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Higher-order Van Hove singularity in magic-angle twisted trilayer graphene
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Twisted trilayer graphene (TTG) has recently emerged experimentally as a fascinating playground to study
correlated and exotic superconducting phases. We have found that TTG hosts a zero-energy higher-order Van
Hove singularity with an exponent −1/3 that is stronger than the one predicted in twisted bilayer graphene. This
singularity is protected by a threefold rotation symmetry and a combined mirror-particle-hole symmetry and
can be tuned with only the twist angle and a perpendicular electric field. It arises from the combined merging
of Van Hove singularities and Dirac cones at zero energy, a scheme that goes beyond the recent classifications
of Van Hove singularities in single-band models. This structure gives a topological Lifshitz transition, with
anomalous exponent −2/5, which can be achieved in TTG by varying a third control parameter such as the
atomic corrugation. The interplay between the nonstandard class of higher-order Van Hove singularities and
interaction effects offers an unprecedented platform for studying correlation and superconductivity.
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Introduction. Strong correlations generally result from a
quenching of electronic motion, comparatively magnifying
the strength of electron-electron interactions. This is the case
for engineered flat bands, such as for fractional quantum Hall
states, but also more generally in proximity to a singularity in
the density of states. Tuning the chemical potential at a Van
Hove singularity (VHS) [1,2] introduces a large number of
single-particle states with negligible energy likely to form a
correlated state. Conventional Van Hove singularities entail a
logarithmic singularity, but there are also higher-order types
[3,4] with more diverging power-law scaling which have been
recently classified in single-band electron models [5,6]. Such
strong divergence amplifies correlation effects and plays a key
role in determining the ordering instabilities in various mate-
rials, such as twisted bilayer graphene [4,7–11], biased Bernal
stacked bilayer graphene [3], twisted bilayer transition-metal
dichalcogenides [12], Sr3Ru2O7 [13,14], heavy fermions ma-
terials [15], and high-Tc superconductors [16]. Moreover, it
has recently been shown that the higher-order Van Hove sin-
gularity gives rise to a novel non-Fermi-liquid critical state
dubbed supermetal [17].

Moiré potentials obtained in graphene multilayer struc-
tures by slight misalignment of the stacked layers have
proven remarkably fruitful for tuning the single-particle spec-
trum [18–20] and thereby achieving exotic phases driven by
the combined effects of electronic correlation and topology
[21,22]. Twisted bilayer graphene (TBG) with two rotated
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graphene sheets thus exhibits a plethora of interesting
phases [23], including correlated symmetry-breaking insula-
tors [24–29], signatures of fragile topology [30,31], orbital
magnetism [32–36] and Chern insulators [37–40] with a quan-
tum anomalous Hall effect [41–43], nematicity [44,45], and
superconductivity [22,34,46]. Significant theoretical progress
has also been achieved, especially in understanding the
competing nonsuperconducting phases; see, for instance,
Refs. [47–64]. A new appealing direction has recently been
opened with experiments on twisted trilayer graphene (TTG)
[65–80], where only the intercalated layer is rotated by a
small angle. Convincing signatures of correlated phases and
superconductivity have been observed [81,82], tunable with
a perpendicular electrical (displacement) field. Interestingly,
data suggest an unconventional superconducting state [83] in
the strong-coupling regime of tightly bound pairs and triplet,
possibly p-wave, pairing.

In this Letter, we argue that a strong higher-order Van
Hove singularity emerges in the single-particle spectrum of
TTG upon tuning the displacement field and rotation an-
gle. It results from the symmetric merging at zero energy
of two standard VHS with opposite energies. Located at the
band touching K point of the moiré Brillouin zone, it falls
outside the single-band classification of VHS performed in
Refs. [5,6], and also differs from the higher-order VHS iden-
tified [4] in TBG. It exhibits the power-law scaling ω−1/3,
stronger than the ω−1/4 predicted for TBG. An even stronger
exponent −2/5 is found by tuning the corrugation, indicating
a Lifshitz transition between two topologically incompatible
energy contours.

