x0; t) = C ·
1

τ(ℓ, x0; t)ℓ2
.

Hence, we would expect to see the number of trials and therefore accepted and
implemented eddies depending linearly on C which is the case as can be concluded
from Figure 4.17. All other eddy properties like distribution of sizes, turnover times
or �uxes are left untouched by changing C because the eddy turnover time scale τ
is independent of C.

Implementing more eddies should result in stronger turbulence. Comparing the
x-t-map of the tracker species mass fraction for two di�erent cases of C in Figure 4.18
veri�es this expectation.

Parameter βT

The model parameter βT is part of the large eddy suppression strategy, that requests
t > βT τ . Therefore, it should govern the onset of larger eddies in the simulation.
In Figure 4.19 we recognise the lower numbers of eddies at the beginning of the
simulation for the higher βT value which is a desired e�ect. On the other hand,
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Figure 4.19: Histogram of implementation times of eddies for βT = 0.5 (left) and βT = 5
(right).

Figure 4.20: Average size of implemented eddies over implementation time for βT = 0.5
(left) and βT = 5 (right).

Figure 4.21: Representative example of eddy turnover time scale τ over ℓ for A = 2 and
ū = 1.

studying the average length of implemented eddies as shown in Figure 4.20 we �nd
that the eddies rejected due to the large eddy suppression must be the smaller ones.
To explain this odd outcome we consult Figure 4.21 where the eddy time scale τ is
depicted as a function of eddy size ℓ. As τ is monotonically decreasing, the biggest
eddies are also the fastest. This is a result of the centreline assumption and directly
leads to the phenomenon seen in Figure 4.20. Consequentially, we should rather
speak of a �slow eddy suppression�. As small eddies have a very limited impact
on the eddy �ux, the e�ect of di�erent βT is as minor. So Figure 4.22 features
an especially great di�erence of βT to demonstrate the weaker onset of turbulent
di�usion.
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Figure 4.22: Tracker mass fraction over space and time for βT = 0.1 (left) and βT = 10
(right).

Parameter A

Figure 4.23: Eddy size distributions for A = 0.5, A = 2 and A = 5.

The model parameter A is present in the calculation of the eddy time scale

τ(ℓ, x0; t) =
ℓ

A∆u(ℓ, x0; t)
and hence in the eddy distribution rate

λ(ℓ;x0, t) =
C

ℓ2τ(ℓ;x0, t)
= AC∆u(ℓ, x0; t)

ℓ3

and acceptance probability (4.24).
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Figure 4.24: Dependency of drawn, accepted and implemented eddies on A in absolute
numbers (top left) and relative numbers with respect to A (top right) as well as ratios of
accepted to drawn and implemented to accepted eddies, respectively, in absolute numbers
(bottom left) and relative numbers with respect to A (bottom right).

Figure 4.25: Comparison of in�uence of A (left) and C (right) on tracker mass fraction.

So from this point of view, the in�uence of A on the numbers of drawn, accepted
and implemented eddies and their length distribution is the same as the one of
C: it is linear, multiplying to the absolute numbers but leaving the distributions
unchanged. Nonetheless, this is not what we see in histograms as in Figure 4.23
where we spot that there is a shift towards smaller eddies in the length distribution.
In Figure 4.24 it is shown that although the absolute numbers of drawn, accepted
and implemented eddies in fact rise superlinearily, the ratios of accepted to drawn
and implemented to accepted eddies, respectively, fall sublinearily. This is due to
the small eddy suppression mechanism implemented in the manner of [39] which
cuts o� eddies which are slower - and thus smaller - than a certain threshold. As
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this requirement is formulated in terms of τ , it is in�uenced by A

τ(ℓ, x0; t) =
ℓ

A∆u(ℓ, x0; t)
< τd =

ϱ(x0; t)ℓ
2

16µ(x0; t)

⇒ A =
16µ(x0; t)

ℓinfϱ(x0; t)∆u(ℓinf , x0; t)
. (4.28)

Here ℓinf is the in�mum of the length of accepted eddies. Using (4.28) and a good
guess for the maximum Reynolds number of the �ow to be simulated we could choose
A such that ℓinf ∼ η, the Kolmogorov length scale. Albeit, we know from Section 4.4
that the impact of such small eddies on the outcome is minor.

Still, A's in�uence reaches even deeper: Because it modulates τ , it also changes
the threshold for large eddy suppression, countering the e�ect of βT as

t ≥ βT
A

ℓ

∆u(ℓ, x0; t)
.

These more subtle in�uences can only be seen in the statistics of ODT while the
ensemble averaged �ow properties seem to care less (see Figure 4.25) - at least for
our simple homogeneous test case where the model parameter ranges are small.

4.4.4 Turbulent Flame

Figure 4.26: Radius of combustion chamber with di�usor con�guration.

