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After a summary description of the theory of elastic collisions of nucleons with atoms, we
present the calculation of a generic database of differential and integrated cross sections
for the simulation of multiple elastic collisions of protons and neutrons with kinetic energies
larger than 100 keV. The relativistic plane-wave Born approximation, with binding and
Coulomb-deflection corrections, has been used to calculate a database of proton-impact
ionization of K-shell and L-, M-, and N-subshells of neutral atoms These databases cover
the whole energy range of interest for all the elements in the periodic system, from
hydrogen to einsteinium (Z � 1–99); they are provided as part of the PENH distribution
package. The Monte Carlo code system PENH for the simulation of coupled electron-
photon-proton transport is extended to account for the effect of the transport of neutrons
(released in proton-induced nuclear reactions) in calculations of dose distributions from
proton beams. A simplified description of neutron transport, in which neutron-induced
nuclear reactions are described as a fractionally absorbing process, is shown to give
simulated depth-dose distributions in good agreement with those generated by the GEANT4

code. The proton-impact ionization database, combined with the description of atomic
relaxation data and electron transport in PENELOPE, allows the simulation of proton-induced
x-ray emission spectra from targets with complex geometries.

Keywords: coupled electron-photon-proton transport, Monte Carlo simulation, PENELOPE-PENH code system,
random-hinge method, neutron transport, proton-induced x-ray emission

1 INTRODUCTION

Motivated by the specific needs of protontherapy and proton-induced x-ray emission, we have
recently extended the PENELOPE code system [1] to introduce the simulation of interactions and
transport of protons [2, 3]. The resulting code, named PENH, performs class-II Monte Carlo
simulation of coupled electron-photon-proton transport in material structures consisting of
homogeneous bodies limited by quadric surfaces. In class II simulation schemes, hard
interactions (that is, interactions involving scattering angles or energy losses larger than
preselected cutoffs) are simulated by random sampling from their restricted differential cross
sections (DCSs) while the cumulative effect of soft (sub-cutoff) interactions is described by means of
a multiple-scattering approach. Class II simulation has distinct advantages in front of conventional
condensed simulation (see, e.g., Ref. [1]).

The PENH code accounts for elastic and inelastic collisions of protons with atoms, as well as for
nuclear reactions induced by proton impact. Elastic collisions of protons with nuclei are described by
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means of numerical DCSs obtained as the product of the DCS for
scattering by the bare nucleus, which was computed by the
method of partial-waves with the global optical-model
potential of Koning and Delaroche [4], and a screening factor
accounting for the effect of the screening of the Coulomb field of
the nucleus by the atomic electrons, which was calculated from
the eikonal approximation for the Dirac-Hartree-Fock-Slater
potential of neutral atoms [2, 3, 5]. Proton-induced electronic
excitations are simulated by means of DCSs obtained from the
Born approximation with the Sternheimer-Liljequist model of the
generalized oscillator strength (GOS) [1], which is modified by
rescaling the relative contributions of the various electron
subshells to give cross sections for the impact ionization of
inner subshells equal to unpublished results obtained from
accurate atomic GOSs [2]. Nuclear reactions induced by
proton impact are simulated by using information from data
files in ENDF-6 format [6], which provide cross sections,
multiplicities, and angle-energy distributions of all reaction
products: light ejectiles (up to alphas), gammas, as well as
recoiling heavy residuals.

Although electromagnetic interactions are faithfully described
for protons in the energy range from 100 keV up to 1 GeV, the
unavailability of nuclear reaction data for energies higher than
about 200 MeV, limit the possible applications of the code.
Simulations with PENH are also limited by the fact that the
code can only follow electrons/positrons, photons, and
protons. To lessen the effect of this limitation, light charged
ejectiles other than protons (deuterons, tritons, 3He, and alphas)
are tracked as weighted protons [3]. Neutrons and heavy products
are not followed and their kinetic energies were assumed to be
deposited at the reaction site. Comparison with results from other
codes shows that, as one could predict, the calculated dose
distributions from proton beams are generally accurate in the
volume swept by the protons, but are generally too low outside
that volume, mostly because of the neglect of neutron transport.
In this respect, it is worth recalling that neutrons practically do
not interact with electrons and, as a consequence, they have large
mean free paths. In the energy range covered by the proton
simulation code, nominally from 100 keV to 1 GeV, the mean free
path of neutrons in water ranges from about 5 cm at 100 keV to
∼ 66 cm at 1 GeV.

The aim of the present article is twofold. First, we present the
theory and computational aspects of the calculation of the DCSs
for elastic collisions of neutrons and protons, and of the cross
sections for ionization of inner electron subshells of atoms by
proton impact. We also describe the structure and contents of the
associated numerical databases, which completely define the
interaction models used in PENH for nucleons. Second, we
present a simplified algorithm for the simulation of the effect
of neutron transport in Monte Carlo calculations of dose
distributions from proton beams, which only uses the
information provided in the calculated elastic-scattering
database, that is, the total and DCS for elastic collisions and
the reaction cross section, which is one of the basic parameters
used to set the nuclear optical-model potential. The main
simplification is that neutron-induced nuclear reactions are
described as purely absorptive, that is, when the transported

neutron induces a reaction, the simulation of the neutron is
discontinued and a fraction of its kinetic energy is assumed to be
locally absorbed. It will be shown that, in spite of its crudeness,
this transport algorithm accounts for the contribution of
neutrons to the spatial dose distribution fairly accurately.
Although random histories of neutrons with protontherapy
energies (say, from 100 keV to ∼ 300 MeV) may be simulated
detailedly (i.e., interaction by interaction) we adopt a class II
tracking scheme, which is analogous to the ones used in PENELOPE-

PENH for electrons/positrons and protons, because it allows
speeding up simulations of high-energy neutrons.