Model and mapping to TBG. The starting point is the
continuum model [18,19] for trilayer graphene, where the
three layers are stacked with alternating twist angles ±θ [65],
coupling the three Dirac cones in each valley. It is convenient
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FIG. 1. (a) DOS as a function of the displacement field D/ε0 and
of the number of electrons per moiré unit cell for r = 0.8 and θ =
1.59◦. The location of the two VHS is indicated by red dots. (b) Line
cuts, corresponding to the white lines in (a), of the DOS as a function
of energy for various displacement fields. (c) Evolution as a function
of the displacement field of the saddle points (red lines) yielding the
strongest peak in the density of states. Arrows indicate increasing
D/ε0. (d) Values of the parameters of the Hamiltonian (2) HK(q) as
a function of D/ε0.

to take advantage of the mirror symmetry Mz with respect to
the middle layer in the absence of displacement field D/ε0,
and write the Hamiltonian in an already layer-rotated basis
[65,68,70,71],

H (r) =
⎛
⎝

h̄v0σ · k̂
√

2 T (r) 0√
2 T †(r) h̄v0σ · k̂ U σ 0/2

0 U σ 0/2 h̄v0σ · k̂

⎞
⎠, (1)

where k̂ = −i∇r, v0 is the electron’s velocity in graphene,
T (r) = ∑3

j=1 eiq j ·r Tj are the interlayer hoppings with sublat-

tice structure, and q1 = kθ (0, 1), q2/3 = kθ (∓√
3/2,−1/2),

where kθ = |K|θ is the distance between the K points of
consecutive layers. ±U are the gate potentials applied on
the top and bottom layers, U = dD/ε0ε, where d � 0.3 nm
is the interlayer distance and ε0 is the bare dielectric con-
stant. For simplicity, we neglect screening of the displacement
and take ε = 1. The interlayer tunneling matrices take the
form Tj+1 = wAAσ 0 + wAB[σ+e−2iπ j/3 + σ−e2iπ j/3], where
j = 0, 1, 2, wAB = w and wAA = w r with r < 1 due to lattice
relaxation effects [84,85], and the σ 0,± matrices act in sublat-
tice space. Hereafter we take r = 0.8 unless stated otherwise.
As Eq. (1) governs the valley K, the valley K′ is simply ob-
tained by time-reversal symmetry, i.e., complex conjugation.

At zero displacement U = 0, Eq. (1) decouples a high-
velocity Dirac cone in the odd mirror sector, located at the
K′ point of the moiré Brillouin zone, from two coupled Dirac
cones in the even mirror sector, one at K and the other one at
K′. The even sector maps exactly onto the TBG Hamiltonian
with a rescaled interlayer tunneling [65], and a corresponding√

2 enhancement of the magic angle θm � 1.541◦ at which
the Dirac velocity vanishes. Computing the density of states,
we recover the symmetric VHS of TBG in the two active
bands [see Figs. 1(a) and 1(b)] observed in STS experiments
[86–90]. The VHS is in fact composed of three equivalent
saddle points related by C3z symmetry, i.e., 2π/3 rotation in
the graphene plane. At a critical angle θv � 1.571◦, a higher-

order VHS [4] occurs below which each saddle point splits
in two. The DOS singularity at θv is a power law with ex-
ponent −1/4 and asymmetry ratio ∼√

2, which convincingly
matches the experimentally observed VHS peak [89]. The C2x

symmetry denotes a π rotation around x exchanging layer and
sublattice indices. It enforces the saddle points to be on the
�M lines of the moiré Brillouin zone for θ larger than θv .
Throughout the rest of this Letter, we will focus on angles
θ such that the higher-order VHS inherited from TBG does
not play a role. Aside from the symmetries Mz, C3z, and C2x

already introduced, the model in Eq. (1) is also invariant under
the combination C2zT . It anticommutes with the particle-hole
symmetry P in the even mirror sector and with C2xP in both
odd and even subspaces.

