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Abstract

We explore the dependence of the Betti numbers of monomial ideals on the
characteristic of the field. A first observation is that for a fixed prime p either the i-th
Betti number of all high enough powers of a monomial ideal differs in characteristic 0
and in characteristic p or it is the same for all high enough powers. In our main results,
we provide constructions and explicit examples of monomial ideals all of whose
powers have some characteristic-dependent Betti numbers or whose asymptotic
regularity depends on the field. We prove that, adding a monomial on new variables to
a monomial ideal allows to spread the characteristic dependence to all powers. For any
given prime p, this produces an edge ideal such that all its powers have some Betti
numbers that are different overQ and over Zp. Moreover, we show that, for every r ≥ 0
and i ≥ 3 there is a monomial ideal I such that some coefficient in a degree ≥ r of the
Kodiyalam polynomialsP3(I), . . . ,Pi+r (I) depends on the characteristic. We also
provide a summary of related results and speculate about the behavior of other
combinatorially defined ideals.
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1 Introduction
Betti numbers ofminimal free resolutions of ideals in a polynomial ring over a field provide
some of the most important invariants of ideals. In general, Betti numbers are very hard
to compute and this is still true if one restricts the question to monomial ideals. However,
in this setting there are some powerful tools available which facilitate the calculation, e.g.,
Hochster’s formula [17], the lcm-lattice [11], Betti splittings [2,3,10] and in characteristic
0 even a construction of a minimal free resolution [9].
Since the monic monomials generating a monomial ideal I do not reveal any informa-

tion about the coefficient field of the polynomial ring, monomial ideals can be considered
over any coefficient field. It is well known that the Betti numbers of a monomial ideal I
in a polynomial ring with coefficients in a field k may depend on the characteristic of k .
Probably, the first and simplest example of this phenomenon is the Stanley–Reisner ideal
of the triangulation of the real projective plane RP2, used by Reisner in [24] to demon-
strate the characteristic dependence of the Cohen–Macaulay property. Here, some Betti
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numbers change in characteristic 2 compared to any other characteristic. However, this
kind of examples have mostly been relegated to illustrate weird behaviors that can occur
in the study of resolutions and their algebraic invariants, focusing on the independence of
the field, see, e.g., [18] and [8].
In this paper,we adopt theopposite perspective, exploring the characteristic dependence

of the Betti numbers of monomial ideals and in particular how it reverberates in their
powers.
Recall that a monomial ideal I has a unique minimal system of monic monomial gener-

ators G(I). Throughout the paper, when we write that we study the field or characteristic
dependence of an invariant for a monomial ideal I , we mean that we study for different
fields k this invariant for the ideal generated by G(I) in the polynomial ring k[x1, . . . , xn].
For example, we write βk

i (I) for the i-th Betti number of I seen as an ideal in k[x1, . . . , xn].
We will be mainly interested in the asymptotic characteristic dependence of Betti num-

bers for high powers of monomial ideals. Recall that, if I is a homogeneous ideal of
k[x1, . . . , xn], Kodiyalam [20] proved that for every 1 ≤ i ≤ n there exists a polynomial
Pk

i (I)(h) such thatPk
i (I)(h) = βk

i−1(I
h) for h � 0; we callPk

i (I) the i-th Kodiyalam poly-
nomial of I . As a consequence, we observe that either the i-th Betti number of all high
enough powers of an ideal depends on the characteristic of the field or it does not.

Proposition 3.1 Let I be a monomial ideal in k[x1, . . . , xn] and p ≥ 2 be a prime number.
Then, for every integer i ≥ 0 there exists hi ≥ 1 such that either β

Zp
i (Ih) = β

Q

i (I
h) for every

h ≥ hi or β
Zp
i (Ih) �= β

Q

i (I
h) for every h ≥ hi.

The propagation of characteristic dependence of Betti numbers from the first powers to
higher powers ismuchmoremysterious. For instance, we show an example of amonomial
ideal, indeed an edge ideal, whose Betti numbers are independent of the characteristic,
but some Betti numbers of its square depend on the field (see Example 3.2). Using the lcm-
lattice for proofs, we provide several examples of squarefree monomial ideals with some
characteristic-dependent Betti numbers in all powers. One of them is the Stanley–Reisner
ideal of a minimal triangulation of the Klein bottle.

Theorem 3.3 Let I = (x3x8, x4x5, x6x7, x7x8, x1x2x4 , x1x3x4 , x2x3x4 , x1x2x5, x2x3x5,
x1x4x6, x1x5x6, x2x5x6, x1x2x7, x1x3x7, x2x4x7, x3x5x7, x1x2x8, x1x5x8, x2x6x8, x1x3x6,
x2x3x6, x4x6x8) in k[x1, . . . , x8] be the Stanley–Reisner ideal of the triangulation of the
Klein bottle in Fig. 1. Then, the 4-th and 5-th Betti numbers of Ih depend on the field for
every h ≥ 1.

We then turn to the characteristic dependence of the Castelnuovo–Mumford regularity
regk (I) of powers of I . This can be seen as the question of whether certain graded Betti
numbers are zero and nonzero over different fields. In [21, Remark 5.3] Minh and Vu
exhibit a specific edge ideal whose asymptotic regularity depends on the field. We present
a general construction that produces amonomial idealwith the sameproperty: it is enough
to add a certain power of a new variable y to a monomial ideal whose regularity depends
on the field:

Proposition 3.5 Let I ⊆ k[x1, . . . , xn, y] be a nonzero monomial ideal with generators
in the variables x1, . . . , xn. Suppose that there exists another field k ′ such that regk (I) �=
regk ′ (I). Then, there exists c ∈ N such that regk ((I + (yc))h) �= regk ′ ((I + (yc))h), for h � 0.
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It is also interesting to look for simple constructions that propagate the characteristic
dependence of certain Betti numbers to all powers. With an argument involving Betti
splittings, we prove the following result:

Theorem 4.3 Let I be a monomial ideal in k[x1, . . . , xn, y1, . . . , yr], with generators in the
variables x1, . . . , xn. Let w be a monic monomial in the variables y1, . . . , yr and fix h ≥ 1. If
some Betti numbers of Ih are characteristic-dependent, then the same holds for (I + (w))�

for every � ≥ h.