The present article is organized as follows. In Section 2 we
describe the calculation of DCSs for elastic collisions of
nucleons and protons with atoms (nuclei), the structure of
the numerical database for elastic scattering of these particles,
and the implementation of a class II algorithm for the
simulation of multiple elastic scattering of neutrons.
Section 3 deals with the ionization of inner electron
subshells of atoms by impact of protons, which is based on
total cross sections calculated from the relativistic plane-wave
Born approximation with corrections for binding/polarization
and Coulomb deflection effects. After a brief presentation of
the theory and sample results, the associated numerical
database is described. The validation of the PENH calculation
of dose distributions from proton beams is considered in
Section 4. Section 5 illustrates the simulation of proton-
induced x-ray emission from solid targets. Finally, in
Section 6 we offer a few concluding remarks.

2 ELASTIC COLLISIONS

We consider elastic collisions of nucleons with atoms of the
element of atomic number Z. In order to cover the range of
kinetic energies of interest in proton therapy, up to about
300 MeV, we shall use relativistic collision kinematics. The
simulation code transports particles in the laboratory (L)
frame, where the material is at rest and the projectile moves
with kinetic energy E before the collision. For simplicity, we
consider that the z axis of the reference frame is parallel to the
linear momentum of the projectile, which is given by

p � c−1
�����������
E E + 2 mc2( )√

ẑ, (1)

where c is the speed of light in vacuum and m is the projectile
mass (�mp for protons, and �mn for neutrons). The total energy
of the projectile is

W � E +mc2 �
����������
m2c4 + c2p2

√
. (2)

We recall the general relations

p � βcmc and E � c − 1( )mc2 (3)

where

β � v

c
�

�����������
E E + 2mc2( )√
E +mc2

(4)

is the speed of the particle in units of c and

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 7339492

Salvat and Quesada Collisions of Nucleons with Atoms

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


c �
�����
1

1 − β2

√
� E +mc2

mc2
(5)

is the particle’s total energy in units of its rest energy.
Elastic collisions involve a certain transfer of kinetic energy to

the target atom, which is easily accounted for by sampling the
collisions in the center-of-mass (CM) frame, which moves
relative to the L frame with velocity

vCM � βCMc �
c2p

E +mc2 +MAc2
, (6)

where MA is the mass of the atom. In the CM frame the linear
momenta of the projectile and the atom before the collision are,
respectively, pi′ � p0′ and pAi′ � −p0′ , with

p0
′ � MAc2����������������������

mc2 +MAc2( )2 + 2MAc2 E
√ p. (7)

Quantities in the CM frame are denoted by primes. After the
elastic collision, in CM the projectile moves with momentum
pf
′ � p0

′ in a direction defined by the polar scattering angle θ′
and the azimuthal scattering angle ϕ′, and the target atom
recoils with equal momentum pAf

′ � p0
′ in the opposite

direction. The final energies and directions of the
projectile and the atom in the L frame are obtained by
means of a Lorentz boost with velocity − vCM. Thus,
elastic collisions are completely determined by the DCS
dσ/dΩ′ in the CM frame.

We follow the approach described in our previous work on
proton transport [3], i.e., we assume that the interaction
potential in the CM frame is central, because this is a
prerequisite for applying the partial-wave expansion
method to compute the DCS. Our approach can be
qualified as semi-relativistic, because we are using strict
relativistic kinematics but we do not account for the
breaking of the central symmetry of the interaction when
passing from the L to the CM frame.

2.1 Interaction Potential
The interaction of the incident nucleon with a bare nucleus of the
isotope AZ having atomic number Z and mass number A can be
described by a phenomenological complex optical-model
potential

Vnuc r( ) � Vopt r( ) + iWopt r( ), (8)

where the first term is a real potential, which in the case of
projectile protons includes the Coulomb interaction, and the
second term, iWopt(r), is an absorptive (negative) imaginary
potential, which accounts for the loss of nucleons in the elastic
channel caused by inelastic processes. Parameterizations of
optical-model potentials are generally expressed as a
combination of Woods–Saxon volume terms,

f R, a; r( ) � 1
1 + exp r − R( )/a[ ], (9a)

and surface derivative (d) terms,

g R, a; r( ) � d
dr

f R, a; r( )

� 1
a
f R, a; r( ) f R, a; r( ) − 1[ ]. (9b)

The parameters in these functions are the radius R and the
diffuseness a; typically, the radius is expressed as R � r0A

1/3.
We consider global model potentials of the type

Vnuc r( ) � Vv E; r( ) + Vd E; r( ) + Vc r( ) + Vso E; r( ) 2 L·S
+i Wv E; r( ) +Wd E; r( ) +Wso E; r( ) 2 L·S[ ] (10)

with the following terms:

1) Real volume potential:

Vv E; r( ) � Vv E( )f Rv, av; r( ). (11a)

2) Real surface potential:

Vd E; r( ) � Vd E( ) 4ad g Rd, ad; r( ). (11b)

3) Coulomb potential: approximated by the electrostatic
potential of a uniformly charged sphere of radius Rc,

Vc r( ) � z0Ze2

r

r

2Rc
3 − r2

R2
c

( ) ifr<Rc,

1 ifr≥Rc,

⎧⎪⎪⎨⎪⎪⎩ (11c)

where e is the elementary charge and z0e the nucleon charge (z0 �
1 for protons and � 0 for neutrons).

