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Abstract
The temporal structure of animals’ acoustic signals can inform about context, urgency, 
species, individual identity, or geographical origin. We present three independent 
ideas to further expand the applicability of rhythm analysis for isochronous, that is, 
metronome- like, rhythms. A description of a rhythm or beat needs to include a de-
scription of its goodness of fit, meaning how well the rhythm describes a sequence. 
Existing goodness- of- fit values are not comparable between methods and datasets. 
Furthermore, they are strongly correlated with certain parameters of the described 
sequence, for example, the number of elements in the sequence. We introduce a new 
universal goodness- of- fit value, ugof, comparable across methods and datasets, which 
illustrates how well a certain beat frequency in Hz describes the temporal structure 
of a sequence of elements. We then describe two additional approaches to adapt 
already existing methods to analyze the rhythm of acoustic sequences of animals. The 
new additions, a slightly modified way to use the already established Fourier analysis 
and concrete examples on how to use the visualization with recurrence plots, enable 
the analysis of more variable data, while giving more details than previously proposed 
measures. New methods are tested on 6 datasets including the very complex flight 
songs of male skylarks. The ugof is the first goodness- of- fit value capable of giving 
the information per element, instead of only per sequence. Advantages and possible 
interpretations of the new approaches are discussed. The new methods enable the 
analysis of more variable and complex communication signals. They give indications 
on which levels and structures to analyze and enable to track changes and differ-
ences in individuals or populations, for instance, during ontogeny or across regions. 
Especially, the ugof is not restricted to the analysis of acoustic signals but could for 
example also be applied on heartbeat measurements. Taken together, the ugof and 
proposed method additions greatly broaden the scope of rhythm analysis methods.
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1  |  INTRODUC TION

In recent years, the temporal structure or rhythm of animal's acous-
tic signals has received increasing attention. Much emphasis lays 
on the development of methods to assess and quantify underlying 
temporal patterns (Burchardt & Knörnschild, 2020; Burchardt et al., 
2019; Norton & Scharff, 2016; Ravignani & Norton, 2017; Saar & 
Mitra, 2008). The rhythm of an isochronous— that is, metronome- 
like— element sequence is termed a “beat frequency” and is given 
in Hz. So far, three methods have been proposed in the context of 
bioacoustics for extracting exact beat frequencies in order to de-
scribe an isochronous element sequence: (1) Fourier analysis, which 
decomposes a signal into its sinusoidal components (Burchardt & 
Knörnschild, 2020; Saar & Mitra, 2008); (2) generate- and- test ap-
proach (GAT), where a series of acoustic signals are overlaid with an 
artificial beat to test which artificial beat frequencies resemble the 
series best (Norton & Scharff, 2016; Ravignani & Norton, 2017); and 
(3) interonset interval analysis (IOI), which allows the calculation of 
beat frequencies by averaging IOIs and transforming this rate into a 
frequency (Burchardt & Knörnschild, 2020).

Until now, studies on temporal structure or rhythm of animal's 
acoustic signals have often focused on quite simple sequences with 
an underlying isochronous structure (e.g., only one element type, vi-
sually uniform temporal structures, or short sequences; Burchardt & 
Knörnschild, 2020; Ravignani, 2018). Such a structure resembles a 
metronome sound, with constant beat and gap lengths. The above- 
mentioned methods, GAT and Fourier analysis, together with the 
commonly used calculation of rates or frequency- transformed rates 
(in Hz as in beats per second) describe these isochronous sequences 
well. However, for sequences containing various element types, 
subunits, and a strong variability between element duration and/or 
gap durations, such as skylark song (Briefer et al., 2010), nightingale 
song (Hultsch & Todt, 1981), whale song (Payne & McVay, 1971), or 
bat song (Behr & Helversen, 2004), the interpretation of results of 
exact beat frequency calculations described above becomes more 
difficult. Arising problems include the fact that all methods always 
give a “best- fitting” beat frequency also in the case, that an isochro-
nous beat is not suitable to describe the sequence, and this beat 
frequency can therefore be very misleading. Also, interpretation of 
results is very clear for small coefficient values (i.e., nPVI or coeffi-
cient of variation analysis, where low values are explicitly indicat-
ing low variability; Burchardt & Knörnschild, 2020; Cameron et al., 
2019; Ravignani & Norton, 2017), but higher values are not as easily 
interpreted, as they could indicate a different rhythmic pattern than 
isochrony or indeed a random succession of elements (Burchardt & 
Knörnschild, 2020). Analyses of the rhythm of such vocalizations re-
quire the refinement of established methods or the development of 
new ones, in order to allow a description of sequences in a meaning-
ful and comparable way between species.

