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Abstract

Purpose – The purpose of this paper is to present a novel control mechanism for avoiding overlapping
among biclusters in expression data.

Design/methodology/approach – Biclustering is a technique used in analysis of microarray data.
One of the most popular biclustering algorithms is introduced by Cheng and Church (2000) (Ch&Ch).
Even if this heuristic is successful at finding interesting biclusters, it presents several drawbacks. The
main shortcoming is that it introduces random values in the expression matrix to control the
overlapping. The overlapping control method presented in this paper is based on a matrix of weights,
that is used to estimate the overlapping of a bicluster with already found ones. In this way, the algorithm
is always working on real data and so the biclusters it discovers contain only original data.

Findings – The paper shows that the original algorithm wrongly estimates the quality of the
biclusters after some iterations, due to random values that it introduces. The empirical results show that
the proposed approach is effective in order to improve the heuristic. It is also important to highlight that
many interesting biclusters found by using our approach would have not been obtained using the
original algorithm.

Originality/value – The original algorithm proposed by Ch&Ch is one of the most successful
algorithms for discovering biclusters in microarray data. However, it presents some limitations, the
most relevant being the substitution phase adopted in order to avoid overlapping among biclusters.
The modified version of the algorithm proposed in this paper improves the original one, as proven in the
experimentation.
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1. Introduction
By measuring the expression level of a large number of genes (from the same
organisms or from different ones), under different experimental conditions (different
environments, individuals, time series, different cells, etc.), it is possible to analyze the
behavior of the genes. The expression level of a gene is the measurement of the activity
of the gene. Generally, the expression level of a gene measures the relative amount of
mRNA expressed under an experimental condition. This analysis allows discovering
or justifying certain biological phenomena (Harpaz and Haralick, 2006).
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The use of microarray techniques allows to measures the expression levels of
thousands of genes under several experimental conditions. Usually, the resulting data
is organized in a matrix, where, e.g. columns may represent genes and rows represent
conditions (Baldi, 2002; Tilstone, 2003). Such a matrix is called an expression matrix.
Therefore, each entry of the matrix denotes the numerical expression level of a gene
under a certain experimental condition. With the development of microarray
techniques, the interest in extracting useful knowledge from gene expression data has
experimented an enormous increase. Various machine learning techniques have been
applied successfully to this context (Piatetsky-Shapiro et al., 2003).

Clustering has been extensively applied to expression matrices, with the aim of
discovering groups of genes that present a similar behaviour, in terms of variations of
expression level, under all the experimental conditions (Tamayo et al., 1999; Ben-Dor
et al., 1999; Yin et al., 2006). However, there may be genes that present a similar
behavior only under a subset of conditions. So it is necessary to address the clustering
problem not only in one dimension (genes), but in two dimensions simultaneously. This
motivated the development of biclustering algorithms for solving this problem
(Hartigan, 1972). The first application of biclustering to microarray analysis was
proposed by Cheng and Church (Ch&Ch) (2000). Biclustering aims at grouping genes
presenting similar trends under a subset of experimental conditions. In this way, a
bicluster represents a submatrix of the expression matrix. From the biological point of
view, biclustering is a very interesting technique, as it is possible to discriminate
groups of conditions by using different groups of genes. Biclustering has been proven
to be much more complex than clustering (Divina and Aguilar-Ruiz, 2006).

Two key factors have influenced the biclusters searching problem: the definition of
a measure that assigns a value of quality to the potential biclusters and the
development of a suitable heuristic. The mean squared residue (henceforth MSR;
Ch&Ch, 2000) is an example of a quality measure for biclusters. MSR has turned into
one of the most popular measures, and it has been used by many researches who have
proposed different heuristics for biclustering biological data (Divina and Aguilar-Ruiz,
2006; Bryan and Cunningham, 2007; Aguilar-Ruiz et al., 2006; Yang et al., 2005;
Cho et al., 2004).

Ch&Ch also proposed a heuristic for discovering biclusters using MSR. This
heuristic is described in the following sections.

