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A Robot-Sensor Network Security Architecture for
Monitoring Applications

Francisco José Fernández-Jiménez, and José Ramiro Martı́nez-de Dios

Abstract—This paper presents SNSR (Sensor Network Security
using Robots), a novel, open, and flexible architecture that
improves security in static sensor networks by benefiting from
robot-sensor network cooperation. In SNSR, the robot performs
sensor node authentication and radio-based localization (enabling
centralized topology computation and route establishment) and
directly interacts with nodes to send them configurations or
receive status and anomaly reports without intermediaries. SNSR
operation is divided into stages set in a feedback iterative
structure, which enables repeating the execution of stages to
adapt to changes, respond to attacks, or detect and correct errors.
By exploiting the robot capabilities, SNSR provides high security
levels and adaptability without requiring complex mechanisms.
This paper presents SNSR, analyzes its security against common
attacks, and experimentally validates its performance.

Index Terms—sensor network, robot, security.

I. INTRODUCTION

AWIRELESS sensor network (WSN) is a set of spatially
dispersed devices equipped with sensing, computational,

and wireless communication capabilities that can self-organize
and collaborate to perform tasks. WSNs are used in many
different fields [1] and are deeply dependent on the applica-
tion. A large diversity of types of WSN arise with different
requirements and characteristics including device capabilities
(homogeneous or heterogeneous), static or dynamic entities,
different topologies (flat or clustered), among many others.
This work focuses on WSNs used in the monitoring of
industrial settings or civil infrastructures, where sensor nodes
gather measurements and collaborate using ad-hoc commu-
nications to deliver them to a sink node, also known as
gateway or base station (BS). All the sensor nodes have the
same role (flat architecture), and once deployed remain static
(static WSN) except for occasional location changes, or node
addition/deletion.

Security is critical in many monitoring applications. WSN
has a large attack surface due to a variety of vulnerabilities [2]
originated mainly by: a) nodes restricted energy and compu-
tational resources, which constrain their functionalities; b) de-
ployment in hostile environments often at unknown positions
and with difficult accessibility, which hinders node repair; c)
unattended operation and remote network management that
hamper physically checking the nodes’ status, and simplify
performing physical (or planning complex) attacks; d) high
node exposure to disconnection, destruction, or modification;
e) easy access to the wireless channel to eavesdrop or inject
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packets; f) use of an ad-hoc network infrastructure, where
nodes trust each other; g) use of a network topology with fre-
quent interchanges of routing information that might be false;
h) unreliable communication, which hinders distinguishing
between attacks and errors; and e) use of distributed algorithms
involving many nodes, which are prone to internal attacks.
A wide diversity of types of attacks take advantage of these
vulnerabilities, see e.g., [2]–[4]. Attacks can be classified as:
active (e.g., jamming) or passive (e.g., eavesdropping); internal
(e.g., selective forwarding) or external (e.g., packet alteration);
according to the communication layer; and according to the
objective, in which they are classified in service availability
and integrity (e.g., node destruction, black hole), privacy and
secrecy (e.g., traffic analysis, information disclosure), and data
integrity (e.g., packet injection, node replication).

Fig. 1. Pictures of SNSR validation experiments in status monitoring of a
bridge (right) and a cement kiln (left), location omitted for confidentiality.

Among the main security requirements that WSN should
fulfill are availability, confidentiality, integrity, authenticity
and data freshness, node authentication and authorization,
forward and backward secrecy, and secure localization of
critical nodes [2], [3]. The main security countermeasures
can be classified as preventive, intrusion detection systems
(IDS), and reactive [4]. Preventive countermeasures strengthen
the WSN against certain attacks before they occur. Typical
examples are: encryption to protect privacy; digital signatures
for authentication; message authentication code (MAC) for
data integrity and authentication; timestamps for data fresh-
ness; channel surfing and frequency-hopping spread spectrum
to avoid interference; location of nodes to avoid intrusion
and false information; or randomized communications to
avoid traffic analysis. IDS identifies attacks when they occur
by using techniques based on inspection of network traffic,
observing the RSSI (received signal strength indicator) of
the interchanged packets, detecting abnormal behaviors or
suspicious patterns and their analysis with different methods,
e.g., Dempster-Shafer theory or machine learning. Finally,
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reactive solutions usually complement an IDS and are activated
after the attack to recover from it and prevent further attempts.
They usually require changing the configuration of the nodes,
revoking/regenerating keys, or expelling malicious nodes from
the network. A complete security architecture should include
countermeasures of all types. Most security architectures adopt
observation-configuration structures that use the anomalies ob-
served by the entities to detect attacks and determine suitable
re-configurations to mitigate the attack effects.

Most existing works focus on providing solutions to specific
attacks. However, the attack surface is vast, and many mech-
anisms and protocols are necessary to protect a WSN. Using
these mechanisms in the same WSN increases complexity and
resource demands, limiting practical feasibility. Many methods
adopt centralized approaches in which the entities with more
resources, usually the BS, perform the most complex tasks,
which also reduces the influence of possible compromised
nodes in decision making. However, these approaches increase
the dependence on the central node and require routes to
reach the BS, whose establishment can also be attacked.
Some examples are: work [5], which proposes an intrusion-
tolerant tree-structured routing protocol; or [6], which uses
a centralized routing protocol to detect wormhole attacks.
The Software-Define Network (SDN) paradigm has also been
applied in WSN [7], [8], where the control plane, which makes
routing decisions, is decoupled from the data plane, which
performs packet forwarding. Other examples are centralized
IDS, particularly the data analysis and attack detection mod-
ules [8], [9], and the use of a trust center for key distribution
and generation [10], [11].

A robot is a mobile entity endowed with computational,
sensing, and communication capabilities. Recently, aerial
robots have become common tools in monitoring tasks such
as inspection, failure detection, or predictive maintenance,
and this trend will increase in the near future [12]. Robots
have obtained remarkable results in helping to solve a wide
variety of problems in WSN [13] including node deployment,
WSN repairing, recharging of batteries, node localization, or
data collection. However, robot-sensor network cooperation
for improving WSN security is still under-researched [14].