Current problems related to existing methods are twofold. The 
first issue, which is independent of the complexity of the struc-
ture, is the limitations with which so- called goodness- of- fit values 
quantifying how well a certain beat frequency describes an element 

sequence can be compared between species as well as between 
methods. These values exist for all three above- mentioned meth-
ods to extract exact, best- fitting beats (Burchardt & Knörnschild, 
2020), but they inflict three problems: (a) They show complex cor-
relations to, among other parameters, the number of elements in a 
sequence; (b) values differ depending on the method used, which 
precludes any comparison between studies using different methods; 
and (c) only one value can be obtained for the whole sequence that 
is being analyzed, without any information at the element level. The 
second issue that becomes important regarding the analysis of more 
complex sequences is that, so far, existing methods provide only one 
best- fitting beat frequency when, in fact, the sequence might be 
best described by more than one beat frequency. Directly related, 
it might be interesting to look for subpatterns and analyze different 
parts of a sequence separately, to be able to depict rhythm changes 
within a complex sequence. The next challenge thus becomes to 
know where or what these subpatterns might be.

In this study, we propose three new ideas on how to extend the 
existing analyses options, as well as how to bypass certain limita-
tions. First and foremost, we introduce a new universal goodness- of- 
fit value. Second, we suggest that reporting the 10 most prominent 
beat frequencies in a sequence instead of only the best- fitting beat 
frequency in Fourier analysis, which implies the assumption that one 
beat frequency is enough, is essential to describe a complex tem-
poral structure. Third, we encourage the use of recurrence plots to 
identify the substructures and subunits that could be of interest for 
further analysis. The reporting on the ugof is emphasized throughout 
the manuscript, as it is a true innovation for the field, while the two 
other methods are additions to already established analyses.

2  |  MATERIAL S AND METHODS

Analyses were conducted on a total of six datasets, five of which were 
merely re- analyzed for this study. These five datasets re- analyzed 
for the ugof were datasets where beat frequencies (in Hz) had al-
ready been calculated (Burchardt & Knörnschild, 2020; Burchardt 
et al., 2019), and a fairly simple temporal structure could be inferred; 
three different acoustic signals of the Neotropical bat Saccopteryx 
bilineata: (1) 500 multisyllabic isolation call sequences (Knörnschild 
et al., 2012), (2) 142 multisyllabic territorial songs (Behr et al., 2006), 
and (3) 33 echolocation call sequences (Knörnschild et al., 2012); as 
well as (4) 49 isolation call sequences of the Neotropical bat Carollia 
perspicillata (Knörnschild et al., 2013) and (5) 60 echolocation se-
quences of Physeter macrocephalus (Bøttcher et al., 2018; Tønnesen 
et al., 2018). All raw datasets were acoustic recordings in which the 
starts of elements were labeled manually or automatically depend-
ing on the dataset using the oscillogram. Timepoints were then ex-
tracted and used for further analysis.

The same procedure was used on a sixth dataset. We newly per-
formed a rhythm analysis on a dataset of flight songs of the sky-
lark, Alauda arvensis (for details on recordings, see Briefer et al., 
2008, 2010). The song produced by males of this species during the 
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breeding season while in flight is very complex: Each individual can 
combine more than 300 different syllables in its song, giving rise to 
a lot of variation (Aubin, 1982; Briefer, Aubin, et al., 2008; Briefer, 
Rybak, et al., 2008). The use of existing methods on such song, 
namely, reporting only the one best- fitting beat frequency per se-
quence as calculated in Fourier analysis and the resulting goodness- 
of- fit values, proved to be insufficient for describing the rhythmic 
structure of this system. We therefore developed a goodness- of- fit 
value and re- evaluated how to best report results of the Fourier 
analysis, to further facilitate comparability between methods and 
species, for example, through enabling the description of both sim-
ple and more complex patterns with the same methods, but also 
by making the various existing methods themselves more compa-
rable. We introduce a newly established universal goodness- of- fit 
value, and we discuss additions to existing methods (Fourier analysis 
and recurrence plots), with the overall purpose to further advance 
rhythm analysis, its applicability, and comparability.