As explained in Section 1.2 ODT was included in the SEC-code to enable the
simulation of the starting process which requires a turbulent de�agration. Accord-
ingly, we need to test whether the ODT-FHD is capable of creating such a �ame.
After some trials a con�guration was come across which met this requirement. Ta-
ble 4.2 summarises the settings. As a frame of reference a laminar di�usion �ame
was simulated using a thickened �ame ansatz. Roughly speaking this spreads the
�ame front over several grid cells by using increased transport coe�cients while
keeping the �ame speed. This is done to be able to resolve the otherwise very thin
reaction front with less numerical e�ort. The reader is referred to [12] for an insight
to this method.

86



4.4 The ODT-FHD

governing equations
quasi one-dimensional Navier-Stokes (thickened �ame);
quasi one-dimensional Euler with ODT-FHD

chemistry 2-species Arrhenius kinetics

domain length: 1, area variation: di�usor

initial values p = 1.9, T ≈ 11.2, u = 0, product species everywhere

boundaries left: fuelling valve, right: isentropic expansion to p = 1

ODT setting
20 realisations, A = 1, C = 200, βT = 1,
ℓmin = 10−5, ℓmax = 0.01

grid cells 100

time steps
step size chosen automatically, snapshots stored at mul-
tiples of 4× 10−3

Table 4.2: Settings for turbulent/laminar �ame simulations.

Like designated for de�agration �ames, the 2-species Arrhenius kinetics were
used. For the ODT simulation molecular transport was disabled since we wanted
to see the �pure� e�ects of our turbulence model. The computational domain is
a di�usor tube of length one as depicted in Figure 4.26. The simulations were
initialised with hot exhaust (non-reactive) gas at p = 1.9, T ≈ 11.2 and u = 0
everywhere. The downstream boundary was set as an isentropic expansion to a
�xed outer pressure p = 1 while the upstream boundary is a fuelling valve. It
expands slightly heated and compressed gas at p = 2, T ≈ 1.2, consisting only of
fuel species, isentropically into the combustion chamber. In accordance with the
conditions of ODT-FHD simulations, the domain was resolved with 100 grid cells,
achieving ∆x = ℓmax = 2min(R). We still had to �nd �tting model parameters but
since this is supposed to be a simple proof of concept we merely adjusted C to yield
a turbulent di�usion high enough to create a stabilising �ame.

In Figure 4.27 we see the results of both simulations in direct comparison. First
of all, we need to notice that the turbulent �ame eventually stabilises as expected.
Apart from that there is a big blast at the beginning of the turbulent simulation
which catches the eye. The color map range was clipped such that enough details
remained in the lower sections. The actual maximum velocity, temperature and
pressure are higher. This sudden outburst is a result of the initial conditions -
quiescent hot exhaust gas in the combustion chamber - meeting the left boundary
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condition - a valve injecting cooler, fuelled gas to the right. In the laminar simula-
tion, the interface of this explosive contrast was smeared fast enough whereas in the
ODT-FHD simulation the turbulence did not yet set in due to a lack of substantial
lateral velocity di�erences. In both simulations we perceive an expansion front trav-
elling upstream. It originates from the right boundary condition. When the pressure
wave reaches the inlet fuel is sucked deeper into the combustion chamber for both
con�gurations. That is when the �ame front gets softer in the turbulent simulation
because the velocity di�erence �nally su�ces to di�use the �ow properties enough.
Lastly, both �ames stabilise further downstream.

This comparison elucidates the essential di�erence between turbulent di�usion
from ODT-FHD and molecular di�usion from the Navier-Stokes equations. Even if
the di�usion e�ects are of comparable size turbulence still depends on the mean �ow
velocity while molecular transport changes with pressure, temperature and mixture
of species.

88



4.4 The ODT-FHD

Figure 4.27: Maps of the �ow properties pressure, temperature, velocity and fuel mass
fraction (top to bottom) over space and time for turbulent (left) and laminar (right) �ame
simulation.

89



4.4 The ODT-FHD

4.4.5 Turbulent SEC

governing equations quasi one-dimensional Euler (with ODT-FHD)

chemistry 3-species ignition delay kinetics

domain length: 1, area variation: none

initial values stabilised cyclic SEC at ignition

boundaries
left: fuelling pressure valve,
right: isentropic expansion to p = 1

ODT setting
20 realisations, A = 1, C = 200, βT = 0,
ℓmin = 10−5, ℓmax = 0.01

grid cells 100

time steps
step size chosen automatically, snapshots stored at mul-
tiples of 0.022

Table 4.3: Settings for turbulent/laminar SEC simulations.