This paper presents SNSR (Sensor Network Security using
Robots), a novel, generic, open, and flexible architecture that
improves security in static sensor networks by exploiting
robot-network synergies. SNSR adopts a centralized iterative
approach in which the anomalies observed by all entities are
used to detect attacks and determine re-configurations to mit-
igate their effects, and hence improve network performance.
The robot performs sensor node authentication and radio-based
localization enabling centralized network discovery and route
establishment. It interacts with nodes using short-distance
communications, sends them configurations, receives status
and anomaly reports without intermediaries, detects anoma-
lies, and can be commanded to obtain direct observations
to confirm/discard other anomalies. The integration of the
robot within SNSR improves attack prevention, detection, and
mitigation without requiring complex or resource-demanding
mechanisms. First, as proven in Props. (1)-(3) in Appendix,
the use of the robot in SNSR provides enhanced anomaly

observation (hence, attack detection) and mitigation. Sec-
ond, it enables attack prevention mechanisms such as the
use of short-range communications, network discovery and
topology establishment with authenticated nodes, centralized
route calculation without interference, direct collection of node
status without intermediaries, among others. In SNSR, these
mechanisms substitute others that in traditional architectures
are often computed in a distributed manner or use preset
information, largely reducing the attack surface and node
resource consumption. SNSR constrains node behavior but
keeps high flexibility in the mechanisms and protocols, com-
plementing a wide range of existing countermeasures without
imposing protocols, optimization criteria, or algorithms. It has
been implemented using widely-adopted well-proven secure
protocols, and validated in challenging scenarios, see Fig. 1.

The contributions of this paper are:
1) SNSR architecture, whose iterative observation-

reconfiguration structure using the robot enhances
attack prevention, detection, and mitigation.

2) Protocols and mechanisms for SNSR in instead of others
used in traditional architectures that are prone to attacks.

3) Implementation using existing well-proven secure pro-
tocols, evaluation, and experimental validation in chal-
lenging outdoor scenarios.

This paper is structured as follows. Section II summarizes
the main related works. SNSR is presented in Section III.
Its operation and main modules are summarized in Sections
IV and V. SNSR implementation and experimental evaluation
are described in Sections VI and VII. Section VIII compares
SNSR with related work. The conclusions are summarized in
Section IX. The advantages of SNSR over architectures with-
out robot are formally analyzed in Appendix. Experimental
data are provided as additional material [15].

II. RELATED WORK

Security measures include prevention, detection, and miti-
gation mechanisms. Due to the large attack surface of WSN,
most works focus on a particular security aspect. The fol-
lowing summarizes the works more directly related to SNSR.
Table I shows the taxonomy of the presented related works
classified according to their security topic, defense mecha-
nisms, and the use of centralization and mobile robots.

Cryptography is the base of the main proactive countermea-
sures used in WSN [2], [3]. There are two main cryptographic
systems: symmetric and asymmetric. Symmetric cryptography
is efficient but requires complex procedures for key manage-
ment. Several surveys [35], [36] have pointed out the difficul-
ties of existing key management schemes. Besides the loss of
privacy, disclosure of symmetric keys is dangerous since many
systems interpret their possession as implicit authentication.
Asymmetric cryptography, also called public key cryptography
(PKC), simplifies and makes key distribution more secure but
is usually more computationally expensive. The most widely
adopted algorithms are Rivest–Shamir–Adleman (RSA) and
elliptic curve cryptography (ECC). ECC is more efficient than
RSA and requires shorter keys to achieve a similar security
level. Work [16] implemented ECC in low-resource sensor
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TABLE I
TAXONOMY OF RELATED WORK

Reference Topic P D M C R Highlighted features
[16] Cryptography ✓ × × × × Distributed PKI implemented with ECC in low-resource sensor nodes
[17] Cryptography ✓ × × × × Hardware implementation of cryptographic algorithms in sensors, including ECC
[18] Cryptography ✓ × × × × Revision of WSN protocols using ECC, new protocol that stores prevalidated public keys in nodes
[19] Cryptography ✓ × × × × ECC is used for distributed group key management
[20] Cryptography ✓ × × ✓ × ECC signature aggregation, an adaptation of certificateless PKC to WSN.
[21] Standard ✓ × × ✓ × Standard and commercial architecture with protocols using both PKC and symmetric cryptography
[22] Cryptography ✓ × × ✓ × Guidelines to reduce the overheads of PKI in IoT
[23] Cryptography ✓ × × ✓ × Description of the key escrow problem and its solution with a self-certified key distribution scheme
[10] Cryptography ✓ × ✓ ✓ × Adaptation of identity-based PKC to WSN
[9] IDS × ✓ × ✓ × Centralized anomaly collection, anomaly-based IDS
[24] IDS × ✓ × ✓ × Anomaly detection performed on all nodes
[25] IDS, Routing ✓ ✓ ✓ × × Anomaly detection and analysis performed only on selected nodes
[26] IDS × ✓ × ✓ × Only BS detects attacks by analyzing network traffic, misuse-based IDS
[27] IDS × ✓ × ✓ × Detection is performed heterogeneously depending on the resources of each entity
[28] IDS × ✓ × × × Distributed collection and detection and big data processing
[8] IDS × ✓ ✓ ✓ × Distributed anomaly collection, attack detection using energy prediction models

[29] IDS × ✓ × ✓ × IDS specific for low-rate denial of service attacks on routing protocols
[30] IDS × ✓ × × × IDS based on trust and reputation with environmental parameters
[5] Routing ✓ × × ✓ × Secure routing protocol where the BS calculates all routes and neighbors of all nodes
[6] Routing ✓ ✓ ✓ ✓ × Centralized reactive routing protocol for detecting only wormhole attacks
[7] IDS × ✓ × ✓ × Review of specific attacks on SDN in WSN, specialized IDS for SDN

[31] CH election ✓ × × ✓ ✓ UAV-assisted centralized election of cluster heads (CH) to avoid interference from malicious nodes
[32] Data collection × ✓ × ✓ ✓ A UAV is employed to collect data and take direct measurements
[33] Cryptography ✓ × × ✓ ✓ Geometry-based distribution of shared keys to a group of nodes using a mobile robot
[34] Cryptography ✓ × ✓ ✓ ✓ The use of a UAV as a key distribution and coordination center for public keys

SNSR Security architecture ✓ ✓ ✓ ✓ ✓ This work
P: Prevention mechanisms D: Detection mechanisms M: Mitigation mechanisms C: Centralized mechanisms R: Use of mobile robots ✓: Yes ×: No

nodes, and [17] developed a hardware implementation achiev-
ing drastic time and resource reductions. Work [18] reviewed
the methods that secure WSN communications using ECC
and proposed an enhanced security protocol for heterogeneous
WSN based on ECC authentication. In [19] ECC was used for
authenticated key agreement in a protocol for distributed group
key management. In [20] messages were signed individually
with ECC, and the signatures of different messages were
aggregated into a single signature that is easier to verify,
reducing communication and computational cost. Many proto-
cols use PKC mostly for initial authentication and session key
agreement and then change to symmetric cryptography once
the keys have been exchanged. This approach is adopted by
ZigBee Smart Energy [21], IPSec (for IP), TLS (for TCP), and
DTLS (for UDP).