In this work, a particular emphasis is placed on the heuristic proposed in the
biclustering algorithm. The exhaustive search of all the biclusters in a microarray
corresponds to an exponential order, regarding the number of genes and conditions.
Therefore, it is necessary to develop an approximate heuristic which finds good
solutions, even if these may be not the optimal ones. Ch&Ch proposed a sequential
covering algorithm. Although this approach is one of the main references for many
researchers, it has several shortcomings. Such drawbacks are analyzed in Section 2 and
represent the main motivations for this work. Experiments show that the original
algorithm proposed in Ch&Ch (2000) returns biclusters whose MSR is not the one
computed by the algorithm, due to the presence of random values in the expression
matrix. Our proposal does not present such a drawback.

This paper is organized as follows. In Section 2, we describe the algorithm proposed
in Ch&Ch (2000) and analyze its shortcomings. Section 3 describes our proposal.
Experiments and conclusions are described in Sections 4 and 5, respectively.
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2. Cheng and Church approach
As already mentioned, the original algorithm of Ch&Ch (2000) adopts a sequential
covering algorithm in order to return a list of n biclusters from an expression data
matrix. In order to assess the quality of a biclusters the algorithm adopts MSR. This
measure aims at evaluating the coherence of the genes and conditions of a bicluster
B consisting of I rows and J columns. MSR is defined as:

MSRðBÞ ¼
1

I · J

Xi¼I

i¼1

Xj¼J

j¼1

ðeij 2 eiJ 2 eIj þ eIJ Þ
2 ð1Þ

where eij, eiJ, eIj and eIJ represent the element in the ith row (condition) and jth column
(gene), the row and column means and the mean of B, respectively. The lower the MSR,
the stronger the coherence exhibited by the bicluster and the better the quality of the
bicluster. If a bicluster has a MSR lower than a given value d, then we call the bicluster
a d-bicluster. It follows that the smaller the value of MSR, the better the bicluster is
considered. If a bicluster has a MSR equal to zero, it means that its genes fluctuate in
exactly the same way under the subset of experimental conditions and thus, it can be
considered a perfect bicluster.

Algorithm 1 shows a scheme of Ch&Ch. The algorithm takes as input the
expression matrix EM and the threshold d imposed on MSR. d is used to reject non
d-biclusters. A list L of d-biclusters is returned as output:

Algorithm 1. Ch&Ch’s original algorithm
Input: Expression Matrix EM; Thresholds d
Output: List of Biclusters L

1 preprocess the missing values of EM
2 list L ¼ Y
3 Bicluster B
4 repeat n times
5 B ¼ EM
6 Bd ¼ multiple node deletion phase(B,d)

7 B
0

d ¼ simple node deletion phase(B,d)

8 B
00

d ¼ addition phase(B
0

d)

9 L ¼ L%B
00

d

10 substitution phase(B
00

d ,EM )
11 end_repeat
12 return L

After preprocessing the missing values of EM by replacing them with random
numbers (line 1) and initializing the list of bicluster (line 2), the bicluster discovering
process is repeated n times (lines 5-11). First, the bicluster B is initialized to the whole
matrix EM. Next, the multiple node deletion phase (line 6) produces a d-bicluster Bd.
This phase is based on the elimination of those rows or columns whose residue is
higher than a certain value, depending on the MSR of the current matrix. Later, the
single node deletion phase (line 7) removes the row or column from Bd with the higher
residue and returns B

0

d. Next, the node addition phase (line 8) tries to enlarge the
current bicluster B

0

d. This is done by adding those columns and rows that do not
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increase the residue of the matrix above the threshold d. The obtained bicluster B
00

d is
stored in the list L (line 9). Finally, the substitution phase (line 10) replaces the elements
of EM that are contained in B

00

d with random numbers. This substitution is applied in
order to prevent overlapping among biclusters, since it is very unlikely that elements
covered by existing biclusters would contribute to any future bicluster discovery
(Ch&Ch, 2000).

This strategy succeeds in avoiding the overlapping, however it presents two main
drawbacks:

(1) As biclusters are discovered, more and more elements of the original expression
matrix are lost, since they are substituted with random values. It follows that the
expression matrix the algorithm is working on contains more and more random
values as biclusters are being discovered. As a consequence, the algorithm may
return biclusters that are obtained using random values, whereas these random
values will be later replaced by the original ones. Moreover, in this way some
biclusters might not be found. For instance, if gene j and condition i are
contained in a bicluster B, the element eij is substituted by a random value in the
expression matrix. This may prevent gene i to be included in other biclusters
under the same condition j, even if it could have improved the quality of the
bicluster, since some of its original expression values have been substituted by
random values. In general, it is desirable to avoid overlapping among biclusters,
but not at the cost of loosing possible important interactions among genes.