VHS merging and effective model. We discuss the case
of nonzero displacement field U �= 0 and explore the evo-
lution of the density of states at the twist angle θ = 1.59◦.
U breaks the mirror symmetry Mz, the rotation symmetry
C2x, and the particle-hole symmetry P. However, the product
MzC2xP is preserved [71] together with the remaining symme-
tries. MzC2xP acts as anticommuting particle-hole symmetry.
It will be very important in stabilizing the new Van Hove
singularity; see below. Figure 1(a) shows the density of states
as a function of the number of electrons per moiré unit cell
and electric displacement field D/ε0. The two particle-hole
symmetric VHS, represented as red dots in Fig. 1(a), move
towards charge neutrality as D increases and merge at zero en-
ergy at a critical Dc/ε0 � 0.37 V/nm. Introducing the relative
dielectric constant ε > 1 is going to renormalize Dc to larger
values of the displacement field. The VHS peaks become
concomitantly more pronounced with increasing D, as shown
in Fig. 1(b), moving towards what seems to be a zero-energy
divergence. The corresponding evolution of the C3z symmetric
saddle points with the displacement field is shown in Fig. 1(c).
As a consequence of C2x symmetry breaking, the saddle points
leave the �M lines and converge towards the K points in
the moiré Brillouin zone. By further increasing D above Dc,
the VHS split again and move away from charge neutrality
together with a substantial reduction of the VHS peaks.

In order to gain more analytical insight into the zero-energy
merging of VHS and the marked singularity in the density of
states, we derive a low-energy approach close to the K point
in the moiré Brillouin zone. Being a high-symmetry point, K
retains some of the symmetries of the model that leaves it
invariant: C3z, C2zT , and MzC2xP. C2zT protects a Dirac cone
at K even at the nonzero displacement field. The two degener-
ate states at K, denoted uω and uω∗ , can be classified by their
C3z eigenvalues ω = e2iπ/3 and ω∗, respectively. MzC2xP pins
these two states at zero energy and, more generally, enforces a
fully particle-hole symmetric spectrum at K. The form of the
low-energy Hamiltonian in the vicinity of K is constrained
by the symmetries. In the basis of the two degenerate states
(uω, uω∗ ) defining the Pauli matrices τ0,x,y,z, it takes the C3z-
symmetric form

HK(q) = h̄v τ · q + η
(
q2

y − q2
x

)
τy − 2ηqxqyτx

+ 2γ
(
q3

x − 3qxq2
y

)
τ0 + ξ q2 τ · q, (2)

to third order in q = k − K, where q2 = q2
x + q2

y and
the couplings {v, η, γ , ξ} are calculated by employing a
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FIG. 2. (a) Three-dimensional trajectory of higher-order VHS
originating from the first magic angle θCH � 1.536◦ at r = 0 and
D = 0. The blue dot gives the position of the Lifshitz transition with
exponent −2/5. (b) Evolution of the DOS prefactor in Eq. (4) as a
function of 2γ /ξ . (c) Evolution of 2γ and ξ as a function of r along
the trajectory of higher-order VHS. The inset shows the ratio 2γ /ξ

in logarithmic scale.

k · p approach with degenerate perturbation theory (see be-
low). The symmetry MzC2xP, acting as τxHK(qx, qy)τx =
−HK(−qx, qy), forbids other C3z-symmetric terms, such as
q2τ0, (q2

x − q2
y )τx − 2qxqyτy or (q3

y − 3qyq2
x )τ0, to appear in

Eq. (2). The crucial reduction to four coupling constants
{v, η, γ , ξ} implies that the higher-order VHS, taking place
when v and η both vanish, requires the fine tuning of only two
parameters of the original model, such as the twist angle θ and
the displacement field D.

Beyond the zero-energy subspace (uω, uω∗ ), it is conve-
nient to introduce the other eigenstates of Eq. (1) at K, |un〉 =|
unK〉 with energies εn, and the operator P = −∑

n |un〉〈un |
/εn. The values of the coupling constants,

v = 〈uω∗ | σ− |uω〉,
η = −Im[〈uω∗ | σ+ P σ+ |uω〉],
γ = Re[〈uω | σ− P σ− P σ− |uω〉],
ξ = Re[〈uω∗ | σ+ P σ− P σ− + σ− P σ+ P σ−