Our universal goodness- of- fit value is tested both on the sky-
lark dataset and the five already published datasets. For the re- 
evaluation of Fourier analysis results and recurrence plots, we focus 
on the complex dataset of skylark flight songs.

2.1  |  Introducing a universal goodness- of- fit value

We propose a new, universal goodness- of- fit value that can be ap-
plied to any possible description of a temporal structure relying on 
frequencies; we term it ugof for “universal goodness- of- fit value.” 
It is a value that is calculated for every element in a sequence and 
can then be summarized for a whole sequence or any other desired 
grouping (e.g., individuum, group, sequence type). A theoretical 
beat describes a sequence well when there are only small devia-
tions between the original elements and the theoretical beats of the 
best- fitting beat frequency. One element always lies between two 
theoretical beats. Therefore, the maximum deviation possible equals 
to half of the theoretical beat length since one will always search 
for the deviation to the next closest beat (Figure 1a). We can thus 
describe a particular deviation as the ratio between the actual devia-
tion to the next theoretical beat and the maximum deviation for the 
calculated best- fitting beat (Equation 1).

where ugof is the universal goodness- of- fit value, |Δ| is the absolute 
deviation to closest theoretical beat, and Δmax is the maximum possible 
deviation (half a beat duration).

Both parameters, the maximum possible deviation to the next 
beat (Δmax) and the actual deviation (|Δ|), need to change in the same 
way depending on the corresponding frequency for the method to 
be universally applicable. This is depicted in Figure 1b, showing the 
theoretical maximum possible deviations (Δmax) for beats of beat fre-
quencies of up to 100 Hz (in black) and the actual deviations (|Δ|) 

which we measured for a total of 804 sequences and of two beat fre-
quencies for each sequence (calculated with two different methods: 
one with Fourier analysis, i.e., 12.1 Hz, and the other one with the 
IOI approach, i.e., 13.4 Hz), resulting in 1608 datapoints (in color). 
The actual deviations are indeed much lower than the maximum 
possible deviations (Figure 1b). By dividing the actual deviation (|Δ|) 
by the maximum possible deviation (Δmax) as shown in the equation 
above, we get the ugof as a ratio that can easily be transformed into 
a percentage (by multiplying with 100) if required. The smaller ugof 
is, the closer the original elements of a sequence are to the theoret-
ical beats. The resulting value (ugof) is independent of the number 
of elements in the sequence, the sampling length, or the number of 
silent beats in a sequence (Figure 1a). It is also independent of the 
best- fitting beat frequency it is describing (Figure 1c).

We calculated the ugof of six datasets and for two different 
beat frequencies per sequence, that is, using two different meth-
ods: The first beat frequency we calculated the ugof for was based 
on the Fourier analysis and the second best- fitting beat frequency 
was based on the IOI approach (Figure 1c,d, as calculated with 
Fourier analysis and IOI analysis in previous studies; Burchardt & 
Knörnschild, 2020; Burchardt et al., 2019). To be able to evaluate 
and interpret a single ugof, we modeled the distribution of ugofs for a 
dataset. To this aim, we calculated ugof from 0.1 to 100 Hz in 0.01 Hz 
increments for all element sequences in the dataset. To illustrate 
what we mean by this, let us assume we have a sequence A. For this 
sequence A, for which we know when each element in the sequence 
starts, we calculate ugof for 1000 beat frequencies (0.1– 100 Hz in 
00.1 Hz increments), by calculating the actual deviations (|Δ|) as 
well as the maximum possible deviations (Δmax) for each frequency. 
Figure 1e shows the results of these calculations for a dataset of 49 
isolation call sequences of the bat Carollia perspicillata (9991 ugof 
values for 49 sequences, giving us a distribution of 489,559 values). 
We then used the mean and standard deviation of this Gaussian dis-
tribution to evaluate any single best- fitting beat frequency as calcu-
lated with the IOI approach. We can calculate z- scores for every ugof 
by subtracting the mean of the distribution of ugof values for the 
given dataset (i.e., isolation call sequences of C. perspicillata) from 
the ugof in question (i.e., the ugof as calculated for the best- fitting 
beat frequency with the IOI approach) and dividing the difference by 
the standard deviation of the distribution. A calculated z- score can 
than easily be matched to the corresponding p- value using z- score 
tables (i.e., Fisher & Yates, 1964; Rohatgi & Saleh, 2015). This allows 
us to investigate whether a calculated beat frequency fits the ele-
ment sequence significantly better than what could be expected de-
pending on the calculated distribution of ugof for a specific dataset. 
We only considered negative z- scores as possibly significant, as a 
negative z- score indicates that the corresponding value is below the 
distributions mean (Figure 1e). A positive z- score would, on the other 
hand, indicate that the corresponding ugof is above the distribution 
mean, and could also be significant, but would then fit significantly 
worse than expected by the underlying distribution.