(2) During the execution of the algorithm, the MSR value of the biclusters
considered has to be computed. If a bicluster contains random values its
computed MSR is not real, since it is influenced by the presence of random
values. This has a negative influence of the overall search process, since the
algorithm cannot compute the real values of MSR for some biclusters.

After having performed a number of experiments, we have found that the percentage of
random numbers present in the EM can be very high during the execution of the
algorithm. For example, for one of the datasets used in the experiments presented in this
paper (yeast dataset (Cho et al., 1998)), we found that after 80 biclusters had been
discovered, up to 50 per cent of the elements ofEM had been replaced by random values.

Another point that has to be considered is that Ch&Ch makes use of a threshold d in
order to reject biclusters: biclusters with MSR higher than d are rejected. However, if
some elements of the biclusters are random, the MSR of this biclusters might be higher
that d, and thus be rejected. But again the MSR is influenced by the presence of random
values. The MSR of the same bicluster with the original elements is different and could
therefore be lower than d. Also the opposite case may arise, i.e. a bicluster with
estimated MSR lower than d is accepted, but when the original values are used instead
of the random ones, the MSR might increase to a level higher than d. In this last case
the bicluster should have been rejected.

Equation (2) shows an example of such a situation. The bicluster represented in the
equation has a MSR ¼ 259.47. If the element shown in bold were a random value and
the original value were 153 the MSR of the bicluster would drop to 0 when the MSR is
computed with the original value. If a d equal to, e.g. 100 were used, the bicluster
depicted in equation (2) would be rejected, even if with the original values it represents
a perfect bicluster:
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B ¼

53 8 65 84

122 77 134 60

55 10 67 86

73 28 85 104

140 95 152 171

0
BBBBBBB@

1
CCCCCCCA

ð2Þ

The above considerations clearly show that the replacement strategy adopted by
Ch&Ch may, on one hand, prevent the discovering of interesting biclusters, or, on the
other hand, yields the algorithm towards the discovering of biclusters considered to
be interesting only because of random values they contain. This clearly illustrates the
limitations of the replacement policy adopted by Ch&Ch. These considerations
represent our main motivations for the work presented in this paper.

3. Controlling the overlap among biclusters
In this section, we describe the variations we incorporated to Ch&Ch. We call the
resulting algorithm – Ch&Ch-R. The main variation is represented by the removal of
the substitution phase used in the original algorithm (line 10 in Algorithm 1) and the
incorporation of an overlapping control mechanism. Since, in Ch&Ch-R elements
contained in already found biclusters are not replaced by random values, a
deterministic version of Ch&Ch would always find the same bicluster. Therefore, our
proposal includes a different heuristic, consisting of some variations in order to render
Ch&Ch-R non-deterministic.

3.1 Overlapping control mechanism
Given an expression matrix EM, we say that two biclusters B1 and B2 are overlapped if
there is at least one element eij [ EM such that eij [ B1 and B2.

By controlling the level of overlapping among biclusters, we can decide whether a
bicluster may be considered as a significative one, with respect to its overlapping
percentage with the previously found biclusters. In our approach, we control the
overlapping by means of a matrix of weights W, in a similar way to the approach
adopted in Divina and Aguilar-Ruiz (2006). W has the same dimension of the original
expression data matrix, so that each element w(eij) [ W represents a weight associated
with eij [ EM. Initially all the elements of W are equal to zero, i.e. w(eij) ¼ 0, ; i, j. Each
time a bicluster B is stored in the list L, w(eij) is increased by one if eij [ B. So,
basically, w(eij) indicates how many biclusters in L contains element eij.

It follows that this matrix can be used to measure the overlapping of a new
bicluster. We define the degree of overlapping of a bicluster B as:

PðBÞ ¼
eij[B

P
wðeijÞ

V ðBÞ

where V(B) is the volume of a bicluster B. P(B) will be high for a bicluster whose
elements are already contained in the previously found biclusters.

Since we aim at avoiding overlapping as much as possible, P(B) can be used, in
combination with MSR, in order to reject biclusters. In order to do this, we need to
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define a criterion for establishing if P(B) is to be considered high. 0 # P(B) # nb, where
nb is the number of biclusters found so far. Thus, the upper limit of P(B) will be
different in each iteration of the algorithm.

