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Summary

Hidradenitis suppurativa (HS) is a chronic inflammatory disorder. Patients
develop inflamed nodules and abscesses and, at later stages of disease, epithelial-
ized tunnels and scars in skinfolds of axillary, inguinal, gluteal and perianal areas.
Quality of life is affected due to severe pain, purulent secretion, restricted mobil-
ity and systemic involvement. Genetics and lifestyle factors including smoking
and obesity contribute to the development of HS. These factors lead to micro-
biome alteration, subclinical inflammation around the terminal hair follicles, and
infundibular hyperkeratosis, resulting in plugging and rupture of the follicles.
Cell-damage-associated molecules and propagating bacteria trigger inflammation
and lead to massive immune cell infiltration that clinically manifests as inflamed
nodules and abscesses. The immune system plays a key role also in the progres-
sion and chronification of skin alterations. Innate proinflammatory cytokines (e.g.
interleukin-1b and tumour necrosis factor-a), mediators of activated T helper
(Th)1 and Th17 cells (e.g. interleukin-17 and interferon-c), and effector mecha-
nisms of neutrophilic granulocytes, macrophages and plasma cells are involved.
Simultaneously, skin lesions contain anti-inflammatory mediators (e.g. inter-
leukin-10) and show limited activity of Th22 and regulatory T cells. The inflam-
matory vicious circle finally results in pain, purulence, tissue destruction and
scarring. Chronic inflammation in patients with HS is also frequently detected in
organs other than the skin, as indicated by their comorbidities. All these aspects
represent a challenge for the development of therapeutic approaches, which are
urgently needed for this debilitating disease. This scholarly review focuses on the
causes and pathogenetic mechanisms of HS and the potential therapeutic value of
this knowledge.
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Hidradenitis suppurativa (HS),1 also known as acne inversa, is

an inflammatory disorder affecting about 1% of the general

population (discussed in a parallel scholarly review). The dis-

ease manifests in skinfolds of mostly axillary, inguinal, gluteal

and perianal body areas. Starting around hair follicles, inflam-

mation evolves into painful nodules, abscesses and, at a later

stage, pus-discharging tunnels (sinus tracts or fistulas) and

extensive scars. In patients with HS, inflammation is also fre-

quently detected in internal organs, as reflected by the fre-

quent association with metabolic syndrome, arteriosclerosis,

spondyloarthritis and spondyloarthropathy, and inflammatory

bowel disease.2–5 Due to severe pain, purulent secretion, limi-

tations in patients’ mobility, and systemic involvement, HS

has a profoundly negative influence on the quality of

life of patients (discussed in a parallel scholarly review).6

Furthermore, the metabolic and cardiovascular alterations con-

tribute to the substantially reduced life expectancy of patients

with HS.7

Despite the high burden on patients, the therapeutic options

for HS are currently limited.1 In order to improve that, a pro-

found understanding of the aetiology and pathogenesis of HS

is necessary. Our current understanding of the disease mecha-

nisms is incomplete and largely based on descriptive data of

HS lesions. In contrast, ex vivo mechanistic investigations and

comparative studies involving other diseases are rare. The

comparison with other cutaneous inflammatory disorders

appears very relevant to the authors in terms of the estimation

of the extent and the specificity of molecular and immunolog-

ical alterations detected in HS. Clinical studies targeting

selected immune mediators could deliver the ultimate proof of

the pathogenetic relevance of specific molecules.

The following sections are devoted to the disease-predispos-

ing factors, the pathogenetic processes, and the presentation

of pathogenetic mediators. Our review did not aim to discuss

every published article on the subject, but rather we have

selected the most important ones, in our opinion.

Predisposing factors

Genetic factors

The importance of the genetic background was first noticed

when Fitzsimmons and Guilbert observed disease clustering in

14 of 23 patient families.8 In fact, around 30% of the patients

reported a positive family history for HS.9 A very limited

number of patients with mostly severe HS disease with associ-

ated severe acne bear mutations in genes encoding the sub-

units of c-secretase (c-S),10 a protease situated in the cell

membrane.11 Thirty-six different c-S mutations have been

described in HS, most of them in the gene for the nicastrin

subunit.12 The link between c-S impairment and HS is sup-

ported by skin alterations that arise in young mice with

genetic deficiency of c-S components. In these mice, hair folli-

cle disintegration and impaired sebaceous gland formation led

to epidermal cyst development.13 Interestingly, this occurred

without relevant inflammation. When growing older, these

mice developed squamous cell carcinomas.13,14 Furthermore,

therapeutic targeting of c-S outside the dermatology field pro-

voked follicular alterations and cyst formation in intertriginous

skin areas.15 Respective mutations in human c-S may lead to

hyperproliferation of keratinocytes.16

The long list of c-S substrates includes amyloid-b protein

precursor, interleukin (IL)-1 receptor 1, interferon (IFN)-aR2,
CXCL16, RAGE and notch 1–4�11 Interestingly, mice deficient