Last but not least, we are interested in the e�ect of turbulent di�usion on the
SEC. A complete study of this scenario goes far beyond the scope of this thesis. So
for simplicity the model parameter for the ODT-FHD simulation were chosen like
in the simulation of the turbulent �ame except for βT . As the starting process with
turbulent de�agration is also left for future research, the simulations were initialised
at the beginning of an already cyclic (laminar) SEC right before ignition. That is
why βT was set to 0 although this somewhat collides with the notion of the eddy
turnover time being βT τ . The left boundary condition models a pressure valve like
in Subsection 3.3.2, opening at underpressure fuelling the combustion chamber with
a pro�le well-tuned for a laminar single-tube SEC. The right boundary creates the
necessary open end for the pressure wave to be re�ected as explained in Chapter 1.
Table 4.3 summarises this set-up. This time a laminar SEC without molecular
transport - as used in the �rst phase of the CRC 1029 - was simulated for reference.
In Figure 4.28 this comparison shows that, although the stark turbulence drastically
changes the fuelling pro�le and the pressure waves, the SEC is able to stabilise.
Most interestingly, the periodicity establishes with two fuelling cycles: a bigger and
a smaller one. This seems to be the result of the �rst injected fuel package igniting
prematurely due to higher temperatures because the cooler air bu�er gets di�used

90



4.4 The ODT-FHD

heavily. When the suction wave from the downstream end of the SEC-tube returns
a second fuel package gets injected. As the temperature peak from the preceding
ignition was lower and smaller this loading process has more time before the fuel
ignites. After that the two-ignitions-cycle repeats.
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Figure 4.28: Maps of the �ow properties pressure, temperature, velocity and radical mass
fraction (top to bottom) over space and time for turbulent (left) and laminar (right) SEC
simulation.
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4.5 Conclusions

In this section, we have studied a new formulation of Kerstein's ODT: the ODT-
FHD. It was shown that with this approach it is possible to carry out quasi one-
dimensional turbulent pipe �ow simulations with the ODT-line aligned with the
streamwise direction x. Although this is a completely new way of using ODT this
formulation still catches some of the most important features of the original ODT as
turbulent length scale distribution, the energy cascade and the squared in�uence of
eddy size on turbulent �uxes. It also shows the same dependence on the mean �ow
and is capable of mimicking turbulent di�usion. Thus, it will be a useful tool for
studying the starting process of the SEC with a turbulent de�agration as desired.

We have also seen the in�uence of the model parameters and how much control
they give users over the behaviour of the turbulence model. Whilst A is the last
parameter studied here, it should always be the �rst one chosen taking the length
distribution and viscous cut-o� as well as ratios of accepted and implemented eddies
for computational e�ciency into account. C and βT are independent of each other
and can be chosen to correct the number of eddies drawn and onset of turbulence. In
the current implementation, this gives a good set of handles on turbulence modelling
without introducing too much degrees of freedom. To reduce them even more, one
could also set βT = 0 and disable �slow eddy suppression� although it makes nonsense
of the notion of βT τ as the turnover time of an eddy.

Despite the fact that some important features of real turbulence are modelled by
the ODT-FHD, certain details do not match and it is currently not able to produce
new extrema of �ow properties by swapping �uid packages as the original ODT
can do. This is due to the under-resolved nature of the formulation and could be
addressed in future research. To improve the minutiae of turbulence features u(y)
could probably be tuned towards the desired e�ects.

We should also keep in mind that the basic ODT formulation used assumes
incompressibility. In [1] an extension for compressible �ows is suggested which
should be considered in future works with ODT-FHD.
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4.5 Conclusions

I am still confused. But on a higher level.
- Enrico Fermi
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Appendix A

Additional Computations

Computations which are too lengthy and detailed for the running text of this thesis
can be found here.

A.1 Derivative of Accepted Eddy Probability w.r.t.

Mean Flow Velocity

On Page 75 we compute ∂PA

∂ū
. The following are intermediate steps towards this goal

∂ψ

∂ū
=

2.1

ū ln(10)
,

∂

∂ū

(
2ψ2 + 3ψ + 1

ψ2

)
= −3ψ + 2

ψ3
· 2.1

ū ln(10)
= −6.3ψ + 4.2

ū ln(10)ψ3
,

∂umax
∂ū

=
1

2
· 2ψ

2 + 3ψ + 1

ψ2
+
ū

2

∂

∂ū

(
2ψ2 + 3ψ + 1

ψ2

)

=
2ψ2 + 3ψ + 1

2ψ2
− 3.15ψ + 2.1

ln(10)ψ3
,

∂

∂ū

[
1−

(
1− ℓ

L

)1/ψ
]
= ψ−2

(
1− ℓ

L

)1/ψ

ln

(
1− ℓ

L

)
· 2.1

ū ln(10)
,

∂∆u

∂ū
=
∂umax
∂ū

[
1−

(
1− ℓ

L

)1/ψ
]
+ umax

∂

∂ū

[
1−

(
1− ℓ

L

)1/ψ
]

=

(
2ψ2 + 3ψ + 1

2ψ2
− 3.15ψ + 2.1

ln(10)ψ3

)[
1−

(
1− ℓ

L

)1/ψ
]
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A.2 Conditional Expected Value of Eddy Flux

+umax ψ
−2

(
1− ℓ

L

)1/ψ

ln

(
1− ℓ

L

)
· 2.1

ū ln(10)
.

