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José M. Luna-Romera1

Division of Computer Science, University of Sevilla, ES-41012 Seville, Spain
plbenitez@us.es

Abstract. The attention-based Transformer architecture is earning in-
creasing popularity for many machine learning tasks. In this study, we
aim to explore the suitability of Transformers for time series forecasting,
which is a crucial problem in different domains. We perform an extensive
experimental study of the Transformer with different architecture and
hyper-parameter configurations over 12 datasets with more than 50,000
time series. The forecasting accuracy and computational efficiency of
Transformers are compared with state-of-the-art deep learning networks
such as LSTM and CNN. The obtained results demonstrate that Trans-
formers can outperform traditional recurrent or convolutional models due
to their capacity to capture long-term dependencies, obtaining the most
accurate forecasts in five out of twelve datasets. However, Transformers
are generally more difficult to parametrize and show higher variability
of results. In terms of efficiency, Transformer models proved to be less
competitive in inference time and similar to the LSTM in training time.

Keywords: Time series · Forecasting · Attention · Transformers · Deep
learning.

1 Introduction

Time series forecasting (TSF) is an important problem in machine learning with
many practical applications in different domains such as energy demand [7],
finance [19], or retail industries [5]. In recent years, deep learning (DL) models
have become the most popular approach for TSF [20]. Architectures such as
recurrent or convolutional networks have been specifically designed to deal with
time series data, outperforming traditional statistical methods. DL models can
automatically learn complex patterns without any prior assumptions on the data,
achieving superior forecasting performance and being more scalable.

Long Short-Term Memory (LSTM) and convolutional (CNN) networks are
among the most widely used architectures for TSF over the past years. More
recently, Transformer models are gaining attention as a powerful alternative for
time series processing. Unlike recurrent models, this architecture does not deal
with the data in sequential order. Transformers can access any part of the history
of the sequence using self-attention mechanisms, which makes them a potentially
better solution to model long-term dependencies in the data.
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This work presents an extension of the study conducted in [8], which pro-
vides the most extensive review of traditional deep learning techniques for TSF.
In this study, we evaluate the performance of Transformer models under the
same conditions and compare it with the best performing architectures that
were LSTM and CNN. The experimental study uses 12 datasets with more than
50,000 time series from different fields to evaluate the forecasting precision and
computational efficiency of the models. More than 200 architecture configura-
tions of Transformer models are tested on each dataset, and the suitability of
different hyperparameter choices is analyzed in-depth.

In summary, the main contributions of the study are the following:

– An extensive experimental study on Transformers models for univariate TSF.
– A comparative analysis with traditional state-of-the-art DL models.
– A thorough evaluation of different architecture and hyperparameter config-

urations of attention-based models for TSF.

The rest of the paper is organized as follows. Section 2 presents related stud-
ies. Section 3 describes the methodology and the materials used. Section 4 reports
the experimental results. Section 5 presents the conclusions and future work.

2 Related Work

Deep learning architectures have become the most effective alternative for fore-
casting across related time series, since they allow building accurate global mod-
els that can learn shared features and dynamics. The study presented in [8]
reviews the advantages and limitations of several DL models that have been
proposed for TSF such as Long Short-Term Memory Networks (LSTM), Gated
Recurrent Units (GRU), Echo State Networks (ESN), or Temporal Convolu-
tional Networks (TCN). This study concludes that LSTM and CNNs provide
the most robust performance across all the studied databases.

Very recently, attention-based models have also been applied to TSF with
success. Some works have aimed to improve recurrent DL techniques using at-
tention. For instance, in [3], an attention mechanism is used to enhance the
selection of relevant timesteps in the past history for an encoder-decoder archi-
tecture using LSTMs. However, the Transformer architecture, which is purely
based on self-attention mechanisms is recently earning more popularity. Trans-
formers were first presented for machine translation in [21], showing since then an
outstanding capacity to generalize to other tasks such as computer vision or se-
quence modeling.A self-attention model for capturing information across several
dimensions (time, location, and measurements) was proposed in [14] for forecast-
ing over geo-tagged time series. Later, an enhanced version of Transformer was
presented in [10], which introduced causal convolution in the self-attention mod-
ule in order to make the model more sensitive to the local context. Furthermore,
they also provide some modifications to reduce the memory cost of Transformers,
making it more feasible to deal with long time series. A novel Temporal Fusion
Transformer was proposed in [12], combining recurrent and attention layers to
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learn temporal dependencies at different scales over several real-world datasets.
A deep Transformer model for influenza-like illness forecasting is presented in
[23], which outperforms LSTM and Seq2Seq models. The self-attention of Trans-
formers showed better forecasting performance than the linear attention used in
Seq2Seq architectures.