4) Real spin-orbit potential:

Vso E; r( ) � Vso E( ) Z

mπ c
( )2

1
r
g Rso, aso; r( ), (11d)

where the quantity in parentheses is the pion Compton
wavelength, Z/(mπc) ≃ 1.429 502 fm.

5) Imaginary volume potential:

Wv E; r( ) � Wv E( )f Rw , aw; r( ). (11e)

6) Imaginary surface potential:

Wd E; r( ) � Wd E( ) 4awd g Rwd, awd; r( ). (11f)

7) Imaginary spin-orbit potential:

Wso E; r( ) � Wso E( ) Z

mπ c
( )2

1
r
g Rwso, awso; r( ). (11g)

The operators L and S are, respectively, the orbital and spin
angular momenta (both in units of Z) of the projectile nucleon.
We have indicated explicitly that the strengths of the potential
terms are functions (usually expressed as polynomials) of the
kinetic energy E of the projectile in the L frame. Except for the
Coulomb term of protons, the potential is of finite-range, it
vanishes when the distance r from the projectile to the nucleus
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is larger than about twice the “nuclear radius”, Rnuc ∼ 1.2 A1/3 fm.
In the calculations we use the parameterization of the global
optical-model potential of Koning and Delaroche [4].

2.2 Scattering Amplitudes and Cross
Sections
The scattering of nucleons by nuclei in the CM frame is described by
using the partial-wave expansion method. The underlying physical
picture is that of a stationary process represented by a distorted
plane wave, i.e., by an exact solution of the time-independent
relativistic Schrödinger equation for the potential Vnuc(r),

− Z2

2μr
∇2 + Vnuc r( )( )ψ r( ) � p′2

0

2μr
ψ r( ), (12)

which asymptotically behaves as a plane wave with an outgoing
spherical wave. The quantity μr is the relativistic reduced mass of
the projectile and the target atom, defined as

μr � c−2
Wni′WAi′

Wni′ +WAi′
, (13)

where

Wni′ �
����������
m2c4 + c2p′2

0

√
and WAi′ �

�����������
M2

Ac
4 + c2p′2

0

√
(14)

are, respectively, the total energies of the projectile and the atom
before the collision.

As the potential (10) contains spin-orbit terms, the wave
function is a two-component spinor. Assuming that before the
interaction the projectile moves in the direction of the z axis, the
asymptotic, large-r behavior of the distorted plane wave is

ψ r( ) ∼
r → ∞ 2π( )−3/2 exp ikr cos θ′( )χ

+ 2π( )−3/2 exp ikr( )
r

F θ′, ϕ′( )χ. (15)

where χ is a spinor, which defines the spin state of the incident
nucleon, k � p0

′ /Z is the projectile’s wave number, and θ′ and ϕ′
are the polar and azimuthal scattering angles, i.e., those of the
direction r̂. The factorF(θ′, ϕ′) is a 2 × 2matrix independent of r,

F θ′, ϕ′( ) � f θ′( ) −exp −iϕ′( ) g θ′( )
exp iϕ′( ) g θ′( ) f θ′( )( ). (16)

The functions f (θ′) and g (θ′) are called the “direct” and
“splin-flip” scattering amplitudes, respectively. Evidently,
these functions determine the final spin state of the
scattered nucleon.

The scattering amplitudes can be calculated in terms of the
phase shifts δℓj of spherical waves with orbital and total angular
momenta ℓ and j, respectively. Calculations are performed by using
the Fortran subroutine package RADIAL of Salvat and Fernández-
Varea [7], which implements a robust power series solution
method that effectively avoids truncation errors and yields
highly accurate radial functions. The calculation for protons is
complicated by the fact that the atomic electrons screen the long-

range Coulomb potential of the nucleus, resulting in an affective
electrostatic potential that decreases in magnitude as the radial
distance r increases. This screened atomic potential extends up to
radial distances of the order of the atomic radius, Rat ∼ 105Rnuc and,
because of the small wavelengths of protons and heavier projectiles,
the numerical calculation of phase-shifts for the screened nuclear
potential is unfeasible. The DCSs for elastic scattering of protons
can be calculated by combining a partial-wave calculation of the
scattering by the bare nucleus with an electronic screening
correction derived from the eikonal approximation [3]. Here we
describe the calculation of the DCS for elastic collisions of
neutrons, which is less demanding than for protons because,
due to the absence of the Coulomb term, the interaction
potential has a finite range.