This result has a number of interesting consequences. First, in Corollary 4.8, for every
prime number p, we construct an edge ideal, coming from the p-fold dunce cap (see
Construction 4.6), all of whose powers have different Betti numbers over Q and Zp.
Lemma 4.9 provides a lower bound on the size of dependencies produced by Theorem

4.3, whereas Lemma 4.10 shows that in each power (I + (y1, . . . , yr))h there are at least
exponentially many dependencies in h.
As a further consequence,we show that for theKodiyalampolynomials the characteristic

dependence can be spread over consecutive homological positions:

Theorem 4.11 For every i ≥ 3 and for every r ∈ N, there exists a monomial ideal I such
that all the Kodiyalam polynomialsPk

3(I),P
k
4(I), . . . ,P

k
i+r (I) have the coefficient at some

degree ≥ r depending on the characteristic of k.

Weconcludewith someopenquestions and extensions to combinatorially defined ideals
beyond monomial ideals. In particular, we provide interesting examples of binomial edge
ideals, exhibiting various behaviors with respect to characteristic dependence of the Betti
numbers of their first few powers.

2 Notation and preliminaries
Let R = k[x1, . . . , xn] be the standard graded polynomial ring over a field k , and let I
be a monomial ideal in R. For every i, j ∈ N, the graded Betti numbers of I , defined as
βk
i,j(I) = dimk TorRi (I, k)j , are invariants of the minimal graded free resolution of I . We

denote by βk
i (I) = ∑

j β
k
i,j(I) the i-th (total) Betti number of I . If R is standardmultigraded,

i.e., deg(xi) is the i-th standard basis vector ofRn, we can definemultigradedBetti numbers
analogously. In this case, if α = (α1,α2, . . . ,αn) ∈ Nn, we set xα = xα1

1 xα2
2 · · · xαn

n and
denote the correspondingmultigraded Betti number by βk

i,α(I). Throughout the paper, we
are going to use the term multidegree to refer either to the exponent vector α or to the
monomialm = xα . In the latter case, we use the notation βk

i,m(I).
Betti numbers encode many important properties of I , and their behavior has been

intensively studied in the literature. Hilbert’s Syzygy Theorem states that βk
i (I) = 0 for

i > n and the maximum i such that βk
i (I) �= 0 is the projective dimension of I , denoted by

pdk (I). Another important invariant of I that can be read off from its Betti numbers is the
Castelnuovo–Mumford regularity, defined as regk (I) = max{j− i : βk

i,j(I) �= 0}. Whenever
it is not important to specify the field k , we simply write βi(I), pd(I), reg(I).
Even though the field k is involved in the definition of Betti numbers, the degree of

influence of the field is not immediately obvious. Indeed, it is well known that the Betti
numbers only depend on the characteristic of k . Moreover, from the Universal Coefficient
Theorem it follows that

β
Q

i,α(I) ≤ β
Zp
i,α (I) (1)
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for every i ∈ N, α ∈ Nn and every prime integer p. We redirect the reader to [18,
Proposition 1.3] for more details.
When I is a monomial ideal, a useful tool to compute its Betti numbers is its lcm-lattice

LI , introduced in [11]. LetG(I) denote the uniqueminimal systemofmonomial generators
of I . The elements of LI are the least common multiples of the subsets of G(I) ordered
by divisibility. We remark that the minimal element of LI is 1, considered as the least
common multiple of the empty set, the atoms are the elements of G(I), and the maximal
element is the least common multiple of the elements of G(I).
Givenm ∈ LI , we set (1, m)LI = {m′ ∈ LI : 1 < m′ < m} to be the open interval belowm

in LI . The order complex of (1, m)LI is the abstract simplicial complex whose faces are the
chains in (1, m)LI . Identifying (1, m)LI with its order complex, we can consider the reduced
simplicial homology groups H̃•((1, m)LI ; k). With this notation, [11, Theorem 2.1] shows
that the multigraded Betti numbers of I are given by

βk
i,m(I) = dim H̃i−1((1, m)LI ; k)

for everym ∈ LI and by βk
i,m(I) = 0 ifm /∈ LI .

For further details about simplicial complexes, Stanley–Reisner ideals and their combi-
natorics we refer to [14].
Another technique to compute the Betti numbers of a monomial ideal I is the so-called

Betti splitting, see [2,3,10]. Let I, J, K be monomial ideals in R = k[x1, . . . , xn] such that
G(I) is the disjoint union ofG(J ) andG(K ). We say that I = J +K is a Betti splitting of I if

βk
i (I) = βk

i (J ) + βk
i (K ) + βk

i−1(J ∩ K )

for every i ∈ N. Given the short exact sequence

0 → J ∩ K → J ⊕ K → J + K → 0,

we have an induced long exact sequence of Tor modules, and it is not difficult to show
that I = J + K is a Betti splitting of I if and only if the induced maps

TorRi (J ∩ K, k) → TorRi (J, k) ⊕ TorRi (K, k)

are zero for all i ∈ N, see [10, Proposition 2.1]. Considering graded or multigraded maps,
one can define Betti splittings in the graded or multigraded setting.

3 Asymptotic behavior
Since the dependence on the field of the Betti numbers of an ideal is only through its
characteristic, we will compare the Betti numbers over Q and Zp for some prime integer
p ≥ 2.

3.1 General facts

We start by studying the asymptotic characteristic dependence for monomial ideals.

Proposition 3.1 Let I be amonomial ideal in k[x1, . . . , xn] and p ≥ 2 be a prime number.
Then, for every integer i ≥ 0 there exists hi ≥ 1 such that either β

Zp
i (Ih) = β

Q

i (I
h) for every

h ≥ hi or β
Zp
i (Ih) �= β

Q

i (I
h) for every h ≥ hi.