An additional challenge of PKC is how to authenticate the
association between an identity and a public key, and how to
revoke it if necessary. In Public Key Infrastructure (PKI), the
most used approach, certificates are generated with the above
pairing and a serial number digitally signed by a Certificate
Authority (CA). Certificates must be stored, transmitted, and
verified, which consumes resources. Revocation involves dis-
tributing lists of revoked certificate serial numbers or querying
the CA or another trusted authority. Work [22] discussed
the use of certificates in DTLS, and provided guidelines to
reduce its computational cost e.g., by using pre-verification
or session resumption. In identity-based cryptography, the
public key is the identity itself, so it is not necessary to
transmit it. However, it requires a trusted third-party Private
Key Generator (PKG) that generates all the private keys and
this leads to a private key escrow problem that is addressed
in [23]. It has a higher computational cost than PKI due to
the pairing process (bilinear association of an identity to a
point on the ECC curve), and revocation is more complex

as it cannot reuse identifiers. Certificateless cryptography is
a variant of the previous one, which solves the key escrow
problem but again requires the exchange of public keys as
they are not directly derivable from the identity, and still
incurs in high computational costs. Recently, works [10], [20]
presented adaptations to WSN of the above alternatives to PKI
by avoiding the pairing process but limiting its functionality
to the digital signature operation.

Many security systems are based on the detection of attacks
and the identification and location of the attacker. This is the
case of Intrusion Detection Systems (IDS), which operation is
usually divided into information collection, detection model,
and response decision [9]. Network monitoring and anomaly
detection can be done on all nodes [24], on selected nodes
[25], centralized by analyzing network traffic [26], or het-
erogeneously depending on the resources of each entity [27],
among others. Anomaly collection can be centralized at one
entity [9] or distributed [8], [28]. In the latter, nodes only
have local knowledge of the network, often resulting in lower
attack detection rates. There are detectors for different types
of attacks or specific attacks such as denial of service [29]
or clone nodes [37]. Depending on the type of information
analyzed, IDSs can be divided into [38]: a) anomaly-based [9];
b) misuse-based [26]; and c) specification-based, which detect
attacks using manually preset rules and specifications, and
have the advantages of both previous categories but developing
the specifications can be costly in complex systems. Many
methods have been proposed to infer attacks using pattern
matching, Machine Learning (e.g., Support Vector Machine or
neural networks), energy prediction models [8], big data [28],
trust and reputation [30], among others. Some conclusions
from existing IDSs can be highlighted. First, anomaly detec-
tion and transmission can require high energy consumption
for sensor nodes. Anomaly detection is not perfect, and the
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effects of false positives/negatives must be considered. Most
works focus on the processing of anomalies, but the ability
to observe anomalies, and the transmission of anomalies and
corrective actions must also be considered. Attackers can
generate false anomalies, interfere with anomaly transmission,
and even compromise the members of a distributed IDS.

Existing WSN security works present distributed or central-
ized solutions. Load balancing and sharing and the absence of
a single point of failure (SPOF) are advantages of distributed
schemes. However, they are based on local information, have
higher computational costs on nodes with limited resources,
higher message exchange, and in general, the probability of a
malicious node influencing the system is higher. Centralized
schemes usually perform the most demanding tasks at the
entities with more resources or higher reliability (typically BS)
but present a SPOF and a bottleneck. In the basic version
of INtrusion-tolerant routing protocol for wireless SEnsor
NetworkS (INSENS) [5], BS calculates the routes from all
nodes to BS and the neighbors of all nodes using the local
topological information provided by nodes. In work [6], the
routes are calculated for detecting wormhole attacks. The SDN
paradigm has been applied to WSN by allowing nodes to
receive commands on how to process packets from a controller,
see [39]. SDN makes network management more flexible and
simpler, but nodes must first discover routes to the controller
by other means, and the communication with the controller
must not be interrupted. However, new attacks arise from these
requirements, see e.g., [7]. Table I identifies other works with
some form of centralization such as [20], [31] and centralized
IDSs such as [7], [9], [26].

Mobile robots have been used to help WSN in a wide
variety of problems, e.g., coverage extension, relaying, data
aggregation, distribution and collection, and node deployment,
replacement, or localization [13], [14], [40]. In many works
that integrate mobile robots in WSNs, security is a secondary
objective or a side effect. Work [31] used an Unmanned Aerial
Vehicle (UAV) to select the CHs of a WSN after collecting
the nodes energy status reducing the probability of a malicious
node being elected as a CH, but it did not consider other
attacks, e.g., during the initial key establishment phase. Work
[32] proposed a UAV for data collection. The UAV takes direct
measurements to detect node misbehavior. The use of robots to
improve WSN general security has focused on key distribution,
without using the robot in other security tasks. In work [33], a
mobile element was used to distribute shared keys to a group
of nodes, seeking to minimize the dissemination zones and the
number of keys without connectivity loss. Work [34] used a
UAV as a key distribution and coordination center for public
keys. Nodes request peers’ public keys from the UAV.

This paper proposes a new security architecture that exploits
tight sensor network-robot cooperation to achieve high security
levels with simple and efficient security mechanisms. Robot-
WSN cooperation endows the SNSR with enhanced attack
detection and mitigation capabilities (see Appendix), and
also strengthens prevention by replacing mechanisms that in
traditional architectures are prone to attacks.

