
IEC-60870-5 application layer for an Open and

Flexible Remote Unit

Verónica Medina, Isabel Gómez, Enrique Dorronzoro, David Oviedo, Sergio Martín, Jaime Benjumea, Gemma Sánchez

Departamento de Tecnología Electrónica

 Universidad de Sevilla

vmedina@us.es

Abstract-This paper presents the development and test of the
standard IEC-60870-5 application layer protocol for a Remote
Terminal Unit (RTU) based on open hardware and software. The

RTU hardware is an embedded system, a SoC-type design using
FPGA that has been programmed with the open core LEO. with
Linux operating system running over it, so both the hardware and

IOS are open source. For prototyping the GR-XC3S-1500 board
has been used. There is no open source code available for the IEC
standard protocols, so application layer protocol has to be

implemented. All the software design has been made in a PC
platform using standard development tools. The source code
generated for the protocol has been compiled with the standard

Linux gcc compiler in LEO.. Several tests have been made to
prove the right behavior of the protocol as well as its performance
over different transmission mediums.

I. INTRODUCTION

The first steps in the development of an Open and Flexible

Remote Unit applied to telecontrol/telemetry is presented in

[1]. The main idea is to develop a Remote Terminal Unit

(RTU) that is open both in hardware and software.

 The hardware platform is an embedded system, a SoC-type

design using FPGA. The FPGA itself has been programmed

with an open core called LEON [6], an SPARC compliant

system capable of running Linux for SPARC. The processor is

an open core (i.e. an open hardware) , this means that hardware

platform is open, and also it is the operating system running

over it (Linux Debian for Sparc has been installed in the

system [7]). So, the RTU is, in essence, a Linux-Sparc system.

This means that every program available may be used for this

platform and, more important, the whole software can be

developed in a very similar way than in any standard Linux

programming environment.

For prototyping the RTU, the GR-XC3S-1500 board, Fig. 1,

has been used. This board is supported by the co-operation

between Gaisler Research and Pender Electronic Design.

For communication, the transmission channels available [1]

in the RTU are Radio Frequency (RF), GSM (Global System

Mobile) and GPRS (General Packet Radio System).

Telecontrol protocol stack usually implements the

specification provided by the International Electrotechnical

Commission (IEC), called IEC-60870-5 [2]. This document,

which specifies a suite of protocols, is divided into six parts

and specifies an application-layer protocol and a data-link layer

protocol. This standard also defines a combination of the

application layer and TCP/IP transport services. Although open

source software is widely used in Internet, it is not very

common in the telecontrol networks area [4], so it is necessary

to developed the open software for this protocol stack in the

RTU .

The open source implementation and test of the IEC 60870-5

data link layer protocol, described in IEC 60870-5-2, is

presented in [3] and [4]. As justified in [1] when the

transmission channel is half-duplex, RF, it is necessary to use

a protocol that control the medium access, that is what the IEC

60870-5-2 protocol makes.

This paper is a continuation of the RTU software

development but focusing this time on the IEC 608070-5

application layer.

This paper is organized as follows; first, an overview of IEC

60870-5 series (section II) is shown. Some details of software

design and field testing are described in section III and IV.

Finally, in section V some conclusions and future work are

presented.

II. IEC 60870-5 SERIES

As mentioned before, telecontrol protocol stack usually

implements the specification provided by the International

Electrotechnical Commission (IEC) called IEC 60870-5. This

series follows the EPA (Enhanced Protocol Architecture)

model, which simplifies the ISO standard (OSI model) in three

layers, application layer, data-link layer and physical layer. The

Fig. 1. RTU Prototype.

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2454

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 03,2022 at 10:11:48 UTC from IEEE Xplore. Restrictions apply.

standard is divided into six parts and specifies a suit

protocols for both application and data-link layer.

 In a typical telecontrol scenario one station

station), called CC, controls the communication with

stations (secondary stations), called RTUs, so IEC 60870

specification allows real-time telecontrol applications to take

place. In this sense, the series defines a set of functions

(profiles) that performs standard procedures for telecontrol

systems. Not all the implementation performs the same

functions so an application profile must be described

depending on the telecontrol system functionality.