Proof If the Kodiyalam polynomials P
Zp
i+1(I)(h) and P

Q

i+1(I)(h) are equal, then clearly
β
Zp
i (Ih) = β

Q

i (I
h) for every h � 0. Otherwise, since the polynomialPZp(I)

i+1 − P
Q

i+1(I) has
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a finite number of roots, the equality β
Zp
i (Ih) = β

Q

i (I
h) holds only for a finite number of

integers h, and hence, βZp
i (Ih) �= β

Q

i (I
h) for h � 0. �


The proof of Proposition 3.1worksmore in general if I is a homogeneous ideal generated
by polynomials with integer coefficients which allows one to consider the ideal in the
respective polynomial ring over any field. Particularly interesting is the case when the
coefficients are ±1. For instance, this is the case of binomial edge ideals that we consider
in Sect. 5.2.
On the other hand, the behavior of the first few powers of a monomial ideal seems

hard to control. For example, let � be the unique (up to simplicial isomorphism) 6-vertex
triangulation � of the real projective plane RP2 [24]. Then, the Stanley–Reisner ideal of
� is

I� = (x1x2x3, x1x2x4 , x1x3x5, x1x4x6, (∗)
x1x5x6, x2x3x6, x2x4x5, x2x5x6, x3x4x5, x3x4x6)

and some of its Betti numbers differ over Q and over Z2. However, one can check with
Macaulay2 [12] that this is not the case for Ih� with h = 2, . . . , 10.
There are also cases in which the dependence appears in the second power, even though

the resolution of the original ideal does not depend on the field.

Example 3.2 Recall that the edge ideal of a graph G is defined by I(G) = (xixj : {i, j} ∈
E(G)). Let us consider the graph G whose edge ideal is

I(G) = (x1x2, x2x3, x2x4 , x2x5, x2x6, x2x12, x1x4 , x1x6, x1x7, x1x8, x2x12, x3x5,

x3x8, x3x11, x3x12, x4x5, x4x9, x4x10, x5x7, x5x9, x6x7, x6x10, x6x11, x7x8,

x7x9, x7x12, x8x11, x9x10, x9x12, x10x11, x10x12, x11x12).

Computations with Macaulay2 show that the Betti numbers of I(G) and of I(G)3 are the
same overQ and over Z2, whereas β

Z2
5 (I(G)2) �= β

Q

5 (I(G)2). This example also shows that
the 5-th Betti number of the square of an edge ideal may depend on the characteristic of
the field. As a consequence, there is no extension of a result by Katzman to powers. The
result states that the first six Betti numbers of an edge ideal are characteristic-independent,
see [18, Theorem 3.4 and Corollary 4.2].

3.2 The Stanley–Reisner ideal of the Klein bottle

We now show that the Stanley–Reisner ideal of the vertex-minimal triangulation of
the Klein bottle in Fig. 1 (see also the top left triangulation in [6, Fig. 18]) has certain
characteristic-dependent Betti numbers in all powers.

Theorem 3.3 Let I = (x3x8, x4x5, x6x7, x7x8, x1x2x4 , x1x3x4 , x2x3x4 , x1x2x5, x2x3x5,
x1x4x6, x1x5x6, x2x5x6, x1x2x7, x1x3x7, x2x4x7, x3x5x7, x1x2x8, x1x5x8, x2x6x8, x1x3x6,
x2x3x6, x4x6x8) in k[x1, . . . , x8] be the Stanley–Reisner ideal of the triangulation of the
Klein bottle in Fig. 1. Then, the 4-th and 5-th Betti numbers of Ih depend on the field for
every h ≥ 1.

Proof It is a simple consequence of the fact that the simplicial homology of any tri-
angulation of the Klein bottle depends on the characteristic of the coefficient field and
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Fig. 1 A vertex-minimal triangulation of the Klein Bottle

Hochster’s formula [17] that the Betti numbers of I depend on the field. In particular, also
easily checked using Macaulay2, one can verify that β

Z2
4 (I) �= β

Q

4 (I) and β
Z2
5 (I) �= β

Q

5 (I).
For every h ≥ 2, we first show that β

Z2
4,αh (I) �= β

Q

4,αh (I) and β
Z2
5,αh (I) �= β

Q

5,αh (I), where
αh = (1, 1, 1, h, h, 1, 1, 1) ∈ N8. In order to do this, we define the ideal

Jh = (m ∈ G(Ih) : m dividesmh),

where G(Ih) is the minimal set of generators of Ih andmh = xαh = x1x2x3xh4x
h
5x6x7x8.

Claim 1. For every h ≥ 4,

Jh = x4x5Jh−1 = (x4x5)h−3J3.

The inclusion x4x5Jh−1 ⊆ Jh is clear. Conversely, let m ∈ G(Jh), then m divides mh and
m = u1 · · ·uh, where ui ∈ G(I). Since deg(ui) ≥ 2, it follows that deg(m) ≥ 2h. Moreover,
degm(xi) ≤ 1 for every i ∈ {1, 2, 3, 6, 7, 8}, and hence, xa4x

b
5 divides m, with a + b ≥ 2

(since deg(m) ≥ 2h ≥ 8). We want to show that a, b ≥ 1. Assume that x5 does not divide
m. Thus, a ≥ 2, i.e., degm(x4) ≥ 2. Since ui �= x4x5 for every i and x4x5 is the only
generator of I with degree 2 and divisible by x4, we may assume that u1 = xi1xi2x4 and
u2 = xi3xi4x4, where the indices i1, i2, i3, i4 are pairwise distinct and different from 4 and 5.
Now, deg(ui) ≥ 2 for every i = 3, . . . , h. Since degm(xi) ≤ 1 for every i ∈ {1, 2, 3, 6, 7, 8}, it
follows thatm is divisible by at least 2h+1 ≥ 9 pairwise distinct variables, a contradiction.
Hence, both x4 and x5 dividem. Finally, notice that m

x4x5 ∈ Jh−1.
Now, consider the polarization pol(Jh) of Jh in the polynomial ring k[x1, . . . , x8, y1, . . . ,

yh−1, z1, . . . , zh−1] and the simplicial complex �h whose Stanley–Reisner ideal is pol(Jh).
Let �h = �∗

h be the Alexander dual of �h.

Claim 2. The (reduced) homology of �h equals the homology of the dual of the triangu-
lation of Fig. 1. In particular, for every h ≥ 2,

H̃3(�h,Z2) ∼= Z2, H̃4(�h,Z2) ∼= (Z2)2, while

H̃3(�h,Q) = 0, H̃4(�h,Q) ∼= Q.