The reduced radial functions, Pℓj(r) are the regular solutions of
the radial wave equation

−Z
2

2μ
d2

dr2
Pℓj r( ) + Vℓj r( )Pℓj r( ) � p′2

0

2μ
Pℓj r( ) (17)

with the “radial” potential

Vℓj r( ) � Vv E; r( ) + Vd E; r( ) + i Wv E; r( ) +Wd E; r( )[ ]
+ Vso E; r( ) + i Wso E; r( )[ ] j j + 1( ) − ℓ ℓ + 1( ) − 3

4
( )

+ Z2

2 μ

ℓ ℓ + 1( )
r2

. (18)

The radial functions are normalized so that

Pℓj r( ) ∼
r → ∞ sin kr − ℓ

π

2
+ δℓj( ), (19)

where δℓj is the complex phase shift. The RADIAL subroutines
determine each phase shift by integrating the corresponding
radial equation from r � 0 outwards up to a radius rm larger than
the range of the nuclear interaction, and matching the numerical
solution at rm with a linear combination of the regular and
irregular Bessel functions. It is worth mentioning that in the case
of charged projectiles (protons and alphas), when electronic
screening is ignored, the inner solution is matched to a
combination of the regular and irregular Coulomb functions,
and the phase shift is the sum of the calculated “inner” phase
shift and the Coulomb phase shift (see, e.g., Ref. [7]). All phase
shifts with absolute values larger than 10–9 are calculated. In the
following the phase shifts are denoted by the abridged notation
δℓa with a � sign (j − ℓ), i.e., δℓ+ ≡ δℓ,j�ℓ+1/2 and δℓ−≡ δℓ,j�ℓ−1/2.

From the calculated phase shifts, the direct and spin-flip scattering
amplitudes are evaluated from their partial-wave expansions

f θ′( ) � 1
2ik

∑
ℓ

ℓ + 1( ) Sℓ+ − 1( ) + ℓ Sℓ− − 1( )[ ]Pℓ cos θ′( ) (20a)

and

g θ′( ) � 1
2ik

∑
ℓ

Sℓ− − Sℓ+( )P1
ℓ
cos θ′( ), (20b)

where Pℓ(cos θ′) and P1
ℓ
(cos θ′) are Legendre polynomials and

associated Legendre functions of the first kind [8],
respectively, and
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Sℓa � exp 2iδℓa( ), (21)

are the S-matrix elements.
For spin-unpolarized neutrons, the elastic DCS per unit solid

angle in the CM frame is given by

dσel

dΩ′
� f θ′( )∣∣∣∣ ∣∣∣∣2 + g θ′( )∣∣∣∣ ∣∣∣∣2. (22)

Owing to the assumed spherical symmetry of the target
nucleus, the angular distribution of scattered neutrons is
axially symmetric about the direction of incidence, i.e.,
independent of the azimuthal scattering angle in both the CM
and L frames.

The total elastic cross section is obtained as the integral of
the DCS,

σel � ∫ dσel
dΩ′

dΩ′ � 2π ∫1

−1
dσel
dΩ′

d cos θ′( ). (23)

The grand total cross section σT, accounting for both elastic
scattering and inelastic interactions or reactions, can be obtained
from the optical theorem,

σT � σel + σR � 4π
k

Imf 0( ), (24)

where σR denotes the reaction cross section, i.e., the total cross
section for inelastic interactions.

2.3 Elastic-Scattering Database
A Fortran program named PANELASTIC has been written to
calculate differential and integrated cross sections for elastic
collisions of protons, neutrons, and alphas with neutral atoms.
It is assumed that the target atom is neutral and the calculated
cross sections for each element are obtained as an average over
those of the naturally occurring isotopes, weighted by their
respective natural abundances [9]. Consistently, in the
simulations we consider that the mass of a target atom is the
average atomic mass of the element

MA � Aw

g/mol
u (25)

where Aw is the molar mass of the element, and u �m (12C)/12 is
the atomic mass unit. This simplification permits reducing the
required information for each element to a single cross section
table, irrespective of the number of isotopes of that element.
PANELASTIC uses the nuclear optical model potentials of Koning
and Delaroche [4] for protons and neutrons, and that of Su and
Han [10] for alphas. The parameters of the global potential for
nucleons are determined for 24 ≤ A ≤ 209 and E ≤ 200 MeV.
Owing to the lack of more accurate approximations, because the
potential values vary smoothly with A, Z and E, we use those
parameters for all isotopes and for energies up to 300 MeV, for
higher energies the potential parameters at E � 300 MeV are
employed.

In the case of protons (and also alphas) the screening of the
Coulomb potential of the nucleus by the atomic electrons is
described by means of the Dirac-Hartree-Fock-Slater analytical

screening function [5], and the screening correction to the
nuclear DCS is evaluated by means of the eikonal
approximation [3]. Since scattering of charged particles is
dominated by the long-range Coulomb interaction, the
extrapolation of the nuclear optical-model potential to high
energies has a small effect on proton transport calculations.

The program PANELASTIC calculates cross sections for elastic
collisions of a projectile particle with a given isotope AZ for the
kinetic energies of the projectile specified by the user.
Alternatively, it can produce a complete database of DCSs and
integrated cross sections for collisions of projectiles of a given
type, with laboratory kinetic energies covering the range from
100 keV to 1 GeV for each element from hydrogen (Z � 1) to
einsteinium (Z � 99). The database grid of energies is logarithmic,
with 35 points per decade. For each energy the program calculates
the DCS in CM, Eq. 22, for a grid of 1,000 polar angles θ′. In order
to reduce the size of the database, and also to improve the
accuracy of interpolation in energy, the DCS is considered as a
function of the variable