Two different scenarios are possible wher

and RTUs are permanently connected, Fig. 2

an Internet using TCP/IP Architecture, Fig. 3

scenario all the protocols described in the standard has to be

implemented, included the IEC 60870-5 (application func

and for the second one, only the IEC 60870

other layers are yet implemented on most operating system

(TCP/IP stack, the Internet protocols). This paper focus

on the implementation and tests of the first scenario.

A. IEC 60870-5-5 Overview

This document specifies an assortment of basic application

functions for use in telecontrol systems. Each function is

composed of transfer procedures of specific ASDUs

(Application Service Data Unit) between remotely

communicating application processes, that is, the CC

application process and the RTU application process.

Fig. 3. RTU and CC connected via Internet

Fig. 2. RTU and CC permanently connected.

 .

specifies a suitE of

link layer.

one station (primary

controls the communication with other

RTUs, so IEC 60870-5

applications to take

defines a set of functions

standard procedures for telecontrol

all the implementation performs the same

functions so an application profile must be described

depending on the telecontrol system functionality.

Two different scenarios are possible where or not the CC

re permanently connected, Fig. 2, or connected via

sing TCP/IP Architecture, Fig. 3. For the first

scenario all the protocols described in the standard has to be

5 (application functions)

and for the second one, only the IEC 60870-104 because the

other layers are yet implemented on most operating system

his paper focuses only

scenario.

This document specifies an assortment of basic application

functions for use in telecontrol systems. Each function is

composed of transfer procedures of specific ASDUs

Unit) between remotely

processes, that is, the CC

application process and the RTU application process.

There are application functions to

to send command, to transmit integrated total, to transmit a

and others. Not all the functions must be implemented,

depending on telecontrol application

functions are available, that is called application profile

Data acquisition by polling is the only function included in

the first profile of the RTU prototype.

B. IEC 60870-5-2 Overview

This document specifies the standard transmission

procedures applied to different channels configurations

to-point or multi-point.

The transmission services available by the application layer

are:

1) SEND/NO REPLY: CC sends a message to a

is no error or success notification from the

for global messages and for cyclic setpoints in control loops.

2) SEND/CONFIRM: CC sends a message to a

waits for a positive or negative acknowled

RTU. Mainly used for control command and setpoint

commands as in the RTU initialization.

In case of error or any notification, an error message is sent

to the application layer.

3) REQUEST/RESPOND: CC

If the RTU has data to transmit, it sends them to the

for polling.

SEND/CONFIRM and REQUEST/RESPOND services

imply a dialog between the CC a

window size is one.

The application layer invokes t

1) to request the above services:

1) Request Primitive (REQ): a REQ is sent by the

application layer to request a certain

layer.

2) Confirmation Primitive (CON): a CON is sent by the data

link layer to the application layer. It i

primitive.

3) Indication Primitive (IND):

link layer to inform the application layer that a message has

arrived.

4) Response Primitive (RESP): a RESP is sent by the

application layer as an answer to a pre

Fig. 4. Data Link Layer Service Primitives.

There are application functions to: acquire data by polling,

to send command, to transmit integrated total, to transmit a file

all the functions must be implemented, so

depending on telecontrol application only a set of these

s are available, that is called application profile.

Data acquisition by polling is the only function included in

prototype.

This document specifies the standard transmission

procedures applied to different channels configurations, point-

The transmission services available by the application layer

sends a message to a RTU. There

is no error or success notification from the RTU. Mainly used

for global messages and for cyclic setpoints in control loops.

sends a message to a RTU. CC

ive acknowledgment from the

Mainly used for control command and setpoint

commands as in the RTU initialization.

notification, an error message is sent

CC makes a survey to the RTU.

has data to transmit, it sends them to the CC. Used

SEND/CONFIRM and REQUEST/RESPOND services

CC and RTU. In this dialog the

The application layer invokes the following primitives (Fig.