in notch or notch ligand show a skin phenotype similar to

that of c-S mice.13,17 The cleavage and consequent activation

of notch are crucial for the development and homeostatic

cycling of hair follicles.18 Moreover, notch signalling is crucial

for the function of regulatory T cells and IL-22 production by

effector T cells,19,20 which are both impaired in HS.21 As

described above, the prevalence of c-S mutations among

patients with HS is very low.10 Moreover, it has not been pro-

ven so far that c-S mutations in HS lead to notch deficiency.

Beside c-S mutations, variations in further genes were iden-

tified in patients with HS.22,23 One of these genes (MEFV)

encodes the pattern-recognition receptor (PRR) pyrin,23 a crit-

ical component of the inflammasome system. Activation of the

inflammasome leads to production of IL-1b, a cytokine with

an important role in HS pathogenesis (see below).

However, extensive studies are needed to investigate which

genetic features contribute to the development of the disease

in the majority of patients with HS with a positive family his-

tory. Several efforts including genome-wide association studies

are under way.23,24

Lifestyle factors

There are two major lifestyle factors that, although not present

in every individual patient, have accepted roles in HS disease

development: obesity and tobacco smoking.

Central obesity has been found in approximately 60% of

patients.2 It is one of the factors defining the metabolic syn-

drome, a combination of medical conditions including central

obesity, hyperglycaemia, dyslipidaemia and/or hypertension.25

Approximately 40% of patients with HS have metabolic syn-

drome.2 Investigating more than 400 hospitalized patients,

Shalom et al. found that of the different metabolic syndrome

components, obesity preceded the diagnosis of HS by an aver-

age of 5 years.26 In line with this, central obesity had the

highest frequency among metabolic syndrome criteria.2

Importantly, there was a 4�5-fold increased risk of recurrence

of skin alterations after laser-based surgical removal of skin

lesions in obese vs. nonobese patients with HS.27

Obesity is supposed to favour HS skin alteration in two

ways (Figure 1). Firstly, it enlarges the skinfolds in the body

and, consequently, increases the mechanical stress, maceration

and anaerobic conditions within those folds (see below). Sec-

ondly, it induces a low level of systemic inflammation and

metabolic changes in respective individuals. In fact, inflamma-

tory cells present in the hypertrophic adipose tissue produce

proinflammatory cytokines and induce a dysregulated pattern

of adipokines, all of which may have negative effects on skin
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cells.28 Beside obesity, insulin resistance/hyperglycaemia/type

2 diabetes mellitus might be an independent factor for HS.29

The altered proliferation and differentiation of insulin-resistant

keratinocytes may be one of the mechanisms underlying this

association (Figure 1).30 In turn, skin disease may favour

obesity and metabolic syndrome, for example by induction of

adipokines, insulin resistance and dyslipidaemia.28

Smoking is very common among patients with HS. Reports

show up to 90% of patients currently or formerly smoking.31

In line with that, the adjusted odds of developing HS among

people who smoke compared with those who do not was

1�9.32 Nicotine may induce epidermal hyperplasia and dysbio-

sis.33–35 In monocytic cells, especially when exposed to bacte-

rial components, nicotine may increase intracellular cAMP

levels and strengthen the production of IL-10,36–38 a cytokines

that plays a role in HS (see below).

Apart from these factors, contribution of sex hormones is

suspected.39 This is based on the frequently observed onset of

HS after puberty and the decreased disease severity during

pregnancy.39,40 In female patients, efficacy of antiandrogen

therapy was suggested.41

Special features of skin areas predisposed to

hidradenitis suppurativa

The specific nature of skin areas predisposed to HS alterations

may give hints to factors that favour disease development.

These areas (i.e. skinfolds in mostly axillary, inguinal, genital,

gluteal and perianal body areas) contain a high density of

pilosebaceous–apocrine units. They further differ from other

areas by the higher temperature and moisture, reduced oxygen

availability and, linked to that, the microbiome composition.

In the skinfolds of healthy individuals, predominant taxa are

Gram-positive aerobic and facultative anaerobic bacteria such

as coagulase-negative Staphylococcus ssp. and Corynebacterium ssp.,

while strict anaerobes such as Propionibacterineae are detected

with a low abundance (Figure 2).42–44 Gram-negative anaero-

bic rods such as Prevotella, which are typical for mucosal sites,

were also detected in very low numbers.42,45 Interestingly,

compared with matched areas in healthy individuals, the

microbiome of clinically unaffected, HS-typical areas of

patients with HS showed an increase in the relative abundance

of Prevotella and other anaerobes and a decreased abundance of

skin-surface-typical species like Staphylococcus epidermidis.45 Patho-

genetically, these resident anaerobic bacteria may support ini-

tial hair follicle inflammation in HS.

