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Abstract

Quantum spin liquids are exotic states of matter which form when strongly frustrated magnetic

interactions induce a highly entangled quantum paramagnet far below the energy scale of the

magnetic interactions. Three-dimensional cases are especially challenging due to the significant

reduction of the influence of quantum fluctuations. Here, we report the magnetic characterization

of K2Ni2(SO4)3 forming a three dimensional network of Ni2+ spins. Using density functional

theory calculations we show that this network consists of two interconnected spin-1 trillium lattices.

In the absence of a magnetic field, magnetization, specific heat, neutron scattering and muon

spin relaxation experiments demonstrate a highly correlated and dynamic state, coexisting with a

peculiar, very small static component exhibiting a strongly renormalized moment. A magnetic field

B & 4 T diminishes the ordered component and drives the system in a pure quantum spin liquid

state. This shows that a system of interconnected S = 1 trillium lattices exhibit a significantly

elevated level of geometrical frustration.

Strongly correlated systems are at the forefront of condensed matter research, exhibiting

exotic phases and nourishing novel theoretical concepts. In magnetism, one of the most

sought-after strongly correlated phase is a quantum spin liquid (QSL), a state in which

spins avoid long-range order (LRO) and are considered entangled on all spatial scales [1–

3]. To realize a QSL, geometrical frustration and reduced dimensionality of the magnetic

subsystem have been considered vital. 1D Heisenberg chains exhibit QSL behavior even

without frustration [4, 5] while 3D cases are rare due to the significant reduction of quantum

fluctuations. Nevertheless, it has been found that 3D lattices like pyrochlore [6–8] and hyper-

hyperkagome [9, 10] support QSL behavior.

In this Letter we provide extensive experimental and computational evidence that

K2Ni2(SO4)3 exhibits QSL behavior, based on a novel arrangement of spins forming two in-

terconnected trillium lattices. Previous work on compounds featuring a single trillium lattice

was mainly driven by a pressure-induced quantum phase transition (QPT) discovered in the

itinerant helimagnet MnSi [11] and evidence of non-Fermi liquid behavior above a critical

pressure [12]. Later theoretical works [13, 14] showed some degree of geometrical frustration

in the trillium lattice, nevertheless insufficient to prevent the onset of LRO. From that

perspective, K2Ni2(SO4)3 and other members of the langbeinite family K2M2(SO4)3 (M =
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Label Type Distance (Å) Exchange (K)

J1 Ni(1)–Ni(2) 4.42877 0.42(1)

J2 Ni(1)–Ni(2) 4.90057 −0.16(1)

J3 Ni(2)–Ni(2) 6.08379 1.09(1)

J4 Ni(1)–Ni(2) 6.12050 5.38(1)

J5 Ni(1)–Ni(1) 6.12695 2.54(1)

TABLE I. K2Ni2(SO4)3 exchange energies obtained by DFT energy mapping, with paths identified

by Ni–Ni distance.

Fe, Co, Mn, Cr) offer an arena for testing future theoretical developments on interconnected

trillium lattices. Previous investigations of those compounds displayed ferroelectricity and

structural transitions but their magnetic properties remain terra incognita.

K2Ni2(SO4)3 crystallizes in a cubic unit cell (P213) with a = 9.81866(12) Å determined

from single-crystal diffraction at 100 K [15]. It consists of a network of trigonally-distorted

NiO6 octahedra, coupled through SO4 groups [Fig. 1(a)], with a Ni–O–S–O–Ni super-super-

exchange mechanism mediating magnetic interactions between S = 1 spins. There are two

crystallographic Ni sites, distinguished by their Ni–O distances [15], each site forming a

single trillium lattice.

Mapping the GGA+U total energies [15] onto a Heisenberg Hamiltonian for K2Ni2(SO4)3

Ĥ =
∑

i<j JijŜi ·Ŝj as shown in Fig. 1(c) yields the five non-zero exchange couplings that are

listed in Table I and shown in Fig. 1(b), visualizing the exchange network. The couplings

within each TL are given by antiferromagnetic (AFM) J3 and J5, respectively. On the other

hand the strongest coupling is found to be AFM J4 that inter-connects the two lattices.

Interestingly, if J4 was the only coupling in the system it would support a Néel-type LRO.

Thus, our calculation shows that the physics of K2Ni2(SO4)3 is determined by an interplay

between J4 induced ordering tendencies and J3 and J5 driven frustration.