Q ≡ 4 cp0
′( )2 sin2 θ′/2( ), (26)

c2 times the square of the momentum transfer in CM. The
original table is “cleaned”, by removing points in regions
where the DCS varies smoothly, to define a reduced grid that
allows accurate cubic spline interpolation in Q. The DCS
interpolated in this way is estimated to be accurate to four or
more digits. For each projectile energy, the database includes the
values of the total elastic cross section, Eq. 23, the reaction cross
section obtained from Eq. 24, the first transport cross section (or
momentum transfer cross section),

σ tr,1′ ≡ ∫ 1 − cos θ′( ) dσel

dΩ′
dΩ′, (27)

and the second transport cross section

σ tr,2′ ≡ ∫ 3
2

1 − cos2θ′( ) dσel

dΩ′
dΩ′. (28)

The values of these integrated cross sections serve to assess the
accuracy of the DCS interpolation scheme adopted in the
simulation. We recall that the total elastic cross section and
the reaction cross section have the same values in the CM and
the L frames.

2.4 Simulation of Neutron Elastic Collisions
The kinematics of elastic collisions of a neutron with laboratory
energy E is completely determined by the polar scattering angle θ′
in CM. In the CM frame, after an elastic collision the magnitudes
of the linear momenta of the projectile and the target atom are the
same as before the collision, and the scattering angles θ′, ϕ′
determine the directions of motion of the two particles in CM. As
mentioned above, the final kinetic energy Enf and the polar
scattering angle θ of the projectile neutron in the L frame are
obtained by a Lorentz boost with velocity − vCM, which gives

Enf � cCM Wni′ + βCM cp0
′ cos θ ′( ) −mnc

2 (29)

and
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cos θ � τ + cos θ ′���������������������
τ + cos θ ′( )2 + c−2CM sin2θ ′

√ , (30)

where

cCM ≡

�������
1

1 − β2CM

√
� E +mnc2 +MAc2

mnc2 +MAc2( )2 + 2MAc2 E
(31)

and τ is the ratio of speeds of the CM and of the scattered neutron
(in CM), vn′ � c2p0

′ /Wnf′ ,

τ � vCM
vn′

�

���������������������
mn

MA
( )2

1 − βCM( )2 + βCM

√√
. (32)

Notice that the azimuthal angle of the neutron direction in L is the
same as in the CM frame. After the collision, in the L frame the
target atom recoils with kinetic energy EA � E − Enf and direction
in the scattering plane with the polar angle

cos θA � 1 − cos θ′���������������������
1 − cos θ′( )2 + c−2CM sin2θ ′

√ . (33)

The DCS can also be expressed in terms of the scattering
angles in the L frame by making use of the inverse of the
relation (30),

cos θ′ �
−τc2CM sin2 θ ± cos θ

���������������������
cos2 θ + c2CM 1 − τ2( )sin2 θ

√
c2CM sin2 θ + cos2 θ

. (34)

If τ is less than unity only the plus sign before the square root has
to be considered. For τ > 1, there are two values of the CM
deflection θ′, given by Eq. 34, for each value of θ, which
correspond to different final energies of the neutron in L. The
DCS in the L frame is given by

dσel

dΩ � d cos θ′( )
d cos θ( )
∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣ dσeldΩ′ (35)

where the last factor is the DCS in the CM frame. Using the
relation (34), we obtain

dσel

dΩ �
c2CM τ cos θ ±

���������������������
cos2 θ + c2CM 1 − τ2( )sin2 θ

√[ ]2
c2CM sin2 θ + cos2 θ( )2 ���������������������

cos2 θ + c2CM 1 − τ2( )sin2 θ
√ dσel

dΩ′.

(36)

If τ < 1 only the plus sign is valid and the scattering angle θ
varies from 0 to π. When τ ≥ 1, the DCS vanishes for angles θ
larger than

θmax � arctan

����������
1

c2CM τ2 − 1( )

√⎛⎝ ⎞⎠; (37)

for angles θ < θmax, Eq. 34 yields two values of θ′ in (0, π), the
expression on the right-hand side of Eq. 36 must then be
evaluated for these two angles, and the resulting values added
up to give the DCS in L. In class-II simulations formula (36)

allows determining the contributions of soft elastic interactions to
the first and second transport cross sections.

The elastic collision involves the transfer of energy W � EA
from the projectile to the target atom. The energy loss can be
expressed in terms of the scattering angle in CM,

W � Wmax
1 − cos θ ′

2
, (38)

where

Wmax � 2MAc2 E E + 2mnc2( )
MAc2 +mnc2( )2 + 2MAc2E

(39)

is the maximum energy loss in a collision, which occurs when θ′ �
π. The energy-loss DCS is

dσel

dW
� 2π

dW

d cos θ′( )∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣−1dσeldΩ′ �
4π

Wmax

dσel
dΩ′. (40)

The nuclear stopping cross section is defined as

σst � ∫Wmax

0
W

dσel
dW

dW

� Wmax

2
2π∫1

−1
1 − cos θ ′( ) dσel

dΩ′
d cos θ′( )( ) � Wmax

2
σ tr,1′ .