Being intertriginous, body areas predisposed for HS are also

subject to skin friction, especially in obese patients. Mechani-

cal stress induces skin microinjuries with release of cellular

damage-associated molecules (also called DAMPs or alarmins)

and cutaneous entry of microbiome components. DAMPs

include nucleic acids, LL37, heat shock proteins, S100A15 and

HMGB1,46 some of which have been associated with HS

lesions.47,48 DAMPs and bacterial components stimulate local

macrophages, dendritic cells and keratinocytes via their various

PRRs49–51 to produce inflammatory cytokines. Bacterial com-

ponents are also recognized by and activate the complement

pathway.52 In fact, the constitutive subclinical inflammation in

intertriginous areas is supported by recently suggested

increased numbers of dendritic cells and Th cells with consti-

tutive IL-17 expression at these sites.53
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Figure 1 Predisposing factors in hidradenitis suppurativa (HS). The

mechanisms of HS lesion formation centre around the pilosebaceous–

apocrine units in the intertriginous skin areas. These areas differ from

other skin areas by the higher temperature, higher moisture and

reduced oxygen availability and, linked to these factors, a specific,

anaerobe-enriched microbiome. Moreover, they show increased

mechanical stress. The mechanical stress may induce cutaneous

microinjuries that provoke release of cellular damage-associated

molecules (DAMPs) and entry of microbiome components into the

skin, both favouring local inflammation. The aetiopathophysiology

involves both genetics and factors associated with patients’ lifestyles.

Although one-third of patients report a positive family history for HS,

the responsible genetic features are unknown in most cases. A

minority of patients with positive family history for HS show

alterations in c-secretase (c-S) genes, which may contribute to

follicular instability. The lifestyle factors involved in HS disease

development are obesity and insulin resistance, as well as tobacco

smoking. Central obesity (found in up to 60% of patients) is one of

the factors defining the metabolic syndrome, which is found in a

large proportion of patients with HS. Obesity enlarges the skinfolds in

the body and, consequently, increases the mechanical stress,

maceration and anaerobic conditions within those folds. Obesity also

induces subclinical inflammation in the adipose tissue, with secretion

of inflammatory cytokines (including interleukin-1b and tumour

necrosis factor-a), which can reach the skin from the underlying

subcutis or via the blood flow. Insulin resistance may alter the growth

of keratinocytes. Inducing endothelial activation and chemokine

production, inflammatory cytokines provoke the infiltration of

immune cells from the blood, further supporting the inflammatory

process in the skin. Smoking (found in up to 90% of patients with

HS) induces nicotine exposition, which may favour infundibular

acanthosis and dysbiosis, two of the initial events observed in HS

pathogenesis. [Colour figure can be viewed at wileyonlinelibrary.com]
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It should be noted that HS lesions can also develop in inter-

triginous areas that do not bear apocrine glands, such as sub-

mammary folds.54,55 Thus, apocrine glands do not appear to

be necessary for the development of HS lesions. Inflammation

of these glands was demonstrated to be a secondary phe-

nomenon.56–58

Pathogenetic processes

HS disease starts around the hair follicle.59 The first histologi-

cally detectable events include infundibular acanthosis, hyperk-

eratosis and perifollicular immune cell infiltration

(Figure 3).56,57,60,61 Whether the immune cell infiltration or

the infundibular alteration is the primary event that induces

the other one has not been finally determined. Specific predis-

posing factors (Figure 1) directly induce immune cell infiltra-

tion (obesity), while others provoke infundibular acanthosis

(nicotine).

The infundibular alterations lead to follicular occlusion and

consequent stasis with dilatation of the hair follicle (Fig-

ure 3).1 This may lead to multiplication of anaerobic bacteria

within the occluded hair follicles, as suggested by 16S rRNA

gene amplicon sequencing.62 Bacterial components and

DAMPs released from damaged follicular cells may further

stimulate inflammatory responses in local cells, especially

macrophages. The PRRs activated by these stimuli include

Toll-like receptor 2 and the inflammasome component NLRP3,

both of which are upregulated in HS skin63–65 and mediate

the release of cytokines such as IL-1b and tumour necrosis

factor (TNF)-a. These pleiotropic mediators have two major

functions that support immune cell infiltration into the tissue:

the activation of endothelia and the induction of chemokine

production by local tissue cells (Figure 3). The influx of neu-

trophilic granulocytes might be further promoted by leuko-

triene B4, a lipid mediator that is produced by macrophages

via hyperactivation of the 5-lipoxygenase pathway in HS.66

Individual proinflammatory cytokines are strong inducers of

extracellular matrix-degrading enzymes, the matrix metallo-

proteinases (MMPs).64 At this stage, these enzymes may be

involved in the thinning of the basement membrane sur-

rounding the hair follicle unit, as detected in perilesional HS

skin. This thinning may increase the fragility of the inflamed

and dilated hair follicle.67 In c-S-associated familial HS, the

potential decrease of notch-mediated support of the hair folli-

cle epithelium could also reduce the stability of the hair folli-

cle unit. The consequence of these processes probably favours

the rupture of the hair follicle (Figure 3). Hair follicle stem

cells in HS lesions show an increased proliferation rate. This is

associated with elevated numbers of micronuclei and presence

of cytoplasmic single-stranded DNA in proliferating cells.68

Activating PRRs, cytoplasmic DNA might also strengthen local

inflammation.

The release of the content of ruptured hair follicles (includ-

ing bacteria, DAMPs, keratin fibres and sebum components)

into the surrounding tissue massively boosts inflammation.

Inflammation eventually leads to clinically visible dermal nod-

ules and abscesses. The formation of pus-draining epithelial-

ized sinus tracts and fistulas may be supported by the

continued formation of pus, known to occur in the massive

presence of neutrophilic granulocytes and bacteria, the seeding
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Corynebacterium

S. epidermidis
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Figure 2 Bacterial skin dysbiosis in hidradenitis suppurativa (HS). Bacterial skin dysbiotic features of HS are presented, from the preclinical state to severe

lesions, based on 16S rRNA gene amplicon sequencing data. Only representative taxa are shown. Staphylococcus epidermidis and Corynebacterium spp. are the main

bacterial taxa of the normal skinfold microbiome. At the preclinical stage, the skin-surface microbiome of HS skinfolds is characterized by a decreased

abundance of the skin commensals Staphylococcus epidermidis and Cutibacterium and by a moderate increase of Prevotella, a Gram-negative anaerobic rod. These

dysbiotic features are more pronounced in HS lesions. Early modifications of the hair follicle microbiome are observed in HS with abnormal colonization

with the Gram-negative anaerobic rod Porphyromonas. Prevotella and Porphyromonas are associated with chronic HS lesions. Some pathogens are associated with a

specific form of HS: Staphylococcus lugdunensis, associated with acute mild HS nodules, and Fusobacterium, associated with chronic severe HS. The association level of

the indicated bacterial taxa with the disease state is represented by blue–white (nonpathogenic bacteria) and red–white (pathogenic bacteria) gradients. H,

skinfolds of healthy donors; nL, nonlesional HS skin. [Colour figure can be viewed at wileyonlinelibrary.com]
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of follicular stem cells into the disintegrated tissue,67 the

abundance of MMPs,64 and the loosening of cell–cell adhesive
junctions in the epidermis69 (Figure 3). Chronification of

inflammation leads to destruction of skin architecture, recur-

ring development of abscesses, wounding, and subsequent

fibrotic scarring.1 Macrophage-dependent chronic WNT activ-

ity may play a role in fibrotic scarring.70 HS lesions and adja-

cent areas also contain areas of interfollicular inflammation

with acanthosis, as known from psoriatic skin.56–58,71

Established HS lesions contain massive immune cell infil-

trates. Apart from neutrophilic granulocytes, macrophages and

dendritic cells are the most abundant cells. Furthermore, T

cells, mast cells, natural killer cells and B/plasma cells are

found.57,65,71,72 Neutrophilic granulocytes are important

phagocytes of bacteria and producers of proinflammatory

cytokines, and they have the ability to release antimicrobial

and cytotoxic molecules by degranulation. Furthermore, these

cells form neutrophil extracellular traps (NETs), which have

been detected in HS lesions.73 These web-like structures are

composed of a scaffold of decondensed chromatin loaded with

cytosolic and granule proteins.74 In HS, lesional NET forma-

tion has been suggested to be linked to the presence of

autoantibodies.73

Surprisingly, the extent of T-cell infiltration in HS lesions is

comparable with that found in psoriasis,21 a well characterized

T-cell-mediated chronic inflammatory skin condition.75 T

cells, after being primed in the regional lymph nodes, circu-

late through blood and lymph nodes (central memory T cells)

or exert their effector functions in the tissue (effector T cells,

effector/memory T cells).75 B/plasma cells may be part of
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Figure 3 Pathogenetic events in hidradenitis suppurativa (HS). Disease-predisposing factors (Figure 1) induce perifollicular immune activation as