III. SNSR SECURITY ARCHITECTURE

Assume a number of static sensor nodes deployed in a
monitoring application. Nodes gather, filter, and transmit mea-
surements to a base station (BS) –also static, where they
are logged, processed, and/or transmitted to a remote center.
Nodes are often installed at locations with difficult accessi-
bility. We assume that an aerial robot (R) is used as part of
the monitoring plan, performing inspection, failure detection,
or predictive maintenance. SNSR requires the participation of
the robot only at occasional times; during the rest of the time,
it can be used in other tasks. The robot communicates directly
with the nodes using the sensor network protocol stack. It can
also communicate with BS just as with any other node or
using a longer-range higher-bandwidth network. The network,
communication channel, and scenario are assumed realistic.
Nodes are endowed with low computational and transmission
capabilities. The network is not very dynamic: nodes have low
failure probability and new nodes are not frequently added to
the network. Packet loss –caused by collisions, interference,
or noise, among others– is not negligible and varies along the
scenario. The link layer (LL) at each entity checks that the
received message is correct, or discards it otherwise. Nodes
operate in unattended manner and are exposed to malicious
attacks. The BS is at a secure location and cannot be easily
tampered or cloned. The robot can only be tampered if
captured during the flight, which can be quickly detected.
Also, Denial of Service (DoS) or jamming attacks cannot
continue constantly without being detected and eliminated.

SNSR is a generic and flexible architecture that improves
security by exploiting network-robot cooperation. It is not
particularized for any concrete network stack and can be easily
adapted to existing networks.

It is devised as an extension that defines, complements, and
modifies the services in the management and security planes
of the protocol stack, while providing high flexibility and
adaptability in the communication plane –including protocols,
security mechanisms, cryptographic algorithms, and message
coding in each layer. The robot (R) provides interesting
advantages in SNSR:

• R discovers, localizes, and authenticates the nodes. Nodes
can only establish communication with entities that have
been previously authenticated by R. Hence, R secures
the initial configuration stages, critical in the network
performance and prone to security attacks.

• Network topology and route establishment are performed
centrally using topological information from authenti-
cated nodes observed directly by R, avoiding distributed
protocols and intermediate nodes, preventing attacks or
mitigating its effects.

• R sends directly to each node its configuration –including
routes and lists of authenticated neighbors and revoked
certificates– avoiding their alteration or discard. A node
cannot establish communication to any other authenti-
cated entity except R until it has been configured.

• During the flight, R executes anomaly detection tech-
niques and also collects without intermediaries the
anomalies detected by the nodes.
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Fig. 2. Top) Main stages in SNSR operation. Bottom) Scheme of SNSR with
the main security modules in each entity.

Figure 2-top summarizes the operation of SNSR. In Discovery,
R flies a safe trajectory to discover and authenticate sen-
sor nodes, and compute their 3D locations. Next, using the
collected data, the network topology and routes are deter-
mined in Topology Establishing. In Configuration, R safely
flies near each node and sends its configuration directly to
it. In Maintenance, every entity executes anomaly detection
mechanisms and reports the detected anomalies to BS directly
or using R. BS analyzes the anomalies and if necessary decides
corrective actions, e.g. the execution of a new Discovery stage.
The security strengths of SNSR mainly consists in: 1) the
SNSR iterative structure using the robot, which naturally pro-
vides better anomaly observation and anomaly/configuration
transportation than traditional centralized WSN without robot
(see Appendix); and 2) a set of simple well-tested security
mechanisms that exploit robot-WSN operation and substitute
methods that in traditional networks are performed in a dis-
tributed manner or using preset information. Figure 2-bottom
shows the main security modules executed in each entity.
Other functionalities necessary for SNSR operation, e.g. robot
navigation, are performed. Not being the object of this paper,
they are omitted for clarity. SNSR adopts authentication based
on PKI. For simplicity, PKI modules –Certificate Authority
(CA), Registration Authority (RA), and Certificate Repository

(CR) that includes the certificate revocation list (CRL) with
the certificates that have ceased to be valid– are executed in
BS. They could have also been placed in a remote external
element providing stronger security. Each entity executes a
cryptography module that includes its CA-issued certificate, its
private key, and the CA certificate. SNSR can independently
use secure protocols in the LL and/or the transport layer (TL),
see Table II, providing capability of adapting to the available
node resources and the required authentication, confidentiality,
and data integrity levels. The mode is preconfigured in each
entity. Mode SEC_LT provides security in LL and TL, but
requires higher resources. Mode SEC_LTE avoids unnecessary
double-encryption in LL and TL in end-to-end communica-
tions between neighbors. Even in mode SEC_NO –without
secure LL and TL protocols– the role of R in network set-up
provides some intrinsic security, but it can be insufficient in
many cases. In SEC_NO and SEC_TE, R does not authenticate
nodes. Although resource efficient, their use is discouraged.

TABLE II
SECURITY MODES IN SNSR

TL security
WITHOUT EXCEPT NEIGHBORS WITH

LL WITHOUT SEC_NO SEC_TE SEC_T

security WITH SEC_L SEC_LTE SEC_LT

IV. OPERATION

The network topology database (NTDB) stores the updated
information of the network: a) initial constraints if any, e.g. the
initial CRL or a whitelist with allowed nodes; b) data collected
during Discovery; and c) configuration resulting in Topology
Establishing. Its UML Entity-Relationship diagram is shown
in Figure 3. It includes: node configuration NodeData;
BS configuration BSData; routing information RouteData;
parameters required by each node for communicating with
a neighbor NeighborData; and data to define the CRL
CRLData and SerialData. NTDB is managed by BS and
exchanged with R. The configuration resulting in each Topol-
ogy Establishing is stored in a different NTDB version.

In SNSR, communication is connection-oriented. Below are
the main interactions between already connected entities:

• R⇐⇒BS. Purposes: 1) NTDB exchange; 2) R report of
collected anomalies; 3) BS informing R about changes in
the CRL; 4) R discovering the BS and asking its status;
and 5) BS giving management commands to R.

• R⇐⇒ node Ni. Purposes: 1) R discovering, configuring,
and asking status of Ni; 2) Ni reporting anomalies to R.

• BS⇐⇒Ni. Purposes: 1) Ni transmitting the gathered
measurements to BS; 2) BS requesting to change Ni
configuration and CRL; and 3) Ni reporting anomalies.

• Ni⇐⇒Nj. Nodes only communicate with each other to
collaboratively forward packets to the destination.

