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In standard clinical trial designs, the required sample size is fixed in the plan-
ning stage based on initial parameter assumptions. It is intuitive that the correct
choice of the sample size is of major importance for an ethical justification of
the trial. The required parameter assumptions should be based on previously
published results from the literature. In clinical practice, however, historical
data often do not exist or show highly variable results. Adaptive group sequen-
tial designs allow a sample size recalculation after a planned unblinded interim
analysis in order to adjust the sample size during the ongoing trial. So far, there
exist no unique standards to assess the performance of sample size recalculation
rules. Single performance criteria commonly reported are given by the power
and the average sample size; the variability of the recalculated sample size and
the conditional power distribution are usually ignored. Therefore, the need for
an adequate performance score combining these relevant performance criteria is
evident. To judge the performance of an adaptive design, there exist two possible
perspectives, which might also be combined: Either the global performance of
the design can be addressed, which averages over all possible interim results, or
the conditional performance is addressed, which focuses on the remaining per-
formance conditional on a specific interim result. In this work, we give a compact
overview of sample size recalculation rules and performance measures. More-
over, we propose a new conditional performance score and apply it to various
standard recalculation rules by means of Monte-Carlo simulations.
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1 INTRODUCTION

In clinical trials in general, and in phase III efficacy trials in particular, a careful choice and a reliable justification of
the sample size are very important for ethical and economical reasons. In an underpowered study, it is unlikely to gain
enough evidence to demonstrate the research hypothesis and patients are thus unnecessarily exposed to study-specific
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risks. In an overpowered study, the release of a new treatment is prolonged and late recruited patients may be allocated
to a less effective treatment although there already may exist enough evidence to demonstrate the efficacy of the new
treatment. In both cases, financial resources are wasted and a balanced benefit-risk assessment for the individual patient
is no longer guaranteed.

For the determination of the sample size, different parameters are required, such as the expected treatment effect and
its variance. In a classical one-stage clinical trial, the sample size is fixed in the planning stage even when the parameter
assumptions could not reasonably be justified by the literature or by medical experience. A way to address this problem
is the use of an adaptive group sequential design which is mentioned in the ICH E9 Guideline.1 These study designs
include one or more planned unblinded interim analyses. At the interim time points, the trial might be stopped either
for efficacy or for futility. Otherwise, the trial is continued with possible adjustment of study design elements.2 A com-
monly performed adjustment is sample size recalculation based on the re-estimated parameter values obtained from the
interim data.

Early approaches for sample size recalculation were proposed, for example, by Cui et al,3 by Bauer and Köhne4

as well as by Lehmacher and Wassmer5 in the 1990s. Most frequently, sample size recalculation rules are based on
conditional power arguments. The conditional power is thereby defined as the probability that the null hypothesis is
rejected at the final analysis given the observed value of the test statistic at interim. An easy recalculation strategy is
to choose the second stage sample size such that the conditional power reaches a predefined boundary.5 The condi-
tional power approach is often criticized6 as the available information at the interim stage is usually limited and thus
the treatment effect estimate shows a rather high variability. A number of recalculation rules have been proposed which
are based on conditional power arguments, but the adjustment of the sample size is performed in different ways, for
example in a step-wise manner depending on predefined ranges of the conditional power.7 Spiegelhalter et al8,9 as well
as Dmitrienko and Wang6 proposed recalculation rules built upon a Bayesian conditional power approach (also known
as the “predictive power”) which is given by a weighted average of the conditional power for different treatment effects
following a prespecified prior distribution. Jennison and Turnbull10 proposed an optimization function relating the
increase in sample size to the gain in conditional power. This optimization function is then used for sample size recalcu-
lation. Moreover, the authors proposed an approach to obtain globally optimal adaptive designs by applying variational
techniques.11

General points of criticism for many existing adaptive group sequential designs are that the recalculated sample
size can be large on average, that its variability is often high, and that the target power is often not met.4,12 Comparing
and judging different sample size recalculation rules is not an easy task and there exist no unique standards for per-
formance assessment. Generally, within an adaptive design one needs to distinguish between conditional performance
measures (when the interim data are already available) and unconditional performance measures (averaging over all
interim results). In a general fixed design, the performance is naturally optimized in the planning stage before data col-
lection is started. Therefore, the global, unconditional performance is of interest in this context. In an adaptive design,
the perspective to optimize the design in the planning stage is still valid. However, there is an inherent need to investi-
gate in addition the performance conditional on the interim result. As adaptive designs have the purpose of optimizing
the second stage result based on the interim result, the conditional perspective seems natural in this context. However,
global and conditional performance should not be considered as opposite criteria. Instead, both perspectives should be
investigated when designing an adaptive trial.

As global performance measures, the global power of an adaptive design as well as the average sample size (under the
null or alternative hypothesis) are two performance measures that are commonly reported. Liu et al13 were the first who
presented a global performance score for adaptive designs based on sample size and power criteria. This score compares
the power and the average sample size of an adaptive design in relation to the “perfect” fixed design (under the true
parameter setting) as a gold standard. Their performance score has the potential shortcoming that it does not take into
account the variability of sample size and that it is not well-defined under the null hypothesis of the underlying test
problem. It is also questionable whether the “perfect” fixed sample size design is really a sensible gold standard as a
corresponding nonadaptive two-stage design has a smaller expected sample size. Thus, there is room for improvement in
the definition of a global performance score.

Conditional performance measures are only insufficiently discussed in the literature. As conditional performance
measures are also very important next to the unconditional ones and their target values are usually easier to define, we
introduce a new conditional performance score in this work. With this new score, the conditional design properties can
be reasonably judged. However, our new score should always be reported along with global, unconditional performance
measures to assess both perspectives.
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The objective of this paper is to critically review and compare different sample size recalculation rules as well as condi-
tional and unconditional performance characteristics for adaptive designs. Subsequently, we discuss ways to combine the
latter criteria within the new conditional performance score. This work is organized as follows: We introduce the study
design and the test problem in Section 2. In Section 3, we present various established sample size recalculation rules. In
Section 4, we give an overview of conditional and unconditional performance measures and scores for adaptive designs
and present the new performance score. The performance of the different recalculation rules as well as the classical group
sequential approach is compared by the new conditional score and the score by Liu et al13 in a Monte-Carlo simulation
study in Section 5. We conclude with a discussion in Section 6.

2 THE STUDY DESIGN

2.1 The test problem

Throughout this work, we consider the situation of a randomized, controlled trial comparing an intervention (I) with a
control (C) based on a continuous, normally distributed outcome with common variance 𝜎2,

X I
i

iid∼ N(𝜇I, 𝜎2),

XC
i

iid∼ N(𝜇C, 𝜎2), i = 1,… ,n,

where n denotes the sample size per group which is assumed to be equal for the sake of simplicity. The underlying
standardized effect is denoted by

Δ ∶= 𝜇I − 𝜇C

𝜎
. (1)

Without loss of generality, we assume further that large values of the primary endpoint are favorable. The hypotheses to
be assessed in confirmatory analysis are thus given by

H0 ∶ 𝜇I − 𝜇C ≤ 0 versus H1 ∶ 𝜇I − 𝜇C > 0. (2)

2.2 Interim analysis, test statistics, and local significance levels

We assume now that the trial is planned with one interim analysis which takes place after n1 < n patients per group have
been fully observed. The general idea of such a two-stage adaptive design is to define adequate test statistics Z1 and Z1+2
for the interim analysis and for the final analysis, respectively, for which the joint distribution can be determined at the
planning stage. The test statistic Z1+2 includes all data collected until the final analysis and is thus positively correlated
to Z1. For a normally distributed, continuous outcome, the test statistic at interim is given by

Z1 ∶= X
I
1 − X

C
1

Spooled,1
⋅

√
n1

2
, (3)

with means X
I
1,X

C
1 and pooled standard deviation Spooled,1. This corresponds to the standard two-sample t-test statistic

including all data from the first stage. For reasonably large sample sizes, the t-test statistic will approach the z-test statistic.
Therefore, in the following, we will assume that the sample sizes per group are sufficiently high and thus that the test
statistics are normally distributed.14 The trial is stopped at interim with rejection of H0 if

Z1 ≥ q1−𝛼1 ,

where 𝛼1 denotes the corresponding local one-sided significance level for the interim analysis and q1−𝛼1 is the correspond-
ing normal quantile. The trial is stopped for futility with maintenance of H0 if
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Z1 < q1−𝛼0 ,

where 𝛼0 is an adequate stopping for futility bound. In the following, we denote the interval

RA ∶= [q1−𝛼0 ; q1−𝛼1), (4)

as the recalculation area (RA). Please also view our related comments in Section 4.5. If the trial is continued after the
interim analysis, then additional n2 patients per group are recruited. In principle, the second stage sample size can be
chosen freely without any restriction. Common recalculation rules to determine the second stage sample size are provided
in Section 3. The independent incremental test statistic including exclusively the data of the second stage is then given as

Z2 ∶= X
I
2 − X

C
2

Spooled,2
⋅

√
n2

2
,

with X
I
2,X

C
2 and Spooled,2 defined analogously as above. Note that Z1 and Z2 are stochastically independent by construction.

The test statistic for the final analysis including all data is then given as

Z1+2 ∶= w1 ⋅ Z1 + w2 ⋅ Z2√
w2

1 + w2
2

, (5)

where w1,w2 are predefined weights which must be fixed in the planning stage. This is also known as the inverse normal
combination test.4 A common way to choose these weights is to define

w1 = w2 =
√

n1. (6)

These weights are “optimal” in the case where the sample sizes per group for both stages are equally given by n1, which
relates to one half of the total sample size per group. If the sample size for the second stage n2 is chosen larger than n1, then
the second stage data are down-weighted, whereas they are up-weighted if n2 < n1. The null hypothesis H0 is rejected at
the final analysis if

Z1+2 ≥ q1−𝛼1+2 ,

where 𝛼1+2 denotes the corresponding local one-sided significance level for the final analysis. It can easily be seen that
for large sample sizes, approximately it holds that

Cov(Z1,Z1+2) =
w1√

w2
1 + w2

2

,

so the joint distribution of Z1 and Z1+2 approximates a fully specified multivariate normal distribution, compare for
example Reference 14. Using this joint distribution, local significance levels for the interim analysis and the final anal-
ysis can be specified. These local levels, denoted as 𝛼1 and 𝛼1+2 are thereby defined such that the overall type I error is
controlled by the global significance level 𝛼, that is

PH0

(
Z1 ≥ q1−𝛼1 ∨

(
q1−𝛼0 ≤ Z1 < q1−𝛼1 ∧ Z1+2 ≥ q1−𝛼1+2

)) ≤ 𝛼.

There exist various possible ways to define the local levels by use of predefined alpha-spending functions, compare, for
example References 15-18. Throughout this work, we focus on the most simple case given by equal local levels for each
stage

𝛼1 = 𝛼1+2,

which correspond to the well-known Pocock boundaries.19
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3 SAMPLE SIZE RECALCULATION RULES

As specified above, the second stage sample size per group n2 generally can be chosen freely as long as the weights w1,w2
remain fixed. Although it is possible to adapt the sample size fully flexible and not according to a prespecified algorithm,
it seems more reasonable to define a sample size recalculation rule in advance in order to preserve the integrity of the
study design and in order to be able to judge the design's performance.

A general restriction which is usually introduced within adaptive designs with sample size recalculation is the spec-
ification of a maximal sample size per group nmax which serves as an upper bound for the recalculated sample size n2.
This upper bound provides a guarantee that the trial's sample size is both flexible and feasible. Throughout this article,
we use a maximal sample size per group given as

nmax = f ⋅ n1, (7)

with a constant sample size boundary factor f . The total sample size per group is a function of the observed value of the
interim test statistic z1 and is denoted by

Ntotal(z1) ∶=

{
n1, if z1 ∉ [q1−𝛼0 ; q1−𝛼1),
Nrecalc(z1), if z1 ∈ [q1−𝛼0 ; q1−𝛼1),

(8)

where Nrecalc(z1) is specified for each recalculation design separately. There are a number of recalculation rules proposed
in the literature of which we present in the following only a selection of the most common ones.

3.1 Observed conditional power approach

The most common approach to define the second stage sample size is to choose n2 such that the conditional power reaches
a predefined boundary 1 − 𝛽. The conditional power depends on the assumed underlying standardized treatment effect
Δ̃ (which does not necessarily coincide with the true standardized treatment effect Δ defined in (1)) and is a function of
the total sample size per group n and the observed value of the test statistic at interim z1. It is defined as the probability of
rejecting the null hypothesis after inclusion of n patients per group given the observed value of the test statistic at interim
z1, and assuming a standardized treatment effect Δ̃,

CPΔ̃(z1,n) ∶=

⎧⎪⎪⎨⎪⎪⎩

0, if trial is stopped early for futility,

1 − Φ

(
z1−𝛼1+2 ⋅

√
w2

1+w2
2

w2
− z1 ⋅

w1
w2

− Δ̃ ⋅
√

n1
2
⋅
√

n−n1
n1

)
, if the sample size is recalculated,

1, if trial is stopped early for efficacy.

(9)

There exist several approaches to define a good guess for the underlying standardized treatment effect Δ̃. Within
the observed conditional power approach presented here, the observed standardized treatment effect at interim is
employed

Δ̂1 ∶= X
I
1 − X

C
1

Spooled,1
.

Hereby, it is implicitly assumed that the observed standardized treatment effect is equal to the true one. Remember that
the observed standardized treatment effect at interim is related to the observed value of the interim test statistic by

Δ̂1 = z1

√
2

n1
.

The required total sample size for the second stage is given by the smallest integer fulfilling
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ñ ≥ n1 ⋅

⎛⎜⎜⎜⎜⎝
1 +

⎛⎜⎜⎜⎝
z𝛽 − z1−𝛼1+2 ⋅

√
w2

1+w2
2

w2

z1
+ w1

w2

⎞⎟⎟⎟⎠
2⎞⎟⎟⎟⎟⎠

, z1 ∈ [q1−𝛼0,; q1−𝛼1). (10)

With this recalculated sample size, it holds that

CPΔ̂1
(z1,ñ) ≥ 1 − 𝛽, z1 ∈ [q1−𝛼0 ; q1−𝛼1).

The recalculated sample size per group within the recalculation area [q1−𝛼0 ; q1−𝛼1) is then given as the minimum of nmax
and ñ which is equivalent to

NOCP
recalc(z1) ∶=

{
ñ, if CPΔ̂1

(z1,nmax) ≥ 1 − 𝛽,

nmax, if CPΔ̂1
(z1,nmax) < 1 − 𝛽.

(11)

Due to the imputation of the observed standardized treatment effect, this approach is referred to the observed conditional
power approach.