well as occlusion, sebum stasis, and dilatation of the hair follicle unit. This leads to growth of bacteria within the occluded hair follicles and release of

damage-associated molecules, which stimulate local immune cells, especially macrophages, to produce inflammatory cytokines like tumour necrosis

factor (TNF)-a and interleukin (IL)-1b. Via their epithelium-activating and chemokine-inducing properties, these cytokines provoke the infiltration of

various immune cell populations. These include neutrophilic granulocytes, monocytes (which in the skin can differentiate into macrophages or

dendritic cells), B/plasma cells, and different functional subgroups of effector/memory T cells (which had been generated in the skin-area-associated

draining lymph nodes). While T helper (Th)1 cells and Th17 cells and their main mediators interferon (IFN)-c (Th1), IL-17A/F and IL-26 (Th17)

become abundant in HS skin, Th22 cells and IL-22 are not. Due to the limited upregulation of IL-22, epidermal production of antimicrobial proteins

[including b-defensins (BDs) and S100A7] is too low to confine cutaneous bacterial growth. Neutrophilic granulocytes, whose infiltration is

supported by chemokines (e.g. CXCL1, 2 and 8, which are highly produced by dermal fibroblasts), leukotriene B4 (LTB4), the complement

component C5a and lipocalin (LCN)2, are important phagocytes and producers of proinflammatory cytokines. These cells also form neutrophil

extracellular traps (NETs), which can inhibit bacterial growth but also favour autoimmune features. Infiltrated B/plasma cells produce antibodies and

may contribute to the activation of the complement system. Secreted proteolytic enzymes may further increase the fragility of the basement membrane

surrounding the hair follicle unit. The amount of bacteria within HS skin lesions increases, with progressively reduced frequency of prototypical skin

commensals and high enrichment of strictly anaerobic Gram-negative species. Bacterial growth further boosts inflammation. The inflammatory process

and hair follicle fragility lead to rupture of the hair follicle unit with release of its immune-stimulatory content into the surrounding tissue. Continuous

inflammation with pus formation, epithelialization within the disintegrated tissue, and abundance of extracellular matrix-degrading enzymes (matrix

metalloproteinases, MMPs) finally lead to the formation of pus-draining epithelialized tunnels and destruction of skin architecture. Self-amplifying

inflammatory pathways that involve many further cytokines (e.g. IL-17C, IL-19, IL-36 and LCN2) and persistent anaerobic bacteria support the

chronification and recurrent nature of lesions. DC, dendritic cell; Fb, fibroblast; Gr, neutrophilic granulocyte; Mo, monocyte. [Colour figure can be

viewed at wileyonlinelibrary.com]
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lymphoid structures formed in chronically inflamed peripheral

tissues.76 B cells serve as antigen-presenting cells and as pro-

ducers of antibodies and anti-inflammatory and proinflamma-

tory cytokines. Apart from antigen neutralization, antibodies

may contribute to the complement activation seen in HS.52

In the course of HS pathogenesis, bacteria become abun-

dantly present within HS skin lesions, with their composition

further changing compared with the microbiome of unaf-

fected intertriginous skin (Figure 2). Staphylococcus lugdunensis, an

opportunistic pathogenic coagulase-negative Staphylococcus spe-

cies, was detected in 25% of nodules as the sole or predomi-

nant pathogen, but not in chronic suppurative lesions.77

Interestingly, Staphylococcus aureus, a well-known cause of folli-

culitis, furuncles and acute skin abscesses, is not associated

with HS.43,77 Chronic lesions show clearly reduced abundance

of prototypical skin commensals and high enrichment of

strictly anaerobic Gram-negative bacteria such as Prevotella and

Porphyromonas ssp., along with Streptococcus anginosus and Actinomyces

spp., which often cause opportunistic infections (Fig-

ure 2).43,78 Furthermore, Fusobacterium nucleatum, a Gram-nega-

tive anaerobic rod with invasive properties, is associated with

the most severe form of HS.43,77,79

Together, HS lesions show abundance of opportunistic

pathogens but not highly pathogenic bacteria and commensals.

Accordingly, optimized antibiotic treatment demonstrated

therapeutic efficacy especially in patients with HS with mild

disease, but required much longer treatment times than in

classical soft tissue and skin infections.80–82 Bacterial coloniza-

tion appears important due to immunostimulatory effects

unrelated to a proper infection.83 Some studies showed

increased biofilm formation, especially within inflamed hair

follicles and tunnels.84 The epidermal antimicrobial defence

mechanisms in HS lesions appear too weak to counteract local

bacterial growth effectively (see below).