A.2 Conditional Expected Value of Eddy Flux

In Subsection 4.4.2 we compute the expected value of the eddy �ux βT τ · Eki+1/2 for
case 1. In the following the other cases are considered.

A.2.1 Case 2

Cell integral after eddy:

xi+1/2∫
xi−1/2

q(ζ, tk + βT τ) dζ

=
3∑
j=0

∆k+1

2
(Qk +Qk+1)

=
∆1

2
(Q0 +Q1) +

∆2

2
(Q1 +Q2) +

∆3

2
(Q2 +Q3)

=
1

2
[∆1Q0 + (∆1 +∆2)Q1 + (∆2 +∆3)Q2 +∆3Q3]

Inserting ∆k and Qk and reformulating in terms of Q0 yields:

=
1

2

[
∆1Q0 + (∆1 +∆2)(Q0 + S∆ζl) + (∆2 +∆3)

(
Q1 + 3S

ℓ

3

)

+ ∆3

(
Q2 − 3S

(
∆ζr −

ℓ

3

))]

=
1

2

[
∆1Q0 + (∆1 +∆2)(Q0 + S∆ζl) + (∆2 +∆3)

(
Q1 + 3S

ℓ

3

)

+ ∆3

(
Q2 − 3S

(
∆ζr −

ℓ

3

))]

= ∆xQ0 +
S

2

[
∆ζ2l +

2

3
ℓ∆ζl +

1

3
ℓ2 + 2∆ζr∆ζl −

2

3
ℓ∆ζl + 3ℓ∆ζr

−ℓ2 − 3∆ζ2r + ℓ∆ζr
]

= ∆xQ0 +
S

2

[
∆ζ2l + 2∆ζr∆ζl + 4ℓ∆ζr −

2

3
ℓ2 − 3∆ζ2r

]
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A.2 Conditional Expected Value of Eddy Flux

Now we substitute ∆ζl = ∆x−∆ζr:

= ∆xQ0 +
S

2

[
∆x2 − 2∆x∆ζr +∆ζ2r + 2∆x∆ζr − 2∆ζ2r

+4ℓ∆ζr −
2

3
ℓ2 − 3∆ζ2r

]

= ∆xQ0 +
S

2

[
∆x2 + 4ℓ∆ζr −

2

3
ℓ2 − 4∆ζ2r

]
.

Eddy �ux:

βT τ · Eki+1/2 =
S

2

[
4ℓ∆ζr −

2

3
ℓ2 − 4∆ζ2r

]
.

Expected values of ∆ζr and ∆ζ2r :

Eℓ,2(∆ζr) =

2ℓ/3∫
ℓ/3

ζ · 1

ℓ/3
dζ =

3

ℓ

[
1

2
ζ2
]2ℓ/3
ℓ/3

=
ℓ

2
,

Eℓ,2(∆ζ
2
r ) =

2ℓ/3∫
ℓ/3

ζ2 · 1

ℓ/3
dζ =

3

ℓ

[
1

3
ζ3
]2ℓ/3
ℓ/3

=
7

27
ℓ2.

This leads to the expected value of the eddy �ux

Eℓ,2(βT τ · Eki+1/2) =
4

27
Sℓ2.

A.2.2 Case 3

Cell integral after eddy:

xi+1/2∫
xi−1/2

q(ζ, tk + βT τ) dζ

=
3∑
j=0

∆k+1

2
(Qk +Qk+1)

=
∆1

2
(Q0 +Q1) +

∆2

2
(Q1 +Q2) +

∆3

2
(Q2 +Q3) +

∆4

2
(Q3 +Q4)

=
1

2
[∆1Q0 + (∆1 +∆2)Q1 + (∆2 +∆3)Q2 + (∆3 +∆4)Q3 +∆4Q4]
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A.2 Conditional Expected Value of Eddy Flux

=
1

2

[
∆1Q0 + (∆1 +∆2)(Q0 + S∆ζl) + (∆2 +∆3)

(
Q1 + 3S

ℓ

3

)

+ (∆3 +∆4)

(
Q2 − 3S

ℓ

3

)
+∆4

(
Q3 + 3S

(
∆ζr −

2ℓ

3

))]
= ∆xQ0 +

S

2

[
∆ζ2l + 2ℓ2 + 2∆ζl∆ζr + 3∆ζ2r − 4ℓ∆ζr

]
= ∆xQ0 +

S

2

[
∆x2 + 2ℓ2 + 2∆ζ2r − 4ℓ∆ζr

]
.

Eddy �ux:

βT τ · Eki+1/2 =
S

2

[
2ℓ2 + 2∆ζ2r − 4ℓ∆ζr

]
.