In order to use P(B) for rejecting biclusters in different iterations, it is convenient
that the range of values P(B) can assume is always the same in all iterations. For
this purpose in equation (3) we define the overlapping factor of a bicluster for the
iteration nb:

PnbðBÞ ¼
i;j[B

P
wðeijÞ

V ðBÞ £ nb
ð3Þ

Notice that Pnb(B) [ [0,1], ; nb. In this way, we can use Pnb(B) to reject a bicluster B if
Pnb(B) is higher than a certain threshold v. Moreover, biclusters found in later
iterations are allowed to have more elements in common with biclusters stored in L.
This is because Pnb(B) tends to be smaller as nb increases. In other words, the
biclusters with high overlapping are penalized more in the first iterations.

By setting the overlapping threshold v, the user can decide the level of overlapping
among the biclusters. In our experiments, we have used threshold v ¼ 0.5. This
value was experimentally obtained after several trial runs of the algorithm with
different v.

3.2 Re-adaptation of Ch&Ch algorithm
As already mentioned, the removal of the substitution phase discussed in Section 2 and
the fact that Ch&Ch is a deterministic algorithm, implies that the algorithm will
produce always the same bicluster. Therefore, we need to introduce other modifications
in order to render the algorithm non-deterministic. To this aim, we propose the
following variations:

(1) The substitution phase has been replaced by the overlapping control
mechanism. This mechanisms allows to reject biclusters with overlapping
factors higher than v and updates the matrix of weights W.

(2) Multiple node deletion phase has been redefined in terms of the selection of the
rows or columns to be deleted from the bicluster. Removing first those rows or
columns that produce more overlapping with previous biclusters speeds up the
convergence of the algorithm. The selection of the rows and columns is done
using the matrix of weights W.

(3) The selection mechanism for the columns or rows to be added in the node
addition phase has been also redefined. Those columns or rows that are less
overlapped with previously found biclusters are selected first, provided that
their addition do not increase the matrix residue above d. As in the previous
variation, this selection is also based on W. The redefinition of the node addition
phase aims at finding biclusters with a low-overlapping degree.

(4) Finally, the initial bicluster is randomly determined from the original
microarray, with the exception of the first iteration where the initial bicluster is
the whole matrix, as in Ch&Ch.
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The pseudocode of the resulting algorithm Ch&Ch-R, is shown in Algorithm 2:

Algorithm 2. Ch&Ch-R algorithm
Input: Expression Matrix EM; Thresholds d and v
Output: List of Biclusters L

1 preprocess the missing values of EM
2 list L ¼ Y
3 nb ¼ 1
4 Matrix of Weight W ¼ 0
5 Bicluster B ¼ EM
6 while nb ,¼ n (number of biclusters)
7 Bd ¼ multiple node deletion phase(B,d,W) [re-adapted]

8 B
0

d ¼ simple node deletion phase(Bd,d)

9 B
00

d ¼ addition phase(B
0

d, W ) [re-adapted]

10 if P(B
00

d) ,¼v
11 nb ¼ nb þ 1
12 L ¼ L%B

00

d

13 ; i, j
14 if eij [ B

00

d

15 wij þ 1
16 end_if
17 B ¼ random selection (EM)
18 end_while
19 return L

After preprocessing the missing values of EM, as explained in Section 4, the variables
L (list of biclusters), nb (counter for the loop or number of biclusters found), W (matrix
of weight) and B (initial bicluster) are initialized. Notice that in the first iteration, the
bicluster B is initialized to the whole matrix EM (line 5), in order to take into account
the whole set of genes and experimental conditions. Next, the while-loop is executed,
where the three first phases (lines 7-9) are the re-adapted multiple node deletion phase,
simple node deletion phase and re-adapted addition phase, respectively. These steps
always produce d-biclusters, that is MSR(Bd), MSR(B

0

d) and MSR(B
00

d) are smaller that d.
Notice that single node deletion (line 8) phase is always deterministic, since the
selection of the row or column to be removed depends on their residues. Therefore,
there is no adaptation of this phase in our proposal.