Table III shows the management application messages
between entities. All messages except ANOM_STATUS and
SET_CRL_BCAST employ a reliable transmission service –
using loss detection and retransmission. SET_CRL_BCAST is
the only one broadcast by flooding in NL.
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Fig. 3. UML Entity-Relationship diagram of NTDB.

TABLE III
DESCRIPTION OF THE MAIN MANAGEMENT APPLICATION MESSAGES

Request/Response Involved entities (initiator⇐⇒responder) / Purpose
STATUS_REQ
STATUS_RES

R⇐⇒any, BS⇐⇒Ni / To obtain the entity status

CFG_REQ
CFG_RES

BS⇐⇒Ni, R⇐⇒Ni / To change configuration or CRL

ANOM_STATUS
ANOM_ACK

R⇐⇒BS, Ni⇐⇒R,BS / To notify detected anomalies

GET_ND_REQ
GET_ND_RES

R⇐⇒BS / To obtain NTDB from BS

SET_ND_REQ
SET_ND_RES

R⇐⇒BS / To send NTDB to BS

SET_CRL_BCAST BS⇐⇒all (by flooding) / To urgently update CRL
MGMT_CMD_REQ
MGMT_CMD_RES

BS⇐⇒R / To execute management commands
(implementation-dependant).

A. Initial

Each entity is initially configured with its static (e.g. type of
entity and identifier) and security settings (e.g. security mode,
cipher suites allowed, private key, CA and own certificates
and initial CRL –empty by default). BS, assumed secure,
contains the initial NTDB, which is empty except for the
initial constraints: the initial CRL CRLData and the data
of the allowed entities NodeData. Nodes are initially in
Node Initial mode: they do not transmit until they detect the
presence of a robot. BS also has the bounding coordinates of
the scenario –node locations are unknown. The robot take-
off/landing location is assumed within the BS communication
range. R connects with the BS (as any other connection
in SNSR, they use beacons, authenticate one another, and
establish a secure channel) and requests the updated and the
initial NTDB and the status of BS, see Sections V-C and V-D.

B. Discovery

This stage can be performed after Initial or as a decision
taken in Maintenance. It is executed similarly in both cases.
For brevity, only the first is described. BS commands the start
of Discovery in a MGMT_CMD_REQ message, which includes
the scenario bounding coordinates. R computes an obstacle-
free trajectory –e.g. a zig-zag pattern– that ensures that all

nodes will receive beacons. R takes off and performs the tra-
jectory transmitting beacons to announce its presence. Beacon
processing is described in Section V-A. If a node validates
the received beacon, it connects to R: they authenticate one
another and establish a secure channel, see Section V-B. After
connection, R sends a status request message (STATUS_REQ),
see Section V-D. Once authenticated, R estimates the 3D loca-
tion of each discovered entity using a radio-based technique.
All collected data is registered in a temporary NTDB. After
completing the trajectory, if the whitelist was not provided in
Initial, R lands. Otherwise, R checks if it collected data from
all allowed nodes, and if not, the flight is repeated up to a
maximum number of times (e.g. 3). The temporary NTDB
will be used to determine the network topology and routes,
which can be computed by BS or R. In the former case, R
transmits the NTDB to BS using a SET_ND_REQ message.

C. Topology Establishing
In this stage the configuration of each entity is computed

to create a fully connected network, which is stored in a
new version of the NTDB. It is typically performed at BS,
which often has higher computational resources. For small
networks, computing onboard R enables saving transmissions
and starting the Configuration flight without landing, just after
the Discovery flight. In both cases the steps are the same: 1)
node filtering using the whitelist and the CRL; 2) generation of
the network topological graph; 3) computation of routes; and
4) assignation of network addresses and other communication
parameters. Finally, a new NTDB is built and shared between
R and BS using messages SET_ND_REQ or GET_ND_REQ.

Node filtering detects and discards, leaving out of the
topology, invalid and cloned nodes. Next, the topological graph
G=(V,E), composed of a set of vertexes V (entities) and
a set of edges E (each representing adjacency between two
entities) is created. If Topology Establishing is executed after
Initial, two nodes are considered neighbors if their distance
(using the locations computed in Discovery) is lower than a
predefined range r. This simple but efficient criterion may lead
to topology errors, which will be detected in Maintenance as
anomalies. If Topology Establishing is executed after Main-
tenance, the connectivity information collected from nodes,
see Section IV-E, is used. Only nodes reachable from BS are
considered: the rest are left unconfigured, and reported to the
administrator. To limit resource and energy consumption, each
vertex v will be able to communicate with up to Nv authorized
neighbors selected with criteria based on link quality, available
resources, or type of network (mesh or tree).

SNSR gives flexibility for adopting different routing mech-
anisms. One option is to compute routes centrally each time
this stage is executed, and nodes operate using static routing.
This approach has the advantages of static routing (strong
security and low bandwidth and computational overhead) and
of dynamic routing (easy to be configured and effective at
selecting the best route). Besides, it decouples the control
plane from the data plane, as in Software Defined Networks
(SDN) [41], and different criteria can be used to compute the
routes. We adopt this approach in the implemented SNSR us-
ing a simple minimum hop route calculation method. Besides,
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SNSR also supports dynamic routing including: 1) existing
protocols without modification –in these cases SNSR provides
the additional advantage that all nodes are authenticated; and
2) modifications of existing routing protocols where SNSR
adds initial centralized route establishing without interme-
diaries. SDN-based protocols can be also used. The SDN
controller functions are performed by BS or by R and the
routes to the controller can be computed in a distributed
manner as in [42], [43] or centrally at BS or R. SNSR is
not particularized for any network stack. The network layer
adopted determines the address allocation method (e.g. flat,
hierarchical, topology-based) and other parameters.

D. Configuration

Each node is provided with its configuration (NodeData)
and CRL (CRLData) obtained in Topology Establishing.
When a node receives its first configuration, its mode changes
to Node Config. Nodes are configured by R, which flies next
to each node and transmits the node configuration directly.
BS could also remotely re-configure nodes that are already in
Node Config mode, but this option is not recommended since
the messages could be interfered.