3 Materials and Methods

This section describes the Transformer architecture for time series forecasting
and the experimental setup. For reproducibility purposes, the complete imple-
mentation of the experiments is published at [9].

3.1 Attention-based Deep Neural Network

The Transformer is a deep learning architecture based on attention mechanisms.
The Scaled Dot-Product Attention algorithm, introduced in [21], aimed to give
the models the capacity to focus on the most relevant elements of long sequences.
This is achieved by computing a weighted sum of the values (V ), where the
weights are computed applying the softmax function to the dot products of the
queries (Q) with the keys (K), scaled by the square root of the dimension of the
keys (dk).

Attention(Q,K, V ) = softmax(
QKT

√
dk

)V (1)

A variant of this algorithm, called Multi-Head attention, is used in the Trans-
former. This version applies h learnable linear projections to the queries, keys,
and values before applying attention individually over each projection. Then,
the results of each attention are concatenated before the last linear projection.

The original Transformer consisted of an encoder and a decoder. However, in
this study, we consider a decoder-only architecture introduced in recent works
as a more problem-agnostic model [10]. As can be seen in Figure 1, the Trans-
former consists of several stacked decoder blocks that pass the encoding from
the previous decoder as the input to the following blocks.

Each decoder block is composed of a first masked self-attention layer followed
by a multi-head attention layer and a feed-forward block. Furthermore, all the
sub-layers use a residual connection followed by dropout and batch normalization
layers, to improve the capacity of generalization of the network [13]. In addition,
to model the sequential information of the time series, a positional encoded
vector, generated with sine and cosine functions, is added to the input sequences.

The network is fed with a time series of fixed size (forecast horizon) and
the target output is the same sequence right shifted. In order to prevent the
model from paying attention to values in the future, a mask is used before
the softmax function. The mask sets all upper triangular elements to −∞ so
that future information has no importance in the attention layer. Hence, the
network will learn to predict the next value of the input sequence based only on
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Fig. 1: Transformer architecture. In this example, the past history and
forecasting horizon are 6 and 4 respectively.

the previous values. Afterwards, the multi-head attention is performed over the
previous past history elements of the sequence.

For multi-step-ahead forecasting problems, the inference is carried out by
calling the model iteratively forecast horizon times. Hence, the last prediction
is included in the input to compute the next value. As this method propagates the
error along the prediction sequence, to help model convergence during training,
the teacher forcing scheme [22] is used, including the actual value at each new
prediction.

3.2 Experimental Study

In this subsection, we present the design of the experimental study carried out
to evaluate the Transformer architecture. The results obtained from the dif-
ferent architecture configurations over 12 datasets are analyzed and compared
statistically with the state-of-the-art deep learning models.

3.2.1 Datasets. For the experimental study, we have used the same 12 pub-
licly available datasets selected in [8], each of them with multiple related time
series. These datasets, described in Table 1, present a wide diversity of charac-
teristics in terms of length, domains, complexity, and seasonality.

3.2.2 Model Parametrization. This study aims to evaluate the perfor-
mance of the Transformer model for TSF problems, in terms of both accuracy
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Table 1: Description of datasets. Columns N, FH, M and m refer to number of
time series, forecast horizon, maximum length and minimum length respectively.

# Datasets N FH M m Description Ref.

1 CIF2016o12 57 12 108 48 Financial and artificially
generated.

[24]
2 CIF2016o6 15 6 69 22

3 ExchangeRate 8 6 7588 7588 Exchange rates of 8 countries. [6]

4 M3 1428 18 126 48 Monthly time series of different
domains.

[15]
5 M4 48000 18 2794 42 [16]

6 NN5 111 56 735 735 Daily ATMs cash withdrawals. [17]

7 SolarEnergy 137 6 52560 52560 Solar power production records. [18]

8 Tourism 336 24 309 67 Tourism data from Australia,
Hong Kong, and New Zealand.

[1]

9 Traffic 862 24 17544 17544 Occupancy rates of California
Department of Transportation.

[2]

10 Traffic-metr-la 207 12 34272 34272 Traffic speed of the highways of
Los Angeles and the Bay area.

[11]
11 Traffic-perms-bay 325 12 52116 52116

12 WikiWebTraffic 997 59 550 550 Web traffic of Wikipedia pages. [4]

Table 2: Parameter grid search.