Once B
00

d is returned by the re-adapted addition phase, the overlapping control
method is performed. If the overlapping factor of the bicluster PðB

00

dÞ does not exceed
the threshold v, then nb is increased, the bicluster is included in the list L and W is
updated (lines 13-15). If eij [ EM belongs to B

00

d then the element wij [ W is increased
by one. If, on the other hand, the overlapping factor is above v, the bicluster B

00

d is
rejected, because it has too many common elements with the biclusters previously found.

Finally, a new bicluster B is randomly generated from the original dataset EM to be
used in the next iteration. The dimension of B is randomly chosen, as well as the
specific genes and conditions belonging the bicluster. In the original algorithm, each
iteration starts from the whole matrix EM, modified from the last iteration by the
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substitution phase. However, different experiments showed that starting from a
random bicluster produced better results.

Figures 1 and 2 show the flow charts of the re-adapted multiple node deletion phase
and addition phase, respectively. As can be seen in Figure 1, multiple row/column
deletion is only performed if the number of rows/columns is greater than 100. The way
in which rows are chosen to be deleted is shown in the right flow chart in Figure 1
(deleteMultipleRows). Columns are deleted in a similar way. Multiple node deletion
phase ends up once the bicluster has a lower value of MSR than the limit or the
bicluster does not change after multiple rows and columns deletion.

Figure 2 depicts the re-adapted addition phase. This phase iteratively add multiple
rows, columns and inverse rows until no addition is performed. The way in which
multiple rows are added to the bicluster can be seen in the right flow chart of the figure.
Multiple columns are added in a similar way. Inverse rows are added in the same way
as in the original Ch&Ch algorithm.

4. Experiments
In order to test our proposal we conducted experiments on three datasets:

(1) Yeast Saccharomyces cerevisiae cell cycle expression dataset originated from
Cho et al. (1998). This datasets consists of 2,884 genes and 17 conditions.

(2) Human B-cells expression data originated from Alizadeh et al. (2000). The
human dataset consists of an expression matrix of 4,026 genes and 96
conditions.

Figure 1.
Flow chart representing
the re-adapted multiple
node deletion phase

ComputeMSR (B)

Compute (B)>100

Deletion?

No

No

No

No

Return B

Yes

Yes

Yes

Yes

Multiplenode deletion phase (re-adapted)

Cont ← 0

Cont < rows 

Yes

Nextrow ← mostOverlappedRow (B,W)

rowMSR (nextrow) > α∗ MSR

No

No

deleteRow (nextrow, B)

Cont  ← cont +1

Return B

Yes

deleteMultipleColums

deleteMultipleRows

ComputeMSR (B)

MSR(B)>δ

Rows(B)>100

deleteMultipleRows
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(3) Colon cancer dataset. This dataset originated from Cho et al. (1998) and contains
an expression matrix consisting of 2,000 genes and 62 conditions.

All these datasets were preprocessed as in Ch&Ch (2000). The most important
preprocessing operation regards missing values: missing values are replaced with
random values, although it is known the existing risk that these random numbers can
affect the discovery of biclusters (Yang et al., 2002). The expectation was that these
random values would not form recognizable patterns.

Table I shows the most relevant characteristic for each dataset. The first two
columns show the number of genes and conditions, respectively. The third column
shows the values of the d limit that has been used. In the case of the yeast and human
datasets they were taken from the original work (Ch&Ch, 2000), while for the other
dataset we have established the value of d following a procedure suggested in such a
reference.

For each dataset, we have obtained 100 biclusters, using both the Ch&Ch and
Ch&Ch-R. It is important to notice that most of the biclusters found with the last
algorithm would have not been obtained using the original Ch&Ch, since we have
eliminated the substitution phase. In fact, this phase masked the values contained in
each bicluster by introducing random numbers.

Dataset Number of genes Number of conditions d

Yeast 2,884 17 300
Human 4,096 96 1200
Colon 2,000 62 500

Table I.
Main information

for each dataset

Figure 2.
Flow chart representing
the re-adapted addition

phase

ComputeMSR (B)

computeMSR (B)

addMultipleColumns

addMultipleRows

addInverseRows

Addition?

No

Return B

Yes

Addition phase (re-adapted)

Cont ← 0

Cont < rows (not in B)

Yes

nextRow ← lessOverlappedRow (B,W)

rowMSR (nextRow) ≤ MSR

No

No

addRow (nextRow,B)

Cont ← cont +1

addMultipleRows

Return B

Yes
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Both algorithms have been implemented in the Java language, 1.6 version. All the
experiments were carried out in an Intel Core 2Quad CPU running at 2.40 GHz, with
4 GB of RAM.