Figure 2(a) displays the temperature dependence of dc magnetic susceptibility χdc(T ) and

its inverse in a wide temperature range. The monotonic increase of χdc(T ) with decreasing

T , without any noticeable features, suggests the absence of LRO down to 2 K. The linear

behavior of 1/χdc(T ) above 50 K allows us to use the Curie-Weiss law χ(T ) = C/(T −ΘCW),

which gives C = 1.37(2) emu K/mol and ΘCW = −18(1) K. The value of C corresponds to
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S = 1 with a slightly enhanced g-factor of g = 2.34. ΘCW < 0 indicates predominant AFM

interactions, in accordance with density functional theory (DFT) calculations. Additionally,

measurements along three orthogonal directions practically overlap, indicating no significant

anisotropy.

Below 50 K, 1/χdc(T ) starts to deviate from the Curie-Weiss law, following the build

up of correlations between magnetic moments. To emphasize this behavior, magnetization

curves obtained at several temperatures are plotted in Fig. 2(b), together with the curves

of the Brillouin function, which describe an assembly of non-interacting S = 1 spins, at

corresponding temperatures (dashed lines). To approximate the magnetization behavior,

classical Monte Carlo calculations employing the DFT Hamiltonian have been performed.

The resulting curves (full lines) are closer to the experimental ones but it is apparent that

with decreasing T the deviation from the classical prediction becomes more pronounced,

suggesting a sizeable influence of quantum fluctuations on this 3D lattice.

Further evidence of strongly correlated spins can be obtained from specific heat measure-

ments. Fig. 2(c) shows the T dependence of the total specific heat of a single crystal of

K2Ni2(SO4)3, together with a non-magnetic analog K2Mg2(SO4)3. At temperatures above

20 K the two compounds show a very similar behavior, indicating a dominant phonon con-

tribution. Below 20 K, K2Ni2(SO4)3 exhibits a significant deviation, with a broad maximum

around 5 K and two features occurring at T ∗ = 1.14 K and T ∗∗ = 0.74 K. Below T ∗∗, the

heat capacity behaves according to a power-law Cp ∼ T n, with n ≈ 2. This value of the

exponent differs appreciably from n = 3 for classical AFM and has been observed in several

frustrated magnetic systems [8, 16–18].

To extract the magnetic specific heat Cm, the phonon contribution using the data obtained

on K2Mg2(SO4)3 has been subtracted. On the high T side the subtraction works up to 50 K

where K2Mg2(SO4)3 shows a kink [15], associated to previously observed lattice related

features in the heat capacity [19]. On the low T side a polynomial BT 3 + CT 5 has been

used [15]. The error of the total entropy S =
∫

(Cm/T )dT due to background subtraction is

estimated to be a few percent. As can be seen in Fig. 2(d), at 50 K more than 98% of the

expected entropy for S = 1 system is recovered, with more than 90% being released up to

20 K. The saturation towards the R ln (2S + 1) value for S = 1 indicates that no residual

entropy is present at T = 0 and that K2Ni2(SO4)3 exhibits a non-degenerate ground state.

Application of magnetic field along the [111] direction induces little change in the overall
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behavior of the heat capacity of K2Ni2(SO4)3. A small but noticeable redistribution occurs

for fields above B = 7 T [ Fig. 2(e)] but even with fields up to 14 T the overall shape of

the curve remains unchanged. The power law Cp ∼ T n observed at low T for B = 0 is

maintained for B > 0 without a visible crossover towards the gapped polarized state, as

seen, for example, in YbMgGaO4 [20]. The value of the extracted exponent remains field

independent up to 14 T [inset of Fig. 2(d)].

The order of transitions at T ∗ and T ∗∗ is revealed through their overall shape. The

feature at T ∗ resembles a typical, asymmetric λ-shape, characteristic of second-order phase

transitions. On the other hand, at T ∗∗ a narrow, symmetrical peak is found, often seen in

first-order phase transitions. Although the entropy released at T ∗ amounts to only 1% of the

total Rln3 [15], the sample purity determined by single-crystal x-ray diffraction [15] rules out

any impurity-related scenario. Additionally, a comparison with specific-heat measurements

on a powder sample reveals that T ∗ is significantly diminished while T ∗∗ is completely

absent [15]. With a tentative assignment of T ∗∗ as a first-order phase transition, its presence

in a single-crystal experiment suggests that it is intrinsically related to the low-temperature

magnetic phase of K2Ni2(SO4)3.

The magnetic field dependence of T ∗ and T ∗∗ is presented in Fig. 2(f). T ∗∗ is quickly di-

minished in amplitude and for B > 1T it disappears completely. T ∗ is practically unchanged

up to B = 1 T with a subsequent decrease and a reduction of the size of the anomaly [15].

By assuming a quadratic B-dependence of the second-order phase transition the value of

the critical magnetic field Bc . 4 T can been estimated, above which a completely dynamic

and fluctuating state exists down to the lowest T .

To shed more light on the peculiar magnetic properties of K2Ni2(SO4)3, a series of neu-

tron scattering experiments have been performed. Fig. 3(a) shows the results of polarized

neutron scattering, in which a Q-dependence of the scattering intensity at 0.5 K is presented.