BS commands the start of Configuration using a
MGMT_CMD_REQ message. R plans an obstacle-free trajectory
such that it can directly communicate with each node, see e.g.,
[44]. Next, R performs the trajectory transmitting beacons to
announce its presence. Beacon processing and connection with
R are described in Sections V-A and V-B. R can configure
many nodes simultaneously in few ms, see Section V-E. After
connection establishment, R requests the node status. If R con-
figuration or CRL versions are different from node versions, it
sends a CFG_REQ message with its new configuration. When
the node receives it, applies the new configuration, eliminates
no longer authorized connections, and confirms configuration
update sending a CFG_RES message. R retries if it does
not receive the CFG_RES message before a timeout. After
configuring all nodes, R lands. During network configuration
there is often a transitory period of instability depending on
the order in which nodes are configured, but communication
with R is direct and unaffected.

E. Maintenance

After Configuration the monitoring application starts. Every
entity detects anomalies (using methods for detecting connec-
tion errors and mechanisms for detecting specific anomalies)
and reports them –directly or using R– to BS, which decides
the corrective actions. After a node transmits its CFG RES
message in Configuration, it connects to BS and all its
authorized neighbors, and starts detecting anomalies. In every
flight, R performs anomaly detection mechanisms using all
the information it gathers. Besides, in Maintenance it performs
additional periodic and on-demand flights in which it localizes
and connects to nodes, collects their detected anomalies, and
forwards them to BS. R and BS can also ask the status of
nodes to find the cause of the anomalies or to check status.

BS is always detecting and collecting anomalies. In Main-
tenance it analyzes them and decides corrective actions as

in IDSs, but with interesting improvements. First, R detects
anomalies (as well as nodes and BS) and secures the collec-
tion of the detected anomalies, providing enhanced anomaly
observation as proven in Prop. (1). Besides, BS can on-
demand command robot flights to obtain direct observations
–and transmit them without intermediaries– to confirm/discard
threats. IDSs require complex techniques to infer the type
of threat [45]. Although SNSR supports IDSs, its enhanced
observation capability enables using simpler approaches. An
efficient anomaly management module based on rules that
assign corrective actions to anomalies was sufficient to obtain
suitable results, as shown in Section VII. Table IV summarizes
the main management rules adopted. Threats that can be solved
using cryptography and communication errors detected during
the configuration transitory period are not considered. The
anomalies shown at the top of Table IV trigger the execu-
tion of Discovery to confirm/discard potential threats, or to
acquire new information. Others, shown at the bottom, require
actions from the operator, e.g. in case of detecting duplicated
identities. The operator can also force administrative actions
such as performing a new Discovery stage (e.g. after adding
new nodes), or a new Topology Establishing stage (e.g. after
removing nodes). Besides, urgent CRL update, see Section
V-H, is used to rapidly forbid communication with an entity,
e.g. in case of robot theft since its keys and privileges can
be used to modify other entities’ configuration. The manage-
ment rules in Table IV can be easily extended to consider
other anomalies and detectors. R delivers node configurations,
improving security, see Prop. (2), which combined with the
enhanced anomaly observation, see Prop. (1), provides SNSR
with enhanced attack recovery, see Prop. (3).

TABLE IV
MANAGEMENT RULES ADOPTED

Observed anomalies that trigger a
new Discovery stage

Potential causes and threats

Node displacement detected by R Node position change
Node does not connect to BS but con-
nects to its neighbors

Selective forwarding

Disconnection of a node but not of
those who depend on it

Selective forwarding, packet injection

Disconnection of a set of nodes with a
common intermediate

Intermediate node failure, selective forwarding

Unreachable neighbor, but it is con-
nected with others

Radio-based range estimation error, node dis-
placement

Peer disconnection Node failure, power loss, tampering, jamming,
node displacement

Connection inactivity timer expired Idem, selective forwarding, network congestion
Continuous negotiation or protocol er-
ror during handshake

Misconfiguration, packet injection or alteration,
power attack, man-in-the-middle

Increased error and loss rate, frequent
re-connections

Jamming, selective forwarding, network con-
gestion, power attack, packet injection or alter-
ation, node displacement

Observed anomalies that require ad-
ministrative actions

Potential causes and threats

Duplicated identity Misconfiguration, node replication
Bogus beacons Sleep deprivation torture, power attacks
Bogus broadcast message Sleep deprivation torture, power attacks, NL

DoS, packet injection or alteration
Invalid or revoked certificate Tampering, node replication
Temporary interruption of the opera-
tion of a sensor network

Tampering, power loss, jamming

Management protocol error Tampering, spoofing, malfunction

V. MODULES

The structure of the main used messages is presented below
(∥ denotes concatenation). Application layer messages start
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with an application header (AH) that includes the type of
message and a transaction identifier.

Beacon : P ∥ ID ∥ SN ∥ NA ∥ CP (1)
GET ND REQ :AH ∥ INITIAL (2)
GET ND RES :AH ∥ NTDB (3)
SET ND REQ :AH ∥ NTDB (4)
SET ND RES :AH ∥ ACCEPTED (5)
STATUS REQ :AH (6)
STATUS RES :AH ∥CFGV ∥CRLV ∥NA∥NBL (7)

CFG REQ :AH ∥ T ∥ CRL ∥ CFGV ∥ NA ∥ BS ∥
NBL ∥ NO NBL ∥ RD ∥ NO RD (8)

CFG RES :AH ∥ CFGV ∥ CRLV (9)
ANOMALY :OBS ∥ ID ∥ TY PE ∥ OBJ ∥ INFO ∥

TS ∥ CFGV ∥ REPT (10)
ANOM STATUS :AH ∥ ANOMALY LIST (11)

ANOM ACK :AH ∥ OBS ∥ ID (12)
SET CRL BCAST :AH ∥ CRL ∥ SIGN (13)

A. Start of Communication with the Robot

The connection with R is a sensitive step. First, R is the only
entity that nodes can connect to without prior information.
Second, R sends the configuration to each node, determining
its subsequent operation. The connection to R is as follows. R
transmits beacon frames, see (1), at partially random intervals
to prevent accidental or intentional interference. Beacons are
the only messages that are broadcast in LL. After the preamble
P , it conveys: R identity ID, its certificate serial number SN ,
its network address NA, and communication parameters CP .
Beacons are not encrypted or authenticated: their content is
not critical and should be efficiently processed; and R will be
authenticated during the connection establishment.