3.2 Restricted observed conditional power approach

When the observed conditional power approach is used for sample size recalculation, the limiting sample size nmax is used
whenever the recalculated sample size ñ, which ensures a conditional power of 1 − 𝛽, is larger than nmax. This implies
that in this case, the actual observed conditional power based on nmax can be considerably smaller than 1 − 𝛽. Therefore,
it might be reasonable to use the limiting sample size nmax only in case that this sample size ensures a predefined minimal
conditional power level 1 − 𝛽0, for example, 1 − 𝛽0 = 0.6, and to stop the trial early else. This restricted observed conditional
power approach is thus based on the following sample size within the recalculation area [q1−𝛼0 ; q1−𝛼1)

NrestrOCP
recalc (z1) ∶=

⎧⎪⎨⎪⎩
n1, if CPΔ̂1

(z1,nmax) < 1 − 𝛽0,

ñ, if CPΔ̂1
(z1,nmax) ≥ 1 − 𝛽,

nmax, if 1 − 𝛽0 ≤ CPΔ̂1
(z1,nmax) < 1 − 𝛽,

(12)

where ñ is defined as in Equation (10).

3.3 Promising zone approach

Mehta and Pocock7 proposed the so-called promising zone approach which is also based on the observed conditional
power. This approach was criticised by Jennison and Turnbull10 with respect to expected sample size, however they did
not consider other performance measures. The design starts with a nonadaptive group sequential design with interim
sample size per group given by n1 and second stage sample size n2 which sum up to an initial sample size per group of
nini = n1 + n2, where nini < nmax. The recalculated second stage sample size is then determined according to the following
rule:

• If the conditional power based on the observed interim test statistic z1 and the initial sample size nini falls below a
predefined boundary 1 − 𝛽0, then the interim results are declared as unfavorable and an increase of the sample size
according to the observed conditional power approach is considered as inadequate. Hence, the study continues with
the originally planned second stage sample size nini.

• If the conditional power based on the observed interim test statistic z1 and the initial sample size nini falls above
this boundary but below the anticipated power of 1 − 𝛽, this is called the promising zone. Within this area, the
sample size for the second stage is increased according to the observed conditional power approach defined in
Equation (11).
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• If the conditional power based on the observed interim test statistic z1 and the initial sample size nini is equal or above
the anticipated power, the results are seen as favorable and the originally planned second stage sample size nini is
considered to be sufficient.

The final recalculated sample size per group within the recalculation area [q1−𝛼0 ; q1−𝛼1) is thus given as

NProm
recalc(z1) ∶=

⎧⎪⎪⎨⎪⎪⎩

nini, if CPΔ̂1
(z1,nini) < 1 − 𝛽0, (unfavorable zone)

ñ, if 1 − 𝛽 > CPΔ̂1
(z1,nini) ≥ 1 − 𝛽0 and CPΔ̂1

(z1,nmax) ≥ 1 − 𝛽, (promising zone)
nmax, if 1 − 𝛽 > CPΔ̂1

(z1,nini) ≥ 1 − 𝛽0 and CPΔ̂1
(z1,nmax) < 1 − 𝛽, (promising zone)

nini, if CPΔ̂1
(z1,nini) ≥ 1 − 𝛽, (favourable zone).

(13)

The choice of the lower power boundary 1 − 𝛽0 limiting the promising zone is intensively discussed in Mehta and Pocock.7
Note that 1 − 𝛽0 as applied in the restricted observed conditional power approach given in Equation (12) also defines
a lower bound for the conditional power and, therefore, we use a similar notation. However, the power bound in the
promising zone approach (13) is not directly related to the power bound used in Equation (12) and is chosen differently
in applications.

3.4 Optimization function approach

Jennison and Turnbull10 proposed an alternative approach based on the idea to choose the second stage's sample size
such that an optimization function is maximized. In the remainder of this paper, this method is therefore referred to as
the optimization function approach. Again, their design starts with a nonadaptive group sequential design with interim
sample size per group given by n1 and second stage sample size n2 which sum up to an initial sample size per group of
nini = n1 + n2, where nini < nmax. The optimization function f(n) then is a combination of the observed conditional power
for a given total sample size per group n and the deviation from n to nini and is defined as

f𝛾 (z1,n) ∶= CPΔ̂1
(z1,n) − 𝛾 (n − nini) , 𝛾 > 0. (14)

The recalculated sample size within the recalculation area [q1−𝛼0 ; q1−𝛼1) is then given as

NOptFunc
recalc (z1) ∶= argmaxn∈[0,nmax)f𝛾 (z1,n). (15)

It is clear that the mathematical properties of f𝛾 (z1,n) depend on the underlying effect size or interim test statistic, respec-
tively. Especially, the skewness and monotonicity of the function change in dependence of z1. This explains constant
sample size values in certain effect size regions (cf Figure 2). The choice of the tuning parameter 𝛾 is discussed and illus-
trated in examples by Jennison and Turnbull.10 It is obvious that the choice of 𝛾 importantly influences the form of f𝛾 (⋅).
The choice of 𝛾 in dependence of effect size and variability seems, however, to be difficult as it is just the motivation for
an adaptive design that these parameters are unknown in the planning stage.

4 EVALUATING THE PERFORMANCE OF AN ADAPTIVE DESIGN

The idea of an adaptive design with the option to change the sample size during the ongoing trial is to increase the
efficiency of a study. However, it is not evident how to quantify this efficiency. The efficiency of a clinical trial with a fixed
study design is usually measured by means of (a) the sample size and (b) the power of the trial. An intuitive approach
would be to choose the same criteria to evaluate the performance properties of an adaptive design.

4.1 Performance measures based on power concepts—the global (unconditional)
power

The power of an adaptive design can be reported equivalently as for a fixed sample size design. Indeed, in the literature
on adaptive designs, the power is commonly reported as a performance measure, compare, for example, References 5, 7,
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13, 20,21. The power of an adaptive design for a standardized treatment effect Δ is given as the probability to stop the trial
for efficacy either at the interim stage or at the final analysis,

PowΔ ∶= PΔ
((

Z1 ≥ q1−𝛼1

)
∨
(

Z1+2 ≥ z1−𝛼1+2 ∧ (q1−𝛼0 ≤ Z1 < q1−𝛼1)
))

= PΔ
(

Z1 ≥ q1−𝛼1

)
+ PΔ(q1−𝛼0 ≤ Z1 < q1−𝛼1) ⋅ P

(
Z1+2 ≥ z1−𝛼1+2

||q1−𝛼0 ≤ Z1 < q1−𝛼1

)
. (16)

Alternatively, the power can also be written as

PowΔ = ∫
∞

−∞
CPΔ(z1) dP(z1) = PΔ

(
Z1 ≥ q1−𝛼1

)
+ ∫

q1−𝛼1

q1−𝛼0

CPΔ(z1) dP(z1), (17)

where CPΔ(z1) corresponds to the conditional power as introduced in Equation (9). The dependence on the sample size
is omitted as the conditional power is used here in the context of a predefined adaptive recalculation rule where the final
sample size thus only depends on z1. The power PowΔ refers to an unconditional performance measure because it is not
conditional on the interim result. It should be noted that the global, unconditional power for an adaptive design with
sample size recalculation is not completely comparable to the power of a fixed design, as there are two disjoint options to
reject the null hypothesis, and the researcher is often interested in differentiating between these two options. Moreover,
even if the unconditional power of the specific underlying design at hand is known to be 1 − 𝛽, the scientist would not
consider the design as acceptable if the conditional power for the second stage is only 0.5 or lower. In the setting of an
adaptive design, it seems therefore also natural to consider conditional performance measures.

4.2 Performance measures based on power concepts—the conditional power

As outlined in Section 3, many sample size recalculation rules are based on criteria for the observed conditional power. The
unconditional power presented before was criticized as a performance measure for adaptive designs for several reasons,
in particular as there is no intuitive target value. When considering the conditional power within the recalculation area,
RA = [q1−𝛼0 ; q1−𝛼1), the target value is given by 1 − 𝛽. In other words, whenever the sample size at interim is potentially
increased, the recalculated sample size should guarantee that the resulting conditional power is close to 1 − 𝛽. Thereby,
it must be kept in mind that the observed conditional power CPΔ̂1

depends on the observed value of the interim test
statistic z1. As a consequence, the observed conditional power within the recalculation area cannot be reported as a single
performance measure but the distribution of the observed conditional power must be summarized. As a location measure,
the expected observed conditional power under the assumption of being in the recalculation area (RA) can be reported
as a performance measure

E

[
CPRA

Δ̂1
(Z1)

]
∶= E

[
CPΔ̂1

(Z1)|Z1 ∈ RA
]
= 1

P(q1−𝛼0 ≤ Z1 < q1−𝛼1)
⋅ ∫

q1−𝛼1

q1−𝛼0

CPΔ̂1
(z1) dP(z1). (18)

The above expected observed conditional power naturally quantifies the location of the random distribution. However, it
is intuitive that a sample size recalculation rule that reaches a conditional power near 1 − 𝛽 in the recalculation area on
average can still not be considered as “good” if the variance of the distribution is large, that is, if the observed conditional
power values importantly vary among each realization of the random experiment. It is astonishing that although basic
statistical text books always suggest that any measure of location must be reported along with an adequate measure of
variation, the empirical variance or standard deviation of the observed conditional power is hardly ever reported. We
strongly recommend to overcome this obvious fault and to never judge the performance of an adaptive design only on
performance measures for the location. Therefore, the observed conditional power distribution should also be reported
along with its variance Var(CPRA

Δ̂1
(Z1)) ∶= Var(CPΔ̂1

(Z1)|Z1 ∈ RA) or standard deviation, respectively.

4.3 Performance measures based on the sample size—the total expected sample size

Evaluating the power or observed conditional power alone is not meaningful as a high (conditional) power can always be
achieved if the sample size is increased to an arbitrarily large amount. However, it is evident that there is the intention to
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keep the sample size as small as possible. Therefore, the gain in (conditional) power must always be outweighed against
the required increase in sample size. For a fixed design without sample size recalculation, the required sample size for a
given treatment effect can simply be calculated and reported. In an adaptive design, this is more difficult, as the sample
size depends on the observed value of the interim test statistic given as Ntotal(z1), compare Equation (8).

Note that when defining the recalculated sample sizes for the different investigated designs, we omitted the depen-
dence on Δ in the notation before. As the observed value of the interim test statistic comes from a normal distribution
N(Δ̂1

√
n1
2
, 1), this dependence is, however, intuitively given.

To quantify the required sample size within an adaptive design, the expected total sample size per group E[Ntotal(Z1)]
of an adaptive design for a given treatment effect Δ is often reported. It should be noted that the expected sample size
for an adaptive design with sample size recalculation is not directly comparable to the sample size of a fixed design, as
the expected sample size depends not only on the interim sample size n1 or the recalculated second stage sample size
but also on the probability to enter stage two given by P(q1−𝛼0 ≤ Z1 < q1−𝛼1). As the general intention of the sample size
recalculation is to achieve a reasonable power about 1 − 𝛽 in case the study is not already stopped at interim and there is
also the option to reject the null hypothesis already at interim, the expected sample size for an adaptive design is usually
smaller than the sample size of a fixed design.

4.4 Performance measures based on the sample size—the conditional expected sample
size

If one focuses only on the recalculation area [q1−𝛼0 ; q1−𝛼1), that is, if we focus on the sample size given that the interim
results suggest a second stage, the expected sample size per group is then given as

E
[
NRA

total(Z1)
]
∶= E [Ntotal(Z1)|Z1 ∈ RA] = 1

P(q1−𝛼0 ≤ Z1 < q1−𝛼1)
⋅ ∫

q1−𝛼1

q1−𝛼0

Ntotal(z1) dP(z1), (19)

which should always be reported along with Var(NRA
total(Z1)) ∶= Var(Ntotal(Z1)|Z1 ∈ RA). If the study is continued after the

interim analysis, the total sample size should be slightly larger than the required sample size for a fixed design. This is
due to the fact that the adaptive design includes adjustment for multiple testing and therefore the fixed sample size rather
defines a “lower bound” for a target value.

4.5 A note on conditional performance measures

So far, we have distinguished between conditional and unconditional performance measures, where conditional perfor-
mance measures are based on the condition of entering the recalculation area RA = [q1−𝛼0 ; q1−𝛼1). When looking at the
different sample size calculation rules, we see that there are some rules which suggest no increase of sample size within
certain sub-regions of the interval [q1−𝛼0 ; q1−𝛼1). For example, the restricted observed conditional power approach suggests
an increase of the sample size within the area [q1−𝛼0 ; q1−𝛼1) if and only if a conditional power of 1 − 𝛽0 can be reached with
the maximally allowed sample size. However, when comparing different recalculation rules, conditional performance
measures must rely on the same condition. The interval limited by the local critical value and the futility bound seems a
natural choice for such a condition.

4.6 Performance scores

Usually, the performance of adaptive designs is summarized by providing several separate performance criteria based
on the power and the sample size. It is intuitive that a good power performance can always be achieved to the cost of a
high sample size (ie, a bad sample size performance) and vice versa, irrespective of the fact which power or sample size
criteria, unconditional or conditional, are applied. Moreover, even if a specific sample size recalculation rule shows good
power and sample size performance on average, it is still necessary to investigate the variance of each of the performance
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criteria. Users are therefore confronted with the problem to outweigh several performance criteria which are negatively
correlated. A direct and fair comparison between different sample size recalculation rules is thus difficult. This situation
indicates the need for a performance score which includes all these aspects of performance and outweigh them formally
in a predefined way.

4.7 Performance score by Liu et al

Liu et al13 were the first who proposed a performance score for adaptive designs based on the unconditional sample size
and power. According to their definition, a “good” adaptive design is characterized by a sample size close to the optimal
fixed design sample size and an unconditional power nearby 1 − 𝛽.

As the idea of sample size calculation is to determine the smallest sample size that ensures a prespecified power value,
Liu et al13 defined a relative oversizing and an underpowering function. Small values of these two performance functions
for a given design relate to a well performing adaptive design.