Role of specific cytokines in hidradenitis
suppurativa

A broad range of immune mediators are highly expressed in

established HS lesions compared with healthy control

skin.21,64 Interestingly, most of them are also upregulated in

psoriasis,21,64 which indicates an overlap of certain patho-

genetic pathways in both diseases. This supports the clinical

investigation of approved antipsoriatic drugs that target

respective immune mediators for use in HS. On the other

hand, there is a range of cytokines whose levels in HS exceed

or are clearly below the levels in psoriasis21,64 that could point

to HS-specific alterations.

Among the mediators known to be mainly produced by

macrophages, HS lesional skin shows high levels of the proin-

flammatory cytokines TNF-a and IL-1b.21,63,64,85,86 TNF-a
mRNA reaches levels similar to those in the inflamed skin of

patients with psoriasis,21,64 a disease that strongly responds to

anti-TNF-a therapy.87 IL-1b upregulation in HS skin greatly

exceeds that in psoriatic skin64 and is not associated with

raised levels of the natural IL-1 inhibitor, IL-1 receptor

antagonist.64 The expression of IL-1a, which shares with IL-

1b the cellular receptor complex (Figure 4),88 is also

increased in HS lesions compared with healthy donor skin,

but this increase is much less pronounced.64 For secretion of

IL-1 protein, the inflammasome system, which represents an

integrated PRR/effector system assembling after activation by

danger-associated and bacterial molecules, is responsible. HS

lesions show increased expression of NLRP3 and P2X7 (the

ATP receptor and an inflammasome activator) and increased

caspase 1 activity.63,64,89 Ex vivo analysis of IL-1b protein secre-

tion by different cell populations isolated from lesional HS

skin demonstrated macrophages as a major IL-1b source,64

although lesional keratinocytes were also able to produce this

cytokine.86

TNF-a acts on most cells in the body, using two alternative

transmembrane receptors (Figure 4) with different biological

responses. In the skin, TNF-a induces a wide range of

immune-cell-attracting chemokines and contributes to

endothelial activation, favouring immune cell infiltration.90

This function is crucial to each immunological response; it is

therefore not surprising that the TNF-a-targeting antibody

adalimumab is approved not only for HS91 but also for psoria-

sis and psoriasis arthritis, spondyloarthritis and spondy-

loarthropathy, and Crohn disease.92–94

IL-1b also influences every cell type, although, among skin

cells, dermal fibroblasts showed the highest IL-1 receptor

levels and the strongest IL-1 responses.6 IL-1b induces the

production of MMPs (MMP1, MMP3, MMP10) and various

chemokines, with those attracting neutrophilic granulocytes

(CXCL1, CXCL6, CXCL8) being most prominent. Moreover,

IL-1b induces specific cytokines in its target cells, including

IL-6, IL-32 and IL-36b.64 While the effects of IL-1b on

fibroblasts are not clearly shared by other proinflammatory

cytokines, in keratinocytes they are often amplified by TNF-a
and IL-17. IL-1b target molecules are highly abundant in HS

skin.21,47,64,95,96 The relationship between IL-1b and its target

molecules was clearly supported by the reduction of the

expression of these target molecules in explanted skin from

HS lesions, when treated with an IL-1 receptor antagonist.64

MMPs may be involved in the early rupture of the hair follicle

units and the later loosening of epidermal cell–cell junctions
during tunnel formation. Neutrophils attracted by the IL-1-in-

duced chemokines (and maybe by leukotriene B4 and the

complement component C5a) contribute to inflammatory

cytokine production and pus formation in HS.

Among the cytokines produced by neutrophils in HS (espe-

cially after TNF-a stimulation) is lipocalin 2.97 Apart from its

role in inflammatory pain and metabolic control, lipocalin 2

supports further neutrophil tissue infiltration.98,99 A recent

study suggested production of the cathelicidin-derived peptide

LL37 by these cells, which the authors claimed to support T-

cell proliferation in HS lesions.47 While little is known about

the role of IL-32, IL-6 seems to influence a large range of cells

via two alternative signalling ways, involving a membrane-

bound and a soluble receptor.100 In HS lesions, it may, simi-

larly to IL-1b, favour the function of Th17, while impairing
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the function of regulatory T cells.101–104 Moreover, IL-6 sup-