(a) Model architecture parameters.

Transformer LSTM CNN

dmodel 16, 128, 256 Units 32, 64, 128 Filters 16, 32, 64
Layers 2, 3, 4 Layers 1, 2, 4 Layers 1, 2, 4
h 4, 8 Return Seq True, False Pool size 0, 2

(b) Training parameters.

Past history 1.25, 2, 3
Batch size 32, 64
Epochs 5
Optimizer Adam
Learning rate Same as [21]
Normalization minmax, zscore

and efficiency. To this end, we have conducted an exhaustive grid search for both
the architecture and training hyperparameters. As a result, a total of 216 Trans-
former models with different configurations have been trained and evaluated
over each dataset. Furthermore, we compare the Transformer with the LSTM
and CNN networks, as they achieved the best results in the previous study [8].

Table 2 presents the parameter search carried out for each architecture. For
the Transformer, the dimension of the model (dmodel), the number of stacked
decoders (layers), and the number of linear projections in the multi-head at-
tention (h) are fine-tuned. The possible values have been chosen based on what
is commonly used in the literature, while also ensuring a fair comparison be-
tween architectures. Therefore, the same training hyper-parameters as in [8] are
used, except for the learning rate, which is varied along the training process as
indicated in the original study [21].

3.2.3 Evaluation procedure. For evaluating the models, the last part of
each individual time series (forecast horizon) is used as the test set, while the
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rest is used as training data. The same preprocessing steps as in [8] are applied,
using the Multi-Input Multi-Output (MIMO) strategy to transform the time
series into training instances that can feed the DL models.

This study analyses the best results obtained with each type of network, as
well as the distribution of results of the different parameter configurations. The
efficiency of the models is compared in terms of both training and inference time.
The weighted absolute percentage error (WAPE) and the mean absolute error
(MAE) metrics are used to measure the predictive performance:

WAPE =
1
n

∑n
i=1 |yi − oi|

1
n

∑n
i=1 yi

×100% (2) MAE =
1

n

n∑
i=1

|yi − oi|, (3)

With the obtained results, a statistical analysis is carried out. Hommel’s post-
hoc analysis is conducted to find if there are significant differences between the
performance of the models. Furthermore, we perform a paired Wilcoxon signed-
rank test in order to study the statistical differences among the architecture
configurations of each type of model.

4 Results and Discussion

This section presents the experimental results, which have been carried out using
a computer with an NVIDIA RTX 2080 Ti 12GB GPU and an Intel i7-8700 CPU.
An appendix with the full report of the results can be found at [9].

4.1 Forecasting accuracy

Table 3 reports the best WAPE and MAE results obtained by the Transformer,
LSTM, and CNN networks for each time series dataset. Overall, the three ar-
chitectures achieved similar results. Specifically, the LSTM lead the ranking 5
out of 12 datasets for both metrics, the Transformer achieves the top results 4
times, while the CNN wins only in 3 datasets for each metrics. It is important to
mention that Transformers obtain the most accurate predictions in popular fore-
casting competitions such as M3 or M4, which are also the two largest datasets.
On average, the LSTM obtains the first position in the ranking, closely followed
by the Transformer. In fact, Hommel’s post-hoc analysis carried out determines
that there are no significant differences between the Transformer and the LSTM,
while they are both significantly better than the CNN.

Figure 2 presents the distributions of WAPE obtained by each model for
each dataset. In general, we can observe that the Transformer is more sensitive
to the model parametrization than the other architectures, as it presents a wider
distribution. In order to analyze the results obtained with the different architec-
ture parameters and training hyper-parameters, we use the Wilcoxon statistical
test. The results of this test are reported in Table 4, where ** indicates that
it is the best value with a significant statistical difference compared to the rest
(p < 0.05), the * indicates that there is a certain tendency suggesting that it is



Evaluation of Transformer for Time Series Forecasting 7

better to choose that parameter (p < 0.2), and = means there are no significant
differences between choosing any of the possible parameters.

Table 3: Best WAPE and MAE results obtained with each type of architecture
for all datasets.