It exhibits a broad maximum centered at Qmax ≈ 0.75 Å−1 followed by an attenuating os-

cillatory dependence. Such a broad, liquid-like structure factor is typical for systems with

strong quantum fluctuations. This conclusion is further supported by the fact that the

diffuse scattering pattern in Fig. 3(a) is well reproduced by pseudofermion functional renor-

malization group (PFFRG) simulations of the DFT Hamiltonian. Remarkably, despite the

general difficulties in simulating a strongly fluctuating 3D spin system with complex frus-

trated interactions as realized in K2Ni2(SO4)3, not only the positions of the extrema are
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well reproduced but also the global amplitude variations. Additionally, the oscillatory be-

havior is seen to persist at least up to 17 K [15], clearly indicating its connection to strong

correlations developing below 20 K.

To investigate the system’s static component, a neutron powder diffraction experiment

has been performed well above and well below T ∗. From a wide Q diffraction pattern shown

in Fig. 3(b) it is found that for Q > 1 Å−1 all peaks are present at both temperatures,

indicating their lattice origin. On the other hand, a series of very weak magnetic peaks can

be found at T = 0.1 K for Q < 1 Å−1 as seen in the upper half of Fig. 3(c). They can

all be assigned to satellites of the main nuclear Bragg peaks (h, k, l) in the form qmagnetic =

(h, k, l)±Qi, where Q1 = (1
3
, 0, 0), Q2 = (1

3
, 1
3
, 0) and Q3 = (1

3
, 1
3
, 1
3
). The existence of three

propagation vectors indicates that even LRO is heavily influenced by frustration, leaving

several possible structures with similar ground state energies.

Due to the complexity of the scattering pattern, including several propagation vectors,

tripling of the magnetic unit cell and very weak amplitudes, it is not possible to completely

determine the magnetic structure nor to extract the value of the ordered moment. Never-

theless, utilizing a purely magnetic scattering pattern from polarized neutrons [Fig. 3(a)]

one can estimate an upper limit for the static component. To this end, we envisage that

the total intensity S(Q) is composed of two contributions S(Q) = Sstatic(Q) + Sdynamic(Q),

with the jagged Sstatic(Q) roughly following the powder diffraction profile and sitting on top

of the smooth Sdynamic(Q). Although the resultant ratio Sstatic(Q)/S(Q) ≈ 11% cannot be

directly related to the value of the ordered moment, it serves as a supporting evidence that

the ground state in K2Ni2(SO4)3 is dominated by spin fluctuations.

In Fig. 3(d), we show time-of-flight (TOF) data obtained as a direct subtraction of the

background intensity obtained at 80 K from a measured intensity at 0.5 K. Streaks of in-

tensity can be observed at the same positions as maxima in S(Q) found with polarized

neutrons. The upper limit of spin excitations is found to be around 1.8 meV which agrees

well with the temperature at which specific heat starts to significantly deviate from a purely

phononic behavior. In Fig. 3(e), a narrow Q-integrated energy dependence of intensity is

shown, indicating a continuum of excitations down to the elastic line. Due to the existence

of the ordered component, it is not straight-forward to assign this continuum to the QSL

state. On the other hand, the dominance of the dynamic component, revealed by specific

heat data and polarized neutron scattering, renders this conclusion very plausible, which
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would then support the hypothesis of a gapless nature for the QSL.

To probe further the peculiar coexistence of static and dynamic properties revealed in

K2Ni2(SO4)3, muon spin relaxation (µSR) experiments have been performed. As shown in

Fig. 4(a), no obvious wiggles are observed down to lowest T . On a phenomenological level

the relaxation is often described by a stretched-exponential function

A(t) = A0e
−(λt)β + ABG, (1)

where A0 is the initial asymmetry, ABG a constant background, λ is the relaxation rate and

β is the stretching exponent that in an ideal case of β = 1 leads to a simple exponential

relaxation. β < 1 has usually been associated with either a distribution of relaxation times,

multiple muon stopping sites, or with intrinsic disorder in the magnetic system. As is

evident from Fig. 4(b), at low T the observed time dependence of the asymmetry cannot be

satisfactorily described by a single contribution. Thus, we have extended Eq. (1) with an

additional term

A(t) = A0(fe
−(λ1t)β1 + (1− f)e−(λ2t)

β2 ) + ABG. (2)

and fixed f = 0.5 and β1 = 1 to avoid over-parametrization. We find that it is necessary

to use Eq. (2) up to 3 K while for T > 3 K Eq. (1) is sufficient (for the discussion of the

overlapping region see [15]). In Fig. 4(c), we present the temperature evolution of relaxation

rates and exponents (see inset) extracted using Eq. (2) (green symbols) and Eq. (1) (blue

symbols).