If the receiver of a beacon is already connected to the robot,
it discards the beacon. Otherwise, it processes it verifying that:
1) the ID is valid; 2) the SN is not revoked (using the CRL);
and 3) the CP is acceptable. Beacon detection mechanisms
based on sequential connection establishment attempts can
suffer power attacks, e.g. continuous handshakes originating
LL exhaustion or denial-of-sleep. To prevent them, we adopt
a method based on reservoir sampling algorithm [46] that
analyzes the received beacons and maintains a candidate to
attempt connection. If a connection attempt fails, another
connection to the next candidate is started immediately. Also,
minimum and maximum execution times are set for hand-
shakes: the first one to prevent power attacks and, the second,
to limit the time trying to connect to a potentially fake robot.

B. Connections between Entities

Communication between entities in LL or TL is connection-
oriented. SNSR supports handshakes between neighbors –at
LL– and remote –at TL– entities. Two types of handshakes
are adopted: basic (without security) and secure. Every entity
except R knows the type and identity of the other end when the
connection is initiated, since this information is in the entity
dynamic configuration. In the secure handshake both ends:
1) negotiate the algorithms for key exchange, authentication,
encryption, and MAC generation; 2) authenticate one another;
and 3) exchange a random master key using procedures such
as Diffie-Hellman [47] or Menezes–Qu–Vanstone [48]. The
identity and type of each entity are stored in its digital

certificate. Authentication is performed by exchanging and
verifying the certificates signed by the CA, and by signing
the messages exchanged during the handshake (which also
provides integrity). PKI authentication uses asymmetric cryp-
tography –more secure but more computational demanding.
Symmetric cryptography is used for encryption and MAC
generation during the rest of the communication using keys
derived from the master key. Keys should have perfect forward
secrecy (PFS), i.e. keys should not be related to previous keys,
avoiding pre-shared keys.

The cost of secure handshakes can be high for low-resource
nodes. Connections are usually permanent, except those with
R, and its cost is amortized over time. As proposed in [22], to
address this cost we use: 1) keepalive messages at configured
intervals when they have no data to transmit; 2) resumption
handshakes for temporary connection loss, which reuse data
from the previous connection; and 3) pre-validation of node
certificates by R. Additionally, after a handshake, data is
transferred with a sequence number for freshness. Depending
on the negotiated algorithms, in secure mode, a key set
identifier, a nonce, a MAC, and padding are also transferred,
and all or some of this data is ciphered, protecting against
eavesdropping and packet injection/duplication/alteration.

SNSR supports security protocols that satisfy these features.
There are different standards with recommendations on proto-
cols, schemes, components, and primitives. Security protocols
as TLS, DTLS, or IKE version 2, use the IEEE 1363-2000
standard and its revisions and extensions whereas, ZigBee
Smart Energy [21] is based on Standards for Efficient Cryptog-
raphy 1 (SEC 1) [49]. SNSR adopts the same mathematically
verified, flexible, and upgradeable protocol at both LL and TL.

C. NTDB Exchange
NTDB storage is centralized by BS, and exchanged with R.

With message GET_ND_REQ, see (2), and using the parameter
INITIAL (boolean), R can retrieve from BS the initial or
current version of the NTDB. Then, BS responds with message
GET_ND_RES, see (3). R can also propose a new version of
the NTDB to BS using message SET_ND_REQ, see (4). BS
can accept or reject the new NTDB version using parameter
ACCEPTED (boolean) in message SET_ND_RES, see (5).

D. Status Request
Status requests enable verifying the configuration of an

entity and its connections, which help to identify the cause
of anomalies. R sends a status request –STATUS_REQ see
(6)– to every entity it connects to. The entity responds with a
STATUS_RES message, see (7), which includes its: CFGV ,
configuration version; CRLV , CRL version; NA, network
address; and NBL, a list of NeighborData elements of the
authorized neighbors the entity currently communicates with.
STATUS_RES can be extended with other data of interest for
the problem, e.g. node battery level or link quality metrics.

E. Configuration Request
This request changes the dynamic configuration of a node,

using the content of NTDB as new configuration. Configu-
ration requests can modify: 1) only the CRL (CRLData in
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NTDB); 2) only the configuration version (NetworkData)
and node configuration (extracted from NodeData); and 3)
both of them. Also, the node configuration can be sent in
full or in differential modes –i.e. sending only the changes to
reduce data transfer. In total there are 5 types of CFG_REQ
messages, see (8), which include one mandatory field T , the
type of message, and the rest are optional: CRL, to add to the
existing CRL; CFGV , configuration version; NA, network
address; BS, BS data; NBL, list of authorized neighbors
and its communication parameters; and RD, routing data.
In differential configuration NBL is the list of the new
authorized neighbors and communication parameters, while
NO NBL is the list of the no longer authorized neighbors
and parameters. The same applies for RD and NO RD. After
receiving CFG_REQ, the node performs the changes and sends
back CFG_RES, see (9), with its new CRLV and CFGV .

F. Anomaly Detection

SNSR imposes a well-defined operation in which each
entity knows what the others can do. Any deviation that can
impact security and proper operation is considered an anomaly.
Two categories of anomalies have been identified. The first
anomalies refer to communications (connection, protocol, and
broadcasting errors) and are detected by all entities using the
same mechanisms. The second anomalies refer to observations
of R, such as duplicated identities or changes in node positions.
Table V shows the main types of anomalies considered. Once
detected, they are sent to BS for analysis with the management
rules shown in Table IV. The SNSR is flexible to incorporate
other anomaly detection modules, e.g., for Sybil attacks or
jamming, among others.

Each entity temporarily stores the following data from the
anomalies it has detected, see (10): OBS, the observer; ID,
a sequential unique identifier of the anomaly for the observer;
TY PE, the type of anomaly; OBJ , the entity causing the
anomaly; INFO, type-specific information; TS, a timestamp;
CFGV , the observer configuration version during detection;
and REPT , the times the anomaly has been observed. A
maximum number of anomalies are stored to prevent overflow
attacks. Nodes have limited storage capacity. If exceeded, age
or priority criteria are used to select which are stored.