Expected values of ∆ζr and ∆ζ2r :

Eℓ,3(∆ζr) =

ℓ∫
2ℓ/3

ζ · 1

ℓ/3
dζ =

3

ℓ

[
1

2
ζ2
]ℓ
2ℓ/3

=
5

6
ℓ,

Eℓ,3(∆ζ
2
r ) =

ℓ∫
2ℓ/3

ζ2 · 1

ℓ/3
dζ =

3

ℓ

[
1

3
ζ3
]2ℓ
2ℓ/3

=
19

27
ℓ2.

This leads to the expected value of the eddy �ux

Eℓ,3(βT τ · Eki+1/2) =
S

27
ℓ2.
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Appendix B

Code Documentation

This short documentation addresses new users of the SEC-code as well as those
unfamiliar with the features implemented during phase two of the CRC 1029. The
�rst section is dedicated to the basics as the structure of the code and its handling
substantially di�ers in some points from the original SEC-code by Berndt. The fol-
lowing sections shall help users to set up simulations including the features described
within this thesis. Con�guration variables are explained alongside suggested value
ranges. Also minimal working examples are given and additional options are shown.

B.1 General

The minimal working example for a basic simulation with the current SEC-code is
indeed very short:

% Set-up

nel = 100;

config = ArrheniusKinetics();

config.iv = repmat(config.kineticsif.setTPX(1,1,'F:1'),1,nel);

config.grid.dx = 1/nel;

% Start simulation

rest = RunSimulation(config,[]);

Here, we only set nel the number of grid cells, decided for a chemical and ther-
modynamic model by using perfect gas 2-species Arrhenius kinetics, set the initial
values as T = 1, p = 1, Xfuel = 1 everywhere (please note that �ow quantities may
be nondimensional depending on the Kinetics chosen as pointed out in Chapter 1),
calculated the grid width assuming the domain has length one. Finally, we start the
simulation for as long as we keep the �gure open which will pop up showing us the
current state of the �ow. All other variables and functions are preset by calling the
kinetics function. The default values can be examined in BaseConfig.m.
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B.1 General

Typical usages of the code will require the change of boundary conditions, storage
of intermediate solutions, include axial cross-sectional area variation and a stopping
criterion. Such a script could look like this:

% Basic set-up

nel = 100;

config = ArrheniusKinetics();

config.iv = repmat(config.kineticsif.setTPX(1,1,'F:1'),1,nel);

config.grid.dx = 1/nel;

% Boundary conditions

config.boundary(1).fn = @ReflectingBoundary;

config.boundary(2).fn = @ExpansionBoundary;

config.boundary(2).outerPressure = 1;

% Cross-sectional area

config.grid.A = linspace(1,4,nel+1);

% Store intermediate solutions at time multiples of 1e-3

global rests

config.plot.heatmaps.enabled = 1;

config.hitZeroTimeMod = 1e-3;

% Start simulation and run until t > 5

rest = RunSimulation(config, [], @(config,rest) rest.t > 5);

Boundary conditions are set through an array of structure arrays, de�ning func-
tion handles (1 is left, 2 is right). Continuous boundaries are default but others like
re�ecting walls and isentropic expansion into an in�nite plenum chamber at �xed
pressure are provided, too. These are all functions ending with �Boundary�. Some
might require additional settings as the plenum pressure for ExpansionBoundary.
For own boundary conditions copy the structure of the given functions or use
FnBoundary.

The cross-sectional area must be given as an array of Ai±1/2 - the area at the
interfaces. This di�ers from the former usage of this variable, where it was de�ned
on the cell midpoints. It is not recommended to work with big jumps in this variable
as this could break the equations used for its handling.

Intermediate snapshots of the solution are stored in a global variable called
rests. To enable these snapshots heatmaps must be activated and will pop up
after the simulation. hitZeroTimeMod controls the resolution of this time line and
modi�es the time step ∆tk if needed such that all multiples of the given time are
met.

The callback function is a handle using config and rest and can be given any
form while the most commonly used will probably be the one shown here.
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B.2 Moving Mesh

More complex demonstration scripts are included in the code package's root
directory. Some of them have been used to produce the results discussed in this
thesis others originate from the �rst phase and have been updated to match the new
structures.