Tables II and III show the average results (and their standard deviations in
brackets) obtained on each dataset (in columns) by the two algorithms, Ch&Ch and
Ch&Ch-R, respectively. The first row gives the average MSR, the second row in Table II
shows the mean of the real MSR, i.e. when the MSR is calculated using the original
values, and not the random values introduced in the substitution phase. These real
MSR values have been calculated for each bicluster once the random values are
substituted with the original ones. Table III lacks of this row since there no random
values are introduced in the expression matrix by Ch&Ch-R. The row labelled
GeneVarMean shows the gene variance. Next row (Overlap) represents the average
overlapping for each bicluster with all the previous ones. Note that in Table II this
value also represents the mean number of random values that have been used in the
algorithm. This is because values that are contained in more than a bicluster have been
substituted with random values. Finally, rows GenesMean and CondsMean show the
mean of the number of genes and conditions.

Furthermore, in order to statistically validate the results, we applied the Student’s
t-test. Using a confidence level of 0.5 per cent, we can conclude that all the differences of
results shown in Tables II and III are statistically significant.

From these tables, it is evident that the random values introduced in the expression
matrix during the substitution phase negatively affect Ch&Ch. In fact, the MSR
computed considering the original values is, on average, higher than the specified d.
This means that many of the biclusters returned by the algorithm are not d-biclusters,
which is in contradiction with the specification of the algorithm. This fact is

Yeast Human Colon

MSR 124.80 (72.86) 857.01 (107.99) 389.02 (76.99)
MSR (real) 498.46 (306.08) 9,940.90 (8,381.73) 2,159.61 (13,343.43)
GeneVarMean 836.36 (456.27) 10,985.36 (8,780.13) 5,929.48 (16,066.57)
Overlap (%) 42.94 (36.30) 49.53 (23.62) 9.26 (18.40)
GenesMean 219.47 (309.99) 271.52 (234.25) 21.89 (22.12)
CondsMean 7.25 (3.42) 14.70 (12.26) 8.81 (7.24)

Note: Standard deviation is given in parentheses

Table II.
Ch&Ch average results
for each dataset

Yeast Human Colon

MSR 225.138 (24.85) 1,109.94 (21.09) 435.31 (13.84)
GeneVarMean 334.02 (84.33) 1,432.11 (101.06) 742.64 (13.99)
Overlap (%) 94.55 (12.21) 91.21 (13.45) 94.81 (12.15)
GenesMean 758.18 (212.89) 134.53 (17.34) 134.48 (18.15)
CondsMean 8.59 (2.47) 45.66 (7.41) 24.80 (4.44)
Overlap2Bics (%) 30.1 (17.58) 25.23 (0.39) 33.94 (0.65)

Note: Standard deviation is given in parentheses

Table III.
Ch&Ch-R average results
for each dataset
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particularly evident for the human and the colon datasets, where the average real MSR
is about eight and four time higher, respectively, than the d used for these datasets.

On the other hand, all the biclusters obtained by Ch&Ch-R are d-biclusters and the
average MSR is much lower than the real MSR of the biclusters found by Ch&Ch.
These results alone show the limitations of the substitution phase adopted in Ch&Ch.
This substitution phase is effective for avoiding overlapping among biclusters, as it can
be noticed by the overlapping percentages shown in Table II. However, this
effectiveness is obtained at the cost of possibly producing biclusters that are not
d-biclusters.

As far as the gene variance is concerned, it can be noticed that, in general, Ch&Ch
obtained better results. However, this result is influenced by the fact that MSR is much
higher for the biclusters discovered by Ch&Ch. In general, biclusters with lower MSR
have also a lower gene variance and this explain the lower average gene variance for
the biclusters obtained by Ch&Ch-R.

Biclusters found by Ch&Ch-R are characterized by a higher volume, even if the
average MSR of the biclusters is lower than the MSR of biclusters found by Ch&Ch. This
is due to the overlapping policy adopted by Ch&Ch. In fact, the random values
introduced causes biclusters found in later iterations of the algorithm to have a very low
volume. This is because random values are in general not included in biclusters, since
they introduce noise that would cause the genes not be coherent under some conditions.