:

1) Request Primitive (REQ): a REQ is sent by the

application layer to request a certain service to the data link

2) Confirmation Primitive (CON): a CON is sent by the data

link layer to the application layer. It is the response to a REQ

3) Indication Primitive (IND): an IND is sent by the data

link layer to inform the application layer that a message has

4) Response Primitive (RESP): a RESP is sent by the

application layer as an answer to a previous IND.

Fig. 4. Data Link Layer Service Primitives.

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2455

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 03,2022 at 10:11:48 UTC from IEEE Xplore. Restrictions apply.

When a primitive is sent by the application layer to the data-

link layer, data-link layer generates a service. In case of a

service that requires an acknowledgment the service is sent a

number of times, called retries, until it gets response or it

exceeds the number of maximum retries. This maximum retries

is sent by the application layer in the primitive parameters, i.e.

the ICI (Interface Control Information) of the IDU (Interface

Data Unit). Depending on transmission channel latency a

higher or lower number of retries is necessary as shown

afterward.

III. SOFTWARE DESIGN

The software design is divided into two different modules:

Control Center module (CC module) and Remote Module,

(RTU module). Both modules have been developed in the

programming language C++, under the Code::Blocks IDE on a

hardware platform x86 (PC) and operating system Linux. Only

standard libraries have been used in the development. In the

case of Remote Module, the software also has been compiled

on LEON (SPARC architecture).

 In the Remote Module, two independent processes have

been implemented, data acquisition and transmission control.

Data acquisition process is in charge of getting the data that

have to be sent to CC Module, for test purpose a temperature

sensor has been used.

The data saved in memory by the data acquisition process

are sent to the CC by the transmission control process. This

process behaves as described in IEC 60870-5-104 specification

after an initialization phase. The implementation of this process

is based on the C++ Sockets Libraries.

The data acquisition process is replaced by a data processing

process in the CC module, which analyzes and prepares the

data received from the RTU. The transmission control process

in the CC module is in charge of requesting and receiving data

from the RTUs.

All functions in the CC and the RTU modules, are available

through an interface, that serves as an entry point to the

operations asked for by a final user, Fig 5.

As LEON has a standard Linux Debian distribution with

standard C++ libraries, getting a binary file is as simple as

compiling the same source code developed in the PC. It has

been used gcc compiler to compile and link the RTU code in

LEON.

IV. PROTOCOL TESTING

Two parameters have been analyzed, initialization time

(IT), mean time required complete the initialization on a RTU,

and Poll Time (PT), mean time required to complete a poll

over a RTU.

Initialization process consists in the exchange of four

different messages. CC sends a status of link request message

to check the availability of the data link. RTU responses with a

status of link. CC request for a RTU reset. Once the RTU is

reset, it sends an ACK message to the CC and the initialization

is completed. In all this process a total of 288 bytes are

transmitted.

Polling process consists in a poll request from the CC to the

RTU and a response with the requested data from the RTU.In

polling a total of 144 bytes are transmitted.

A. Field Testing

Field testing has been made over two differents scenarios:

Using a PC and LEON as RTU, fig. 6.

 In both cases different transmission technologies have been

used in order to obtain performance measurements. The

transmission technologies used were a point to point link with

a serial cable, RF and GSM. For the tests the next devices have

been used.

1. GSM equipment: A GSM modem has been used,

specifically a Wavecom Fastrack M1306B[9]. This

Fig. 5. Software Design.

Fig. 6. Testing scenarios.

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2456

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 03,2022 at 10:11:48 UTC from IEEE Xplore. Restrictions apply.

modem behaves as a standard AT-command modem

via a RS232 port, so the modem is connected to the

RTU this way. According to device’s specification, it

allows a data transmission up to 14.400 bps for

GSM but this feature is dependent on the GSM

operator used, so it might not be available (in fact,

our tests run at 9600bps).