Below T ∼ 1 K, the extracted parameters attain a constant value, a feature often as-

sociated with a highly dynamic nature of QSLs [21–23]. We point out that the value of

the exponent β ' 2 is indicative of a specific type of a correlated spin system based on

spin-singlets [24]. Within this scenario, the Gaussian shape of the relaxation profile devel-

ops from a sporadic appearance of unpaired spins. The time interval of their existence is

much shorter than a life-time of a muon, so for the majority of time muons experience very

small fields related to the short-lived but very distant unpaired spins. Such a scenario is in

accordance with a practically field-independent magnetic specific heat seen in Fig. 2(e) [16].

Within this framework the strong relaxation at low temperatures described by λ1 can be

associated with a partial but homogeneous order while the remaining dynamics is due to the

sporadic unpaired-spin appearances. The absence of oscillations can then be associated with

a spread of local fields originating from complex magnetic structures given by propagation

8



vectors Q1, Q2 and Q3. Additionally, the coherent regions giving rise to magnetic peaks in

neutron diffraction are probed on much shorter time scales (∼ 10−14 s), allowing for local

fluctuations between different magnetic structures on the time scale of muons.

We find two possible scenarios that could encompass a small value of the static compo-

nent existing alongside the dominant, fluctuating component. The first scenario assumes

the existence of a quantum critical point (QCP) between an ordered phase and a quantum-

fluctuation-dominant phase, with K2Ni2(SO4)3 being on the ordered side of QCP but “ac-

cidentally” close to it. In this case, the ordered moment ms is strongly renormalized due

to the prevalence of quantum fluctuations close to a QCP, as has been demonstrated in

TlCuCl3 where a pressure-controlled QPT between a LRO AFM state and a non-magnetic

dimer phase is arbitrarily decreased (ms ∼
√
p− pc) close to a QCP [25]. In this context,

a possible control parameter could be the ratio of intra- (J3, J5) and inter-trillium lattice

couplings (J1, J2, J4). Given that Ni(1) and Ni(2) sites form a bipartite lattice, the limit

of dominant J1, J2, J4 results in a semiclassical AFM phase. With J3, J5 dominant, the

system is in the limit of two weakly coupled trillium lattices. As demonstrated theoretically

for a single trillium lattice, it is expected to form a variant of the 120° order [13, 14]. The

case of two interconnected trillium lattices represents a novel research direction with many

members of the langbeinite family providing ample opportunity for comparison with theory.

The second scenario dismisses the “fortuitous” constellation of parameters describing

K2Ni2(SO4)3 and considers it positioned well within the QSL phase. Due to the presence of

antisymmetric exchange coupling (the Dzyaloshinskii-Moriya interaction (DMI)) allowed by

the non-centrosymmetric space group, the ground state gets “dressed” with a small ordered

component due to the admixing of higher lying states, similar to the admixture of triplet

wave-functions into the ground state singlet of an AFM dimer. An exciting consequence of

this scenario arises from topological aspects imposed on the QSL state. Magnetic structures

forming in non-centrosymmetric space groups are shown to support skyrmions, topologically

protected spin textures [26, 27]. Fractional wave-numbers Q1, Q2 and Q3 revealed in the

diffraction experiment do indicate a potential role of DMI in the formation of LRO.

In either case, the observed coexistence between fluctuating spins and a small static com-

ponent which vanishes in a magnetic field could be linked to already developed concepts like

field-induced spin liquids in Kitaev-type honeycomb models featuring non-Abelian fractional

quasiparticles [28]. The ability to tune its behavior across QCP with magnetic field into a
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pristine QSL state is an exciting opportunity which should stimulate further experimental

and theoretical studies.
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FIG. 1. (a) Unit cell of K2Ni2(SO4)3. A Ni–O–S–O–Ni super-super-exchange path contributing

to a trillium coupling is marked by dashed lines. (b) Exchange network between nickel sites. A

ten site loop formed by the strongest exchange J4 is marked by arrows. (c) Exchange couplings

determined by DFT energy mapping. The vertical line indicates the U value where the calculated

Curie-Weiss temperature matches the experimental value.
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FIG. 2. (a) T dependence of χdc along the three orthogonal directions (left axis) for B = 0.1

T, and the inverse susceptibility 1/χdc (right axis) with B||[111]. The solid grey line represents

the Curie-Weiss law. (b) Magnetic field dependence of magnetization, together with the Brillouin

function for S = 1 and g = 2.34 (dashed lines) and Monte Carlo simulations (solid lines). (c)

Zero field temperature dependence of the total specific heat of K2Ni2(SO4)3, together with the

total specific heat of K2Mg2(SO4)3 representing the phonon contribution. (d) T dependence of

magnetic entropy. An inset shows the magnetic field dependence of the exponent n in the power

law Cp = ATn. (e) T dependence of the magnetic specific heat for several magnetic field values.