This approach of using z- scores, and therefore the possibility to 
calculate p- values for different production rhythms, is mainly useful 

(1)ugof =
|Δ|

Δmax

,
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for comparability reasons, in order to assess which animal or indi-
vidual can better keep a stable (theoretical) beat and to eventually 
answer the question why that is. We do not want to propose that a 
sequence would only be well described by an isochronous beat that 
results in a significant ugof. To illustrate the methods, we calculated 

z- scores for beat frequencies in the dataset at hand (isolation calls 
of C. perspicillata) based on the IOI approach, as these resulted in 
on average smaller ugof compared to beat frequencies calculated 
with Fourier analysis (Figure 1d). The values were calculated for beat 
frequencies with a resolution of two decimal points (i.e., 12.11 or 

FIGURE 1  Legend on next page
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28.84 Hz). This analysis revealed that ugof can sometimes change 
strongly within small increments. We thus suggest that it is reason-
able to have a look at ugof within 1 Hz of the detected best- fitting 
beat frequency to be aware of the possible sensitivity of the method, 
especially when having to deal with a low- frequency resolution 

when using the Fourier analysis. The frequency range in which to 
check the ugof should take the frequency resolution into account. 
For instance, if the frequency resolution of the Fourier analysis is 
very coarse (see Burchardt & Knörnschild, 2020, for discussion), a 
certain beat frequency might not be found by the Fourier analysis, 

F I G U R E  1  (a) Theoretical element series (solid black elements) with an overlaid beat (dashed lines) of a certain beat frequency in 
Hertz. The maximum possible deviation for any element is half the beat duration (Δmax). It is set in relation to the absolute deviation of an 
element to its closest beat (Δ). Other important concepts visualized are as follows: interonset intervals and silent beats. (b) The theoretical 
maximum deviation per beat (in black) and actual deviations (as mean per sequence) measured from six datasets and for two calculated 
beat frequencies each. Both deviations change in the same way depending on the corresponding frequency, and actual deviations are much 
smaller than maximum possible deviations. (c) ugof calculated for best- fitting beat frequencies based on Fourier analysis and IOI analysis for 
six datasets. No correlation can be seen between ugof and beat frequency. (d) Tabular comparison of mean ugof per dataset for both beat 
calculation methods. Fourier analysis yields better results (lower ugof) only for the complex skylark song. (e) Distribution of ugof calculated 
for beat frequencies from 0.1 to 100 in 0.01 Hz increments for all sequences of Carollia perspicillata isolation call sequences, to be able to 
calculate z- scores. (f) z- scores as calculated based on the modeled ugof for beat frequencies of 49 isolation call sequences of C. perspicillata 
using IOI analysis. Significant values are in blue, and nonsignificant values in orange. The differences between significant and not significant 
beat frequencies could correlate with different individuals and potentially be connected to the relevance of beat production as a fitness 
indicator. EC, echolocation calls; FFT, beat frequencies calculated with a fast Fourier transformation (Fourier Analysis); FS, flight song; IC, 
isolation call sequences; IOI, beat frequencies calculated with IOI analysis; TS, territorial song