Table III contains an additional row, named Overlap2Bics, which represents the
average percentages of overlapped values between every pair of biclusters, for each
dataset. Note that these amounts are considerably lower than the overlapping
percentage of the whole set of biclusters (row overlap).

In the following, we analyze the obtained results for each dataset individually.
These results have been generated using the Ch&Ch-R approach.

4.1 Yeast S. cerevisiae cell cycle expression dataset
The application of the algorithm to this dataset produces big biclusters, compared to
the other two datasets. This is due to the intrinsic characteristics of the microarray,
since genes contained in it are mostly flat, that is with low row variance (Ch&Ch, 2000;
Divina and Auilar-Ruiz, 2006). For this reason, the mean number of genes contained in
the obtained biclusters is about 750. The number of conditions in the biclusters is about
nine on average, which means that the algorithm works well at discriminating some
experimental conditions for each bicluster.

As the algorithm produces big biclusters, the existence of a certain overlapping
percentage among them is inevitable. Nevertheless, by analyzing the results, we have
discovered that the overlapping percentage between two average-size biclusters does
not exceed 50 per cent. Naturally, the bigger a bicluster is, the higher the percentage of
overlapping.

A special case of this situation is the first obtained bicluster which is specially big,
since its overlapping percentage is always 0.

Figure 3 shows two biclusters found on the yeast dataset. The graph presented, is
the most commonly used representation of a bicluster. In such a graph, each line is
relative to the expression level that a given gene assume under a particular
experimental condition. For each bicluster, there are three pictures in the same column.
The first one corresponds to the full obtained bicluster. The second and third ones
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correspond to the 20 per cent and 10 per cent of the genes in the original bicluster,
respectively. These two not-complete biclusters are presented in order to visualize and
test the quality of the original ones, since it is difficult to deduce genes shapes in such a
big bicluster. These genes have been selected sequentially among the genes in the
whole bicluster. The first gene out of each ten sequentially selected genes have been
obtained for the 10 per cent case and the first gene out of five sequentially selected
genes have been selected for the 5 per cent case.

As aforementioned, gene expressions in yeast dataset show flatter tendencies than
in the other datasets. For this reason, the obtained biclusters contain a big amount of
genes and they can be hardly analyzed by their graphical representation. Nevertheless,
the representation of a certain percentage of the original biclusters proves that genes
show a certain correlation among them.

Figure 3.
Examples of biclusters
found on the yeast dataset

Notes: Each column shows three pictures of the same bicluster: full bicluster, 20 and 10 percent of the genes,
respectively; X-axis represents each of the experimental conditions in the bicluster, while Y-axis represents
the expression level of the genes in each bicluster
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In this sense, we have obtained some quality biclusters that would have not been
found by the original Ch&Ch, since masking the values of a found bicluster with
random ones prevents finding lots of real biclusters.

4.2 Human B-cells expression data
Biclusters found on the human dataset are significantly smaller than the ones
discovered from the yeast dataset. The mean of the number of genes in the biclusters is
about 135. This result is accentuated even more by the fact that the expression matrix
relative to human dataset is bigger than that of the yeast dataset. The main reason for
this situation is the intrinsic characteristics within the datasets. Genes in human
dataset do not present such a flat behavior as in the yeast dataset. On the contrary,
gene expression varies significantly among the different experimental conditions.

The average of the number of conditions for biclusters on human dataset is about
45, almost the 50 per cent of the total number of conditions. Again, the first bicluster
presents the highest volume, since its overlapping percentage is always 0. This
bicluster contains 83 genes and 96 conditions, which represents the whole set of
experimental conditions. Therefore, it is one of the most overlapped biclusters.
Nevertheless, the amount of overlapping between two medium-sized biclusters does
not exceed 30 per cent.

Figure 4 represents four biclusters of the 100 found for this dataset. We can
appreciate in these pictures that genes in the same bicluster are strongly correlated.
Their expression levels vary in unison under the same subset of conditions.
Furthermore, the expression levels of the genes are within the same range of values, for
this reason all of them are grouped and it is difficult to differentiate each gene.