(f) T – B phase diagram of K2Ni2(SO4)3.
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FIG. 3. (a) Pure magnetic scattering pattern derived from the spin-polarized neutron diffraction

data at 0.5 K (blue diamonds) and from PFFRG (solid line), (b) Neutron powder diffraction at

0.1 K and 10 K, (c) Combined data from polarized neutrons (blue diamonds from panel (a)) and

powder diffraction (blue (10 K) and red points (0.1 K) from panel (b)). Blue shading indicates

an upper limit of the contribution from the ordered component, yellow shading represents the

contribution from the fluctuating component, (d) TOF data at 0.5 K, (e) E-dependence of the

integrated intensity for two Q-ranges.
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SUPPLEMENTARY MATERIAL

METHODS

Sample preparation

The powder of K2Ni2(SO4)3 was prepared by solid state reaction from a stoichiomet-

ric mixture of K2SO4 and NiSO4 · 6H2O annealed at 450◦C for five days. The powder is

quenched to room temperature and stored in a desiccator as K2Ni2(SO4)3 is mildly sensitive

to moisture. High quality single crystals were obtained by sealing the powder in an evacu-

ated quartz ampoule. Millimeter sized crystals are obtained by cooling the melt from 850◦C

to 750◦C at a 1 K/h rate.

Single-crystal x-ray diffraction

A small single crystal of K2Ni2(SO4)3 has been glued onto the tip of a glass needle and

cooled down to 100 K with a flow of cold nitrogen gas. Data has been collected on a Rigaku

SuperNOVA diffractometer using Mo/Cu Duo source with Atlas CCD.

Magnetization and magnetic susceptibility

Magnetization M and magnetic susceptibility χDC = M/B of powder and single crystal

samples were measured using a commercial superconducting quantum interference device

magnetometer MPMS-5T (Quantum Design).

Heat capacity

Heat capacity measurements above 2 K were performed on powder and single crystal

samples using a commercial PPMS (Quantum Design). Below 2 K, a home-made setup

using a dilution refrigerator has been used to measure single crystal sample. In both cases

a short (1-3 %) heat pulse method has been utilized.
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Muon spin relaxation (µSR)

µSR experiments were performed on powder samples at MUSR, ISIS (UK) and LTF/GPS,

PSI (Switzerland) beamlines using the spin-polarized positive muons (µ+).

Neutron diffraction

Neutron diffraction on powder was performed on the time-of-flight diffractometer WISH,

ISIS (UK). For temperatures below 1 K, a copper can was attached to a dilution refrigerator

and filled with 15 g of powder. Above 1 K, a vanadium can was used with 15 g of powder

in a helium-flow environment.

Spin-polarized neutron diffraction and inelastic neutron scattering

Both spin-polarized neutron diffraction and non-polarized time-of-flight (TOF) inelastic

neutron scattering measurements were carried out at the polarized spectrometer DNS at the

Heinz Maier-Leibnitz Zentrum (MLZ), Garching, Germany. Approximately 2 g of powder

were enclosed in an annular cylinder sample holder made with oxygen-free copper and sealed

in a He atmosphere. Measurements were taken in a 3He insert installed in a top-loading

CCR cryostat. A neutron wavelength at λ = 4.2 Å was chosen for both measurements. The

magnetic scattering cross-section was obtained via the XYZ polarization analysis method,

for which the standard procedures such as flipping-ratio correction and normalisation of

detector efficiency have been applied. The TOF inelastic neutron scattering data were taken

with a disc chopper running at 250 Hz, which yields an energy resolution at ∼0.25 meV at

4.2 Å. The runs for both vanadium and empty copper sample can were undertaken under

the same TOF condition. The powder-average inelastic scattering profiles were obtained via

Mantid-based data reduction routines.

Density functional theory

We study K2Ni2(SO4)3 using density functional theory (DFT) calculations based on the

full potential local orbital (FPLO) basis set [29] combined with the generalized gradient

approximation (GGA) to the exchange correlation functional [30] and with a GGA+U cor-

20



rection for the strongly correlated Ni2+ 3d orbitals [31]. We employ the energy mapping

technique [32, 33] to extract the Heisenberg exchange interactions up to a Ni-Ni distance

of 8.6 Å from 20 GGA+U total energies of selected spin configurations in a
√

2 ×
√

2 × 1

supercell. We fix the Hund’s rule coupling at JH = 0.88 eV following Ref. [34].

PFFRG

The model Hamiltonian for K2Ni2(SO4)3 with the Heisenberg exchange interactions ob-

tained from DFT is further studied within the pseudofermion functional renormalization

group (PFFRG) method. [35] This approach is based on a fermionic rewriting of the spin

operators, where a spin-1 is represented by two coupled spin-1/2 degrees of freedom. [36] The

resulting fermionic theory is then treated with many-body Feynman diagram approaches.