Datasets
WAPE MAE

Transformer LSTM CNN Transformer LSTM CNN

1 CIF2016o12 11.207 12.475 12.479 12,564.18 11,732.31 12,762.73
2 CIF2016o6 16.157 15.352 17.143 2,182,435.2 3,636,929.7 2,833,131.5
3 ExchangeRate 0.303 0.300 0.335 0.0021 0.0019 0.0020
4 M3 12.490 15.282 15.612 659.18 700.25 709.44
5 M4 13.587 14.281 14.256 588.38 597.54 593.71
6 NN5 18.637 18.589 18.852 3.570 3.538 3.572
7 SolarEnergy 13.550 12.452 11.717 2.246 2.066 1.977
8 Tourism 18.68 19.081 18.497 2,202.11 2,280.09 1,969.58
9 Traffic 33.541 31.960 34.406 0.0121 0.0114 0.0124
10 Traffic-metr-la 3.418 3.359 3.337 2.029 2.009 1.991
11 Traffic-perms-bay 1.333 1.314 1.433 0.885 0.870 0.946
12 WikiWebTraffic 46.110 46.477 46.914 11.796 12.063 12.106

Mean ranking 1.833 1.750 2.416 1.916 1.833 2.250

15

20

25

W
A

PE

CIF2016o12

100

200

CIF2016o6

1

2

ExchangeRate

20

40

M3

14

16

18

M4

20

22

24

NN5

CNN LSTM TR

15

20

W
A

PE

SolarEnergy

CNN LSTM TR

20

30

40

50

Tourism

CNN LSTM TR

40

50

Traffic

CNN LSTM TR

3.5

4.0

4.5

Traffic-metr-la

CNN LSTM TR

1.5

2.0

2.5

Traffic-perms-bay

CNN LSTM TR

50

55

WikiWebTraffic

Fig. 2: Distribution of WAPE results obtained by each model architecture for
each dataset.

Table 4: Architecture configuration analisys.

(a) Training hyper-parameters.

LSTM CNN TR

Batch size 32** 64** =
Past History factor 1.25** 1.25** 1.25**

Normalization Method minmax** zscore** =

(b) Model architecture.

TR

Layers 2**, 3*
dmodel 16**, 128*

h 4*
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4.2 Computation time

We have also evaluated the different architectures in terms of computational effi-
ciency. Figure 3 reports the distribution of training and inference time measured
for each architecture. It is worth noting that the Transformer differs significantly
from the other models in terms of inference time. This is due to the particular-
ity of the Transformer architecture, which iterates generating single-step pre-
dictions for multi-step-ahead forecasting problems. Therefore, while CNN and
LSTM compute a multiple steps prediction with a single call, the transformer
will have to be called several times, specifically forecasting horizon times. This
behaviour is illustrated in Figure 4, where we can see how the inference time is
directly proportional to the prediction horizon. More precisely, on average, the
transformer generates a single prediction in 3.2 milliseconds. However, as it has
to be called for each prediction horizon, the inference time increases to almost
200 when the horizon reaches 59 time steps.
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Fig. 3: Distribution of training and inference
time by instance measured in milliseconds.
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Fig. 4: Inference time of the
transformer versus forecasting
horizon.

In terms of training time, the Transformer is faster than the LSTM but
not as fast as the CNN. The results show that in terms of the speed/accuracy
trade-off, the CNN is the best one in terms of computation efficiency but with
lower accuracy while, LSTM and Transformer behave similarly, achieving good
forecasting accuracy but having a significantly slower training process compared
to the CNN.

5 Conclusions

In this paper, we evaluated the performance of the Transformer architecture for
time series forecasting in terms of accuracy and computational efficiency. An
extensive experimental study over 12 datasets and different architecture config-
urations was carried out. The results are compared with long-short term memory
(LSTM) and convolutional (CNN) networks, which are considered the state of
the art in the field. The conclusion obtained from the analysis of the results of
these experiments are summarized below:
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– The Transformer architecture achieves state-of-the-art forecasting accuracy,
obtaining similar results to the LSTM and outperforming CNNs.

– Transformers provide a better accuracy/speed trade-off than LSTM in train-
ing time. However, the Transformer training process is significantly slower
compared to the CNN.

– The inference time of the Transformer architecture is severely influenced by
the single-step prediction scheme used, which makes it slower than the other
architectures.

– Finding the best architecture configuration for Transformers is a complex
task as it presents a wider WAPE distribution than the other models.

In summary, the conclusions obtained from analyzing the results establish
the Transformer architecture at the level of the state-of-the-art deep learning
techniques for univariate time series forecasting. In future studies, alternative
architecture variations such as convolutional attention or sparse attention should
be considered. Another future study should work on non-auto-regressive models
to reduce the inference time of the Transformers. Furthermore, we aim to study
the use of multi-dimensional Transformers for dealing with spatio-temporal grid
data.
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