ports the function of B cells.100

Interestingly, in addition to the proinflammatory cytokines,

the anti-inflammatory cytokine IL-10 is prominently expressed

in HS lesional skin.21,63,86,105 Macrophages may be the main

source of IL-10 in HS. In these cells, IL-10 can be induced by

bacterial components and cytokines like TNF-a. Intracellular

cAMP levels, induced by nicotine, may further support cuta-

neous IL-10 production in patients with HS who smoke.36,37

IL-10 exclusively acts on immune cells via a dimeric receptor

complex (Figure 4).106–108 In myelomonocytic cells, IL-10

strengthens the phagocytosis of bacteria and the clearing away

of the apoptotic cells.109 IL-10 also limits the T-cell stimula-

tion capacity of and proinflammatory cytokine production by

monocytes and macrophages.110–112 Moreover, IL-10 can

directly inhibit cytokine production in T cells (see

below).21,113,114

Among T-cell-typical mediators, the Th17 cell cytokines IL-

17A and IL-17F, as well as the Th1 cell cytokine IFN-c, are
highly expressed in HS lesions, with levels comparable with

those in psoriasis.21,64 In contrast, IL-22 shows only limited

upregulation.21 In line with this, HS lesions show an abun-

dance of Th cells able to secrete IL-17 and IFN-c, but not IL-
22�86 The production of IL-17 and IFN-c by Th cells (typically

Th17 and Th1 cells, respectively) is known to be supported

by IL-23, IL-1b and IL-6 (IL-17), as well as by IL-12 (IFN-

c),75 which are all upregulated in HS lesions.21 IL-12 and IL-

23 were found to be abundantly expressed by macrophages

infiltrating the papillary and reticular dermis of lesional

skin.115 Moreover, IL-17 and IFN-c production is supported

by mammalian target of rapamycin (mTOR) complex sig-

nalling,116,117 whose relevance might be deduced from the

reported increased mTOR expression in HS lesions.118

IL-17A and IL-17F form homo- and heterodimers and share

a cellular receptor complex (Figure 4).119 Their main target

cells are epithelial cells, but effects have also been detected on

fibroblasts and endothelial cells, for example. IL-17A and IL-

17F induce the production of selected chemokines (such as

CCL20, attracting Th cell subpopulations and dendritic cells,

as well as those specific for neutrophilic granulocytes, such as

CXCL1 and CXCL8), cytokines (such as the IL-17 action-en-

hancing cytokine IL-19) and antimicrobial proteins (AMPs;

such as b-defensin-2 and S100A7).120–124 AMPs are key play-

ers in the epidermal immune defence against extracellular bac-

terial and fungal pathogens. While on their own, IL-17A and

IL-17F cause only moderate cell responses, their function lies

primarily in the synergistic action with other tissue-active

cytokines such as TNF-a, IL-22 and IFN-c.123–129 The conse-

quent involvement of IL-17A/F in various cutaneous inflam-

matory pathways and the high efficacy of approved IL-23 and

IL-17 inhibitors in psoriasis led to initiation of clinical studies

testing those biologics in HS.1

Another Th17 cell cytokine upregulated in HS lesions is IL-

26�21,130 Its biology differs from that of IL-17A/F. While its

receptor-dependent cytokine properties are debated, IL-26

directly kills bacteria, an effect that is impaired in HS.130 Fur-

thermore, IL-26 acts as a carrier of DNA released from dam-

aged cells to intracellular DNA-binding PRRs. The resulting

Figure 4 Cytokines involved in hidradenitis suppurativa (HS) pathogenesis and their receptors. The structures and major downstream signalling

factors of the receptor complexes used by cytokines involved in HS pathogenesis are depicted. The expression pattern of the receptor complexes

determines the target cells of the cytokines. While some cytokines largely act on both immune and tissue cells [e.g. interleukin (IL)-1b, tumour

necrosis factor (TNF)-a and interferon (IFN)-c], some mainly target immune cells (IL-10) or tissue cells (e.g. IL-22). Therapeutic inhibition of

the action of cytokines is possible via neutralization of the cytokines themselves, blocking their specific receptors or interfering with the activation

of signalling elements downstream to the receptors. BP, binding protein; Casp., caspases involved in apoptosis; C/EBP, CCAAT-enhancer-binding

protein; IRAK, IL-1 receptor-associated kinase; Jak, Janus kinase; MAPK, mitogen-activated protein kinase; NF, nuclear factor; R, receptor; RA,

receptor antagonist; RAcP, receptor accessory protein; RBP, RNA-binding protein; Stat, signal transducer and activator of transcription; TRAF, TNF

receptor-associated factor; Tyk, tyrosine kinase. [Colour figure can be viewed at wileyonlinelibrary.com]
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PRR activation, for example in macrophages, induces an