Figure 4.
Examples of biclusters

found on the human
datasetNotes: X-axis represents each of the experimental conditions in the bicluster, while Y-axis represents

the expression level of the genes in each bicluster
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4.3 Colon cancer dataset
Colon cancer dataset consists of 2,000 genes and 62 conditions. The mean number of
genes in the biclusters for this dataset is 135, while the mean number of conditions is 25.
In this case, biclusters contain almost the same number of genes as those obtained from
the human dataset. Considering the volume of both datasets, biclusters from colon
dataset are expected to be more overlapped among them.

In fact, this dataset produces biclusters with a mean of 40 per cent of common
values between two given biclusters.

Figure 5 shows four biclusters obtained for colon dataset. They resemble the ones
found on the human dataset, since we can clearly see that each bicluster contains
correlated genes. All genes in a certain bicluster follow the same trend, and they are
also within a close range of expression values.

In this case, the first obtained bicluster (shown in Figure 5 with label bi0) does not
correspond with the highest number of genes, but with the highest number of
experimental conditions. It is made up of 55 conditions, which represents the double of
the mean numbers of conditions of the whole set of biclusters.

4.4 Comparison
Even if the aim of this paper was to assess the validity of the mechanism for
controlling the overlapping among bicluster, we nevertheless include a comparison
with another state of the art biclustering algorithm, called sequential evolutionary
biclustering (SEBI; Divina and Aguilar-Ruiz, 2006). SEBI is an algorithm based on

Figure 5.
Examples of biclusters
found on the colon dataset Notes: X-axis represents each of the experimental conditions in the bicluster, while Y-axis represents

the expression level of the genes in each bicluster
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evolutionary computation that shown excellent performance at finding patterns in
gene expression data. Furthermore, SEBI adopts a strategy for avoiding overlapping
similar to the one proposed in this paper.
Table IV shows the average results (and their standard deviations in brackets)
obtained on each dataset by the algorithm SEBI (Divina and Aguilar-Ruiz, 2006) for
what concerns the average MSR and the average dimension (genes and conditions) of
the biclusters found. Thus, we can compare this table against Table III in order to test
performance of our approach.

Regarding MSR, Ch&Ch-R shows very similar results against SEBI and all of them
are lower than the d used for these datasets. However, if we compare these values with
those shown in Table II for Ch&Ch, we can notice that the average real MSR is much
higher.

On the other hand, we can see that Ch&Ch-R is capable of finding biclusters
characterized by a higher number of genes than the ones found by SEBI. This is a very
important aspect, since the aim of these biclustering method is to find d-biclusters with
maximum size.

5. Conclusions
In this paper, we have proposed some variations that can be applied to the Ch&Ch
algorithm in order to overcome its shortcomings described in Section 2. The original
algorithm is very effective at discovering biclusters, however, after some iterations it
starts to work with more and more random values in the expression matrix, due to the
substitution phase used. This causes the algorithm to estimate wrongly the MSR of the
biclusters. In this paper, we have proposed an alternative method for avoiding as much
as possible overlapping among biclusters.

Our proposal is based on a matrix of weights, that is used to estimate the
overlapping of a bicluster with already found ones. We have defined an overlapping
factor which is used in order to reject biclusters if their overlapping is above a certain
threshold. In this way, the algorithm is always working with the original expression
data and so the biclusters it discovers contain only original data. Since no random
values are introduced in the expression matrix, we have included other modifications
to the algorithm in order to render it non deterministic.

Results show that many biclusters found by Ch&Ch have a MSR that is higher than
d, due to the random values they contain. This is an important shortcoming of Ch&Ch,
since this may yield the algorithm to discovering biclusters that are not d biclusters. It
is also important to notice that many biclusters found by Ch&Ch-R would have not
been obtained using the original Ch&Ch. This is due to the fact that Ch&Ch does not
work with the original expression matrix. This causes that many biclusters are masked
by random values.

Yeast Human Colon

MSR 205.18 (4.49) 1,028.84 (29.19) 492.46 (6.23)
GenesMean 13.61 (10.38) 14.07 (5.39) 9.86 (4.51)
CondsMean 15.25 (1.37) 43.57 (6.20) 40.91 (8.00)

Note: Standard deviation is given in parentheses

Table IV.
SEBI average results for

each dataset
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As future work, we intend to investigate a way to use the overlapping factor for
guiding the algorithm towards biclusters that have a small overlap percentage with
other ones. This could be done, e.g. by modifying the modification phases of the
algorithm and by using the overlapping factor, in combination with MSR in order to
decide, for instance, which node to delete from the bicluster.
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