Particularly, via the introduction of an infrared frequency cutoff, the fermionic vertex func-

tions are subject to a renormalization group flow as described within the standard functional

renormalization group (FRG) scheme. [37, 38] We solve the corresponding differential equa-

tions in real space on a one-loop level, by taking into account spin-spin correlations up to

a distance of twice a lattice vector of the underlying cubic lattice and approximate the fre-

quency dependence of the vertex functions by 64 discrete mesh points. The central outcome

is the zero-frequency, momentum-resolved real part of the magnetic susceptibility χ′(Q)

which is obtained from the fermionic two-particle vertex. Using Kramers-Kronig relations,

χ′(Q) is related to the dynamical spin structure factor S(Q,ω) via

χ′(Q) ∝
∫
dωS(Q,ω)/ω , (3)

indicating that χ′(Q) primarily represents the low-energy contribution of S(Q,ω). Most

importantly, χ′(Q) takes into account quantum fluctuations well beyond mean field and

is, hence, well suited to simulate the fluctuating moments of K2Ni2(SO4)3. Furthermore,

possible instability signatures during the renormalization group flow allow one to detect

static magnetic long-range order.

Classical Monte Carlo

Monte Carlo simulations are performed for classical Heisenberg spins on the bi-trillium

lattice with periodic boundary conditions for a system of 8L3 spins. We employ the single-
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flip metropolis update with 5 over-relaxation steps added after every sweep of the lattice,

and 104 Monte Carlo sweeps are used for thermalization. This is followed by 105 Monte

Carlo sweeps during which measurements are performed every 10 Monte Carlo sweeps. The

calculations for magnetization as a function of applied field shown in Fig. 2(b) of the main

textare performed for a lattice size of L = 8 (4096 spins).

X-RAY DIFFRACTION

Powder x-ray diffraction of K2Ni2(SO4)3 at room temperature is presented in Fig. 5. The

agreement is very good (Rwp = 6.2 %), with no visible traces of impurities.

The experimental versus calculated structure factors for a single crystal of K2Ni2(SO4)3

is shown in Fig. 6. The tight distribution of the data around the red line F 2
obs = F 2

calc

indicates the high quality of the refinement. Additional refinement parameters are given in

the supplementary Table II. The agreement factors and the goodness-of-fit value confirm

the high accuracy of the K2Ni2(SO4)3 structure description. Atomic positions as well as

distances and angles are listed in supplementary Table III and V, respectively.
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Temperature 100.01(10) K

Crystal system, space group Cubic, P2(1)3

a = b = c 9.81866(12) A

Volume 946.58(4) A3

Z, Calculated density 3, 3.395 g/cm3

Absorption coefficient 5.589 mm−1

F(000) 952

Theta range for data collection 3.594 to 30.444 deg

Limiting indices -5≤h≤14, -9≤k≤14, -14≤l≤13

Reflections collected / unique 4119 / 965 R(int) = 0.0274

Completeness to θ = 25.242 98.8 %

Data / restraints / parameters 965 / 0 / 59

Goodness-of-fit on F2 1.046

Final R indices I>2sigma(I) R1 = 0.0143, wR2 = 0.0330

R indices (all data) R1 = 0.0146, wR2 = 0.0332

Absolute structure parameter -0.034(9)

Extinction coefficient 0.0145(8)

Largest diff. peak and hole 0.238 and -0.245 e.A−3

TABLE II. Single crystal refinement parameters of the K2Ni2(SO4)3 structure at 100 K
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x y z U(eq) Site

Ni(1) 1645(1) 1645(1) 1645(1) 5(1) 4a

Ni(2) 5945(1) 945(1) 4055(1) 5(1) 4a

K(1) 1854(1) -1854(1) 3146(1) 10(1) 4a

K(2) 4507(1) 4507(1) 4507(1) 10(1) 4a

S(1) 2826(1) 1233(1) 4806(1) 5(1) 12b

O(1) 2550(2) 952(2) 3371(2) 12(1) 12b

O(2) 2581(2) -28(2) 5572(2) 15(1) 12b

O(3) 4246(2) 1699(2) 4987(2) 10(1) 12b

O(4) 1907(2) 2262(2) 5371(2) 13(1) 12b

TABLE III. Fractional atomic coordinates (×104) and equivalent isotropic displacement parameters

(Å2×103) for K2Ni2(SO4)3 at 100 K. U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

Ni(1)-K(1) 3.7435(3)

Ni(1)-O(1) 2.0315(18)

Ni(2)-K(2) 3.7977(4)

Ni(2)-O(3) 2.0417(18)