2. RF equipment: An ICOM IC-V82 (VHF transceiver)

with the digital unit UT-118. This device is D-star

[10] capable, and can be connected to any RS232

device for data transmission, with a data

transmission speed of 1200bps. The specification for

this equipment can be found at [8]

In the following sections the results obtained for the different

raised scenarios are analyzed.

Scenario 1: Using a PC as RTU

In this scenario both the CC and RTU are PCs. In the case of a

serial cable as a transmission channel, the average obtained is

313’76 ms for IT parameter and 156’1 ms for PT parameter. If

the transmission channel is RF, the obtained values are 5.814’2

ms for IT and 2602’1 ms for PT.

It takes not significant time in order to process the data. The

difference in time is produced because of transmission delays.

When transmitting in RF as it has an effective speed of 480

bps, while serial cable has a data transmission speed of 9600

bps, so the transmission times are increased.

Scenario 2: Using LEO' as RTU

In this scenario the CC is a PC and the RTU LEON, Fig 7. In

the case of a transmission channel using a serial cable, the

average obtained is 374’7 ms for IT and 191,3 ms for PT

parameter, for GSM is 2.761’7 ms and 1.125’253 ms for IT

and PT parameters respectively.

As the data processing time is not significant the RF measures

for this scenario are similar to the previous one.

The difference in time between both scenarios using the same

transmission technologies, is consequence of the greater time

of CPU processing, in the case of LEON.

Finally, it has been analyzed how affects in the application

layer retries that are made at the link layer. The performance of

the protocol based on the number of retries is dependent of the

transmission technologies.

Error rate 10% 20% 30% 40% 50%

Retries 0 9 22 29 42 52

Retries 1 1 3 5 12 15

Retries 2 0 2 3 4 7

Retries 3 0 0 0.8 1.3 2

Retries 4 0 0 0.8 1.3 2

Table I

As shown on table I, extracted from [3] and [4], built from

experimental simulation, a low number of retries implies more

unsuccessful polls. But a higher number of retries implies an

additional delay, because a higher number of messages are

sent. From these results it is possible to determine the

additional delays caused in function of the number of retries.

For example, using RF, in case of a channel with a 20% of

error rate and number of retries set to 0, implies no delay but a

number of 22 uncompleted polls over 100 polls. Changing the

number of retries to 1, increases the number of completed polls

to 97 but it generates a delay of 20 multiplied by the latency of

the transmission channel, measure in seconds, more than when

is set to no retries. This is because even there is a higher

number of successful polls this polls may need more than one

request o reply message. Setting the number of retries to one

imply that some of the successful polls needed more than one

retry, as the error rate of the channel is 20%, the number of

sent messages will be increased up to 20 over 100 polls. There

is a latency of 0,5 seconds in RF, which generates a delay of 11

seconds every fifty polls.

The number of retries must be calculated based on the real

application. While one real application must need a higher

number of completed polls another one may need lower delays.

For example, in a positioning application applied to vehicles in

Fig. 7. Using LEON as RTU.

RTU: GR-XC3S-1500

Temperature Sensor

RS-232

CC (Pc-based computer)

Temperature Display

GSM or RF Network

RS-232

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2457

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 03,2022 at 10:11:48 UTC from IEEE Xplore. Restrictions apply.

order to know in real time the position of vehicle required a

lower delay, but in order to know completely the route the

vehicle has followed, a higher number of completed polls is

required.

V. CONCLUSIONS

In this work the IEC 67080-5 application layer protocol has

been developed and tested for an open and flexible RTU. The

RTU hardware is based on FPGA that has been programmed

with the open core LEON with Linux operating system running

over it.

The first IEC application profile for the RTU includes the

poll function, that is, all data acquired from the RTU have to be

specifically requested.

 All the software design has been made in a PC platform

using standard development tools. The source code generated

for the protocol has been compiled with the standard Linux gcc

compiler in LEON.

To test the protocol, two scenarios have been tested, in one

the CC and RTU were PCs and in the other the RTU was

LEON.