Taking the optimal fixed design as the gold standard, a design is considered as oversized if the recalculated study
sample size is larger than the “correct” fixed sample size. This is expressed by the following relative oversizing function

ROSfs,𝛽(Δ) ∶=
E

[
Ntotal(Z1)

nfix
Δ,1−𝛽

− 1
]
+

fs − 1
, (20)

where Δ is the true underlying standardized effect and nfix
Δ,1−𝛽 the “ideal” sample size per group in the fixed design for a

target power of 1 − 𝛽 given as

nfix
Δ,1−𝛽 =

2 ⋅
(

q1−𝛼 + q1−𝛽
)2

Δ2 , (21)

where q1−𝛼 and q1−𝛽 correspond again to the respective normal quantiles. The parameter fs > 1 corresponds to a constant
scaling factor, which was suggested to be chosen as fs = 2 in Liu et al.13 The expression [...]+ denotes the positive function,
which equals the argument if it is positive and 0 otherwise. An adaptive design is thus defined to be 100% oversized if
Ntotal = fs ⋅ nfix

Δ,1−𝛽 .
In order to define an underpowering function on the same scale, the amount of underpowering is also expressed in

terms of sample size. A study design is considered to be underpowered if the power of the adaptive study design for the
true standardized effect Δ is smaller than 1 − 𝛽. Again, let PowΔ denote the power of the adaptive design for a true effect
Δ. The relative underpowering function is then given as

RUPfp,𝛽(Δ) =

[
nfix
Δ,1−𝛽 − nfix

Δ,PowΔ

]
+

nfix
Δ,1−𝛽 − nfix

Δ,(1−fp)⋅(1−𝛽)

, (22)

where fp < 1 is again a constant scaling factor, which was suggested to be chosen as fp = 0.2 in Liu et al.13 A 100% under-
powered design is thus given if PowΔ = (1 − fp) ⋅ (1 − 𝛽). The two performance criteria are combined within a single
performance score as follows, either point-wise

SLiu
fs,fp,𝛽

(Δ) ∶= ROSfs,𝛽(Δ) + RUPfp,𝛽(Δ), (23)

or as an average score over a predefined interval of plausible treatment effects [Δl,Δu] as

ASLiu
fs,fp,𝛽

= ∫
Δu

Δl

ROSfs,𝛽(Δ) + RUPfp,𝛽(Δ) dΔ. (24)

Liu et al13 also discuss the option to define a weighted average score. We will not investigate this option for the sake of
simplicity. The range of the point-wise and average Liu score is [0,∞). Thereby, a value close to 0 of the score relates to a
good performance.
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The above performance score is based on the idea that the global, unconditional power and sample size of an ideal
sample size recalculation rule should only minimally deviate from the reference design.

“Underpowering” mainly occurs because of a limitation of the maximal sample size which is not related to the perfor-
mance of the design. Similarly, the total unconditional expected sample size of a “correct” nonadaptive group sequential
design is smaller than the corresponding sample size of a fixed design, in particular if the underlying effect is large.

Moreover, the performance score of Liu et al13 does not take into account the variability of the random adaptive design.
Another potential drawback is that the range of the score is not bounded from above so it is difficult to judge which value
of the score defines a “bad” performance.

4.8 A new conditional performance score

The need for a performance score that overcomes these shortcomings and considers conditional performance measures is
evident. The basic ideas to construct such a score as proposed by Liu et al13 are appealing; however, it has been discussed
above that there is still room for improvement. Therefore, we propose a new conditional performance score within this
section. Similarly to Liu et al,13 we construct the global score based on two sub-scores, where one sub-score assesses the
performance according to conditional sample size and the other sub-score measures the conditional power performance.
The main arguments for this approach are as follows: (1) If the study results at interim neither suggest stopping for effi-
cacy nor for futility, then the principal investigator is interested in optimizing the second stage performance. In contrast,
the global performance is always influenced by the power and sample size at the interim stage and therefore a sufficient
global performance does not necessarily guarantee an acceptable second stage performance. (2) Using conditional per-
formance measures enables the definition of (at least rough) target values for the power and sample size. Note that the
conditional perspective—and therefore also the following defined conditional performance score—naturally only refers
to trial designs with interim analyses.

The sub-score assessing the performance according to sample size is thus based on assessing the expected sample size
conditional on the recalculation area E

[
NRA

total(Z1)
]

as defined in Equation (19). Thereby, E
[
NRA

total(Z1)
]

is estimated as the
average over all second stage sample sizes within the recalculation area. Equivalently, Var(NRA

total(Z1)) is estimated by the
corresponding empirical variance.

As discussed in Section 4.4, it can be argued that if an increase in sample size is considered after the interim analysis,
a sample size slightly larger than the required sample size for a fixed design nfix

Δ,1−𝛽 with true standardized effect Δ and
power 1 − 𝛽 can be interpreted as a reasonable target value. If the sample size required for the fixed design exceeds the
maximally allowed sample size, then an increase of the sample size might be considered as “not worth the effort”. We
therefore suggest the following target values for the average conditional sample size for given Δ and 𝛽,

N target
Δ,𝛽 ∶=

{
nfix
Δ,1−𝛽 , if nfix

Δ,1−𝛽 ≤ nmax and Δ ≠ 0,
n1, if nfix

Δ,1−𝛽 > nmax or Δ = 0.
(25)

With this, the sub-score for the conditional sample size can be defined as

SN𝛽(Δ) ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

1
2
⋅

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎝1 −

|||E [
NRA

total(Z1)
]
− N target

Δ,𝛽
|||

nmax − n1

⎞⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=eN (Δ)

+
⎛⎜⎜⎝1 −

√√√√ Var
(

NRA
total(Z1)

)
Varmax

(
NRA

total(Z1)
)⎞⎟⎟⎠

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
∶=vN (Δ)

⎞⎟⎟⎟⎟⎟⎟⎠
, if Varmax

(
NRA

total(Z1)
) ≠ 0,

1
2
⋅

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎝1 −

|||E [
NRA

total(Z1)
]
− N target

Δ,𝛽
|||

nmax − n1

⎞⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

∶=eN (Δ)

+ 1
⏟⏟⏟
∶=vN (Δ)

⎞⎟⎟⎟⎟⎟⎟⎠
, if Varmax

(
NRA

total(Z1)
)
= 0,

(26)
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where eN(Δ) ∈ [0; 1] is a parameter assessing the location of the conditional sample size and vN(Δ) ∈ [0; 1] is a parame-
ter assessing the variance of the conditional sample size. Large values of eN(Δ) and vN(Δ) are favorable. Note that both
parameters eN(Δ) and vN(Δ) depend on the true underlying effect Δ. This natural dependence was omitted in the single
terms to ease readability. The sub-score for the conditional sample size (26) has a range between 0 and 1. The expression
Varmax

(
NRA

total

)
corresponds to the maximally possible variance for the conditional sample size which can be observed.

The maximal value for the variance intuitively occurs when the conditional sample size is given by n1 in 50% of all real-
izations and by nmax in the remaining 50% of all realizations. Hence, an upper limit for the maximally possible variance is
given by

Var
(

NRA
total(Z1)

) ≤ (nmax − n1

2

)2
=∶ Varmax

(
NRA

total(Z1)
)
, (27)

and used for the calculation of the sub-score for Varmax
(

NRA
total(Z1)

)
. Note that by definition of Equation (26), the sub-score

can also be applied to classical group sequential study designs where the variance of the recalculated sample size equals
0 and therefore corresponds to a perfect variation component vN(Δ) of 1.

Similarly, the sub-score assessing the performance according to power is based on assessing the expected conditional
power E

[
CPRA

Δ̂1
(Z1)

]
which is estimated as the average over all conditional power values within the recalculation area. The

corresponding variance Var(CPRA
Δ̂1

(Z1)) is accordingly estimated by the empirical variance. As discussed in Section 4.2, in
case the sample size is increased at interim, the conditional power should ideally reach a level of 1 − 𝛽. If the required
sample size for the fixed design exceeds the maximally allowed sample size, an increase of the sample size is not recom-
mended and the conditional power should then be close to the local one-sided significance level 𝛼. We therefore suggest
the following target values for the average conditional sample size

CPtarget
Δ,𝛽 ∶=

{
1 − 𝛽, if nfix

Δ,1−𝛽 ≤ nmax and Δ ≠ 0,
𝛼, if nfix

Δ,1−𝛽 > nmax or Δ = 0.
(28)

The sub-score for the conditional power can then be defined as

SCP𝛽(Δ) ∶=
1
2
⋅

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎜⎜⎜⎝1 −

||||E [
CPRA

Δ̂1
(Z1)

]
− CPtarget

Δ,𝛽
||||

1 − 𝛼

⎞⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶eCP(Δ)

+
⎛⎜⎜⎜⎝1 −

√√√√√√ Var
(

CPRA
Δ̂1

(Z1)
)

Varmax

(
CPRA

Δ̂1
(Z1)

)⎞⎟⎟⎟⎠
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=∶vCP(Δ)

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (29)

where eCP(Δ) ∈ [0; 1] is a parameter assessing the location of the conditional sample size and vCP(Δ) ∈ [0; 1] assessing the
variance of the conditional sample size. As before, both parameters eCP(Δ) and vCP(Δ) depend on the true underlying effect
Δ and large values of eCP(Δ) and vCP(Δ) are favorable. Varmax

(
CPRA

Δ̂1

)
corresponds to the maximally possible variance for

the conditional power which can be observed. The maximal value for the variance intuitively occurs if the conditional
power is given by 0 in 50% of all realizations and by 1 in the remaining 50% of all realizations,

Var
(

CPRA
Δ̂1

(Z1)
) ≤ (1 − 0

2

)2
= 0.25 =∶ Varmax

(
CPRA

Δ̂1
(Z1)

)
, (30)

and used for the calculation of the conditional power sub-score for Varmax

(
CPRA

Δ̂1
(Z1)

)
. Note that both conditional power

values of 0 and 1 in the maximal variance scenario in Equation (30) are never observed in practice. However, based
on these values an upper boundary for the maximal possible variance is obtained. Moreover, note that we do not need
to consider two cases for the conditional power sub-score in Equation (29) as the maximal possible variance cannot
become 0.

Both sub-scores are based on the idea of punishing deviations from the corresponding target value as well as large
variances of the conditional sample size or power distributions. Both sub-scores have a range of [0; 1], where values close
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to 1 indicate a good performance. It is, however, intuitive that SN𝛽(Δ) and SCP𝛽(Δ) are negatively correlated and therefore
should always be investigated as a pair. We therefore suggest the following global point-wise performance score

SNew
𝛽

(Δ) ∶=
SN𝛽(Δ) + SCP𝛽(Δ)

2
, (31)

which allows to measure the performance with respect to sample size in relation to the performance with respect to power.
Equivalently as for the score by Liu et al,13 the new score can as well be extended to an average score over a predefined
interval of plausible treatment effects [Δl,Δu] as

ASNew
𝛽

= ∫
Δu

Δl

SNew
𝛽

(Δ) dΔ. (32)

The global point-wise and the average score both have a range of [0; 1], where values close to 1 indicate a good
performance.

By Equations (26), (29), and (31), the components of the conditional score are weighted equally. Note that these
weights could also be chosen differently.

4.9 Interpretation of the new conditional score

As noted above, the score has absolute values for best (SNew
𝛽

(Δ) = 1) and worst (SNew
𝛽

(Δ) = 0) performance. However,
these two extremes can practically never be reached by adaptive group sequential designs. For a score value of 1, the
expected value of the sample size E[NRA

total(Z1)] and conditional power E[CPRA
Δ̂1

(Z1)] must exactly meet the corresponding

target values (N target
Δ,𝛽 ,CPtarget

Δ,𝛽 ) and the two variances must be equal to 0. Similarly, for a performance score of 0, the two
variances need to equal the maximally possible variance. Moreover, the absolute value of the difference between the
expected sample size E[NRA

total(Z1)] and target sample size N target
Δ,𝛽 needs to equal nmax − n1. Similarly, the absolute value of

the difference between the expected conditional power E[CPRA
Δ̂1

(Z1)] and target conditional power CPtarget
Δ,𝛽 needs to equal

1 − 𝛼.
Hence, the question arises which score values indicate an observable high, medium, or low performance. A general

recommendation cannot be given here, as this depends importantly on the underlying study-specific setting. However, in
this section, we provide rules of thumb to derive score ranges for low, medium, and high performances.

For a high performance, we expect the observed variance of the total sample size conditional on entering the recalcula-
tion area to be at most 30% of the maximally possible variance of the sample size conditional on entering the recalculation
area. Moreover, we anticipate a deviation of the observed sample size from the target sample size of at most 30% of the
largest possible sample size deviation. The same considerations are made for the conditional power. This translates into
the following conditions:

• Var
(

NRA
total(Z1)

) ≤ 0.3 ⋅ Varmax
(

NRA
total(Z1)

)
,

• Var
(

CPRA
Δ̂1

(Z1)
) ≤ 0.3 ⋅ Varmax

(
CPRA

Δ̂1
(Z1)

)
,

• |||E [
NRA

total(Z1)
]
− N target

Δ,𝛽
||| ≤ 0.3 ⋅ (nmax − n1) and

•
||||E [

CPRA
Δ̂1

(Z1)
]
− CPtarget

Δ,𝛽
|||| ≤ 0.3 ⋅ (1 − 𝛼).

Thus, a total performance score SNew
𝛽

(Δ) = 0.5 ⋅
(
(1 − 0.3) +

(
1 −

√
0.3

))
≈ 0.576 or higher corresponds to a high

performance.
Accordingly, for a medium performance, we expect the observed variance of the total sample size conditional on

entering the recalculation area to be at most 50% of the maximally possible variance of the sample size conditional on
entering the recalculation area. Moreover, we anticipate a deviation of the observed sample size from the target sample
size of at most 50% of the largest possible sample size deviation. The same considerations are made for the conditional
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power. Hence, a performance score SNew
𝛽

∈ [0.396; 0.576) measures up to a medium performance and SNew
𝛽

(Δ) < 0.396
corresponds consequently to a low performance.

These ranges can also be used for the sub-scores SN𝛽(Δ) and SCP𝛽(Δ) as well as the components for location and vari-
ation (eN(Δ), vN(Δ), eCP(Δ), vCP(Δ)). Obviously, different assumptions can be made as well as one could also distinguish
between different values for the conditional power and sample size sub-scores. Note that a certain design can be classified
differently if other target values are specified.

5 SIMULATION STUDY

In order to compare our new conditional performance score to the performance score proposed by Liu et al,13 we per-
formed a Monte-Carlo simulation study with the software R,22 where the sample size recalculation rules introduced in
Section 3 were compared based on both performance scores. Moreover, we added a classical group sequential design for
comparison purposes. Remember that Liu's score is a global, unconditional performance score and the new score is con-
ditional on the interim results. Therefore, the performance rankings measure two different, but related, aspects and are
thus not necessarily intended to deliver the same performance ranking.

5.1 Simulation setup

Within our simulation setting, we considered the test problem as introduced in Section 2.1. The global one-sided signif-
icance level was set to 𝛼 = 0.025. The local significance levels were adjusted according to Pocock,19 that is, 𝛼1 = 𝛼1+2 =
0.0147. The futility bound was set to 𝛼0 = 0.5 meaning that observed treatment effects which point into the wrong direc-
tion lead to early stopping after the first stage, compare, for example, Reference 4. The anticipated power was given by
1 − 𝛽 = 0.8. We assumed equal sample sizes per group for the sake of simplicity. The optimal sample size for the fixed
design was calculated with the help of the power.t.test function in R.22 We considered three simulation settings dif-
fering in their interim and maximal sample sizes. Apart from the four presented adaptive group sequential sample size
recalculation rules, we also calculated performance measures for the classical group sequential study design. For the
classical group sequential scenario, we took the prespecified values for n1 and n2.