B.2 Moving Mesh

To include adaptive remeshing in a simulation some more information are needed
and some structures change as will be explain by taking the example of the following
short script:

% Basic set-up

nel = 100;

config = ArrheniusKinetics();

config.iv = repmat(config.kineticsif.setTPX(1,1,'F:1'),1,nel);

% Enable and configure moving mesh

config.grid.moveMesh = true;

config.grid.beta = 0.9;

config.grid.monitor = 1;

config.grid.meshQuantities = [6 7];

config.grid.direction = 2;

config.grid.maxiter = 5;

config.grid.smoothingSteps = 1;

% config.grid.mindx = 0.001;

% Set grid

config.grid.dx = repmat(1/nel,1,nel);

config.grid.x = linspace(0,1,nel+1);

% Start simulation

rest = RunSimulation(config,[]);

Actually, the lines config.grid.moveMesh = true and config.grid.dx =
repmat(1/nel, 1, nel) or config.grid.x = linspace(0, 1, nel+ 1) would su�ce to
start a simulation with moving mesh but it is recommended to set the other variables
explicitly. beta is the variable controlling the number of points within critical regions
(see (3.7)), where close to zero means nearly equidistant grid cell distribution and
close to one means nearly all cells cluster in one sharp-gradient region. Values of
0.8 to 0.9 often yield very good results.

monitor decides for the monitor function to be utilised. 1 stands for (3.7) on the
computational grid whereas 2 uses the physical domain to compute gradients. Both
include the changes described in Subsection 3.2.3. When simulating strong shock
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B.2 Moving Mesh

waves, �2� might break down due to the sharp gradients, while �1� is robust but less
e�ective.

The vector meshQuantities contains the indices of the �ow quantities which
will be taken into account when computing the gradients for the monitor function.
All quantities not included here will have no e�ect of the mesh movement. Usually,
pressure and temperature should be tracked, fuel species and velocity could be a
suitable addition if the result is not satisfactory.

smoothingSteps is the number of low-pass �lters (3.8) that are applied to the
monitor values after their calculation. If chosen too high, the mesh will not contract
fast or strong enough in critical regions, if chosen too low grid points might be stuck
in low-gradient regions when a strong gradient dissolves. At least one smoothing
step is highly recommended. Two or three might be favourable is some situations.

For the control of the Gauss-Seidel iteration (3.6) direction decides for the in-
terface to begin with (1 for left, 2 for both directions and than taking the average, 3
for right). Sometimes it is crucial to choose the direction carefully. �2� is a save but
slower choice while the others can be advantageous when strong gradients travel to
the right (�1�) or to the left(�3�). The maximum number of GS iterations is given in
maxiter, therefore, the computational e�ciency depends on this number. A single
step can be su�cient if time steps are very small or the the �uid is rather quiescent
(which is typically not the case for MM simulations). If changes are faster, �5� has
proven to be a reliable value balancing accuracy and computation speed.

Setting a lower bound for the MM with mindx is fully optional and might seem
strange at �rst. It is included to ensure assumptions for cross-sectional averaging
are met as they are the basis of most applications of the SEC-code. If the bound is
set, it will be strictly kept otherwise the mesh is computed as seems �t according to
the algorithm.

If the cross-sectional area is to vary within this context, we need not only
an array for config.grid.A but also a function from which A will be calculated
anew after the computational grid is changed. config.grid.A will be initialised as
config.grid.Afn(config.grid.x) automatically if a function is given but A is still a
scalar.

For the initial grid, either x - the array of cell interfaces - must be given or dxmust
be an array. Instead of de�ning a mesh manually, the function InitialiseGrid may
be called to optimise the initial grid automatically already using the moving mesh
approach: As long as the grid moves signi�cantly between the iterations and the
maximum number of steps is not yet reached, one step of GS iteration in the sense
of (3.6) is performed after assigning initial values to the midpoint states. These are
generated by user-given functions of T , p, u and mole fraction vector X. For the grid
calculation the chosen monitor function is used along with the guiding quantities like
later during the actual simulation. For the smoothening steps a di�erent choice can
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B.3 One-Dimensional Turbulence

be made. This is sensible because the functions of the initial values might include
discontinuities, which cause the mesh points to travel too fast, leaving unwanted
gaps. Although it is not necessary, it is strongly recommended to either use this grid
initialisation function or supply a well suited grid oneself. Otherwise the simulation
loses accuracy in the �rst few time steps. Albeit, for sharp gradients and jumps this
method is quite slow.

B.3 One-Dimensional Turbulence

As the values suitable for a simulation with ODT highly depend on the step-up
considered, some parameter have no default values implemented. The required vari-
ables must be chosen by hand. A minimal working example, therefore, looks like
this

% Basic set-up

nel = 100;

config = ArrheniusKinetics_ODT();

config.iv = repmat(config.kineticsif.setTPX(1,1,'F:1'),1,nel);

config.grid.dx = 1/nel;

% Set up ODT variables and parameters

config.odt.enabled = true;

config.odt.A = 1;

config.odt.C = 200;

config.odt.beta = 0.5;

config.odt.Lmin = 1e-5;

config.odt.Lmax = 0.01;

config.odt.Lp = sqrt(config.odt.Lmax * config.odt.Lmin);

config.odt.lambda = config.odt.A * config.odt.C * 1e5;

% Start simulation

rest = RunSimulation(config,[]);