+ σ− P σ− P σ+ |uω〉], (3)

are calculated from a k · p approach at K (see Supplemental
Material [91]) and depend on the details of the spectrum of
the trilayer. They are shown in Fig. 1(d) as a function of
the displacement field for the angle θ = 1.59◦ measured in
[81]. Remarkably, v and η vanish for values of D in very
close proximity, suggesting the vicinity to the higher-order
VHS. It explains the strong feature observed Fig. 1 in the
density of states although, rigorously speaking, reaching the
higher-order VHS requires the fine tuning of an additional
parameter. This can be done by changing the twist angle θ .
In order to get a closer look at the exact position of the higher-
order VHS, we trace out the values of D and θ for which the
velocity and the curvature of the band dispersion both vanish
at the K point. The result as a function of the corrugation
parameter r is shown in Fig. 2(a). As anticipated, we find
a line of higher-order VHS in this tridimensional parameter
space. We stress again that under the reasonable assumption
of a corrugation parameter r = 0.8 and for the twist angle

θ = 1.59◦, one gets very close to the higher-order VHS by
simply tuning the electric displacement.

The trajectory of higher-order VHS in Fig. 2(a) originates
from a critical angle θCH � 1.536◦ where both the displace-
ment field D and the corrugation r are vanishing. This point
corresponds in fact to the chiral limit of TBG [92–96], where
the whole active band is rigorously flat. At r = 0, θ = θCH

is also the first magic angle. As D increases, the line of
higher-order VHS extends until a critical value of the atomic
corrugation r � 0.842, above which it is not possible to have
v and η both vanishing. At smaller twist angles, we find that
each magic angle θ

(n>1)
CH in the chiral limit r = 0 is the starting

point of a similar line of higher-order VHS.
The higher-order Van Hove singularity. The higher-order

VHS appears for a vanishing velocity v = 0 and curva-
ture η = 0 in Eq. (2). In this case, the dimensional scaling
HK(λ1/3q) = λ HK(q) indicates a power-law scaling,

ρ(ω) = ξ−2/3F (2γ /ξ ) |ω|−1/3, (4)

close to charge neutrality, with exponent −1/3. The Hamilto-
nian describes a cubic band touching and therefore extends
the one-band classification of VHS [5,6]. We would effec-
tively recover one band by setting ξ = 0 and having HK(q) =
2γ (q3

x − 3qxq2
y )τ0. In the vicinity of the higher-order VHS,

there are three C3z-symmetric saddle points at positive energy,
three at negative, all merging at K as v and η are tuned to zero,
as shown in Fig. 1(c), reminiscent of the saddle point merging
in the single-band case [3]. In addition, the effective two-band
structure entails a pseudospin with a vorticity of +1 at K
protected by C2zT . In the vicinity of the higher-order VHS,
K hosts a +1 Dirac cone surrounded by six additional Dirac
cones (see Supplemental Material [91]). The side cones are
organized in two C3z-symmetric triplets along K′K (�K) with
vorticity +1 (−1). The higher-order VHS occurs precisely as
all Dirac cones meet at K, leading to cubic band touching
with +1 vorticity. A single Dirac cone at K remains above
the critical value D > Dc.

In the one-band limit of vanishing ξ , the semiclassical
orbits are fully open with an anisotropic elliptic umbilic
(D−

4 ) structure [5,6] separated by C3z-symmetric lines and a
cusp at q = 0. Quite the contrary, γ = 0 predicts closed and
isotropic semiclassical orbits. The corresponding isoenergy
contours are illustrated in Figs. 3(a)–3(c). This difference in
topology indicates that a Lifshitz transition is expected to
occur as a function of the ratio 2γ /ξ . This is visible in the
divergence in the prefactor F of Eq. (4) shown in Fig. 2(b).
Indeed, for ξ = 2γ , the spectrum at the higher-order VHS
is E±(q) = ξq3[±1 + cos(3φ)], where φ is the polar angle
between q and the x axis. It predicts zero-energy lines along
the axis at φ = ±π/3, π [π ], shown in Fig. 3(b), which are
responsible for an even stronger divergence in the density of
states. The zero-energy lines are lifted by further expanding
the k · p approach in Eq. (2) to the first nonvanishing order.
With the fourth order being zero, due to the symmetries C3z

and MzC2xP, the dispersion finally takes the form (see Sup-
plemental Material [91])