(41)

The code PENH simulates the transport of neutrons by using
a class II tracking scheme that is analogous to the one
employed for protons. The transport of neutrons is
simplified by the fact that these particles only experience
elastic collisions and nuclear reactions. The cross sections
for these two processes are obtained from the partial-wave
calculations of elastic scattering. The simulation of neutron-
induced nuclear reactions is difficult because of the wide
variety of open reaction channels, which are explicitly
described in evaluated libraries for neutrons, although only
for energies below 20 MeV. Since a detailed description of
reactions induced by neutrons down to thermal energies is
beyond the capabilities of a dose-calculation code, we consider
nuclear reactions as a purely absorptive process that
terminates the neutron trajectory and a fraction FNABS of
the kinetic energy of the absorbed neutron is deposited
locally. Comparison with simulation results from the codes
FLUKA [11] and GEANT4 [12–14], which do include proper
descriptions of neutron production and transport, shows
that FNABS should be given a value less than unity,
indicating that neutron reactions produce high-energy
gammas that propagate to large distances from the reaction
site. In spite of its crudeness, this procedure is found to provide
a realistic correction to the simulated dose whenever the actual
flux of neutrons is in “radiative equilibrium” (i.e., when the
number and average energy of neutrons that enter a small
probe volume equal the number and average energy of those
that leave that volume). Under these circumstances, a fraction
FNABS of the energy absorbed through neutron-induced
reactions remains on average at the reaction site.
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3 IONIZATION OF INNER ELECTRON
SHELLS BY PROTON IMPACT

The slowing down of fast protons in matter is mostly due to
inelastic collisions, i.e., collisions causing electronic excitations of
the material. Protons also slow down due to elastic collisions with
nuclei (the so-called nuclear stopping), an effect that is
automatically accounted for by the simulation scheme adopted
in PENH. The plane-wave Born approximation (PWBA) [15, 16] is
suited for describing inelastic collisions of protons with velocities
much larger than those of the active target electrons. We consider
inelastic collisions of a proton with initial kinetic energy E and
momentum p [(cp)2 � E (E + 2 mc2)] with atoms of atomic
number Z, characterized by the energy transfer W � E − E′ and
the momentum transfer q � p − p′, where E′ and p′ are,
respectively, the energy and momentum of the projectile after
the collision. The corresponding DCS is most conveniently
considered as a function of the energy transfer W and the
recoil energy Q, defined as the kinetic energy of an electron
with linear momentum equal to the momentum transfer [15],

Q �
������������������������������
cp( )2 + cp′( )2 − 2cp cp′ cos θ +m2

ec
4

√
−mec

2. (42)

The DCS obtained from the PWBA for ionizing collisions with
electrons of a subshell a with binding energy Ea can be expressed
as [17].

d2σa
dWdQ

� 2πz20e
4

mev
2

2mec
2

WQ Q + 2mec
2( ) dfa Q,W( )

dW
[

+ 2mec
2W

Q Q + 2mec
2( ) −W2[ ]2 β2 − W2

Q Q + 2mec
2( )( )dga Q,W( )

dW
⎤⎦
(43)

where z0 � + 1 is the proton charge in units of e, and the functions
df (Q, W)/dW and dg (Q, W)/dW are, respectively, the
longitudinal and transverse generalized oscillator strengths
(GOS). Bote and Salvat [17] have calculated these GOS for all
electron shells of atoms with Z � 1 to 99 by using an independent-
electron model with the Dirac-Hartree-Fock-Slater self-
consistent potential of free atoms. The energy-loss DCS is
obtained by integration over the kinematically allowed interval
of recoil energies, (Q−, Q+), with endpoints given by Eq. 42 with
cos θ � + 1 and −1,

dσa

dW
� ∫Q+

Q−

d2σa
dWdQ

dQ. (44)

In PENELOPE-PENH proton inelastic collisions are described by
means of the PWBA with a simplified model of the GOS [1, 2],
which is modulated so as to reproduce the cross sections for
ionization of inner electron subshells read from the database. The
main limitation of the PWBA is due to the neglect of the
distortion of the projectile wave functions caused by the field
of the target atom. For electrons and positrons, this distortion can
be largely accounted for by using the distorted-wave Born
approximation (DWBA), in which the projectile states are
represented as distorted plane waves (see, e.g. [18], and

references therein). Because of the slow convergence of the
partial-wave series, this kind of calculation is only possible for
projectile electrons and positrons with kinetic energies up to
about 30Ea. Bote and Salvat [17] used an optimized computation
strategy, which combines the DWBA and the PWBA, to generate
a database of electron-impact ionization cross sections for the K
shell and the L andM subshells of all the elements from hydrogen
to einsteinium (Z � 1–99) and for energies of the projectile from
50 eV up to 1 GeV. The results were found to agree well with
available experimental data [19].

Unfortunately, the calculation of cross sections for inelastic
collisions from the DWBA is not feasible for charged particles
heavier than the electron, because the smallness of the de Broglie
wavelength of the projectile renders the calculation of free
spherical waves extremely difficult. Chen et al. [20], and Chen
and Crasemann [21, 22] went beyond the PWBA by using the
perturbed-stationary-state approximation of Brandt and Lapicki
[23], which accounts for 1) alterations in the binding of the active
electron due to the presence of the projectile near the nucleus of
the target atom, and 2) the deflection of the projectile path caused
by the Coulomb field of the nucleus. In our PWBA calculations of
ionization cross sections for protons, these effects are introduced
by means of semi-classical correcting factors, which are described
in the following paragraphs.