At �rst, a word on ArrheniusKinetics_ODT: The original ArrheniusKinetics
includes a thick �ame model where dynamic viscosity, thermal conductivity and dif-
fusion coe�cients are raised to smear the �ame front. For ODT such a high viscosity
is pointless as it leads to a suppression of all eddies. Therefore, a second function
was created which uses the same equations except for the much lower viscosity. The
other transport coe�cients have been adjusted, too. All values were chosen to lie
within a range reasonable for gases like hydrogen or methane at high temperatures
(cf. [24, 19]) and nondimensionalised.
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B.4 One-Dimensional Network Model

Now to the actual ODT setting. Surely, config.odt.enabled = true is the most
important line because it switches ODT on. A, C and beta are the model parameter
A, C and βT discussed in Subsection 4.4.3. Consult this section for their in�uence
on the calculations and hints for choosing the correct values.

The following three variables Lmin, Lmax and Lp control the shape of the eddy
length distribution (4.13) from which eddy sizes are drawn. Naturally, Lmin, Lmax
are the smallest and the biggest size allowed, respectively, and Lp is the most prob-
able eddy length. Lmin should be chosen such that it is smaller than the size of
small eddy suppression which depends on A as explained in Subsection 4.4.3. Lmax
will usually be predetermined by the diameter of the SEC-tube. Lp is arbitrary but
might be chosen as above, following [50].

The real eddy occurrence rate λ depends linearly on A and C. Hence, they
should be included as factors. The above choice is a solid initialisation and should
not be worried about to much, for lambda is only a �rst guess and will be au-
tomatically adapted according to the choices of probgoal, probmax, lambfac and
nprob_check, which are set by default. If the acceptance probability of an eddy
(4.11) is higher than probmax lambda is raised. If the average acceptance probability
after nprob_check eddy trials is lower than probgoal then lambda is lowered by a
factor of lambfac at maximum. The default values of these variables are chosen ac-
cording to the recommendation of the authors of the aODT-code of Heiko Schmidt's
group.

B.4 One-Dimensional Network Model

As the combination of multiple one-dimensional domains in a two-dimensional fash-
ion is a rather harsh interference with the general structure of the SEC-code, it needs
a more complex set-up than all other features. The following example con�gures
two aligned domains (the left one with raised pressure) as if cutting one big domain
in halves:

% Set-up two domains

nel = 100;

for i = 1:2

config(i) = ArrheniusKinetics();

config(i).grid.dx = repmat(1/nel,1,nel);

config(i).grid.x = linspace(0,1,nel+1);

end

% Different initial values

config(1).iv = repmat(config(1).kineticsif.setTPX(1,5,'P:1'),1,nel);

config(2).iv = repmat(config(2).kineticsif.setTPX(1,1,'P:1'),1,nel);
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B.4 One-Dimensional Network Model

% Non-interacting BC

config(1).boundary(1).fn = @ReflectingBoundary;

config(2).boundary(2).fn = @ReflectingBoundary;

% Interacting boundary conditions

config(1).boundary(2).interacting = true;

config(1).boundary(2).interacting_domain = 2;

config(1).boundary(2).interacting_side = 1;

config(1).boundary(2).interacting_cells = 1;

config(1).boundary(2).fn = @FnBoundary;

config(1).boundary(2).bfn = @OneDInteractionBoundary;

config(2).boundary(1).interacting = true;

config(2).boundary(1).interacting_domain = 1;

config(2).boundary(1).interacting_side = 2;

config(2).boundary(1).interacting_cells = nel;

config(2).boundary(1).fn = @FnBoundary;

config(2).boundary(1).bfn = @OneDInteractionBoundary;

% Start simulation

rest = RunSimulation(config,[]);

function [ border, A, x ]...

= OneDInteractionBoundary(config, side, rest, dn)

id = config(dn).boundary(side).interacting_domain;

ic = config(dn).boundary(side).interacting_cells;

border = rest(id).data(:,ic);

A = rest(id).A;

if side == 1

x = rest(dn).x(1) - rest(id).dx(ic);

else

x = rest(dn).x(end) + rest(id).dx(ic);

end

end

Multiple domains are enabled by default so if config is an array of n structure
arrays the code will automatically compute solutions for n domains stored in rest

which is an array then, too. For rests, the �rst index becomes the domain number
and the second stands for the time.

As we usually want the domains which are simulated to interact with each other,
most of the work is in the boundary conditions as can be seen in the example script.
Although the domains are ordered by their index, which determines the order in
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which solutions are calculated, the arrangement in space is only given through the
boundary conditions. In the above example, domain 1 (D1) is left, domain 2 (D2)
is right. That is why the left boundary of D1 and the right boundary of D2 are
re�ecting while the others are interacting. For such boundaries, we need to de�ne
the boundary as interacting and provide information about the domain number
it is interacting with, the side of the other domain which is interactive (1: left, 2:
right, 3: top, 4: bottom), the index of the interacting cell of the other domain and
of course a boundary function. A simple boundary function for this case is given by
OneDInteractionBoundary.