K(1)-O(1) 2.847(2)

K(1)-O(2) 3.065(2)

K(2)-O(3) 2.8094(19)

S(1)-O(1) 1.4613(18)

S(1)-O(2) 1.469(2)

S(1)-O(3) 1.4782(18)

S(1)-O(4) 1.4636(18)

TABLE IV. Bond lengths (in Å) for K2Ni2(SO4)3 at 100 K.
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O(1)-Ni(1)-K(1) 48.72(6)

O(3)-Ni(2)-K(2) 46.38(5)

O(1)-K(1)-O(2) 47.00(5)

K(1)-S(1)-K(2) 146.85(2)

O(1)-S(1)-K(1) 49.47(8)

O(1)-S(1)-K(2) 100.00(8)

O(1)-S(1)-O(2) 107.72(12)

O(1)-S(1)-O(3) 110.41(11)

O(1)-S(1)-O(4) 112.40(11)

O(2)-S(1)-K(1) 58.29(9)

O(2)-S(1)-K(2) 149.72(9)

O(2)-S(1)-O(3) 110.71(11)

O(3)-S(1)-K(1) 124.71(7)

O(3)-S(1)-K(2) 46.05(7)

O(4)-S(1)-K(1) 126.40(8)

O(4)-S(1)-K(2) 72.52(8)

O(4)-S(1)-O(2) 106.69(12)

O(4)-S(1)-O(3) 108.85(11)

Ni(1)-O(1)-K(1) 98.86(7)

S(1)-O(1)-Ni(1) 145.35(12)

S(1)-O(1)-K(1) 107.57(10)

S(1)-O(2)-K(1) 97.65(10)

Ni(2)-O(3)-K(2) 101.88(7)

S(1)-O(3)-Ni(2) 127.24(10)

S(1)-O(3)-K(2) 111.68(9)

TABLE V. Angles (in degrees) for K2Ni2(SO4)3 at 100 K.
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MAGNETIZATION

Low temperature view of the temperature dependence of the inverse of magnetic suscep-

tibility χdc = M/B. A weak deviation from the Curie-Weiss law starts below 50 K but it is

significantly visible only below 20 K.
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SPECIFIC HEAT

As shown in Supplementary Figure 8, at higher temperatures both K2Ni2(SO4)3 and the

non-magnetic analog K2Mg2(SO4)3 show kinks in their specific heat. These are probably

related to the freezing of SO4 groups without a noticeable symmetry lowering from the cubic

space group.

The phonon contribution below 2 K has been estimated by employing a polynomial

BT 3+CT 5 withB = 1.33(3)·10−3 J/mol K4 and C = 2.1(8)·10−6 J/mol K6 that best matches

the measured specific heat of K2Mg2(SO4)3 at low temperatures, as seen in Supplementary

Figure 9.
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Determination of specific heat involved in the second order phase transition at T ∗ is

displayed in Supplementary Figure 10. The red curved dashed line is the measurement at 5

T where no anomaly is present, adjusted to match the zero-field data at 0.8 K and 1.5 K.

The exact position of the background line does not change significantly the extracted value

of ∼ 1 % of the total Rln(3) entropy of spin-1 system.

Magnetic field evolution of T ∗ and T ∗∗ is presented in Supplementary Figure 11. For

B = 0.75 T a small shoulder appears around 0.5 K, possibly indicating another phase. Given

that this is seen for a very narrow magnetic field range, it could also reflect an experimental

artifact.
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Comparison of a power-law behavior CP ∼ T n for n = 2 and n = 3 with a gaped

behavior CP ∼ exp(−∆/T ) is presented in Supplementary Figure 12. Zero field data show

a somewhat varying slope, possibly influenced by the presence of the static component.

∆ = 0.5 K corresponds to the value of a spin-triplet gap for a static dimer on the J4 bond.

Comparison between results of specific heat obtained on single crystal and on powder

samples is shown in Supplementary Figure 13.
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NEUTRON SCATTERING

In Fig. 14 we show the temperature dependence of the scattering profile of polarized

neutrons. At 17 K the period of oscillations is still visible, although with a smaller amplitude.

At 80 K the profile is practically featureless. The spikes occur at positions of nuclear Bragg

peaks and are related to imperfect subtraction of large numbers in spin-flip and non-spin-flip

channels.