In the main scenario shown here, the initial sample size per group for the first stage was fixed to n1 = 50. If the trial
was not stopped at interim, additional patients were recruited. The initial value for the second stage sample size per
group was fixed to n2 = 50. This motivates the choice of the weights for the definition of the final test statistic given in
Equation (5) which were fixed to w1 = w2 =

√
50. Moreover, we used a maximal bound for the sample size per group of

nmax = 4 ⋅ n1 = 200.
In the second setting, we assumed n1 = n2 = 25 with w1 = w2 =

√
25 and nmax = 8 ⋅ n1 = 200. The latter setting was

implemented to evaluate the influence of a different interim sample size, however, with a constant absolute maximal
sample size of 200.

In the third setting, we assumed n1 = n2 = 25 with w1 = w2 =
√

25 and nmax = 4 ⋅ n1 = 100. This setting was consid-
ered to assess the influence of the interim sample size with the same sample size boundary factor f = 4 as in the main
setting. The second and third setting are addressed in the Appendix.

Within each setting, we investigated eight scenarios for the underlying true standardized effect Δ ranging from 0.0
to 0.6 by steps of 0.1 (except for the interim step at 0.35). We decided for the extra effect size step at 0.35 as this is the
effect area with the highest variability in sample size. For each of these eight scenarios, we drew 10 000 replications
from a normal distribution N(Δ

√
n1∕2, 1) expressing the observed values of the interim test statistics. Based on this set

of observed values for the interim test statistic, we applied the four different sample size recalculation rules presented
in Section 3, that are the observed conditional power approach, the restricted observed conditional power approach, the
promising zone approach as well as the optimization function approach. Moreover, we added also the classical group
sequential design. For all resulting scenarios, Liu's score and the newly proposed conditional score were calculated—both
point-wise for each Δ. Moreover, we provided Liu's measures for oversizing ROSfs,𝛽(Δ) and underpowering RUPfp,𝛽(Δ)
as well as the conditional sub-scores for sample size SN𝛽(Δ) and power SCP𝛽(Δ) together with the location and varia-
tion components eN(Δ), eCP(Δ), vN(Δ), vCP(Δ). For the main setting (n1 = n2 = 50, f = 4), also averaged values and scores
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F I G U R E 1 Sample size recalculation
rules investigated within the Monte-Carlo
simulation study for n1 = n2 = 50,
nmax = 200. GS, group sequential approach;
OCP, observed conditional power approach;
OptFunc, optimization function approach;
Prom, promising zone approach; restrOCP,
restricted observed conditional power
approach [Colour figure can be viewed at
wileyonlinelibrary.com]
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over the range [0.0; 0.6] as well as for the three effect ranges [0.0; 0.2], [0.3; 0.4], and [0.5; 0.6] were calculated. Concern-
ing specific score and design parameters, we used the same scaling factors for oversizing and underpowering as proposed
by Liu et al13 given as fs = 2 and fp = 0.2. Moreover, in the restricted observed conditional power design, the predefined
minimal conditional power level was set to 0.6. Concerning the promising zone design, the boundary 1 − 𝛽0 for the unfa-
vorable zone was given by 0.36 according to Reference 7. In the optimal function design, we chose 𝛾 = 0.005∕4. Note that
these parameter settings for the recalculation rules can be chosen differently. Figure 1 illustrates all investigated recal-
culation rules under the parameter settings used within this simulation as functions of the observed treatment effect
at interim.

5.2 Simulation results

The results of our main setting with n1 = n2 = 50 and nmax = 200 are displayed in Figure 2 as well as in Tables 1-3. The
second setting's (n1 = 25,nmax = 200) and third setting's (n1 = 25,nmax = 100) simulation results can be found in Tables
A1-A4 in Appendix.

We focus on describing the simulation results of the main setting and state briefly a few points on the comparison
with the other two settings. The specific results of the second and third setting are not described in detail and we refer the
interested reader to Tables A1-A4 in Appendix. Concerning the main setting, we only analyze the global and conditional
performance scores and their sub-scores with respect to the obtained sample size and conditional power values. If the
reader is interested in a compact overview, whether a high or low conditional sub-score (SN𝛽(Δ), SCP𝛽(Δ)) was mainly
obtained due to the location (eN(Δ), eCP(Δ)) or variation component (vN(Δ), vCP(Δ)), we refer the reader to Table 2. The
component values can also be found in Figure 2 above the respective boxplots. Figure 2 shows boxplots for the condi-
tional sample size and the conditional power (conditional on having entered the recalculation area) for each design and
selected standardized effects Δ = 0.0, 0.3, 0.6. When looking at the boxplots describing the recalculated sample sizes per
group for Δ = 0.3 (Figure 2, second row), one expects the observed conditional power approach to perform best with
respect to location and the classical group sequential study design together with the restricted observed conditional power
approach to perform worst. This assumption can be verified by the values of the location component eN(0.3) (observed
conditional power approach: 0.965; classical group sequential approach: 0.492; restricted observed conditional power
approach: 0.493). Moreover, the boxplots show the restricted observed conditional power approach with the highest vari-
ability in sample size and the classical group sequential approach with the lowest. Also here, this goes in line with the
respective variation components vN(0.3) (restricted observed conditional power approach: vN(0.3) = 0.247; classical group
sequential approach: vN(0.3) = 1.000). Recall that a value of 0 refers to the worst and 1 to the best performance.

Table 1 presents the estimated point-wise performance scores and related conditional and unconditional performances
measures for all investigated simulation scenarios. Column 1 displays the underlying true standardized treatment effectΔ
and the corresponding sample size per group of the fixed design nfix

Δ,0.8. The underlying sample size recalculation design is
provided in Column 2. Column 3 shows the estimated total expected sample size over both stages E[Ntotal,Δ] as introduced

http://wileyonlinelibrary.com
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F I G U R E 2 Boxplots for the conditional sample size and for the conditional power (conditional on having entered the recalculation
area) for different recalculation rules and underlying effects Δ with n1 = n2 = 50, nmax = 200. Red lines indicate the target values, N target

Δ,𝛽 or
CPtarget

Δ,𝛽 , respectively. Average values are represented by black crosses. eN : location component for conditional sample size; vN : variation
component for conditional sample size; eCP: location component for conditional power; vCP: variation component for conditional power. GS,
group sequential approach; OCP, observed conditional power approach; OptFunc, optimization function approach; Prom, promising zone
approach; restrOCP, restricted observed conditional power approach [Colour figure can be viewed at wileyonlinelibrary.com]

in Equation (8). The index Δ is added here to explore the dependence on the true underlying treatment effect. As the total
expected sample size is directly related to the relative oversizing function defined by Liu et al,13 Column 4 subsequently
displays the relative oversizing function ROSfs,𝛽(Δ). Column 5 shows the global, unconditional power PowΔ based on the
true underlying standardized treatment effect sizeΔ of the design. Again, the global power is directly related to the relative
underpowering function defined by Liu et al13 and therefore Column 6 displays the relative underpowering function
RUPfp,𝛽(Δ). Column 7 finally shows the total point-wise Liu performance score SLiu

fs,fp,𝛽
(Δ). Thereby, remember that Liu's

point-wise performance score is not applicable for a true standardized effect size ofΔ = 0.0 as the score is not well-defined
under the null hypothesis. As the newly proposed conditional performance score is based on conditional performance
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measures, we report the estimated expected sample size conditional on having entered the recalculation area given by
E

[
NRA

total,Δ

]
in Column 8 and the related variance Var(NRA

total,Δ) in Column 9. The new conditional sub-score assessing the
sample size performance SN𝛽(Δ) is directly related to these two measures and is reported in Column 10. Columns 11
and 12 show the estimated expected conditional power conditional on entering the recalculation area given as E[CPRA

Δ ]
and the related variance Var(CPRA

Δ ). Again, the new conditional sub-score assessing the power performance SCP𝛽(Δ) is
directly related to these two measures and is reported in Column 13. Finally, Column 14 shows the total point-wise new
conditional performance score SNew

𝛽
(Δ). The numbers in square brackets after the performance scores show the ranking

of the group sequential designs for each Δ according to the underlying performance score. Effects varying from Δ = 0.0
until Δ = 0.6 by steps of 0.1 are presented with the exception of the additional value Δ = 0.35. Recall that the reason for
this interim step is that the sample sizes for an effect size around Δ = 0.35 show the highest variability as the sample size
functions include a “jump” in this area.

Now, we come to the simulation results. The classical group sequential design plays a special role. Concerning the
global score by Liu et al,13 it is performing worse than the other designs with sample size recalculation for the underlying
effect sizes since it tends to achieve a lower power. However, in terms of the conditional evaluation, the classical group
sequential design is the clear winner for equally weighted components (eN(Δ), eCP(Δ), vN(Δ), vCP(Δ)). This is due to the
fact that particularly the component with respect to sample size variation attains always the perfect value of 1 paired with
a high value for the conditional power variation component. In the following description, we compare the other four
designs (observed conditional power, restricted observed conditional power, promising zone, and optimization function
approach) such that we do not go in to further details for the classical group sequential design. Hence, the term sample
size recalculation rules refers to the observed conditional power, restricted observed conditional power, promising zone,
and optimization function approach in the following. Table 1 shows the following results. Under the null hypothesis (ie,
Δ = 0.0), the relative underpowering function, relative oversizing function, and Liu's score are not defined. The sub-score
assessing the conditional sample size favors the promising zone approach (Row 3, SN𝛽(0.0) = 0.658). The observed con-
ditional power approach (Row 1, SN𝛽(0.0) = 0.366) shows the worst result with respect to sample size which is due to
hitting the target value worst of all four designs. The ranking with respect to the conditional power is similar. The best per-
formance sub-score is also achieved by the promising zone design (Row 3, SCP𝛽(0.0) = 0.646), the optimization function
approach shows the worst performance (Row 4, SCP𝛽(0.0) = 0.576). The total point-wise performance score thus shows
the best performance for the promising zone approach (Row 3, SNew

𝛽
(0.0) = 0.652), whereas the observed conditional

power approach (Row 1, SNew
𝛽

(0.0) = 0.477) and the optimization function approach (Row 4, SNew
𝛽

(0.0) = 0.495) show the
worst results. This can also be verified graphically in Figure 2. The boxplots of the conditional sample sizes show that in
the absence of a treatment effect the median conditional sample size of the observed conditional power approach is far
from N target

0.0,𝛽 = n1 = 50 which would be optimal forΔ = 0.0. The promising zone approach boxplot shows hitting the target
conditional power of 0.025 together with a small variance. The new conditional score thus verifies the visual inspection of
the boxplots, as the new conditional score shows the highest value for the promising zone design with SNew

𝛽
(0.0) = 0.652,

followed by the restricted observed conditional power approach SNew
𝛽

(0.0) = 0.615, compare Column 14 of Table 1.
For underlying standardized effects of Δ = 0.1 or Δ = 0.2, the ranking with respect to the new score remains stable.

However, now we can compare the ranking of the new conditional score to the ranking by Liu's score. Liu's score shows
best performance values for the observed conditional power approach (Row 6, SLiu

fs,fp,𝛽
(0.1) = 2.927; Row 11, SLiu

fs,fp,𝛽
(0.2) =

2.100), and the optimization function approach (Row 9, SLiu
fs,fp,𝛽

(0.1) = 2.944; Row 14, SLiu
fs,fp,𝛽

(0.2) = 2.198). However, the Liu
scores are all very similar across the different designs. Note that for these small values of Δ, Liu's score is exclusively based
on the relative underpowering function as the maximal sample size of the adaptive design is smaller than the required
sample size of the corresponding fixed design. Thus, in fact the Liu score only assesses the relative underpowering. It is
evident that recalculation designs that augment the sample size only in case the observed effect suggests that a target
conditional power value can be reached show a low power if the underlying effect is small.

For an underlying standardized effect of Δ = 0.3, a visual inspection of Figure 2 would suggest the observed condi-
tional power approach as the clear “winner” of the sample size recalculation rules as it meets the target power and sample
size best and shows the lowest variance. Here, the Liu score and the new conditional score show a similar ranking start-
ing indeed with the observed conditional power approach as the best design whereas the restricted observed conditional
power approach shows the worst performance. Again, Liu's score is exclusively based on the relative underpowering
function. Therefore, a performance comparison with respect to sample size aspects alone is not possible for Liu's score.
However, it is noticeable that the observed conditional power approach performs best now (Row 16, SNew

𝛽
(0.3) = 0.624)

where it was the worst performing design for Δ = 0.2 according to the new score (Row 11, SNew
𝛽

(0.2) = 0.398). This is due
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T A B L E 2 Estimated performance sub-scores and related location and variation components for all investigated designs and
n1 = n2 = 50, nmax = 200