For h = 2, 3, the claim follows by direct computations withMacaulay2, while for h ≥ 4,
it follows from Claim 1.
Let us denote by LIh the lcm-lattice of Ih. By [11, Proposition 2.3], the lcm-lattice is

preserved under polarization and the interval (1, mh)LIh is homotopy equivalent to �h.
From [11, Theorem 2.1], it then follows that

βk
4,αh (I

h) = rank H̃3(�h; k) and βk
5,αh (I

h) = rank H̃4(�h; k),



D. Bolognini et al. Res Math Sci            (2022) 9:26 Page 7 of 17    26 

hence, they are different if k = Z2 and k = Q.
As a consequence of inequality (1), for every multidegree ε ∈ N8, βQ

4,ε(Ih) ≤ β
Z2
4,ε(Ih) and

β
Q

5,ε(I
h) ≤ β

Z2
5,ε(I

h). In particular, this implies that βZ2
4 (Ih) �= β

Q

4 (Ih) and β
Z2
5 (Ih) �= β

Q

5 (I
h).
�


There are six combinatorially distinct 8-vertex triangulations of the Klein bottle, see [6,
Fig. 18]. By using Macaulay2, one can check that for four of these triangulations � the
Betti numbers of powers Ih� for small h ≥ 2 do not depend on the field, while for the
other two this is not the case. It follows that the dependence of the Betti numbers of the
powers of a monomial ideal is not a topological property, i.e, does not depend only on
the homeomorphism type of the simplicial complex. Indeed this example shows that the
dependence is influenced by the combinatorics of the triangulation, which in turn governs
the divisibility between the generators of the powers.

3.3 Kimura, Terai, and Yoshida’s ideal

In [19, Sect. 6], Kimura, Terai, and Yoshida consider the following ideal in k[x1, . . . , x10]:

A = (x1x2x8x9x10, x2x3x4x5x10, x5x6x7x8x10, x1x4x5x6x9, x1x2x3x6x7, x3x4x7x8x9).

This ideal has 6 generators of the same degree in 10 variables and can be obtained from
the projective plane according to the construction in [19, page 76]. Using an argument
similar to the one in the proof of Theorem3.3, one can show that someBetti numbers ofAh

depend on the field for every h ≥ 1. In particular, themultigraded Betti numbers β2,αh (Ah)
and β3,αh (Ah) are different overQ and over Z2, where αh = (h, h, 1, 1, 1, 1, 1, h, h, h) ∈ N10.
Clearly, for a monomial ideal the zero-th Betti number does not depend on the field

and the same holds for the first Betti number, see [5, Corollary 5.3]. However, βZ2
2 (Ah) �=

β
Q

2 (Ah) and β
Z2
3 (Ah) �= β

Q

3 (Ah) for every h ≥ 1. In particular, the Kodiyalam polynomials
Pk

3(A) andPk
4(A) depend on the field k .

3.4 Castelnuovo–Mumford regularity

By [7] and [20], given a homogeneous ideal I , the Castelnuovo–Mumford regularity of
Ih is asymptotically a linear function in h. Denote by sk (I) = min{s : regk (Ih) = akh +
bk , for all h ≥ s} the index of stability of I with respect to k . In order to prove the next
result, we recall the following:

Theorem 3.4 ([13, Theorem 5.6]). Let I ⊆ k[x1, . . . , xn] and J ⊆ k[y1, . . . , yr] be homo-
geneous ideals in polynomial rings on disjoint sets of variables such that regk (Ih) = ah+b
and regk (J h) = ch + d, for h � 0. If c > a, then

regk ((I + J )h) = c(h + 1) + d + max
j≤sk (I)

{regk (I j) − cj} − 1, for h � 0.

As a consequence, we present a simple construction which produces monomial ideals
with the asymptotic regularity of powers depending on the characteristic.

Proposition 3.5 Let I ⊆ k[x1, . . . , xn, y] be a nonzero monomial ideal with generators
in the variables x1, . . . , xn. Suppose that there exists another field k ′ such that regk (I) �=
regk ′ (I). Then, there exists c ∈ N such that regk ((I + (yc))h) �= regk ′ ((I + (yc))h), for h � 0.
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Proof Define integers

ck (I) = max{ak + 1, max
i≤sk (I)

{regk (I i)}} , ck ′ (I) = {ak ′ + 1, max
i≤sk′ (I)

{regk ′ (I i)}},
and c = max{ck (I), ck ′ (I)}.

Notice, that regk ((y
c)h) = regk ′ ((yc)h) = ch, forh ≥ 1. Since c > max{ak , ak ′ }, byTheorem

3.4, we have

regk ((I + (yc))h) = c(h + 1) + max
j≤sk (I)

{regk (I j) − cj} − 1

and

regk ′ ((I + (yc))h) = c(h + 1) + max
j≤sk′ (I)

{regk ′ (I j) − cj} − 1

for h � 0. We claim that max
j≤sk (I)

{regk (I j) − cj} = regk (I) − c. In fact, for 2 ≤ j ≤ sk (I) we

have

regk (I
j) − cj ≤ ck (I) − cj ≤ c(1 − j) ≤ −c < regk (I) − c.

Analogously, we get maxj≤sk′ (I){regk ′ (I j) − cj} = regk ′ (I) − c. It follows that

regk ((I + (yc))h) = ch + regk (I) − 1 and regk ′ ((I + (yc))h) = ch + regk ′ (I) − 1

for h � 0. This proves the claim. �


Example 3.6 In [1, Problem 7.10], the authors ask whether there exist edge ideals I for
which the asymptotic linear function regk (Ih), for h � 0, is characteristic-dependent.
Minh and Vu [21, Remark 5.3] answered this question positively, showing that this is the
case for the edge ideal of a graph with 18 vertices.
In [18,AppendixA], Katzman found four non-isomorphic graphswith 11 verticeswhose

edge ideal has characteristic-dependent resolution and proved that they are the vertex-
minimal ones with this property. The edge ideal of one of them is:

I(G) = (x1x5, x1x6, x1x8, x1x10, x2x5, x2x6, x2x9, x2x11, x3x7, x3x8, x3x9, x3x11, x4x7,

x4x8, x4x10, x4x11, x5x8, x5x9, x6x10, x6x11, x7x9, x7x10, x8x11)

in k[x1, . . . , x11]. One can check with Macaulay2 that reg
Z2 (I(G)) �= reg

Q
(I(G)) but for

I(G)2 this characteristic dependence has disappeared.
Proposition 3.5 implies that the regularity of (I(G) + (yc))h depends on the field for

some c ≥ 3 and for h � 0. However, computations with Macaulay2 show that already
choosing c = 2produces dependence in the regularity of thefirst four powers of I(G)+(y2).
Polarizing y2 as x12x13, the ideal I(G)+ (y2) is transformed into the edge ideal J = I(G)+
(x12x13), which corresponds to the disjoint union of the graph G of Katzman’s edge ideal
and the edge {12, 13}. Moreover, regk (J ) = regk (I(G) + (y2)) by [14, Corollary 1.6.3 (c)].
We conjecture that reg

Q
(J h) = 2h+ 1 and reg

Z2 (J
h) = 2h+ 2 for every h ≥ 1. If true, this

would yield an edge ideal of a graph with 13 vertices such that the regularity of all powers
depends on the field (which is simpler than the graph of [21, Remark 5.4]).

Remark 3.7 Unlike the regularity, it is not known whether the asymptotic projective
dimension may depend on the field, see also the last paragraph of Sect. 1 in [16].
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4 Spreading the characteristic dependence
In this section, starting from a monomial ideal some of whose Betti numbers depend
on the field, we show how to produce dependence in all powers of the ideal and in its
Kodiyalam polynomials.

4.1 Creating the dependence in all powers

Recall that, any monomial ideal I in a polynomial ring has a unique minimal system of
monic monomial generators G(I).

Remark 4.1 Let I be a monomial ideal in k[x1, . . . , xn, y1, . . . , yr], with generators in the
variables x1, . . . , xn, and w be a monomial of degree d in the variables y1, . . . , yr . Then,
βi(wI) = βi(I) for every i ∈ N. In fact, we have βi,j(wI) = βi,j−d(I), for every i, j ∈ N. This
easily follows from [11, Theorem 2.1] and by observing that all elements of the lcm-lattice
of wI are obtained by multiplying the elements of the lcm-lattice of I by w.

Lemma 4.2 Let I be a monomial ideal of R = k[x1, . . . , xn, y1, . . . , yr , z] with generators
in the variables x1, . . . , xn, and let w be a monic monomial in the variables y1, . . . , yr . Fix
h ∈ N>0. Then,

(1) βi((I + (w))h) = βi((zI + (w))h), for every i ∈ N.
(2) (zI + (w))h = (zI)h + w(zI + (w))h−1 is a Betti splitting of (zI + (w))h.

Proof (1) SinceR/((I+(w))h+(z)) ∼= R/((zI+(w))h+(z−1)), it is enough to show that the
class of z−1 is regular overR/((zI+(w))h). Let f ∈ R and assume that (z−1)f ∈ (zI+(w))h.
Wemay also assume that there arenomonomials of f in (zI+(w))h. In fact, if g ∈ (zI+(w))h

is a monomial of f , then (z − 1)f ∈ (zI + (w))h if and only if (z − 1)(f − g) ∈ (zI + (w))h.
Now, if f �= 0, regarding f as a polynomial in z, we consider u to be the term of lowest

degree (possibly zero)with respect to z. In (z−1)f , the termwith lowest degreewith respect
to z is −u, and it does not cancel with any other term of (z − 1)f . Since −u /∈ (zI + (w))h,
which is a monomial ideal, this means that (z − 1)f /∈ (zI + (w))h, a contradiction.
(2) Letm be a multidegree in the lcm-lattice of w(zI)h. We claim that

if βi,m(w(zI)h) �= 0, then βi,m((zI)h) = βi,m(w(zI + (w))h−1) = 0. (�)

Suppose that G(I) = {m1, . . . , ma}, wheremi are monomials in the variables x1, . . . , xn,
and the multidegreem appears in the lcm-lattice of w(zI)h.
Then,m is not an element of the lcm-lattice of Ih. In fact,wzh is a factor ofm since all the

generators ofw(zI)h have the formwzhmi1 · · ·mih , wheremij ∈ G(I). Thus,βi,m((zI)h) = 0.
Assume that m appears in the lcm-lattice of w(zI + (w))h−1. Notice that, the ideal

w(zI+(w))h−1 is generated bymonomials of the formws+1ztmi1 · · ·mit , with s+t = h−1,
wheremij ∈ G(I).Hence, the atomsof the interval (0, m) in the lcm-lattice ofw(zI+(w))h−1

are such that s = 0, i.e., are generators ofw(zI)h−1. It follows that zh−1 is the highest power
of z in the factorization ofm, a contradiction. Thus, βi,m(w(I + (w))h−1) = 0.
To prove the statement, notice that (zI + (w))h = (zI)h +w(zI + (w))h−1 andG((zI)h)∩

G(w(zI + (w))h−1) = ∅. Moreover, (zI)h ∩ w(zI + (w))h−1 = w(zI)h. From (�), it follows
that all induced maps

TorRi (w(zI)
h, k)m → TorRi ((zI)

h, k)m ⊕ TorRi (w(zI + (w))h−1, k)m
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are zero, for every i ∈ N and every multidegreem. �


Starting from an ideal I such that certain Betti numbers of some power Ih depend on
the field, we add a monic monomial on new variables obtaining an ideal J with the same
property in all powers J q with q ≥ h. This happens even if the higher powers of the original
ideal I have characteristic-independent Betti numbers.

Theorem 4.3 Let I be a monomial ideal in k[x1, . . . , xn, y1, . . . , yr], with generators in the
variables x1, . . . , xn. Let w be amonicmonomial in the variables y1, . . . , yr and fix h ∈ N>0.
Then,

β0((I + (w))h) =
h∑

�=1
β0(I�) + 1, and

βi((I + (w))h) =
h∑

�=1

[
βi(I�) + βi−1(I�),

]
for every i ∈ N>0.

In particular, if βZp
i (Ih) �= β

Q

i (I
h) for some prime number p and i ≥ 1, then for every q ≥ h

β
Zp
i ((I + (w))q) �= β

Q

i ((I + (w))q).