F I G U R E  2  Exemplary results of the rhythm analysis of an excerpt from the complex flight song of the skylark Alauda arvensis. (a) 
Amplitude plot of Fourier analysis. Beat frequency is depicted on the x- axis and the amplitude of the ten highest peaks— as calculated by a 
fast Fourier transformation— on the y- axis. The highest peak is always the zero- bin component at 0 Hz; it is the average of the signal in the 
time domain, where elements were encoded in a binary sequence (it is not relevant to find the best- fitting beat, but a by- product of the 
data transformation into a binary sequence and only shown for transparency and explanation). One very strong cluster can be identified; 
a summary of this cluster might depict the temporal structure better than the detected single highest peak. (b) The table reports relevant 
parameters of the rhythm analysis for the five units depicted in the figure. (c) Recurrence plots of the complete example sequence: All 
interonset interval (IOI) pairings in the sequence are compared to each other, forming a symmetric comparison of every IOI to every other 
IOI in the sequence. The Euclidean distance between any IOI pairing is color- coded. More different pairs of IOIs are characterized by longer 
distances and darker colors. The corresponding audio is supplied. (d) Zoom into a section of 100 elements (11.2 s) of the song sequence. A 
very consistent series of IOIs can be observed at the beginning, followed by some slight changes, and in the end again, a very consistent 
pattern. (e) Spectrogram of the zoom 1.2 section, which can further be divided into a variable pattern (zoom 1.2.1) and a very consistent 
pattern (zoom 1.2.2). (f) Spectrogram of the zoom 1.1 section, which can further be divided into two consistent patterns (zoom 1.1.1 and 
1.1.2)
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but a ugof could nevertheless be calculated. To be aware of that issue 
and to be certain about the calculated exact beat frequencies, this 
approach is suggested. The resulting z- scores for the best- fitting 
beat frequencies of the IOI analysis for isolation calls of C. perspicil-
lata are shown (Figure 1f). We found that z- scores vary considerably 
within the dataset. This might illustrate differences in beat produc-
tion abilities between individuals, as some individuals might produce 
sounds in a more consistent/rhythmic way than others, which, in 
turn, could constitute a fitness indicator. In addition, differences be-
tween significant and not significant production rhythms could be 
related to different situations, that is, different arousal/motivation 
or urgency levels. For further discussion on this please see the ap-
pendix, there the modeled ugof values and z- scores for all datasets 
are shown (Figures A1– A6).

2.2  |  Additions to existing methods of 
rhythm analysis

2.2.1  |  Ten highest peaks of Fourier analysis

Especially in more complex signals, such as bird song comprised 
of various motifs or phrases (Aubin, 1982; Hultsch & Todt, 1981; 
Kroodsma, 2005), it seems inappropriate to assume that one beat 
frequency could be enough to describe a sequence. The IOI ap-
proach seems particularly unsuitable here, as it simplifies the tempo-
ral structure (Burchardt & Knörnschild, 2020). The Fourier analysis, 
on the other hand, gives a very detailed picture of all beat frequen-
cies that make up the sequence. It decomposes any signal into its 
sinusoidal components, which are nothing else but frequencies. A 
sequence of an animal's acoustic signal is transformed into a binary 
sequence, where an element onset is encoded as “1” and everything 
else encoded as “0.” A fast Fourier transformation is then conducted 
on this binary sequence (Ravignani & Norton, 2017; Saar & Mitra, 
2008). In a recent publication, we settled to describe a sequence 
by the beat frequency that contributed the most to the descrip-
tion of a sequence, that is, the one that gave the highest amplitude 
in the Fourier analysis's frequency domain, and only reported this 
most prominent frequency (Burchardt & Knörnschild, 2020). We 
now propose, as an alternative, to report the ten most prominent 
frequencies. This would allow the detection of frequency “clusters” 
(red circles in Figure 2a). None of the frequencies in a cluster might 
have the highest peak. However, when combined (summed up), they 
surely describe a series better than a single, slightly higher peak. 
Therefore, it could also be an option to report a summary, average, 
or range of a particular cluster to describe a particular sequence. 
This gives a much more detailed result, which can be used as basis 
for decisions about how to proceed or what to report. We suggest 
looking at the ten highest peaks, as it is a reasonably high number to 
find possible clusters, without reporting beat frequencies that have 
only very small explanatory values for the sequence. Nevertheless, 
for certain sequences, it may be most informative to report only 
the five highest peaks or the twenty highest peaks. An alternative 

solution might be to consider reporting the number of peaks that 
explain a certain percentage of the sequence's rhythm. However, 
such percentage is not easily accessible and might lead to a very high 
number of peak (e.g., >100).

2.2.2  |  Recurrence plots

The recurrence plot, originally used in chaos theory (Eckmann et al., 
1987; Marwan, 2008), is an easy way to visualize the overall tempo-
ral structure of a sequence and to find subunits (Ravignani & Norton, 
2017). It depicts the distance between any IOI pair in the sequence 
that is to be analyzed. Every possible IOI pair is compared, the 
Euclidean distance is measured and plotted (Burchardt & Knörnschild, 
2020; Ravignani & Norton, 2017). Differences are color- coded in 
the plots; the darker a comparison, the more different are the two 
compared IOIs. Subunits with very different temporal structures can 
be easily spotted in such a plot, namely, as a “break” in the pattern 
(Figure 2d). When analyzing new acoustic signals, where knowledge 
about functional units such as motifs is scarce, such temporal breaks 
could easily show where a new motif or phrase starts. Furthermore, 
different subunits might have different beat frequencies that convey 
meaning, but that cannot be resolved with an overall best- fitting beat 
frequency. As shown in Figure 2b, identified subunits can then be an-
alyzed to extract their specific best- fitting beat frequency, in order to 
see whether they fit the overall temporal structure or not.