E+(q) = ξq3[1 + cos(3φ)] + �q5 (5)
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FIG. 3. (a)–(c) The positive isoenergy contours around K at the
higher-order VHS for 2γ /ξ = 0.1, 2γ /ξ = 1.0 (Lifshitz transition)
and 2γ /ξ = 20.0, respectively. Red lines mark the asymptotes of
open orbits. (d) Landau level spectrum as a function of 2γ /ξ for
B = 0.01 T. The vertical red line indicates the location of the Lifshitz
transition. The Landau level energy is measured in units of ξ/l3

B,
where lB is the magnetic length lB = √

h̄/eB.

in the vicinity of the critical line at φ (the other lines are in-
ferred by symmetry), where � is a positive coefficient. Thanks
to this term, the divergence in the density of states is cut off
at the angle δφ ∼ √

�/ξ (ω/�)1/5, where δφ = φ − π , and a
new power law is obtained,

ρ(ω) ∼ |ω|−2/5, (6)

stronger than the naive scaling dimension −1/3 of the higher-
order VHS.

Coming back to the original trilayer model in Eq. (1), the
ratio 2γ /ξ along the (red) line of higher-order VHS is repre-
sented in Fig. 2(c). We then find that the critical point ξ = 2γ

is reached when the corrugation parameter is r � 0.34, corre-
sponding to the twist angle θ � 1.543◦ and the displacement
field D/ε0 � 0.086 V/nm. At this point, the DOS critical ex-
ponent thus changes to −2/5, while it is −1/3 along the rest
of the line, indicating a change of topology of the isoenergy
contours, from local open orbits when r < 0.34 to closed ones
when r > 0.34.

The change of Fermi surface topology is reflected in the
Landau level (LL) spectrum [97] calculated in Fig. 3(d) for
0.01 T. It is obtained from minimal coupling applied to the
effective model in Eq. (2), at vanishing (v, η), where the q4

terms have been added to regularize the region with open
orbits. We find markedly different behavior of both sides

of the Lifshitz transition: a regularly spaced structure for
closed orbits, corresponding to 2γ /ξ < 1 (and r > 0.34),
which evolves into weak oscillations in the regime of open
orbits. The LL energy scaling ∝ (nB)3/2 [3] of the higher-
order VHS, with LL index n and magnetic field B, becomes
∝ (nB)5/3 at the transition due the anomalous −2/5 DOS
exponent. This yields, in Fig. 3(d), a relative collapse of LL
at the transition, even more pronounced for decreasing B. In
addition, the higher-order VHS gives strong corrections to
electron self-energy leading to non-Fermi-liquid exponents in
the electron conductivity and the specific heat, as discussed in
Refs. [13,14].

Conclusions. We derived the existence of a higher-order
VHS in mirror-symmetric TTG associated with a strong
zero-energy peak in the density of states. In contrast with
twisted bilayer graphene, the higher-order VHS (HOVHS)
arises from the fusion between the standard finite energy VHS
and the Dirac cone at K, and it is protected by C3z and MzC2xP.
As long as these two symmetries are not broken, the HOVHS
will still be present with effective parameters which are renor-
malized by the electron-electron interaction. We emphasize
that the peak in the DOS is strongly enhanced in the vicinity of
the HOVHS, as shown in Fig. 1(a), and that the position shifts
toward charge neutrality. This has two consequences: there
will be a larger range of doping for which the Stoner criterion
is fulfilled, and this criterion is satisfied for smaller doping to
charge neutrality. We argued that current experiments at the
magic angle can be brought close to this strong singularity by
electric gating, although very strong fields might be needed
to compensate screening. This finding has far-reaching
consequences, as this strong divergence in the density of
states will result in the emergence of a plethora of many-body
phenomena that have barely begun to be studied [76]. More-
over, the type of Van Hove singularity that we found differs
fundamentally from the standard Van Hove singularity, such
as the one classified in Refs. [5,6], as it also involves a Dirac
point. This structure gives a topological Lifshitz transition
with anomalous exponent −2/5 that in the regime of small
magnetic fields, results in a Landau level energy collapse. Our
work opens a horizon in the study of the interplay between
new correlated or superconducting phases and exotic Van
Hove singularities that are realized in moiré superlattice
materials.
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