Proof The formula for β0((I + (w))h) follows immediately, because

(I + (w))h =
h∑

�=1
wh−�I� + (wh).

Consider the ideal I in the ring R[z], where z is a new variable. Fix now i ≥ 1 and recall
that (zI)h∩w(zI+(w))h−1 = w(zI)h. By Lemma 4.2(2), (zI+(w))h = (zI)h+w(zI+(w))h−1

is a Betti splitting of (zI + (w))h. Hence, by Remark 4.1 we obtain

βi((zI + (w))h) = βi(Ih) + βi−1(Ih) + βi(w(zI + (w))h−1).

Observing that for h = 1 we have βi((w)) = 0 for i ≥ 1, we get the formula by induction
on h, by Remark 4.1 and Lemma 4.2(1).
For the last part of the statement, suppose that β

Zp
i (Ih) �= β

Q

i (I
h), for some prime p and

consider q ≥ h. By the formula for βi in the statement and inequality (1), we have

β
Zp
i ((I + (w))q) − β

Q

i ((I + (w))q) ≥ β
Zp
i (Ih) − β

Q

i (I
h) ≥ 1.

�


Example 4.4 As seen in Example 3.6, Katzman’s edge ideal I(G) has some characteristic-
dependent Betti numbers but for I(G)2 this dependence has disappeared. Nevertheless,
consider the graph H obtained by adding a disjoint edge {y1, y2} to G and I(H ) =
I(G) + (y1y2) ⊆ k[x1, . . . , x12, y1, y2]. Then, by Theorem 4.3 certain Betti numbers of
I(H )h depend on the field for every h ≥ 1.

Example 4.5 We now construct an edge ideal I(H ) whose Betti numbers do not depend
on the field and such that some Betti numbers of I(H )h depend on the field for every
h ≥ 2. Let G be the graph of Example 3.2 and consider the graph H obtained by adding
a disjoint edge {y1, y2}. Then, by Theorem 4.3, the Betti numbers of I(H )h depend on the
field for every h ≥ 2 and clearly do not depend for h = 1.
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Fig. 2 The triangulation D3 representing the threefold dunce cap

For some reason, in the literature all explicit examples ofmonomial ideals whose resolu-
tion depends on the field have dependence in characteristic 2. Clearly, it is well known that
one can have characteristic dependence in any characteristic. In the following, we want to
provide an explicit example for this dependence and use it to propagate the dependence
to powers.
For every prime integer p ≥ 2, there exist triangulable topological spaces with simplicial

homology groups which are different with Q and Zp coefficients (see for instance [22,
Theorem 40.9]). By the Stanley–Reisner correspondence and Hochster’s formula [17],
this implies the existence of monomial ideals I such that β

Q

i (I) �= β
Zp
i (I), for some i > 0.

Here, we present a class of such ideals coming from the so-called p-fold dunce cap, which
is a certain triangulation of a 2-disk, where we identify its boundary in a suitable way, see
[22, Exercise 6, p. 41] and [25, Example 5.11]. For p = 2, we obtain the real projective
plane. We then extend the dependence to all powers by applying Theorem 4.3.

Construction 4.6 Let p ≥ 2 be a prime number. We are going to construct a two-
dimensional triangulation Dp of the p-fold dunce cap with 2p + 3 vertices, 9p edges, and
7p − 2 facets.
Consider a regular 3p-gon,with vertices labeledby cyclically repeating1, 2, 3 in clockwise

order, see Fig. 2 for a representation of the case p = 3. Consider a regular 2p-gon inside
this, with vertices labeled by 4, . . . , 2p + 3. The facets of Dp are:

• {2, k, k + 1}, {1, 2, k}, {1, 3, k}, for every 4 ≤ k ≤ 2p + 2 even;
• {3, k, k + 1}, {2, 3, k}, for every 5 ≤ k ≤ 2p + 1 odd;
• {4, k, k + 1}, for every 5 ≤ k ≤ 2p + 2;
• {2, 3, 2p + 3}, {3, 4, 2p + 3}.

For instance, for p = 3, the Stanley–Reisner ideal of D3 is

ID3 = (x1x5, x1x7, x1x9, x5x7, x5x8, x5x9, x6x8, x6x9, x7x9, x1x2x3, x1x4x6, x1x4x8,

x2x3x4 , x2x3x6, x2x3x8, x2x4x6, x2x4x7, x2x4x8, x2x4x9, x2x5x6, x2x7x8,

x3x4x5, x3x4x6, x3x4x7, x3x4x8, x3x6x7, x3x8x9) ⊆ k[x1, . . . , x9].
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Notice that, the Stanley–Reisner ideal IDp is generated in degree 2 and 3. This is a
consequence of the fact that Dp is two-dimensional and hence, any face has dimension
≤ 2. Thus, a minimal non-face is of dimension ≤ 3.

Proposition 4.7 Let p ≥ 2 be a prime number and IDp ⊆ k[x1, . . . , x2p+3] be the Stanley–
Reisner ideal of the p-fold dunce cap in Construction 4.6. Then, pd

Zp (IDp ) �= pd
Q
(IDp ).

Proof By [25, Example 5.11], we have H̃1(Dp,Z) ∼= Zp and H̃0(Dp,Z) = H̃2(Dp,Z) = 0
whereas H̃1(Dp,Zp) ∼= H̃2(Dp,Zp) ∼= Zp and H̃1(Dp,Q) = H̃2(Dp,Q) = 0 by the Universal
Coefficients Theorem.
Let IDp ⊆ k[x1, . . . , x2p+3] be the Stanley–Reisner ideal ofDp. By theprevious discussion,

it follows that pd
Zp (IDp ) − pd

Q
(IDp ) = 1. �


In order to obtain an ideal having some field-dependent Betti numbers in finitely many
different characteristics p1, . . . , pr , it is enough to consider the Stanley–Reisner ideal of
various pairwise disjoint copies of Dp1 , Dp2 , . . . , Dpr .

Corollary 4.8 For every prime number p ≥ 2, there exists an edge ideal Ip such that
β
Zp
i (Ihp ) �= β

Q

i (I
h
p ) for some i ≥ 1 and for every h ≥ 1.