inflammatory response.131

IFN-c is a pleiotropic Th/Tc1-cell cytokine that affects both

tissue and immune cells via its tetrameric cellular receptor

complex (Figure 4).132 IFN-c induces chemokines such as

CXCR10133 that attract Th/Tc1 and natural killer cells and that

are also upregulated in the skin of patients with HS.85,134

Moreover, IFN-c supports the activation of dermal endothe-

lia.132 It also strengthens proinflammatory cytokine production

by macrophages and regulates B-cell functions. On both tissue

and antigen-presenting immune cells, it upregulates the sur-

face expression of the major histocompatibility complex and

costimulatory molecules, which may be important for local T-

cell activation in HS.132

The limited upregulation of IL-22 in HS lesions is due to

both the limited increase in the frequency of IL-22-producing

Th cells, as reported by Hotz et al. (see above),86 and the

inhibited production of this cytokine by Th cells. Regarding

the latter, IL-10 might be involved, as deduced from the inhi-

bitory effect of IL-10 on IL-22 production in vitro and the neg-

ative correlation between lesional levels of IL-22 and IL-10 in

HS.21 Not only the production but also the impact of IL-22

may be limited in HS. This was concluded from the increased

expression of IL-22-binding protein,21 the natural soluble

receptor that inhibits the cutaneous action of IL-22�135,136 In

the skin, IL-22 acts exclusively on keratinocytes.137,138 Like

IL-17, IL-22 is an inducer of epidermal AMPs.137 It does so

both directly and via the induction of IL-20, its downstream

mediator, which shares with IL-22 a receptor complex subunit

(IL-22R1) (Figure 4).21,129,137

Regarding AMP induction, IL-22 acts with IL-17 in a syner-

gistic manner, and only the strong presence of both cytokines

results in strong AMP upregulation, which is essential for the

protection of disturbed skin.21,124,137 Consequently, the rela-

tive IL-22 deficiency in HS lesions leads to minimal AMP

upregulation.21,96 This may explain the abnormal bacterial

colonization of HS lesions and the elevated frequency of skin

infections in respective patients.139 IL-22 also acts as an inhi-

bitor of cellular differentiation and a protector against cellular

damage.138,140–142 Therefore, the limited IL-22 production in

HS may also be related to the destructive nature of the HS

inflammation. Finally, IL-22 is a regulator of metabolism.143

Among the mediators known to be produced by skin tissue

cells, HS lesions show increased expression of IL-36a, IL-36b
and IL-36c, which were mainly localized to ker-

atinocytes.47,64,144,145 The IL-36 receptor (Figure 4) is

expressed by tissue cells including keratinocytes, as well as

monocytic immune cells and T cells.146 IL-36 cytokines are

known for their induction of neutrophil-attracting chemoki-

nes, specific cytokines and AMPs.147,148

Another tissue-cell cytokine highly expressed in HS lesional

skin is IL-17C.149 IL-17C is part of the IL-17 cytokine fam-

ily.150 It is induced by proinflammatory cytokines including

IL-1b and TNF-a, and to a lower extent by IL-17A, as well as

by bacterial components.151 The IL-17C receptor complex

(Figure 4)151–153 is mainly expressed by epithelial cells

including keratinocytes,151 but is also expressed by Th17

cells.153 Interestingly, the (autocrine) responses induced by

IL-17C in keratinocytes are very similar to those induced by

IL-17A/F.151,154

Some of the inflammatory cytokines and their target mole-

cules produced in HS lesions are also detectable in the circula-

tion.47,64,95,97,155–159 They may act systemically and support

comorbidities in these patients.1 Furthermore, they may be

useful as indicators of the activation of specific immunological

pathways in the skin. They could also enable the identification

of patients at risk for specific comorbidities. A range of efforts

have been made to identify such biomarkers also beyond cyto-

kines.52,160,161

Conclusion

HS is a complex, immunologically mediated disease that

involves different components simultaneously: an inflamma-

some-driven innate component with dominance of

neutrophilic granulocytes, a significant anti-inflammatory

component, and strong activation of the Th1 and the Th17

pathways, but not the Th22 pathway. Anaerobic bacteria and

cell-damage-associated molecules play an inflammation-trig-

gering role. Activated pathways induce inflammatory vicious

circles resulting in pain, purulence, tissue destruction and

scarring. Several clinical studies are currently being carried out

that aim to prevent the action of cytokines such as IL-17, IL-

23p19 and IL-1,1 the roles of which are described above.

Prevention of cytokine action is possible by neutralization of

the cytokines themselves, blocking their specific receptors or

interfering with their signal transduction (Figure 4). Not only

the pathogenetic complexity but also the destructive nature of

HS represents a challenge for the development of therapeutic

approaches for this disease. In fact, once the skin architecture

is damaged, it cannot be repaired with medications. Therefore,

great efforts are needed to reduce the current intolerable delay

in the diagnosis of HS162 as a prerequisite for an early start of

anti-inflammatory treatment. An early treatment start may also

prevent or counteract the systemic comorbidities and reduced

life expectancy of patients with HS.
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