Even if MM is not used with multiple domains, x and dx must be de�ned as
arrays due to the �ux correction process. If two-dimensional interacting is to be
simulated, it is crucial to choose the domain order such that the one resolving the
interacting grid cell interface the �nest gets a higher number. This is due to the
fact that the �ux correction process throws away the �rst �ux calculated over that
interface and uses the second one to advance the cell values. In the typical applica-
tion this means setting plenum chambers as last domains.

This was a one-dimensional example which is only part of the network feature.
The most interesting application will be the coupling of domains which are not
aligned. The structure is much more complex then the above approach and would go
beyond the scope of an example given here. Therefore, any user interested in working
with the network feature should look into the helper function Setup_FullMachine
covering the most important con�gurations. The function con�gures the domains
as described and used in Section 2.2. It can be used as black box or as guideline to
write an own set-up function.
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Lists

List of Notations

cV speci�c heat-capacity at constant volume

e internal energy

f one-dimensional �ux function of Euler equations

f rel f with velocity relative to moving grid

g two-dimensional lateral �ux function of Euler equations

ℓ eddy length

ℓmin, ℓmax, ℓp minimum, maximum, most probable eddy length

m mass

n⃗ normal vector

p pressure

ps stagnation point pressure

p∗ pressure of numerical �ux function

q continuous solution vector function

qrel q with velocity relative to moving grid

t continuous time

tk discrete time level

u axial �ow velocity

v lateral �ow velocity

w Fornberg weight function
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x �rst (axial) spacial direction

xi, xi−1/2 grid cell midpoints and interface

x0 eddy's left edge

y second (lateral) spacial direction

y0 eddy's bottom edge

A cross-sectional area of domain

A ODT model parameter

A event of accepting eddy

C ODT model parameter

Di, Dij
mixture averaged single species and binary mass di�usion co-
e�cients

D numerical molecular di�usion �ux

E total energy

E numerical eddy �ux

F numerical one-dimensional �ux function of Euler equations

F corrected numerical �ux for Euler equations of moving mesh

G
numerical two-dimensional lateral �ux function of Euler equa-
tions

I event of implementing eddy

K edge of space-time element

L integral length scale

L domain length

L random variable of eddy length

M molar mass

M Mach number

N number of grid cells

Nspec number of species

Q discrete solution vector
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Q discrete solution vector in plenum

Q intermediate solution values in post-eddy cell

Q discrete solution vector with reduced �ow properties

R domain radius

Ru universal gas constant

Rs speci�c gas constant

R real numbers

R real eddy rate

Re Reynolds number

S slope of solution between two grid cells

Sij mean strain-rate tensor

T temperature

Ts stagnation point temperature

T random variable of eddy occurrence time

U(0, 1) uniform distribution on [0, 1]

V volume

V velocity of grid interfaces

W , W̃ , Wc di�usion velocity (correction)

X species mole fractions

X random variable of left edge of eddy

Y species mass fractions

α �oor value for MM

βM MM model parameter

βT ODT model parameter

γ isentropic exponent

δ∆teddy , δℓ, δx0 distribution functions

ε dissipation rate
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ζr, ζl
distance between eddy's left edge and right or left cell interface,
respectively

η Kolmogorov length scale

ϑ angle between combustion chamber and plenum

κ thermal conductivity

λ eddy rate distribution

λ∗ majorant of eddy rate

µ dynamic viscosity

ν GS iteration step

ξ spacial variable on uniform computational grid

ϱ �uid density

τ eddy turnover time scale

τRij , τ
R
ij Reynolds or residual stress tensor, respectively

φa eddy acceptance probability

χi midpoint of �ne resolved interaction interface

ψ exponent of lateral velocity pro�le

ω monitor function

∆j spacial step width in post-eddy cell

∆x axial width of grid cell

∆y lateral width of grid cell

∆tk width of time step at tk

∆teddy waiting time until next eddy

∆u velocity di�erence function for eddy generation

Λ numerical eddy rate distribution

Ωc, Ωp computational and physical domain

·x or ·t partial derivative of · w.r.t x or t
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List of Acronyms

CFL Courant�Friedrichs�Lewy

CPC constant pressure combustion

CRC collaborative research center

CVC constant volume combustion

DNS direct numerical simulation

FHD �uctuating hydrodynamics

FV(M) �nite volume (method)

GS Gauss-Seidel

LEM linear eddy model

LES large eddy simulation

MM(M) moving mesh (method)

MUSCL monotonic upstream-centered scheme for conservation laws

ODT one-dimensional turbulence

PDC pulse detonation combustion

PDE partial di�erential equation

PDF probability density function

RANS Reynolds-averaged Navier-Stokes (equations)

SEC shockless explosion combustion
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