Proof Let p ≥ 2 be a prime number and consider the simplicial complex Dp from Con-
struction 4.6. Let Ip be the edge ideal of the simplicial complex obtained either by taking
the Stanley–Reisner ideal of the barycentric subdivision of Dp or performing on Dp [8,
Construction 4.4] by Dalili and Kummini. Notice that, βZp

i (Ip) �= β
Q

i (Ip) for some i.
Then, by Theorem 4.3, it follows that

β
Zp
i ((Ip + (y1y2))h) �= β

Q

i ((Ip + (y1y2))h),

where y1, y2 are two new variables. �


4.2 Kodiyalam polynomials

As seen in Sect. 3, Kodiyalam polynomials may depend on the characteristic of the field.
In this subsection, we show how to spread the dependence to high degree terms of these
polynomials.

Lemma 4.9 Let I be a monomial ideal in k[x1, . . . , xn, y1, . . . , yr], with generators in the
variables x1, . . . , xn. Let w be a monic monomial in the variables y1, . . . , yr and fix h, i ∈
N>0. Consider

B = {1 ≤ s ≤ h : βZp
i (I s) �= β

Q

i (I
s)}.

Then, for every q ≥ h we have

β
Zp
i ((I + (w))q) − β

Q

i ((I + (w))q) ≥ |B|.

Proof First of all, if B = ∅, the claim follows by inequality (1). Suppose B �= ∅ and let
s ∈ B. Since I s is a monomial ideal, its minimal monomial generators are uniquely defined
and independent of the field, and hence i ≥ 1. By Theorem 4.3, it follows that

βk
i ((I + (w))q) =

q∑

�=1

[
βk
i (I

�) + βk
i−1(I

�)
]
.
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Then,

β
Zp
i ((I + (w))q) − β

Q

i ((I + (w))q) =
q∑

�=1

[
β
Zp
i (I�) + β

Zp
i−1(I

�) − β
Q

i (I
�) − β

Q

i−1(I
�)

]

≥
h∑

�=1

[
β
Zp
i−1(I

�) − β
Q

i−1(I
�)

]
+ |B| ≥ |B|,

where the first inequality follows from (1). �

Lemma 4.10 Let I be a monomial ideal in R = k[x1, . . . , xn] and i, h, r ∈ N. Assume that
β
Zp
i (I�) �= β

Q

i (I
�) for every 1 ≤ � ≤ h. If J = I + (y1, . . . , yr+1) in R[y1, . . . , yr+1], where

y1, . . . , yr+1 are new variables, then β
Zp
i+a(J

h) − β
Q

i+a(J
h) ≥ (h+r

r+1
)
, for every 0 ≤ a ≤ r.

Proof We proceed by induction on r ≥ 0. If r = 0, the result follows by Lemma 4.9. Let
r > 0. By induction, for the ideal T = I + (y1, . . . , yr) we have

β
Zp
i+a(T

�) − β
Q

i+a(T
�) ≥

(
� + r − 1

r

)

,

for every 1 ≤ � ≤ h and every 0 ≤ a ≤ r − 1. Fix 0 ≤ a ≤ r − 1. Since J = T + (yr+1), by
Theorem 4.3 and inequality (1), it follows that

β
Zp
i+a(J

h) − β
Q

i+a(J
h) ≥

h∑

�=1

[
β
Zp
i+a(T

�) − β
Q

i+a(T
�)

]
≥

h∑

�=1

(
� + r − 1

r

)

=
(
h + r
r + 1

)

.

The statement for a = r follows similarly by Theorem 4.3 and using the fact that
∑h

�=1

[
β
Zp
i+r (T

�) − β
Q

i+r(T
�)

]
≥ 0 by (1). �


Given a monomial ideal I in k[x1, . . . , xn], it is clear that βk
0 (I) is the number of minimal

generators of I , and hence, it does not depend on k ; moreover, the same holds for βk
1 (I)

by [5, Corollary 5.3]. Thus, Pk
1(I) and Pk

2(I) are independent of the characteristic of the
field k . We show that this is not the case forPk

i (I) with i ≥ 3.

Theorem 4.11 For every i ≥ 3 and for every r ∈ N, there exists a monomial ideal I such
that all the Kodiyalam polynomialsPk

3(I),P
k
4(I), . . . ,P

k
i+r (I) have the coefficient at some

degree ≥ r depending on the characteristic of k.

Proof Fix i ≥ 3 and r ∈ N. Let A ⊆ k[x1, . . . , x10] be the monomial ideal introduced
in Sect. 3.3 for which we know that β

Z2
2 (A�) �= β

Q

2 (A�), for every � ∈ N. Set I = A +
(y1, . . . , yr+i−2) in the polynomial ring k[x1, . . . , x10, y1, . . . , yr+i−2]. By Lemma 4.10, we
have that β

Z2
2+a(Ih)− β

Q

2+a(Ih) ≥ (h+r+i−3
r+i−2

)
, for every 0 ≤ a ≤ r + i− 3. If h ≥ (r + i− 2)!,

we have

β
Z2
2+a(I

h) − β
Q

2+a(I
h) ≥ (h + r + i − 3) · · · (h + 1)h

(r + i − 2)!
≥ (h + r + i − 3) · · · (h + 1) > hr+i−3 ≥ hr .

This implies that Pk
3+a(I) has a coefficient of degree at least r that depends on the char-

acteristic of k , for every 0 ≤ a ≤ i + r − 3. �

Notice that in this case the degree of the Kodiyalam polynomial goes up by one. More-

over, Theorem 4.11 answers a question of Herzog and the fourth author, see the last
paragraph of Sect. 1 in [16].
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5 Examples and questions
In this section, we collect open questions, conjectures and some interesting examples
beyond monomial ideals.

5.1 Questions and conjectures

The following conjecture is based on numerous computer experiments.

Conjecture 5.1 Let G be a connected graph on n vertices, I(G) ⊆ k[x1, . . . , xn] be its
edge ideal and J = I(G) + xn+1(x1, . . . , xn) ⊆ k[x1, . . . , xn, xn+1] be the edge ideal of the
cone overG from a new vertex n+ 1. If certain Betti numbers of I(G) depend on the field,
then the same holds for J2.