3  |  RESULTS

3.1  |  Results of an exemplary analysis of skylark 
flight song

To illustrate the proposed additions, we analyzed an excerpt from 
the complex flight song of a skylark. The specific sequence has a du-
ration of 51.3 s and contains 362 elements (for details on recording, 
see Briefer, Rybak, et al., 2008, 2010). We calculated the best- fitting 
beat frequency of the whole sequence and of five exemplary subu-
nits (there are more in the entire sequence), which we identified via 
recurrence plots (Figure 2c– f). As can be seen in Figure 2a, there is a 
strong cluster of beat frequencies with high descriptive value for this 
sequence. To calculate the universal goodness of fit, we not only used 
the single best- fitting beat frequency (indicated as “Best” in 2b), but 
also the beat frequency of the cluster mean (indicated as “Cluster” in 
2b). The recurrence plot zoom 1.1 visualizes the subsequent switching 
between two element types followed by a series of very similar IOIs, 
which correspond to a single element type. In the recurrence plot zoom 
1.2, on the other hand, we see more variability, looking at both the re-
currence plot and the spectrogram in 2e; there we can see various ele-
ment types, then a “break” (black line) in the recurrence plot indicating 
a high difference between the two adjacent IOIs, followed again by a 
very stereotyped subunit (zoom 1.2.2). The calculated ugofs gave some 
interesting insights. (1) The ugof for the best- fitting beat frequency of 
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the whole sequence was indeed higher than the one for the cluster- 
beat frequency, but (2) the cluster- beat frequency described some of 
the subunits well, sometimes even better than the best- fitting beat 
frequency calculated for the subunits themselves. This was true espe-
cially for the four small subunits (zoom 1.1.1 and 1.1.2, and zoom 1.2.1 
and 1.2.2). Only one out of four sequences here showed a better (i.e., 
smaller) ugof for the best- fitting beat frequency (zoom 1.2.2) compared 
to the ugof calculated with the cluster- beat frequency. However, here, 
both the cluster- beat frequency and the best- fitting beat frequency 
were very similar and, due to a lower frequency resolution in the 
Fourier analysis, the better fitting cluster- beat frequency could math-
ematically not be found (see Burchardt & Knörnschild, 2020, for an 
explanation on frequency resolution in Fourier analysis). This is further 
proving the point that beat frequencies calculated by Fourier analysis 
with a low- frequency resolution need to be handled and interpreted 
with care (Burchardt & Knörnschild, 2020).

4  |  DISCUSSION

Analyzing the temporal structure of animals’ acoustic signal is rel-
evant for addressing many research questions, such as species dis-
crimination, physiological correlates like couplings to wingbeat or 
respiration, mating preferences or arousal coding (Burchardt et al., 
2019; David et al., 2003; Manser, 2001; McRae, 2020; Norton & 
Scharff, 2016). Other questions include duetting or the development 
of temporal structures during ontogeny (Pika et al., 2018; Sasahara 
et al., 2015; Yoshida & Okanoya, 2005). Many analyses conducted by 
bioacousticians include temporal parameters. We already indicated 
in an earlier paper (Burchardt & Knörnschild, 2020) that informa-
tion, such as small scale interindividual differences, might be lost by 
focusing only on the commonly used “element rates,” mostly called 
“syllable rates” (Douglas et al., 2005; Manser, 2001; McRae, 2020). 
Using element rates or calculating beat frequencies per sequence by 
transforming the element rate into a frequency could be described 
as a “spyglass” approach, mostly useful for studying highly tempo-
rally consistent communication signals (i.e., echolocation of bats or 
whales). It is useful when investigating a species’ rhythm or other 
analyses that only require this level of detail. For more complex 
communication signals, or in cases when fine scale intra- individual 
differences or fine scale differences between contexts might play a 
role, the “magnifying glass” approach of the Fourier analysis should 
be used instead. Our newly established ugof clearly supports this 
claim, as our analyses revealed better results (indicated by lower 
ugofs) when using the Fourier analysis compared to the IOI approach 
only for the very complex skylark flight song.