Parameters to be Estimated

𝚫 Design eN (𝚫) vN (𝚫) SN𝜷 (𝚫) eCP(𝚫) vCP(𝚫) SCP𝜷 (𝚫)
0.0 OCP 0.053 0.680 0.366 0.762 0.412 0.587

restrOCP 0.851 0.359 0.605 0.868 0.385 0.626

Prom 0.617 0.699 0.658 0.843 0.448 0.846

OptFunc 0.438 0.391 0.414 0.773 0.378 0.576

GS 0.667 1.000 0.833 0.875 0.570 0.722

0.1 OCP 0.090 0.592 0.341 0.680 0.361 0.520

restrOCP 0.790 0.291 0.540 0.789 0.292 0.541

Prom 0.595 0.651 0.623 0.766 0.361 0.564

OptFunc 0.396 0.383 0.389 0.686 0.320 0.503

GS 0.667 1.000 0.833 0.813 0.492 0.652

0.2 OCP 0.138 0.512 0.325 0.593 0.349 0.471

restrOCP 0.728 0.255 0.491 0.701 0.236 0.468

Prom 0.576 0.622 0.599 0.681 0.309 0.495

OptFunc 0.362 0.388 0.375 0.594 0.302 0.448

GS 0.667 1.000 0.833 0.741 0.435 0.588

0.3 OCP 0.965 0.451 0.708 0.705 0.376 0.540

restrOCP 0.493 0.247 0.370 0.601 0.220 0.410

Prom 0.605 0.593 0.599 0.619 0.292 0.456

OptFunc 0.822 0.403 0.612 0.710 0.325 0.518

GS 0.492 1.000 0.746 0.544 0.408 0.476

0.35 OCP 0.762 0.425 0.594 0.749 0.400 0.574

restrOCP 0.831 0.257 0.544 0.654 0.231 0.442

Prom 0.918 0.595 0.756 0.667 0.299 0.483

OptFunc 0.871 0.413 0.642 0.758 0.349 0.553

GS 0.800 1.000 0.900 0.588 0.402 0.495

0.4 OCP 0.598 0.407 0.502 0.787 0.427 0.607

restrOCP 0.949 0.278 0.613 0.701 0.249 0.475

Prom 0.869 0.579 0.724 0.718 0.311 0.515

OptFunc 0.679 0.421 0.550 0.800 0.376 0.588

GS 1.000 1.000 1.000 0.631 0.402 0.516

0.5 OCP 0.433 0.386 0.410 0.850 0.503 0.676

restrOCP 0.686 0.329 0.508 0.782 0.313 0.547

Prom 0.635 0.594 0.614 0.795 0.362 0.579

OptFunc 0.466 0.435 0.450 0.870 0.452 0.661

GS 0.763 1.000 0.881 0.709 0.418 0.564

0.6 OCP 0.390 0.394 0.392 0.896 0.581 0.739

restrOCP 0.572 0.371 0.471 0.841 0.388 0.614

Prom 0.535 0.596 0.565 0.855 0.427 0.641

OptFunc 0.387 0.449 0.418 0.922 0.538 0.730

GS 0.632 1.000 0.816 0.766 0.456 0.611

Δ: true standardized effect; eN (Δ): location component for conditional sample size; vN (Δ): variation component for conditional sample size;
SN𝛽 (Δ): conditional sample size sub-score; eCP(Δ): location component for conditional power;
vCP(Δ): variation component for conditional power; SCP𝛽 (Δ): conditional power sub-score;
GS: classical group sequential approach; OptFunc: optimization function approach; Prom: promising zone approach;OCP: observed conditional
power approach; restrOCP: restricted observed conditional power approach.
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T A B L E 3 Estimated average
performance scores and related
sub-scores for all investigated designs and
n1 = n2 = 50, nmax = 200

Parameters to
be Estimated

Average Range Design ROSfs ,𝜷
RUPfp ,𝜷

ASLiu
fs ,fp ,𝜷

[⋅] SN𝜷 SCP𝜷 ASNew
𝜷

[⋅]

0.0-0.6 OCP 0.152 0.813 0.965[1] 0.455 0.589 0.522[4]

restrOCP 0.085 1.215 1.300[5] 0.518 0.515 0.517[5]

Prom 0.095 1.065 1.160[3] 0.642 0.547 0.595[2]

OptFunc 0.139 0.894 1.033[2] 0.481 0.572 0.527[3]

GS 0.066 1.187 1.253[4] 0.855 0.578 0.717[1]

0.0-0.2 OCP 0.000 2.514 2.514[1] 0.344 0.526 0.435[5]

restrOCP 0.000 2.743 2.743[5] 0.545 0.545 0.545[3]

Prom 0.000 2.683 2.683[3] 0.627 0.568 0.598[2]

OptFunc 0.000 2.571 2.571[2] 0.393 0.509 0.451[4]

GS 0.000 2.742 2.742[4] 0.833 0.654 0.744[1]

0.3-0.4 OCP 0.041 0.222 0.263[1] 0.601 0.574 0.588[3]

restrOCP 0.000 1.007 1.007[5] 0.509 0.442 0.476[5]

Prom 0.000 0.695 0.695[3] 0.693 0.485 0.589[2]

OptFunc 0.019 0.371 0.390[2] 0.601 0.553 0.577[4]

GS 0.000 0.941 0.941[4] 0.882 0.496 0.689[1]

0.5-0.6 OCP 0.470 0.000 0.470[5] 0.401 0.708 0.555[4]

restrOCP 0.298 0.000 0.298[2] 0.490 0.581 0.536[5]

Prom 0.323 0.000 0.333[3] 0.590 0.610 0.600[2]

OptFunc 0.457 0.000 0.457[4] 0.434 0.696 0.565[3]

GS 0.232 0.000 0.232[1] 0.849 0.588 0.719[1]

ROSfs ,𝛽
: average relative oversizing function; RUPfp ,𝛽

: average relative underpowering function; ASLiu
fs ,fp ,𝛽

:
average Liu score;
SN𝛽 : average conditional sample size sub-score; SCP𝛽 : average conditional power sub-score; ASNew

𝛽
:

average new conditional score;
GS: classical group sequential approach; OptFunc: optimization function approach; Prom: promising zone
approach;OCP: observed conditional power approach; restrOCP: restricted observed conditional power
approach;
[⋅]: numbers in square brackets present the ranking of the group sequential designs according to the
corresponding average performance score ([1]: best performance to [5]: worst performance).

to the fact that the recalculated sample sizes are very similar for Δ = 0.2 and Δ = 0.3 (Row 11, E[NRA
total] = 179.358; Row

16, E[NRA
total] = 170.972) but the target values are very different (N target

0.2;𝛽 = 50;N target
0.3;𝛽 = 177).

Considering an underlying standardized effect size ofΔ = 0.35, the ranking according to Liu's score for the sample size
recalculation rules remains the same as for Δ = 0.1, 0.2, and 0.3. All designs do not oversize according to Liu's definition
as their expected sample sizes are not higher than the one of the fixed design. For Δ = 0.35, the observed conditional
power approach receives the optimal total score of 0 (Row 21, SLiu

fs,fp,𝛽
(0.35) = 0.000) as the power is also higher than 0.8.

Concerning the conditional score, the score values for the four sample size recalculation designs are all rather similar.
However, the promising zone design is judged best (Row 23, SNew

𝛽
(0.35) = 0.620) due to an expected sample size close to

the target sample size together with a small variance (Row 23, Var
(

NRA
total,Δ

)
= 924.542).

For an underlying standardized effect of Δ = 0.4, the rankings with respect to Liu's score and the new conditional
score are the same for the sample size recalculation approaches. Both scores judge the promising zone approach as the
best recalculation rule. Liu's score even judges that approach as optimal since both sub-scores take the value of 0.000.
Hence, SLiu

fs,fp,𝛽
(0.4) = 0.000 for the promising zone approach. This is again due to the fact that the expected sample size is

smaller than the target sample size design and the power is higher than 0.8 such that no oversizing or underpowering
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occurs. However, the variability of sample size and hence also of the conditional power are not taken into account. Note
that the observed conditional power approach and the optimization function approach show some oversizing (Row 26,
ROSfs,𝛽(0.4) = 0.123; Row 29, ROSfs,𝛽(0.4) = 0.056) and the restricted observed conditional power approach is the only
sample size recalculation design that shows underpowering (Row 27, RUPfp,𝛽(0.4) = 0.427). With respect to the new con-
ditional score, the promising zone design is also judged as best design (Row 28, SNew

𝛽
(0.4) = 0.619) as the expected sample

size conditional on entering the second stage meets the target value quite well and shows a rather small variability. How-
ever, in total the conditional performance scores of the four recalculation designs for Δ = 0.4 lie all very close to each
other.

For increasing effect sizes, the ranking according to the new conditional performance score remains stable with the
promising zone design showing the best performance (Row 33, SNew

𝛽
(0.5) = 0.597; Row 38, SNew

𝛽
(0.6) = 0.595). However,

all designs achieve very similar score values. Liu's ranking is nearly the same for underlying effect sizes of 0.5 and 0.6.
In both scenarios, the restricted observed conditional power approach performs best and the promising zone approach
second best regarding the sample size recalculation rules. Only the observed conditional power approach and the opti-
mization function approach change their positions as the observed conditional power design returns sample sizes that
are minimally closer to the target sample size for Δ = 0.6 than the optimization function design (Row 36, E[Ntotal,Δ] =
68.303; Row 39, E[Ntotal,Δ] = 68.376) where it is the other way around for Δ = 0.5 (Row 31, E[Ntotal,Δ] = 86.306; Row 34,
E[Ntotal,Δ] = 84.508). For these higher effects, the power of the four recalculation designs is higher than 0.8 and the sample
sizes are higher than the target sample size. Hence, Liu's score is only based on the relative oversizing function.

From Table 1 as well as Table 2, we see that a change in expected conditional power conditional on entering the
recalculation area (Table 1, Column 11) translates to a similar change in the location component for the conditional power
of the conditional performance score (Table 2, Column 6). A change in the location component of the sample size eN(Δ)
(Table 2, Column 3) corresponds approximately to a hundredfold change in expected sample size conditional on entering
the recalculation area (Table 1, Column 8).

Table 3 presents the estimated average performance scores over all eight effect sizes as well as three effect ranges
([0.0; 0.2], [0.3; 0.4], [0.5; 0.6]) together with the related average sub-scores for all investigated simulation scenarios. Col-
umn 1 of Table 3 displays the considered effect range and Column 2 the underlying sample size recalculation design.
Column 3 shows the relative oversizing function ROSfs,𝛽(Δ) averaged over the respective effects, where the average is
denoted by ROSfs,𝛽 ; Column 4 with RUPfp,𝛽 is denoted analogously. Column 5 finally shows the total estimated averaged
Liu performance score ASLiu

fs,fp,𝛽
. The new conditional sub-score assessing the sample size performance averaged over the

considered Δ is denoted by SN𝛽 and reported in Column 6. The average new conditional sub-score assessing the power
performance SCP𝛽 is given in Column 7. Finally, Column 8 shows the estimated averaged new conditional performance
score ASNew

𝛽
. As before, numbers in square brackets after the performance scores represent the ranking of the designs

according to the underlying performance score and we only describe the performance of the four sample size recalcula-
tion rules (observed conditional power, restricted observed conditional power, promising zone, and optimization function
approach).

Table 3 shows the following results. Generally, we can observe that the estimated average performance scores for
the sample size recalculation rules lie all very close to each other, both for the average Liu score and the average new
conditional score. However, the rankings with respect to the two average scores are quite different. The average Liu score
over all eight effect sizes rates the observed conditional power approach as best (Row 1, ASLiu

fs,fp,𝛽
= 0.965) and the restricted

conditional power approach as worst (Row 2, ASLiu
fs,fp,𝛽

= 1.300). This is due to the fact that the average of the relative

underpowering function is rather small for the observed conditional power design (Row 1, RUPfp,𝛽 = 0.813) and relatively
large for the restricted conditional power approach (Row 2, RUPfp,𝛽 = 1.215). The relative oversizing values lie all very
close to each other and are incorporated in the average Liu score with the same weight as the average values of the relative
underpowering function. Consequently, they hardly affect the average Liu score.

When looking at the average values of the new conditional score, the promising zone approach is the best (Row
3, ASNew

𝛽
= 0.595) and the restricted observed conditional power approach is the worst (Row 2, ASNew

𝛽
= 0.517). The

conditional power sub-scores are relatively similar across the designs whereas the sample size sub-scores show larger dif-
ferences. The promising zone approach has the best sample size sub-score (Row 3, SN𝛽 = 0.642) as its overall variability
in calculating the sample size is rather low compared to the other designs. For the observed conditional power approach,
the sample size sub-score SN𝛽 equals 0.455 (Row 1) as the expected sample size per group conditional on entering the
recalculation area is often far away from meeting the target value.
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Concerning the Liu score for the three effect ranges [0.0; 0.2], [0.3; 0.4], and [0.5; 0.6], the ranking for the first two
ranges is equivalent to the overall ranking, for the reasons specified above. The ranking of the third range, [0.5; 0.6],
is completely opposite with the restricted observed conditional power design showing the best performance (Row 17,
ASLiu

fs,fp,𝛽
= 0.298) and the observed conditional power approach showing the worst performance (Row 16, ASLiu

fs,fp,𝛽
= 0.470).

This is due to the fact that only the relative oversizing sub-scores determine the total scores and the recalculated sample
sizes of the latter design are relatively large.

The rankings of the new conditional performance score are mostly different from the overall ranking. How-
ever, the promising zone approach remains the best performing recalculation design for all other three effect ranges
[0.0; 0.2], [0.3; 0.4], and [0.5; 0.6]. The other three designs change positions. For [0.0; 0.2], the observed conditional power
approach performs worst (Row 6, ASNew

𝛽
= 0.435). For [0.3; 0.4] and [0.5; 0.6], the restricted observed conditional power

approach performs worst (Row 12, ASNew
𝛽

= 0.476; Row 17, ASNew
𝛽

= 0.536). Especially for the effect range [0.5; 0.6], the
performance values of the recalculation rules are all very close to each other.

After having had a closer look at the performance of the main simulation setting (n1 = n2 = 50, f = 4), it is also inter-
esting to compare the performance of the sample size recalculation rules with different initial and maximal sample size
assumptions. Here, we only give an overview of the different rankings with respect to the conditional performance score.
Detailed information can be found in Tables A1-A4 in the Appendix.

In the second simulation setting described above, the same absolute maximal sample size as in the main setting is
considered (nmax = 200) but with n1 = n2 = 25. The ranking of this new simulation setting with respect to the new condi-
tional performance score is very similar to the one of the main simulation setting for the different underlying effect sizes.
However, for larger effect sizes (Δ = 0.5,Δ = 0.6), the values of SNew

𝛽
are higher in the second setting. This is due to the

fact that the sample size sub-score returns better values for the second setting as the sample size is smaller on average
and hence closer to the target values.

In the third simulation setting described in the simulation setup, the same relation as in the main setting between
maximal and initial sample size, f = 4, is considered but with n1 = n2 = 25 (instead of n1 = n2 = 50). For effect sizes
Δ = 0.0, 0.1, and 0.2, the rankings of the main and the third simulation setting with respect to the conditional performance
score are very similar with the promising zone approach as best performing recalculation design (cf Tables 1 and A3, Rows
3, 8, 13). For Δ = 0.3, the rankings differ considerably. In the third setting, the ranking remains the same as for the smaller
effect sizes but for the main setting it changes completely with the observed conditional power approach performing best
(Table 1, Row 16, SNew

𝛽
(0.3) = 0.624) and restricted observed conditional power approach performing worst (Table 1, Row

17, SNew
𝛽

(0.3) = 0.390). The performance of the observed conditional power approach is due to an average sample size
very close to the target sample size N target

0.3;𝛽 = 177 in the main setting, whereas theoretically that sample size can never
be reached in the third setting as the maximal sample size is bounded by 100 and thus n1 = 25 is taken as target sample
size for the third setting. For effect sizes of Δ = 0.35, 0.4, 0.5, and 0.6, the rankings are again rather similar. Especially
for Δ = 0.5 and Δ = 0.6, the score values of the four sample size recalculation rules are also very close to each other. For
effect sizes Δ of 0.35 and 0.4, the sample size and conditional power sub-scores are always better in the main setting than
in the third setting.