• Binding effect

In collisions where the projectile proton penetrates deep into the
target atom, the presence of the projectile modifies the binding
energy of the active electron and, in the case of positively charged
projectiles, leads to a reduction of the DCS. For the K shell and L
subshells, Brandt and Lapicki [23] performed a first-order
perturbation analysis, assuming that the projectile follows a
straight trajectory and using hydrogenic wave functions. They
obtained an ionization-energy shift of the active target electron
given by

ΔEa � 2z0Ea

ZaΘa
ga ξ( ) − ha ξ( )[ ], (45)

where Za � Z − δa is the effective nuclear charge felt by the
electrons in the unperturbed orbitals, with δK � 0.3 and δLi � 4.15.
The quantity Θa is the reduced ionization energy,

Θa � 2n2aEa/ Z2
aEh( ), (46)

where Eh � mee
4/Z2 � 27.211 eV is the Hartree energy. The last

factor in Eq. 45 is a function of the dimensionless parameter

ξ ≡
ZaEh

naEa

������
me

M

2E
Eh

√
. (47)

In the calculations of ionization of K and L electrons we used the
parameterization of the ga(ξ) and ha(ξ) functions given by Chen
and Crasemann [21].

For M and outer shells, Chen et al. [20] considered that the
effective ionization energy is the one of the “united” atom (i.e., of
the atom with atomic number z0 + Z). We have adopted a similar
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approach, which avoids the need of considering ionization
energies of other atomic species. Expressing the ionization
energies of the unperturbed states as (screened hydrogenic levels)

Ea � Z − δa′( )2
2n2a

Eh, (48a)

and noting that the screening constant δa′ is nearly the same for
neighbouring elements, we can approximate the effective
ionization energy in the form

Ea′ � z0 + Z − δa′( )2
2n2a

Eh. (48b)

This gives the following ionization-energy shift

ΔEa � Ea′ − Ea � z20 + 2z0 Z − δa′( )
2n2a

Eh. (49)

• Coulomb deflection

For projectiles with small speeds, the PWBA, and the equivalent
straight-trajectory semi-classical approximation [see, e.g., Ref.
[24], and references therein], overestimate the ionization cross
sections because they neglect the effect of the Coulomb field of the
nucleus on the trajectory of the projectile. In the semi-classical
treatment, the energy-loss DCS for a projectile following a
classical hyperbolic orbit in the Coulomb potential of the bare
target nucleus can be obtained by multiplying the energy-loss
DCS, calculated by assuming that the projectile follows a straight
trajectory, by a correction factor. This Coulomb-deflection factor
was approximated as [23].

FCoul
a E;W( ) � 1 − 1

3
x1/3 + 5

3
x2/3( )exp −2πx( ), (50)

where

x � Z0Z

�����������
M3

8meM
2
red

Eh

E3

√
W. (51)

The ionization cross section, including the binding and
Coulomb-deflection corrections, is given by

σ iona � ∫Wmax

Ea+ΔEa

FCoul
a E;W( ) dσ

cont
a

dW
dW. (52)

We have generated a database of proton-impact ionization
cross sections for the K shell and the L, M and N subshells of
the elements with Z � 1 to 99, by numerical integration of the
energy-loss DCS obtained from the longitudinal and
transverse GOSs calculated by Bote and Salvat [17].
Figure 1 displays these ionization cross sections for
electron subshells of the titanium and gold atoms. For
comparison purposes, the plots include also values
calculated by Chen and Crasemann [21, 22] for the DHFS
potential but only with the longitudinal GOS. It is worth
mentioning that our database includes relativistic effects in a
more consistent way, and it covers the energy range up to
1011 eV for all elements from hydrogen (Z � 1) to
einsteinium (Z � 99).

In the simulation code, the ionization cross sections are
multiplied by an energy-dependent factor (deduced from the
Sternheimer-Liljequist GOS model) that accounts for the
reduction of the cross section caused by the density-effect
correction [3].

FIGURE 1 | Cross sections for ionization of the K, L and M subshells of titanium and gold by impact of protons as functions of the kinetic energy of the projectile.
Solid curves represent the values in the PENH database. Symbols are results from equivalent PWBA calculations by Chen and Crasemann [21, 22], which also include the
binding and Coulomb-deflection corrections.
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4 NEUTRONCONTRIBUTION TO THEDOSE
DISTRIBUTION

The databases presented in the previous Sections for elastic
collisions and impact ionization of protons provide realistic
models for electromagnetic interactions of protons, and the
class II simulation scheme avoids the use of multiple
scattering approximations and their associated uncertainties.

As mentioned above, the original PENH code [3] gave a spatial
dose distribution that was nearly correct near the proton beam
axis, but the simulated dose was too small far from the beam axis.
This was first noted by Verbeek et al. [25] and latter confirmed by
the authors through comparison with results from the FLUKA and
GEANT4 codes, which include neutron transport. The main cause
of this underestimation of the distant dose was attributed to the
neglect of neutron transport, and this motivated the inclusion of
the present simple approach for neutrons. Preliminary

simulations with the parameter FNABS � 1 gave depth-dose
distributions from pencil beams of protons that were closer to,
but slightly exceeded those from GEANT4. The discrepancy can be
readily corrected by using a smaller value of FNABS.