It is easy to prove that the Betti numbers of J depend on the field. In fact, J is the
Stanley–Reisner ideal of � ∪ {n + 1}, where � is the Stanley–Reisner complex of I(G).
Thus, the Betti numbers of J depend on the field by Hochster’s formula.
However, the analog of Conjecture 5.1 for J3 does not hold.

Example 5.2 Consider Katzman’s edge ideal I(G) in Example 3.6 and J = I(G) +
x12(x1, . . . , x11) ⊆ k[x1, . . . , x12]. Then, some Betti numbers of J and J2 are different
over Q and over Z2, but this does not happen for J3.

We noticed that, if I is a squarefree monomial ideal that is not generated only in degree
two, then Conjecture 5.1 does not hold for J2. This is the case for the ideal of the real
projective plane (∗).
In Theorem 3.3 and Sect. 3.3, we presented examples of simplicial complexes � of

dimension ≥ 2 such that the Betti numbers of Ih� depend on the field for every h ≥ 1.
On the other hand, even if some Betti numbers of the Stanley–Reisner ideal I� of the real
projective plane (∗) differ overQ and Z2, this is not the case for the first few powers of I�.

Question 5.3 Which topological spaces admit a triangulation � such that the Stanley–
Reisner ideal I� and all its powers have certain characteristic-dependent Betti numbers?
Can we find such simplicial complexes � of dimension 1?

In Theorem 3.3, we saw an ideal such that the Betti numbers of all its powers depend
on the field and in Example 4.5 we showed another ideal such that the same holds for all
powers starting from the second one. It is then natural to ask the following:

Question 5.4 Given h ≥ 1, can we find a monomial ideal Ih such that the Betti numbers
of I�h do not depend on the field for � < h and some of them depend on the field for � ≥ h?

Proposition 3.1 shows that, given amonomial ideal I , for every i there exists hi such that
the Betti number βi(I�) either depends on the field for every � ≥ hi or it does not for any
� ≥ hi.

Question 5.5 Given a sequence of distinct integers h1, . . . , hr ≥ 1, can we find a mono-
mial ideal I such that some Betti numbers of Ih depend on the field if and only if
h ∈ {h1, . . . , hr}?
In Theorem 4.11, we saw that, given i ≥ 3 and r ∈ N, we can construct a monomial

ideal I for which the Kodiyalam polynomials Pk
3(I), . . . ,P

k
i+r (I) have a term of degree at
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least r that depends on the characteristic of the field. However, we do not have control on
deg(Pk

i (I)).

Question 5.6 Is there a monomial ideal I such that deg(Pk
i (I)) or the coefficient of the

top degree term ofPk
i (I) depend on the field for some i?

In this paper, we have compared the behavior of Betti numbers of powers of monomial
ideals when taking coefficients over Zp for a fixed prime p and coefficients in Q. We
also discussed extension to finite sets of primes. By Hochster’s formula or the lcm-lattice
formula, it is obvious that the Betti numbers are constant for all but finitely many primes.
The situation for powers is less obvious. Even though we expect a positive answer, we see
no argument which could resolve the following question.

Question 5.7 Let I be a fixedmonomial ideal and i a fixed number. Is the set of sequences
(βZp

i (Ih))h≥1 where p runs over all primes always finite ?

For example, we cannot rule out that there is a sequence of numbers h(p), strictly
increasing in p, such that βZp

i (Ih(p)) �= β
Zq
i (Ih(p)) for all primes q �= p, while the i-the Betti

numbers are identical otherwise.

5.2 Binomial edge ideals

In this paper, we mainly dealt with monomial ideals. It makes sense to ask the same
questions for other classes of combinatorially defined ideals, such as binomial edge ideals.
Given a field k and a finite simple graph G with vertex set {1, . . . , n} and edge set E(G),

the binomial edge ideal associated with G and k is the ideal

JG = (xiyj − xjyi : {i, j} ∈ E(G))

in the polynomial ring k[x1, . . . , xn, y1, . . . , yn], where for simplicity we omit the k in the
notation JG . This class of ideals was introduced independently in [15] and [23] and has
been extensively studied in the last decade. In [4, Example 7.6], the first three authors
exhibit a graph G such that some Betti numbers of JG depend on the field. However, it
is still unknown whether the projective dimension or the regularity of JG may depend on
the characteristic.
In this section, we provide some interesting examples for which the Betti numbers of

some power of JG depend on the characteristic of the field. In particular, in the next
example we show that the projective dimension of J3G may be characteristic-dependent
even if the Betti numbers of JG and J2G are not.

Example 5.8 Consider the graphs C and D in Figure 3. Macaulay2 computations show
that the Betti numbers of JC , J2C , J

3
C , and of JD, J2D do not change when computed over Q

or Z2. However, βZ2
5 (J4C ) �= β

Q

5 (J
4
C ) and pd

Z2 (J
3
D) �= pd

Q
(J3D).

Finally, we show some connected graphswith a small number of verticeswhose binomial
edge ideal has Betti numbers that change in several characteristics.

Example 5.9 Let E and F be the graphs in Fig. 4. Computations with Macaulay2 show
that someBetti numbers of JE and J2E are different in characteristic 0, 2, and 3. For instance,
β
Z2
7 (JE) = β

Z3
7 (JE) + 1 = β

Q

7 (JE) + 2 and β
Z2
7 (J2E ) = β

Z3
7 (J2E ) + 3 = β

Q

7 (J
2
E ) + 7. Moreover,

the Betti numbers of JF are the same in these three characteristics, but they become
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(a) (b)

Fig. 3 (a) The graph C . (b) The graph D

(a)
(b)

Fig. 4 (a) The graph E . (b) The graph F

different when we consider its square. Indeed, β
Z2
3 (J2F ) − 2 = β

Z3
3 (J2F ) = β

Q

3 (J
2
F ) and

β
Z2
5 (J2F ) = β

Z3
5 (J2F ) − 2 = β

Q

5 (J
2
F ).

Question 5.10 LetG be a finite simple graph. In contrast to the case of monomial ideals,
in numerous computer experiments we noticed that, if certain Betti numbers of J hG depend
on the characteristic for some h, then the same holds for J h′

G for every h′ ≥ h. Is this always
the case?
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