Briefly, the maximal sample size has a great influence on the fact if and how well the target sample size can be reached.
Smaller sample sizes n1 for the first stage favor small target sample sizes, which is reflected by the conditional performance
score.

5.3 A clinical trial example

The ChroPac multicenter, randomized, controlled trial23,24 investigated the quality of life after surgical treatment for
chronic pancreatitis patients. Two groups, one receiving a duodenum-preserving surgery and one with resection of the
duodenum, were compared with regard to physical functioning. The endpoint was measured by a score ranging from
0 until 100 obtained by the EORTC QLQ-C30 questionnaire 9 months after surgery. High score values indicate a good
performance. A score difference of 10 points was supposed to be clinically relevant and a standard deviation of 20 points
was assumed from previous trials (cf References 23,24) resulting in an assumed standardized effect of Δ = 0.5.

The original trial was not planned with the option to recalculate the sample size. For our illustrative example, we
thus make further assumptions. We set the one-sided significance level to 2.5% and the desired power to 80%. The score
values are supposed to be normally distributed with known common variance for both groups. With these assumptions
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and Δ = 0.5, nfix
0.5,0.8 = 63 patients are required per group according to Equation (21). After the inclusion of 32 patients (=⌈0.5 ⋅ nfix

0.5,0.8⌉) per group, an interim analysis is performed with the possibility to recalculate the sample size. The maximal
sample size per group is limited to 2 ⋅ nfix

0.5,0.8 = 126.
A standardized interim effect of Δ̂1 = 0.4 is observed, hence, falling in the recalculation area. Now the question arises

which recalculation rule is the best performing one. We evaluate this with regard to the new conditional performance
score as well as the overall power and total sample size. For the inverse normal combination test, we take weights w1 =
w2 =

√
32. We performed a simulation study where 10 000 observations were drawn from a normal distribution with an

expectation equal to 0.4 ⋅
√

32∕2 and a standard deviation of 1. Note that the boundaries for the interpretation of the
conditional score remain the same as in Section 4.9.

According to the corresponding simulation results presented in Table 4, the observed conditional power approach
and the optimization function approach are proposed by the new conditional score (Row 1, SNew

𝛽
(0.4) = 0.619; Row 4:

SNew
𝛽

(0.4) = 0.617) next to the classical group sequential approach (Row 5, SNew
𝛽

(0.4) = 0.646). This goes in line with an
overall power close to 80% (Row 1, Pow0.4 = 0.753; Row 4, Pow0.4 = 0.729) for the observed conditional power and opti-
mization function approach but not for the group sequential approach (Row 5, Pow0.4 = 0.565). The higher power of the
observed conditional power and optimization function approach is obtained at the cost of higher total sample sizes (Row
1, E[Ntotal;0.4] ≈ 82; Row 4, E[Ntotal;0.4] ≈ 78) than for the other three designs with a smaller overall power. However, all
the sample sizes are much smaller than the maximally allowed sample size nmax = 126. All three designs show a high
performance with respect to the boundaries of the score interpretation from Section 4.9. The observed conditional power
approach and the optimization function approach perform also reasonably well (mostly with a medium performance) if
the true effect size Δ is larger than 0.4 (Row 6, SNew

𝛽
(0.45) = 0.578; Row 9, SNew

𝛽
(0.45) = 0.577; Row 11, SNew

𝛽
(0.5) = 0.556;

Row 14, SNew
𝛽

(0.5) = 0.556; Row 16, SNew
𝛽

(0.55) = 0.544; Row 19, SNew
𝛽

(0.55) = 0.543; Row 21, SNew
𝛽

(0.6) = 0.541; Row 24,
SNew
𝛽

(0.6) = 0.540). The classical group sequential design is the only design that shows a high performance for all con-
sidered standardized treatment effect sizes. However, it does only reach a global power of 0.8 for effect sizes Δ = 0.5 and
Δ = 0.6.

As an effect size of Δ = 0.5 was initially defined to be clinically relevant, the simulation results for smaller effect sizes
than 0.4 should not guide the choice of the recalculation rule. Hence, these are not listed in Table 4. While considering a
high power and small sample size as equally important, one might however decide for the optimization function approach
as it shows a high or medium performance and almost the same performance as for the observed conditional power
approach can be achieved at the cost of fewer patients for standardized effect sizes of 0.4, 0.45, and 0.5. Moreover, the
design performs also reasonably good in comparison to the others for larger effect sizes than Δ1 = 0.4. The classical group
sequential design is another option since it shows a high conditional performance for all considered effect sizes. However,
an overall power of 0.8 is only attained for Δ = 0.5 and Δ = 0.6.

6 DISCUSSION

Adaptive group-sequential designs generally allow adapting the sample size during the ongoing trial and thereby account
for planning uncertainties. So far, there exist a number of different performance measures to assess the quality of such
designs. However, existing performance measures ignore important features of performance (eg, the variability of the
recalculated sample size) and there exist no unique standards to assess the global performance within a related score.
In this work, we contributed to overcome this shortcoming by presenting a new conditional performance score for the
evaluation of adaptive designs, where the term “conditional” refers to the condition of already knowing the interim result.
We present different unconditional and conditional performance measures and discuss their intuitive target values. In
an adaptive setting, global performance measures and conditional performance measures are two important perspectives
which should both be assessed. As conditional performance measures have a very natural interpretation in adaptive
designs and their target values are easier to define, we introduced a conditional performance score. As a new aspect,
our new score does not only include measures of location but also of variation. The new score is based on a sub-score
assessing the sample size and a sub-score assessing the power which can both be interpreted separately. Moreover, the
two sub-scores can be split into a location and variation component. We applied the performance score proposed by Liu
et al13 as well as the new score to four different sample size recalculation approaches that were proposed in the literature.

Liu's score is a global, unconditional score that focuses on penalizing high sample sizes as well as low power values
compared to the fixed sample size design. This concept nicely adapts the idea of calculating the smallest sample size that
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T A B L E 4 Estimated point-wise performance scores and related conditional score components as well as unconditional performance
measures for all investigated simulation scenarios for the ChroPac trial (n1 = n2 = 32, nmax = 126)

Parameters to be Estimated

𝚫 Design E[Ntotal,𝚫] Pow𝚫 eN (𝚫) vN (𝚫) SN𝜷 (𝚫) eCP(𝚫) vCP(𝚫)) SCP𝜷 (𝚫) SNew
𝜷

(𝚫)[⋅]

0.4 OCP 81.337 0.753 0.926 0.447 0.687 0.719 0.383 0.551 0.619[2]

restrOCP 53.316 0.558 0.621 0.249 0.435 0.616 0.221 0.419 0.427[5]

Prom 60.211 0.615 0.732 0.594 0.663 0.637 0.295 0.466 0.564[4]

OptFunc 77.849 0.729 0.983 0.426 0.704 0.749 0.309 0.529 0.617[3]

GS 53.056 0.565 0.616 1.000 0.808 0.561 0.405 0.483 0.646[1]

0.45 OCP 75.955 0.843 0.727 0.427 0.577 0.753 0.403 0.578 0.578[3]

restrOCP 53.291 0.657 0.876 0.254 0.565 0.661 0.234 0.448 0.506[5]

Prom 58.377 0.717 0.965 0.589 0.777 0.676 0.302 0.489 0.633[2]

OptFunc 74.342 0.820 0.755 0.436 0.596 0.788 0.328 0.558 0.577[4]

GS 51.424 0.670 0.843 1.000 0.921 0.596 0.402 0.499 0.710[1]

0.5 OCP 70.014 0.905 0.603 0.412 0.508 0.784 0.425 0.605 0.556[3]

restrOCP 51.872 0.739 0.957 0.273 0.615 0.698 0.248 0.473 0.544[5]

Prom 56.270 0.805 0.871 0.576 0.724 0.717 0.312 0.515 0.619[2]

OptFunc 69.877 0.763 0.606 0.442 0.524 0.824 0.351 0.588 0.556[3]

GS 49.459 0.670 0.996 1.000 0.998 0.631 0.402 0.516 0.757[1]

0.55 OCP 63.815 0.944 0.512 0.401 0.457 0.811 0.452 0.631 0.544[3]

restrOCP 49.921 0.808 0.823 0.296 0.559 0.733 0.272 0.503 0.531[5]

Prom 52.982 0.870 0.754 0.593 0.674 0.748 0.328 0.538 0.606[2]

OptFunc 64.615 0.930 0.495 0.447 0.471 0.855 0.377 0.616 0.543[4]

GS 47.245 0.840 0.882 1.000 0.941 0.663 0.405 0.534 0.738[1]

0.6 OCP 57.723 0.969 0.451 0.395 0.423 0.836 0.484 0.660 0.541[3]

restrOCP 47.374 0.862 0.727 0.314 0.520 0.763 0.295 0.529 0.525[5]

Prom 49.637 0.919 0.666 0.592 0.629 0.778 0.351 0.564 0.597[2]

OptFunc 59.106 0.960 0.414 0.454 0.434 0.884 0.410 0.647 0.540[4]

GS 44.781 0.889 0.796 1.000 0.898 0.692 0.415 0.554 0.726[1]

Δ: true standardized effect; E[Ntotal,Δ]: expected sample size per group for both stages; PowΔ: power of the adaptive design for standardized treatment effect
Δ;
eN (Δ): location component for conditional sample size; vN (Δ): variation component for conditional sample size;
eCP(Δ): location component for conditional power; vCP(Δ): variation component for conditional power;
SN𝛽 (Δ): conditional sample size sub-score; SCP𝛽 (Δ): conditional power sub-score; SNew

𝛽
(Δ): point-wise new conditional score;

GS: classical group sequential approach; OptFunc: optimization function approach; Prom: promising zone approach;OCP: observed conditional power
approach; restrOCP: restricted observed conditional power approach;
[⋅]: numbers in square brackets present the ranking of the group sequential designs according to the corresponding point-wise performance score ([1]: best
performance to [5]: worst performance).

ensures a certain power value yet it does not directly consider “overpowering” or “undersizing.” While in a fixed design,
an overpowered trial is naturally oversized and vice versa an underpowered trial is undersized, this cannot directly be
transferred to adaptive designs where there no longer exist a unique sample size but average sample sizes are consid-
ered. A potential criticism of Liu's score is that it is highly questionable whether the “perfect” fixed sample size design is
really a valid reference. In fact, the expected sample size of an adaptive design is not directly comparable to the required
sample size of a fixed design. Moreover, under the null hypothesis, there is no reference sample size of the fixed design
and therefore Liu's score is not well-defined under the null hypothesis. However, a nice feature of Liu's score is that
the relative underpowering function and the relative oversizing function can be interpreted as sub-scores and may be
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evaluated separately. Both sub-scores are measured on the same scale which is achieved by a transformation to a “sample
size scale”, which is appealing for comparative investigations. Nevertheless, this sample size scale can also be questioned.
The power sub-score does not directly compare the achieved power with the power of the fixed design but the power val-
ues are transformed to a sample size scale. This transformation is clearly nonlinear and therefore expectations are not
maintained. The score values range from 0 to ∞ and it needs to be discussed which multiple of oversizing or underpow-
ering can be regarded as decent performance of a design. Moreover, one has to keep in mind that a “perfect” performance
with a Liu score value of 0.000 (eg, as in the promising zone approach for Δ = 0.4 in the main setting) does not fit the
intuitive view of “optimal performance” as Liu's score does not consider measures of variability.

The above considerations led us to the definition of the new conditional score that also incorporates the idea of two
sub-scores relating to sample size and power. The concept of adequate target values is easier in this setting. An important
advantage is that our new score (and both sub-scores) incorporate parameters penalizing a high variability in sample size
and conditional power. Moreover, the new score has the potential benefit that it ranges from 0 to 1 such that absolute
values for “worst” and “best” performance are defined. This concept applies also to the two sub-scores that are measured
on the same scale. The four location and variation parameters (eN(Δ), vN(Δ), eCP(Δ), vCP(Δ)) allow to specify the perfor-
mance of an approach in relation to a design with respect to location and variation of conditional power and sample size,
respectively, and range also from 0 to 1. Even though the performance score was primarily developed to compare differ-
ent recalculation rules, one might also be interested in the influence of other design parameters (like different n1 or nmax)
on a certain recalculation rule. Therefore, we gave guidance on how to determine score values indicating good or bad
performance. However, the judgment of the performance of a certain design as high, medium, or low, or the interpre-
tation of score differences depend importantly on the chosen target values. Note that the variance of the score depends
on the underlying effect size. For example, small differences of the observed interim effect do not make a big difference
for interim effects close to Δ̂1 = 0.1 but they do for observed interim effects close to Δ̂1 = 0.3 (cf Figure 1). The reason
for the latter observation is that a slightly different observed effect size leads to a very different recalculated sample size.
As a potential limitation but also as potential room for extending our new score, it should be noted that target values
for the conditional power and the sample size are not necessarily “unique”. In the definition of the target sample size
in Equation (25), one could for instance also apply nmax instead of n1 whenever nfix

Δ,1−𝛽 > nmax. However, our score can
also easily be applied when the target values are modified. Generally, it must be noted that any combination of differ-
ent performance measures within a single performance score always corresponds to some arbitrariness. For example, we
combine the two sub-scores with equal weights in the final conditional performance score (which favors classical group
sequential designs). A different weighting can easily be implemented by means of a weighted average of the conditional
power and sample size sub-score. Generally, the sub-scores for sample size and power must not necessarily be combined
by a simple linear combination.

The two performance scores were applied to four different sample size recalculation designs and a classical group
sequential study design. With respect to certain effect sizes and overall performance, the designs are performing differ-
ently in terms of conditional and unconditional measures (cf Tables 1-3 and A1-A4). The performance score values also
depend on the interim and maximal sample size. Both performance scores do not have the same ranking for all values of
Δ. Therefore, comparing unweighted average performance scores over a wide range for Δ is not recommended. We sug-
gest to investigate the point-wise scores separately or only for small effect ranges. Moreover, the score ranking with respect
to Liu's score and the new conditional performance score are very different. This is due to the fact that the new score
penalizes large variabilities in sample size and conditional power. Another point is that the target values for conditional
power and sample size in the new score only suggest a sample size increase if this seems “worth the effort” with respect
to the maximally allowed sample size. However, note that most investigated sample size recalculation approaches rely
on specific parameter assumptions, which we did not try to optimize. Especially for the optimization function approach,
we did not search for the optimal parameter 𝛾 and therefore the design might behave differently under other parame-
ters. Similarly, the predefined minimal conditional power 1 − 𝛽0 in the restricted observed conditional power approach
can be chosen differently. Thus, the performance rankings should not be over-interpreted. Moreover, note that the condi-
tional perspective of our score is motivated by an interim look. For fixed sample size designs, we recommend the global
evaluation perspective.