Our suggested additions to already established methods make 
these aims of not losing relevant and interesting information during 
the analysis of temporal parameters easier to reach. These new 
methods allow a comparison of rhythmicality both between studies 
and species, which was not easy beforehand. Analyzing recurrence 
plots to make an educated decision on which subpatterns to analyze 
can also be of interest when facing completely new acoustic signals. 

Clear temporal breaks, as can be seen in the recurrence plots shown 
above (Figure 2e), could easily indicate where a new motif or phrase 
starts. Distinguishing contexts or analyzing syntax could be backed 
up by such analyses of the underlying temporal structure (or vice 
versa). An example for this could be research on dialects. For in-
stance, microgeographic differences between male skylarks’ flight 
song are mostly based on differences in the syllable and phrase rep-
ertoire composition (Briefer, Aubin, et al., 2008). Since such phrases 
show a distinguishable temporal patterning (i.e., higher tempo; 
Briefer, Aubin, et al., 2008), they could be automatically detected 
using these methods.

Our newly established universal goodness- of- fit value enables 
every researcher, whether reading such a study or conducting it, to 
grasp the rhythmicity of an individual, a single sequence, or a spe-
cies, by looking at one number alone, which can be accompanied by a 
p- value. A number between 0 and 1, with smaller numbers indicating 
a better fit, is easy to interpret. No understanding of correlations 
within the data is needed. Furthermore, it can be easily determined 
which of the methods used to describe a sequence (i.e., Fourier 
analysis or IOI approach) captures most of the underlying temporal 
structure, or whether a subunit has a beat frequency different from 
the beat frequency of the whole sequence. It is to be noted that a 
value of 1 is not expected, as this would mean that all elements of 
the sequence lie exactly between two beats, which would indicate 
that they all perfectly fit the theoretical beat, but phase displaced. 
Furthermore, it is the first proposed goodness- of- fit value that is 
calculated per element and not per sequence, therefore enabling 
bioacousticians to answer even more interesting questions about 
sublevel structures. Such questions could be about which elements 
“drive” a beat frequency or break it, which could then shed light on 
the accentuation of elements. It could furthermore be applied to the 
analysis of bivariate signals, for example, to quantify the synchroni-
zation between, for example, wingbeat and echolocation of flying 
bats (Kalko, 1994; Moss et al., 2006; Ratcliffe et al., 2011; Schnitzler, 
1971) or flight song and wingbeat in the skylark. This could be done 
in two different ways: first, by calculating ugofs for the same rhythm 
for both signals and comparing them, or second, by using one of the 
signals— the potential driver of the temporal structure— as “theoret-
ical beat,” to calculate how much the second signal differs from the 
oscillator. This approach could also be used for the analysis of duet-
ting or synchronized animal sounds such as frog choruses.

On another note, these methods are not only useful when ana-
lyzing acoustic signals. They can be used on the temporal structure 
of anything, may it be a certain behavior or physiological processes 
such as wingbeat, heartbeat, or respiration. All processes of inter-
est can easily be transformed in a way to enable the analysis; for 
example, instead of interpreting the result in Hz, which is one beat 
per second, we could interpret it as beats/occurrences per hour, 
day, or more abstract processes such as a reproductive cycle. We 
can subsequently calculate our GAT, IOI, or Fourier analysis on that 
particular time scale and retransform the results back to the orig-
inal time scale. More concrete applications of such method could 
be to quantify movement errors in another way than qualitatively 
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by a human observer, as was done recently in a study on precision 
of dance movements in professional and nonprofessional dancers 
(Karageorghis et al., 2019). It could also be used to quantify accuracy 
in tapping tasks, which are frequently used to assess the medical 
status of patients (Criswell et al., 2010; Roalf et al., 2018), in order 
to improve accuracy in the field (Roalf et al., 2018). Potentially, our 
method could even be used in competitive sports to assess move-
ment structure and timing.

Rhythm analysis methods that have been developed for acous-
tic analysis could thus allow an even wider range of researchers 
in answering questions such as movement errors, sleep cycle 
analysis, finger tapping tasks, circadian rhythms, or various other 
research areas, possibly even in economics or engineering where 
temporal structures of processes are of utmost importance as 
well.
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