Fig. 15 displays the diffraction data at 90 mK together with a LeBail fit using three prop-

agation vectors Q1 = (1
3
, 0, 0), Q2 = (1

3
, 1
3
, 0) and Q3 = (1

3
, 1
3
, 1
3
). For Q > 1 Å the satellites

appear as shoulders of strong nuclear Bragg peaks which together with a diminishing form

factor makes them very hard to distinguish.
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MUON SPIN RELAXATION

Taking into account that the whole data set is measured with two different experimental

setups (a dilution refrigerator and a variable temperature insert, implying different back-

grounds and different initial asymmetries), the temperature evolution of relaxation rates and

exponents are presented in two segments. The low temperature segment, from 20 mK up to

4 K, is modeled using Eq.(2) from the main text, while the high temperature segment, from

100 K down to 3 K, is modeled using Eq.(1). In the region around 3 K both approaches can

be used so if the low temperature segment is modeled using Eq.(1), the extracted relaxation

rates overlap, as shown in Fig. 16 with green and blue diamonds.

It is rather simple to understand why two approaches work equally well. In this overlap-

ping region the exponent β acquires values close to 1, rendering two contributions in Eq.(2)

identical and effectively becoming Eq.(1). For two approaches to smoothly transform from

one to the other it would be necessary to allow for the fraction f and β1 to be freely varied or

that a microscopic model is developed which could meaningfully constrain other parameters.

Fig. 17 shows longitudinal-field µSR relaxation at 1.7 K, well within the correlated region.

The system remains dynamic with fields up to 0.78 T.

31



ADDITIONAL PFFRG INFORMATION

In PFFRG the magnetic susceptibility depends on the renormalization group parameter

Λ which is implemented as a sharp infrared frequency cutoff. Despite the artificial nature

of Λ it shows various similarities with the temperature T , particularly, kinks or cusps in the

Λ-dependence of the susceptibility signal the onset of magnetic long-range order. Most im-

portantly, the identification of either magnetic long-range order or a magnetically disordered

phase does not rely on any prior assumption on the system’s ground state. To illustrate

the identification of magnetic order, Fig. 18 shows the maximal susceptibility in momentum

space as a function of Λ for various different systems. The orange curve corresponds to a

spin-1 Heisenberg model on the lattice network of K2Ni2(SO4)3 but with J4 > 0 interactions

only. The antiferromagnetic Néel order in this system manifests in a strong peak. On the

other hand, the green curve is a typical example for a smooth non-magnetic renormalization

group flow as given for the spin-1/2 nearest neighbor antiferromagnetic Heisenberg model

on the pyrochlore lattice. The PFFRG data for K2Ni2(SO4)3 is presented by the blue curve

and shows an intermediate behavior: A small kink at Λ ≈ 0.45 is observed which, however,

does not develop into a pronounced peak (note that small oscillations below Λ ≈ 0.45 are

typically artifacts of the discretization of continuous frequency variables within our numer-

ics). This indicates that our PFFRG results are in accord with a small ordered moment in

the absence of an external magnetic field.
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FIG. 5. Powder diffraction of K2Ni2(SO4)3 (black circles) with the result of a Rietveld refinement

(red line). The difference between the measured intensities and the fit is given with the blue line.

Peak positions are marked with green vertical lines.
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FIG. 6. Experimental structure factors are plotted against the calculated structure factors obtained

by single crystal structure refinement of K2Ni2(SO4)3.

33



0 20 40 60 80
Temperature (K)

10

20

30

40

50

60

70

80

@
dc-1

 (
em

u/
m

ol
N

i O
e)

FIG. 7. Deviation from the Curie-Weiss law.
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FIG. 8. Kinks in the specific heat of K2Ni2(SO4)3 and K2Mg2(SO4)3.
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FIG. 9. Specific heat of K2Mg2(SO4)3 with a low temperature extension based on a polynomial

BT 3 + CT 5.
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FIG. 10. Second order transition at T ∗. The shaded area carries an entropy of ∼ 1 % of the total

Rln3.
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FIG. 11. Magnetic field dependence of specific heat below 2 K. Individual curves are shifted verti-

cally for clarity.
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FIG. 12. Low temperature specific heat for magnetic field values B = 0, 0.5, 1.5, 7 and 14 T (top

to bottom). Individual curves are shifted vertically for clarity.
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FIG. 13. Comparison between single crystal and powder measurements.
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FIG. 14. Temperature dependence of spin-polarized neutron diffraction.
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FIG. 15. Low-Q diffraction profile of K2Ni2(SO4)3 at 90 mK (points) with a Lebail fit (line).
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FIG. 16. Temperature region where two segments are equally well described with both equations

(see main text).
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FIG. 17. Longitudinal-field µSR relaxation at 1.7 K.
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FIG. 18. Maximal susceptibility in momentum space as a function of the renormalization group

parameter Λ from PFFRG. The green curve is an example for a non-magnetic system (spin-1/2

nearest neighbor antiferromagnetic Heisenberg model on the pyrochlore lattice). The orange curve

represents a magnetically ordered system (spin-1 Heisenberg model on the double trillium lattice

with J4 > 0 couplings only). The blue curve represents the data for K2Ni2(SO4)3.
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