We generally propose the following performance assessment when planning an adaptive trial:

1. Investigate global unconditional performance measures for sample size and power or a related global performance
score under various underlying effect scenarios.

2. Determine the probability to enter the recalculation area (given by the interim critical value and the futility bound)
under various underlying effect scenarios.
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3. In particular for those effect sizes, where it is likely to reach the recalculation area: Investigate conditional performance
measures and our new conditional performance score.

The choice of other local significance levels (eg, the design by O'Brien and Fleming18) changes the performance of
the sample size recalculation rules and is therefore also interesting for future research. Another task for future work is
the development of optimized sample size recalculation rules based on the new conditional performance score. An R
package implementing the new score and related performance measures is currently created. The simulation programs
underlying this work are added as supplemental material to this paper.

ACKNOWLEDGEMENT
This work was supported by the German Research Foundation (grants RA 2347/4-1 and KI 708/4-1).

DATA AVAILABILITY
Original data were not analyzed. The R code that was used for producing simulated data and analyzing them is available
as supplemental material.

ORCID
Carolin Herrmann https://orcid.org/0000-0003-2384-7303
Maximilian Pilz https://orcid.org/0000-0002-9685-1613
Meinhard Kieser https://orcid.org/0000-0003-2402-4333
Geraldine Rauch https://orcid.org/0000-0002-2451-1660

REFERENCES
1. The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use. Statisti-

cal Principles for Clinical Trials-E9. ICH. https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-
clinical-trials-step-5_en.pdf. Published 1998. Accessed December 17, 2019.

2. Müller HH, Schäfer H. Adaptive group sequential designs for clinical trials: combining the advantages of adaptive and of classical group
sequential approaches. Biometrics. 2001;57(3):886-891.

3. Cui L, Hung HM, Wang S. Modification of sample size in group sequential clinical trials. Biometrics. 1999;55(3):853-857.
4. Bauer P, Köhne K. Evaluation of experiments with adaptive interim analyses. Biometrics. 1994;50(4):1029-1041.
5. Lehmacher W, Wassmer G. Adaptive sample size calculations in group sequential trials. Biometrics. 1999;55(4):1286-1290.
6. Dmitrienko A, Wang M. Bayesian predictive approach to interim monitoring in clinical trials. Stat Med. 2006;25(13):2178-2195.
7. Mehta C, Pocock SJ. Adaptive increase in sample size when the results are promising: a practical guide with examples. Stat Med.

2011;30(28):3267-3284.
8. Spiegelhalter DJ, Freedman LS. A predictive approach to selecting the size of a clinical trial, based on subjective clinical opinion. Stat Med.

1986;5(1):1-13.
9. Spiegelhalter DJ, Freedman LS, Blackburn PR. Monitoring clinical trials: conditional or predictive power? Control Clin Trials.

1986;7(1):8-17.
10. Jennison C, Turnbull BW. Adaptive sample size modification in clinical trials: start small then ask for more? Stat Med.

2015;34(29):3793-3810.
11. Pilz M, Kunzmann K, Herrmann C, Rauch G, Kieser M. A variational approach to optimal two-stage designs. Stat Med.

2019;38(21):4159-4171.
12. Levin GP, Emerson SC, Emerson SS. Adaptive clinical trial designs with pre-specified rules for modifying the sample size: understanding

efficient types of adaptation. Stat Med. 2013;32(8):1259-1275.
13. Liu GF, Zhu GR, Cui L. Evaluating the adaptive performance of flexible sample size designs with treatment difference in an interval. Stat

Med. 2008;27(4):584-596.
14. Placzek M, Friede T. Clinical trials with nested subgroups: analysis, sample size determination and internal pilot studies. Stat Methods

Med Res. 2018;27(11):3286-3303.
15. Hwang IK, Shih WJ, De Cani JS. Group sequential designs using a family of type I error probability spending functions. Stat Med.

1990;9(12):1439-1445.
16. Kim K, Demets DL. Design and analysis of group sequential tests based on the type I error spending rate function. Biometrika.

1987;74(1):149-154.
17. Lan KG, DeMets DL. Discrete sequential boundaries for clinical trials. Biometrika. 1983;70(3):659-663.
18. O'Brien PC, Fleming TR. A multiple testing procedure for clinical trials. Biometrics. 1979;35(3):549-556.
19. Pocock SJ. Group sequential methods in the design and analysis of clinical trials. Biometrika. 1977;64(2):191-199.
20. Wassmer G, Brannath W. Group Sequential and Confirmatory Adaptive Designs in Clinical Trials. Berlin, Heidelberg / Germany: Springer;

2016.

https://orcid.org/0000-0003-2384-7303
https://orcid.org/0000-0003-2384-7303
https://orcid.org/0000-0002-9685-1613
https://orcid.org/0000-0002-9685-1613
https://orcid.org/0000-0003-2402-4333
https://orcid.org/0000-0003-2402-4333
https://orcid.org/0000-0002-2451-1660
https://orcid.org/0000-0002-2451-1660
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf
https://www.ema.europa.eu/en/documents/scientific-guideline/ich-e-9-statistical-principles-clinical-trials-step-5_en.pdf


2094 HERRMANN et al.

21. Wassmer G. Planning and analyzing adaptive group sequential survival trials. Biom J. 2006;48(4):714-729.
22. R development Core Team. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical

Computing; 2017.
23. Diener MK et al. ChroPac-trial: duodenum-preserving pancreatic head resection versus pancreatoduodenectomy for chronic pancreatitis

Trial protocol of a randomised controlled multicentre trial. Trials. 2010;11(1):47.
24. Diener MK et al. Partial pancreatoduodenectomy versus duodenum-preserving pancreatic head resection in chronic pancreatitis: the

multicentre, randomized, controlled, double-blind ChroPac trial. Lancet. 2017;390(10099):1027-1037.

How to cite this article: Herrmann C, Pilz M, Kieser M, Rauch G. A new conditional performance score for
the evaluation of adaptive group sequential designs with sample size recalculation. Statistics in Medicine.
2020;39:2067–2100. https://doi.org/10.1002/sim.8534



HERRMANN et al. 2095

A
p

p
en

d
ix

A

T
A

B
L

E
A

1
Es

tim
at

ed
po

in
t-w

is
e

pe
rf

or
m

an
ce

sc
or

es
an

d
re

la
te

d
co

nd
iti

on
al

an
d

un
co

nd
iti

on
al

pe
rf

or
m

an
ce

m
ea

su
re

sf
or

al
li

nv
es

tig
at

ed
si

m
ul

at
io

n
sc

en
ar

io
sw

ith
n 1

=
n 2

=
25

,
n m

ax
=

20
0

Pa
ra

m
et

er
s

to
be

Es
ti

m
at

ed

𝚫
(n

fi
x 𝚫,
0.

8)
D

es
ig

n
E
[N

to
ta

l,𝚫
]

R
O

S f
s,
𝜷
(𝚫

)
Po

w
𝚫

R
U

P f
p
,𝜷
(𝚫

)
SLi

u
f s
,f p

,𝜷
(𝚫

)[⋅
]

E

[ N
R

A
to

ta
l,𝚫

]
Va

r( N
R

A
to

ta
l,𝚫

)
SN

𝜷
(𝚫

)
E

[ C
PR

A
𝚫

]
Va

r( C
PR

A
𝚫

)
SC

P 𝜷
(𝚫

)
SN

ew
𝜷

(𝚫
)[⋅
]

0.
0

O
C

P
98

.6
27

–
0.

02
5

–
–

17
5.

78
2

21
57

.5
66

0.
30

4
0.

36
4

0.
11

1
0.

49
3

0.
39

8[
5]

(–
)

re
st

rO
C

P
43

.0
64

–
0.

02
3

–
–

61
.9

95
36

11
.7

18
0.

55
1

0.
27

2
0.

13
8

0.
50

2
0.

52
7[

3]

Pr
om

39
.0

82
–

0.
02

5
–

–
53

.8
38

14
1.

63
8

0.
85

0
0.

17
9

0.
07

7
0.

64
4

0.
74

7[
2]

O
pt

Fu
nc

67
.6

78
–

0.
02

5
–

–
11

2.
40

0
46

23
.5

51
0.

36
2

0.
37

2
0.

14
7

0.
44

0
0.

40
1[

4]

G
S

37
.2

08
–

0.
02

5
–

–
50

.0
00

0.
00

0
0.

92
9

0.
14

7
0.

04
6

0.
72

2
0.

82
5[

1]

0.
1

O
C

P
11

1.
62

3
0.

00
0

0.
09

2
3.

01
1

3.
01

1[
1]

16
7.

47
2

27
34

.2
51

0.
29

4
0.

42
1

0.
11

5
0.

45
8

0.
37

6[
5]

(1
57

1)
re

st
rO

C
P

50
.5

48
0.

00
0

0.
07

5
3.

06
4

3.
06

4[
3]

67
.0

20
36

87
.9

30
0.

53
3

0.
33

3
0.

15
0

0.
45

5
0.

49
4[

3]

Pr
om

43
.2

71
0.

00
0

0.
06

9
3.

08
0

3.
08

0[
4]

55
.0

51
17

8.
47

3
0.

83
8

0.
22

9
0.

09
5

0.
58

7
0.

71
2[

2]

O
pt

Fu
nc

80
.3

59
0.

00
0

0.
09

1
3.

01
4

3.
01

4[
2]

11
6.

05
0

44
33

.3
45

0.
35

9
0.

43
8

0.
15

5
0.

39
5

0.
37

7[
4]

G
S

40
.2

00
0.

00
0

0.
06

6
3.

09
0

3.
09

0[
5]

50
.0

00
0.

00
0

0.
92

9
0.

18
7

0.
05

8
0.

67
6

0.
80

2[
1]

0.
2

O
C

P
11

7.
34

6
0.

00
0

0.
27

9
2.

41
1

2.
41

1[
1]

15
7.

94
8

32
84

.4
62

0.
29

3
0.

47
8

0.
11

2
0.

43
4

0.
36

3[
4]

(3
95
)

re
st

rO
C

P
57

.1
46

0.
00

0
0.

19
7

2.
67

6
2.

67
6[

3]
71

.2
80

36
50

.9
45

0.
52

3
0.

39
5

0.
15

4
0.

41
7

0.
47

0[
3]

Pr
om

46
.7

30
0.

00
0

0.
16

4
2.

78
5

2.
78

5[
4]

56
.2

85
21

1.
10

8
0.

82
8

0.
28

6
0.

11
1

0.
53

2
0.

68
0[

2]

O
pt

Fu
nc

90
.3

43
0.

00
0

0.
26

2
2.

46
5

2.
46

5[
2]

11
9.

07
3

42
27

.3
53

0.
36

0
0.

50
5

0.
15

4
0.

36
2

0.
36

1[
5]

G
S

42
.3

65
0.

00
0

0.
14

8
2.

83
4

2.
83

4[
5]

50
.0

00
0.

00
0

0.
92

9
0.

23
4

0.
07

1
0.

62
7

0.
77

8[
1]

0.
3

O
C

P
11

3.
52

6
0.

00
0

0.
56

2
1.

36
5

1.
36

5[
1]

14
7.

30
7

37
21

.6
82

0.
56

9
0.

54
0

0.
10

2
0.

54
8

0.
55

8[
1]

(1
77
)

re
st

rO
C

P
61

.9
88

0.
00

0
0.

38
9

2.
03

5
2.

03
5[

3]
76

.1
03

36
08

.4
16

0.
37

1
0.

46
5

0.
15

0
0.

44
2

0.
40

6[
5]

Pr
om

48
.2

62
0.

00
0

0.
31

7
2.

28
2

2.
28

2[
4]

57
.1

39
22

4.
45

5
0.

57
4

0.
34

7
0.

12
1

0.
41

9
0.

49
7[

3]

O
pt

Fu
nc

94
.5

30
0.

00
0

0.
51

3
1.

56
7

1.
56

7[
2]

12
1.

06
2

39
91

.1
46

0.
48

1
0.

57
8

0.
14

4
0.

50
7

0.
49

4[
4]

G
S

43
.0

95
0.

00
0

0.
28

4
2.

39
2

2.
39

2[
5]

50
.0

00
0.

00
0

0.
63

9
0.

28
6

0.
08

1
0.

45
2

0.
54

6[
2]

0.
35

O
C

P
10

8.
47

7
0.

00
0

0.
68

7
0.

75
0

0.
75

0[
1]

14
1.

49
1

38
62

.3
07

0.
61

2
0.

57
0

0.
09

4
0.

57
5

0.
59

4[
3]

(1
31
)

re
st

rO
C

P
62

.1
55

0.
00

0
0.

48
7

1.
67

1
1.

67
1[

3]
76

.8
49

34
31

.7
34

0.
51

3
0.

49
7

0.
14

5
0.

46
3

0.
48

8[
5]

Pr
om

48
.4

07
0.

00
0

0.
41

2
1.

95
1

1.
95

1[
4]

57
.6

64
23

4.
55

4
0.

70
6

0.
38

0
0.

12
5

0.
43

2
0.

59
6[

2]

(C
on

tin
ue

s)



2096 HERRMANN et al.

T
A

B
L

E
A

1
(C

on
tin

ue
d)

Pa
ra

m
et

er
s

to
be

Es
ti

m
at

ed

𝚫
(n

fi
x 𝚫,
0.

8)
D

es
ig

n
E
[N

to
ta

l,𝚫
]

R
O

S f
s,
𝜷
(𝚫

)
Po

w
𝚫

R
U

P f
p
,𝜷
(𝚫

)
SLi

u
f s
,f p

,𝜷
(𝚫

)[⋅
]

E

[ N
R

A
to

ta
l,𝚫

]
Va

r( N
R

A
to

ta
l,𝚫

)
SN

𝜷
(𝚫

)
E

[ C
PR

A
𝚫

]
Va

r( C
PR

A
𝚫

)
SC

P 𝜷
(𝚫

)
SN

ew
𝜷

(𝚫
)[⋅
]

O
pt

Fu
nc

94
.7

07
0.

00
0

0.
63

3
1.

03
3

1.
03

3[
2]

12
2.

27
4

38
70

.8
48

0.
62

2
0.

61
5

0.
13

4
0.

53
9

0.
58

0[
4]

G
S

42
.9

15
0.

00
0

0.
37

1
2.

09
9

2.
09

9[
5]

50
.0

00
0.

00
0

0.
77

1
0.

31
5

0.
08

5
0.

46
0

0.
61

6[
1]

0.
4

O
C

P
10

1.
78

9
0.

03
7

0.
78

3
0.

13
4

0.
17

2[
1]

13
5.

55
1

39
62

.1
47

0.
53

9
0.