Figure 2 compares depth-dose distributions of proton beams
incident normally on a water phantom with energies of 100 and
200 MeV simulated with the PENH and GEANT4 codes. The red
histograms were produced by assuming that neutrons resulting
from proton-induced nuclear reactions are absorbed at the
reaction site. The blue histograms resulted from assuming that
neutrons are transported as described in Section 2.4 with
FNABS � 1. It is seen that the transport and absorption of
neutrons increases the depth-dose beyond the Bragg peak by
nearly a factor of 10, slightly exceeding the depth-dose generated
by the GEANT4 code (green histograms). Reducing the value of
FNABS to 0.85 and to 0.8 for 100 and 200 MeV protons gives
depth-dose distributions nearly coincident with those from

FIGURE 2 | Depth-dose functions of 100 and 200 MeV proton beams
impinging normally on a water phantom. The green histograms are results
from the GEANT4 code. Other histograms represent results from PENH with
neutrons absorbed at the reaction site (red), and neutrons transported
as explained in Section 2.4 with the indicated values of FNABS (blue and
black).

FIGURE 3 | PIXE spectra from a silver plate irradiated with 3 MeV
protons incident at an angle of 45° to the surface. The upper plot is the
spectrum obtained by collecting all photons that emerge from the surface. The
spectrum in the lower plot is restricted to the energy interval of L x-ray
lines; it was recorded by assuming a detector that only collects photons that
emerge at angles less the 30° from the normal to the target.

Frontiers in Physics | www.frontiersin.org December 2021 | Volume 9 | Article 7339499

Salvat and Quesada Collisions of Nucleons with Atoms

https://www.frontiersin.org/journals/physics
www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


GEANT4. The latter are seen to agree closely with the PENH result,
except in the deep fall of the Bragg peak, probably because of
differences in the proton transport physics of the two codes.
Another relevant effect of neutron transport is a slight decrease of
the depth-dose at shallow depths, which is visible in the plot for
the 200 MeV beam; this effect is expected to increase in
importance with the energy of incident protons because of the
higher energies of the released neutrons.

5 SIMULATION OF PROTON-INDUCED
X-RAY EMISSION

As PENH uses fairly reliable cross sections for proton impact
ionization, together with a careful modeling of electromagnetic
interactions, it may be used to simulate proton-induced x-ray
emission (PIXE) spectra [26]. The code describes the relaxation of
ionized atoms by means of the PENELOPE subroutines, which use
transition probabilities from the Evaluated Atomic Data Library
of Perkins et al. [27] and empirical values of the x-ray energies [1].
The simulation of PIXE spectra by PENH is analogous to that of
electron induced x-ray emission by the PENELOPE code, which has
been proved to be effective for quantification in electron-probe
microanalysis [28]. It is worth noticing that PENH accounts for
both the attenuation and the generation of x-ray fluorescence
within the target. It also follows the bremsstrahlung emitted by
secondary electrons, which produces a smooth background of in
the simulated PIXE spectra. Primary protons also contribute to
the background through the emission of atomic bremsstrahlung
(see [29] and references therein), however, this mechanism is not
accounted for in PENH. In its present form, our simulation code
can be useful to determine the influence of the composition and
local geometry of the irradiated target on the line intensities of the
emitted x rays.

Figure 3 displays results from two simulations of x-ray spectra
emitted from a silver target bombarded with 3MeV protons
impinging in a direction at an angle of 45° from the target
surface. In those simulations neutrons were not followed, and
the variance reduction techniques of interaction forcing and
emission splitting of bremsstrahlung photons and x rays [1]
were applied. The upper plot shows the energy spectrum of all
photons that emerge from the target. The continuous background
corresponds to bremsstrahlung emitted by secondary electrons.
Since the maximum energy of secondary electrons released in
inelastic collisions of 3 MeV photons is about 6.5 keV, the spectral
background ends at this energy. A weak and noisy background
component that extends to higher energies in the simulated
spectrum (not shown in the upper plot of Figure 3)
corresponds to gamma rays released in proton-induced nuclear
reactions. The lower plot of Figure 3 shows the energy spectrum of
photons that emerge in directions forming angles less than 30° with
the normal to the target, restricted to the energy interval of L lines.
Themost prominent x-ray lines can be readily identified from their
numerical values in the PENELOPE database.

Simulated photon spectra correspond to an ideal detector with
unit efficiency. They are output in the form of histograms with a
fixed bin width, which implies a resolution in energy of the order
of the bin width. To get results with an appearance closer to
measurement data, the simulated spectrum should be convolved
with the response function of the detector [28]. Comparison of
spectra so obtained with measured spectra may help to identify
features not evident from the experimental result.

6 CONCLUDING COMMENTS

In its present form, the PENH code provides a consistent
description of electromagnetic interactions of electrons,
positrons and protons with matter for projectiles with
energies up to 1 GeV. The use of nuclear data from ENDF-
formatted files allows accounting for proton-induced nuclear
reactions, and the release of gammas and secondary particles
resulting from these interactions, in the energy range covered
by available libraries, which usually extends up to about
200 MeV. For protons with somewhat higher energies, the
code can extrapolate the nuclear data, with the risk of
distorting the results.

Since the interaction models implemented in PENH lose validity
at low energies, the code should not be used for electrons,
positrons and photons with E ≲ 1 keV, and for protons and
neutrons with E < 100 keV.

The method adopted for tracking neutrons is intended only to
correct for the effect of neutron transport on the simulated dose
distributions, of interest mostly in proton therapy. Processes
where neutrons may have more relevance cannot be dealt
with PENH.
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