The RTU prototype has been tested with serial cable, RF and

GSM transmission channels in the field testing. In this case the

focus was on setting the appropriate number of retries. As it

has been shown, in the case of RF because of the high

transmission delays, the cost in time for any retries is very high

but setting a high number of retries, implies a lower protocol

performance, although there are more successful poll each are

more costly, i.e., the whole time spent is higher. Using a faster

transmission technology, GSM or serial cable, allows

increasing the number of retries to higher values, although the

protocol performance is also reduced there are more completed

polls, and the information received is more accurate.

Further researching work will be made to develop and test

the IEC 60870-5 application layer for the RTU but this time

over TCP/IP.

ACKNOWLEDGMENTS

This work has been undertaken in the framework of two

research projects: OFU (EXC-2005-TIC-1023) - Open Flexible

Unit funded by Junta de Andalucía and TOMARES

(TEC2006-08430) -Multimedia Operatives Techniques applied

to Supply Electric Networks funded by the Ministry of

Education and Science of Spain.

REFERENCES

[1] Jaime Benjumea Mondéjar, Ana Verónica Medina Rodríguez, Isabel
María Gómez González, Enrique Dorronzoro Zubiete, Gemma Sánchez
Antón, Sergio Martín Guillén: Choosing the Right Protocol Stack for an
Open and Flexible Remote Unit. ISIE'2008. International Symposium on
Industrial Electronics. International Symposium on Industrial Electronics.

Cambridge, Reino Unido. IEEE. 2008. Pag. 1668-1673. ISBN: 1-4244-
1666-0.

[2] International Electrotechnical Comission, “International Standard IEC-
60870-5” (6 parts). http://www.iec.ch.

[3] Enrique Dorronzoro Zubiete, Isabel María Gómez González, Ana
Verónica Medina Rodríguez, Jaime Benjumea Mondéjar, Gemma
Sánchez Antón, Sergio Martín Guillén: Abstract Implementing Iec
60870-5 Data LINK Layer for an Open and Flexible Remote Unit. 34th
Conference of the IEEE Industrial Electronics Society (IECON 2008).
Num. 34. Florida, Orlando (USA). IEEE. 2008. Pag. 268-268

[4] Enrique Dorronzoro Zubiete, Isabel María Gómez González, Ana
Verónica Medina Rodríguez, Gemma Sánchez Antón, Sergio Martín
Guillén. Implementing Iec 60870-5 Data LINK Layer for an Open and
Flexible Remote Unit. 34th Conference of the IEEE Industrial
Electronics Society (IECON 2008. Num. 34. Florida, Orlando (USA).
IEEE. 2008. Pag. 2471-2476

[5] Jaime Benjumea, Francisco Pérez, Joaquín Luque: "Encouraging the use
of Open Source Software in high-sensitive environments", CIGRE, Study
Committee D.2, Colloquium. Rio de Janeiro (Brasil), Sep, 2003.

[6] “GRLIB/LEON3 manual”, http://www.gaisler.com
[7] A. Muñoz, E. Ostúa, P. Ruiz, M. J. Bellido, J. Viejo, A. Millán, J. Juan,

D. Guerrero, “Un ejemplo de implemetación de una distribución Linux
en un SoC basado en hardware Linux”, Actas de las IV jornadas de
computación reconfigurable y aplicaciones (JCRA’07), pp. 85-92, Sep-
2007.

[8] “ICOM IC-V82 brochure”, http://www.icom.co.jp/world/products/
pdf/IC-V82_U82_LM.pdf

[9] “Wavecom Fastrack 1306M User Manual”,
http://www.wavecom.com/media/files/support/Hard_platforms/Modems/
Fastrack_M1306B/User_manual/Fastrack_M1306B_User_Guide_rev003
.pdf

[10] D-star protocol http://www.arrl.org/FandES/field/regulations/techchar/D-
STAR.pdf.

978-1-4244-4649-0/09/$25.00 ©2009 IEEE 2458

Authorized licensed use limited to: Universidad de Sevilla. Downloaded on February 03,2022 at 10:11:48 UTC from IEEE Xplore. Restrictions apply.