60
0

0.
08

7
0.

60
3

0.
57

1[
4]

(1
01
)

re
st

rO
C

P
62

.2
39

0.
00

0
0.

58
4

1.
26

7
1.

26
7[

3]
78

.6
12

33
45

.0
05

0.
60

8
0.

53
2

0.
13

7
0.

49
2

0.
55

0[
5]

Pr
om

48
.1

96
0.

00
0

0.
51

3
1.

56
6

1.
56

6[
4]

58
.3

95
25

2.
68

3
0.

79
0

0.
41

5
0.

12
6

0.
44

7
0.

61
9[

2]

O
pt

Fu
nc

91
.9

37
0.

00
0

0.
72

8
0.

50
7

0.
50

7[
2]

12
1.

36
8

37
16

.9
94

0.
59

1
0.

65
0

0.
12

5
0.

57
0

0.
58

0[
3]

G
S

42
.3

65
0.

00
0

0.
46

5
1.

75
6

1.
75

6[
5]

50
.0

00
0.

00
0

0.
85

7
0.

34
4

0.
08

7
0.

47
0

0.
66

4[
1]

0.
5

O
C

P
85

.5
29

0.
36

2
0.

89
5

0.
00

0
0.

36
2[

2]
12

3.
46

9
39

37
.3

76
0.

47
3

0.
64

7
0.

07
2

0.
65

4
0.

56
3[

5]

(6
5)

re
st

rO
C

P
58

.5
61

0.
00

0
0.

74
2

0.
41

9
0.

41
9[

3]
79

.5
98

29
74

.9
82

0.
64

5
0.

59
3

0.
11

8
0.

55
0

0.
59

7[
3]

Pr
om

46
.0

86
0.

00
0

0.
70

2
0.

66
5

0.
66

5[
4]

59
.3

04
26

1.
93

2
0.

89
3

0.
48

0
0.

12
3

0.
48

5
0.

68
9[

2]

O
pt

Fu
nc

82
.6

29
0.

31
6

0.
86

0
0.

00
0

0.
31

6[
1]

11
8.

75
1

34
29

.4
64

0.
51

0
0.

71
0

0.
10

5
0.

63
0

0.
57

0[
4]

G
S

40
.3

67
0.

00
0

0.
65

4
0.

92
9

0.
92

9[
5]

50
.0

00
0.

00
0

0.
95

9
0.

40
0

0.
08

9
0.

49
7

0.
72

8[
1]

0.
6

O
C

P
68

.7
74

0.
57

7
0.

94
9

0.
00

0
0.

57
7[

4]
11

2.
02

7
38

14
.7

09
0.

45
5

0.
68

4
0.

05
7

0.
70

1
0.

57
8[

5]

(4
5)

re
st

rO
C

P
51

.8
17

0.
18

8
0.

85
2

0.
00

0
0.

18
8[

3]
78

.3
14

26
46

.0
07

0.
61

0
0.

64
0

0.
09

8
0.

60
4

0.
60

7[
3]

Pr
om

42
.4

76
0.

00
0

0.
84

6
0.

00
0

0.
00

0[
1]

59
.7

43
25

3.
38

4
0.

86
6

0.
54

1
0.

11
6

0.
52

7
0.

69
7[

2]

O
pt

Fu
nc

69
.4

76
0.

59
3

0.
93

3
0.

00
0

0.
59

3[
5]

11
3.

42
1

31
71

.2
96

0.
48

2
0.

75
6

0.
08

5
0.

68
5

0.
58

4[
4]

G
S

37
.5

75
0.

00
0

0.
81

1
0.

00
0

0.
00

0[
1]

50
.0

00
0.

00
0

0.
98

5
0.

45
7

0.
08

9
0.

52
6

0.
75

6[
1]

Δ
:t

ru
e

st
an

da
rd

iz
ed

ef
fe

ct
;n

fix Δ
,0
.8

:o
pt

im
al

sa
m

pl
e

si
ze

in
th

e
fix

ed
de

si
gn

;E
[N

to
ta

l,Δ
]:

ex
pe

ct
ed

sa
m

pl
e

si
ze

pe
rg

ro
up

fo
rb

ot
h

st
ag

es
;P

ow
Δ

:p
ow

er
of

th
e

ad
ap

tiv
e

de
si

gn
fo

rs
ta

nd
ar

di
ze

d
tr

ea
tm

en
te

ffe
ct
Δ

;

E
[ N

RA to
ta

l,Δ

] :e
xp

ec
te

d
sa

m
pl

e
si

ze
pe

rg
ro

up
co

nd
iti

on
al

on
en

te
rin

g
th

e
re

ca
lc

ul
at

io
n

ar
ea

;V
ar
( N

RA to
ta

l,Δ

) :v
ar

ia
nc

e
of

sa
m

pl
e

si
ze

pe
rg

ro
up

co
nd

iti
on

al
on

en
te

rin
g

th
e

re
ca

lc
ul

at
io

n
ar

ea
;

E
[ C

PRA Δ
] :e

xp
ec

te
d

co
nd

iti
on

al
po

w
er

co
nd

iti
on

al
on

en
te

rin
g

th
e

re
ca

lc
ul

at
io

n
ar

ea
;V

ar
(C

PRA Δ
):

va
ria

nc
e

of
co

nd
iti

on
al

po
w

er
co

nd
iti

on
al

on
en

te
rin

g
th

e
re

ca
lc

ul
at

io
n

ar
ea

;
RO

S f
s,
𝛽
(Δ

):
re

la
tiv

e
ov

er
si

zi
ng

fu
nc

tio
n;

RU
P f

p,
𝛽
(Δ

):
re

la
tiv

e
un

de
rp

ow
er

in
g

fu
nc

tio
n;

SLi
u

f s,
f p
,𝛽
(Δ

):
po

in
t-w

is
e

Li
u

sc
or

e;
SN

𝛽
(Δ

):
co

nd
iti

on
al

sa
m

pl
e

si
ze

su
b-

sc
or

e;
SC

P 𝛽
(Δ

):
co

nd
iti

on
al

po
w

er
su

b-
sc

or
e;

SN
ew

𝛽
(Δ

):
po

in
t-w

is
e

ne
w

co
nd

iti
on

al
sc

or
e;

G
S:

cl
as

si
ca

lg
ro

up
se

qu
en

tia
la

pp
ro

ac
h;

O
pt

Fu
nc

:o
pt

im
iz

at
io

n
fu

nc
tio

n
ap

pr
oa

ch
;P

ro
m

:p
ro

m
is

in
g

zo
ne

ap
pr

oa
ch

;O
C

P:
ob

se
rv

ed
co

nd
iti

on
al

po
w

er
ap

pr
oa

ch
;r

es
tr

O
C

P:
re

st
ric

te
d

ob
se

rv
ed

co
nd

iti
on

al
po

w
er

ap
pr

oa
ch

;
[⋅]

:n
um

be
rs

in
sq

ua
re

br
ac

ke
ts

pr
es

en
tt

he
ra

nk
in

g
of

th
e

gr
ou

p
se

qu
en

tia
ld

es
ig

ns
ac

co
rd

in
g

to
th

e
co

rr
es

po
nd

in
g

po
in

t-w
is

e
pe

rf
or

m
an

ce
sc

or
e

([
1]

:b
es

tp
er

fo
rm

an
ce

to
[5

]:
w

or
st

pe
rf

or
m

an
ce

).



HERRMANN et al. 2097

T A B L E A2 Estimated performance sub-scores and related location and variation components for all investigated designs and
n1 = n2 = 25, nmax = 200

Parameters to be Estimated

𝚫 Design eN (𝚫) vN (𝚫) SN𝜷 (𝚫) eCP(𝚫) vCP(𝚫) SCP𝜷 (𝚫)
0.0 OCP 0.138 0.469 0.304 0.652 0.334 0.493

restrOCP 0.789 0.313 0.551 0.747 0.257 0.502

Prom 0.835 0.864 0.850 0.842 0.446 0.644

OptFunc 0.501 0.223 0.362 0.645 0.234 0.440

GS 0.857 1.000 0.929 0.875 0.570 0.722

0.1 OCP 0.186 0.402 0.294 0.594 0.323 0.458

restrOCP 0.760 0.306 0.533 0.684 0.225 0.455

Prom 0.828 0.847 0.838 0.791 0.384 0.587

OptFunc 0.480 0.239 0.359 0.577 0.214 0.395

GS 0.857 1.000 0.929 0.834 0.518 0.676

0.2 OCP 0.240 0.345 0.293 0.535 0.332 0.434

restrOCP 0.736 0.309 0.523 0.620 0.214 0.417

Prom 0.821 0.834 0.828 0.732 0.332 0.532

OptFunc 0.462 0.257 0.360 0.508 0.216 0.362

GS 0.857 1.000 0.929 0.786 0.468 0.627

0.3 OCP 0.835 0.303 0.569 0.733 0.362 0.548

restrOCP 0.428 0.314 0.371 0.657 0.226 0.442

Prom 0.320 0.829 0.574 0.535 0.303 0.419

OptFunc 0.685 0.278 0.481 0.772 0.242 0.507

GS 0.279 1.000 0.639 0.473 0.431 0.452

0.35 OCP 0.935 0.290 0.612 0.765 0.385 0.575

restrOCP 0.696 0.331 0.513 0.689 0.237 0.463

Prom 0.586 0.825 0.706 0.569 0.294 0.432

OptFunc 0.955 0.289 0.622 0.810 0.267 0.539

GS 0.542 1.000 0.771 0.502 0.417 0.460

0.4 OCP 0.797 0.281 0.539 0.795 0.411 0.603

restrOCP 0.877 0.339 0.608 0.725 0.259 0.492

Prom 0.762 0.818 0.790 0.605 0.289 0.447

OptFunc 0.878 0.303 0.591 0.846 0.294 0.570

GS 0.714 1.000 0.857 0.532 0.409 0.470

0.5 OCP 0.662 0.283 0.473 0.843 0.465 0.654

restrOCP 0.913 0.377 0.645 0.787 0.312 0.550

Prom 0.971 0.815 0.893 0.671 0.298 0.485

OptFunc 0.689 0.331 0.510 0.907 0.352 0.630

GS 0.918 1.000 0.959 0.590 0.403 0.497

0.6 OCP 0.616 0.294 0.455 0.881 0.521 0.701

restrOCP 0.809 0.412 0.610 0.836 0.372 0.604

Prom 0.915 0.818 0.866 0.735 0.319 0.527

OptFunc 0.608 0.356 0.482 0.955 0.415 0.685

GS 0.970 1.000 0.985 0.649 0.404 0.526

Δ: true standardized effect; eN (Δ): location component for conditional sample size; vN (Δ): variation component for conditional sample size;
SN𝛽 (Δ): conditional sample size sub-score; eCP(Δ): location component for conditional power;
vCP(Δ): variation component for conditional power; SCP𝛽 (Δ): conditional power sub-score;
GS: classical group sequential approach; OptFunc: optimization function approach; Prom: promising zone approach;OCP: observed conditional
power approach; restrOCP: restricted observed conditional power approach.
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T A B L E A4 Estimated performance sub-scores and related location and variation components for all investigated designs and
n1 = n2 = 25, nmax = 100

Parameters to be Estimated

𝚫 Design eN (𝚫) vN (𝚫) SN𝜷 (𝚫) eCP(𝚫) vCP(𝚫) SCP𝜷 (𝚫)
0.0 OCP 0.053 0.680 0.366 0.762 0.412 0.587

restrOCP 0.851 0.359 0.605 0.868 0.385 0.626

Prom 0.617 0.699 0.658 0.843 0.448 0.646

OptFunc 0.347 0.350 0.348 0.756 0.359 0.557

GS 0.667 1.000 0.833 0.875 0.570 0.722

0.1 OCP 0.076 0.623 0.350 0.705 0.373 0.539

restrOCP 0.806 0.303 0.554 0.813 0.317 0.565

Prom 0.602 0.664 0.633 0.791 0.387 0.589

OptFunc 0.315 0.360 0.337 0.694 0.310 0.502

GS 0.667 1.000 0.833 0.834 0.518 0.676

0.2 OCP 0.107 0.562 0.334 0.646 0.351 0.499

restrOCP 0.766 0.273 0.519 0.756 0.265 0.510

Prom 0.586 0.635 0.610 0.733 0.336 0.535

OptFunc 0.285 0.376 0.331 0.628 0.278 0.453

GS 0.667 1.000 0.833 0.786 0.468 0.627

0.3 OCP 0.144 0.504 0.324 0.582 0.350 0.466

restrOCP 0.723 0.255 0.489 0.691 0.232 0.462

Prom 0.575 0.621 0.598 0.671 0.306 0.489

OptFunc 0.257 0.401 0.329 0.556 0.270 0.413

GS 0.667 1.000 0.833 0.732 0.431 0.581

0.35 OCP 0.164 0.479 0.321 0.548 0.358 0.453

restrOCP 0.701 0.251 0.476 0.657 0.223 0.440

Prom 0.568 0.613 0.590 0.638 0.297 0.467

OptFunc 0.242 0.415 0.329 0.518 0.275 0.397

GS 0.667 1.000 0.833 0.703 0.417 0.560

0.4 OCP 0.185 0.457 0.321 0.515 0.369 0.442

restrOCP 0.673 0.244 0.458 0.618 0.220 0.419

Prom 0.559 0.601 0.580 0.602 0.292 0.447

OptFunc 0.235 0.427 0.331 0.480 0.285 0.383

GS 0.667 1.000 0.833 0.673 0.409 0.541

0.5 OCP 0.755 0.425 0.590 0.751 0.401 0.576

restrOCP 0.844 0.256 0.550 0.658 0.233 0.445

Prom 0.928 0.592 0.760 0.670 0.300 0.485

OptFunc 0.753 0.450 0.602 0.795 0.314 0.555

GS 0.803 1.000 0.904 0.590 0.403 0.497

0.6 OCP 0.546 0.403 0.474 0.802 0.442 0.622

restrOCP 0.873 0.293 0.583 0.720 0.261 0.490

Prom 0.804 0.596 0.700 0.734 0.321 0.527

OptFunc 0.499 0.462 0.481 0.856 0.354 0.605

GS 0.931 1.000 0.965 0.649 0.404 0.526

Δ: true standardized effect; eN (Δ): location component for conditional sample size; vN (Δ): variation component for conditional sample size;
SN𝛽 (Δ): conditional sample size sub-score; eCP(Δ): location component for conditional power;
vCP(Δ): variation component for conditional power; SCP𝛽 (Δ): conditional power sub-score;
GS: classical group sequential approach; OptFunc: optimization function approach; Prom: promising zone approach;OCP: observed conditional power
approach; restrOCP: restricted observed conditional power approach.