TABLE V
MAIN GENERIC TYPES OF ANOMALIES CONSIDERED IN SNSR

Type of anomaly Description
CONN_ERROR_TO_INIT Expired maximum wait for the handshake without

receiving data from peer
CONN_ERROR_TO_HS Expired maximum wait for the handshake after re-

ceiving data from peer
CONN_ERROR_CERT Revoked or incorrect certificate
CONN_ERROR_HS Other errors during handshake
CONN_ERROR_TO_KEEP Exceeded maximum time without receiving data or

keepalive messages
CONN_ERROR_PEER Peer closes connection
CONN_ERROR_SHUTDOWN Management plane closes connection
NETWORK_E_BROADCAST Validation error in broadcast message
MGMT_PROTOCOL_ERROR Management protocol error
NAME_ERROR_DUP Duplicate identity
NODE_DISPLACEMENT Node displacement

G. Anomaly Reporting

The detected anomalies should be transmitted to BS with
low impact on network performance. R works as a store-and-
forward router: it receives anomalies from nodes and transmits
them –as well as its own anomalies– as soon as it is connected
to BS. Nodes report their temporarily stored anomalies to
BS or to R at predefined time intervals –or after another
interaction– minimizing the number of messages and using
minimum-hop paths, see an example in Figure 4. Anomaly
notification messages, see (11), include a list with as many as
possible anomalies sorted chronologically, see (10). Reliable
transport and fragmentation are avoided. The receiver sends an
ACK message, see (12), with the identifier of the last anomaly
received. After receiving the ACK, the sender removes the
acknowledged anomalies from its temporary anomaly list.

Fig. 4. Anomaly report example: node NA sends anomaly A directly to BS;
B is sent to BS using intermediate nodes (since NB has no direct connection
with BS or R); and NC sends C to R, which sends C and also D to BS.

H. Urgent CRL Update

BS can send CRL updates to each node (one by one)
using CFG_REQ messages. However, in critical cases (e.g.
robot theft), a mechanism in which BS can fastly send CRL
updates to all entities is interesting. In urgent CRL update, BS
triggers the flooding of a SET_CRL_BCAST message in NL.
Each entity, after authenticating the message, forwards it to
its neighbors except the sender –more than one transmission
in LL is often used to reduce loss probability, e.g. in [50].
Then, BS requests the status of each node and sends CFG_REQ
messages with the new CRL to non-updated nodes, if any.
Urgent CRL updates require secure TL communications with
BS. Hence, they are not available in security modes SEC_NO
and SEC_L. Although they consume high bandwidth and use
asymmetric cryptography, they are a suitable alternative to
one-by-one sending CFG_REQ messages for fastly reacting
to critical threats that occur occasionally.

The message employed, see (13), includes: CRL, list of
the sequence numbers of the certificates to be revoked (in
most cases the list includes only one); and SIGN , a digital
signature that secures the rest of the message and the source
address. Field AH includes a unique identifier of the flooding
transaction. Entities save the last valid identifier received to
prevent forwarding duplicated or old messages. Also, they
verify that the sender address is the BS address, and that
the digital signature has been made with the public key they
obtained in the last connection with BS. Thus, a compromised
node sending false messages will be easily detected.

Figure 5 shows a UML sequence diagram that summarizes
the operation of SNSR in a simple scenario with 2 nodes (N1
and N2). For clarity, the beacons and lower-level messages
are not shown, and the connections with R are established
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only once and remain uninterrupted along its trajectory. All
connection establishments in LL and TL are depicted except
the first robot-BS connection, which was performed in Initial.
The processes that are executed in parallel are shown within
parallel operators (par). Initially, R is in position 1⃝ and
is commanded to start Discovery. It performs the planned
trajectory transmitting beacons, computing node locations, and
collecting their status until it reaches position 2⃝. Then, R
sends the updated NTDB to BS, which performs Topology
Establishing and creates the new version of the NTDB. R
asks for the new NTDB and BS responses when NTDB is
ready. Next, R is commanded to start Configuration. R starts
transmitting the configuration to the nodes, which use it to
establish authorized connections. Finally, in Maintenance node
N1 has a fatal error. N2 detects it as an anomaly and reports
it to R, which forwards it to BS.

Fig. 5. Sequence diagram with SNSR operation.

VI. IMPLEMENTATION DETAILS

SNSR was implemented as a flexible and highly config-
urable architecture easily adaptable to a wide variety of sensor
networks. It only requires from the sensor network protocol
stack the following specific functionalities: a) transmission of
beacons in LL; b) security in TL and LL with handshakes
that support authentication with certificates or that can apply
security parameters negotiated in higher layers; c) a reliable
TL; and d) possibility of adding a management application
with access to the management plane in order to have control
of the layers in the communication plane.

SNSR validation was performed with a simple and sensor
network agnostic implementation that provided flexibility for
testing different configurations, algorithms, and protocols but
without reaching the low PHY and LL layers. The imple-
mented SNSR uses an OSI-based protocol stack developed
over an existing LL. The following LL were considered: a)
IEEE 802.3 (Ethernet) and the wireless protocols of IEEE
802.11 (Wi-Fi), and b) tunneled LL over UDP. On top of
LL, a LLAL (Link Layer Adaptation Layer), which supplies
homogeneous functionalities to higher layers by meeting the
above SNSR requirements, a NL, a TL, and an AL were added.
The detailed description of these layers is omitted for brevity.
NL uses a simple fixed 8-byte header with 16-bit addresses
and does not support fragmentation or source routing. Local
routing is static based on routing tables. In Topology Establish-
ing, the minimum-hop routes between any origin-destination
pair are computed. For robustness, several alternative routes
are selected for each pair. TL uses a variable header between
1 and 7 bytes and adopts the same handshake and connec-
tion maintenance procedures as LL. It uses message-oriented
connections with message segmentation and reassembly, and
the same connection simultaneously carries one reliable and
one unreliable data flow in each direction. The transport of
the reliable flow adapts typical functionalities of other reliable
protocols, e.g. TCP and QUIC [51]. The messages used in AL
use Protocol Buffers [52] encoding. We adopt DTLS 1.2 [53]
for secure connections. For maintainability, the same secure
protocol was used in LL and TL.

SNSR was programmed in C/C++ under Linux due to effi-
ciency and versatility. Two code libraries were used: protobuf
and wolfSSL [54] to implement DTLS and cryptographic func-
tions. The implementation was also virtualized in simulated
scenarios using NetEm [55] and WmediumD [56] to emulate
realistic communication channels. Robot navigation (e.g. plan-
ning and control) and node localization were implemented in
ROS (Robotics Operating System) [57], a widely-used flexible
open-source framework for robot software development.

VII. SNSR EVALUATION

A. Security Analysis

Table VI shows the security of SNSR to the most common
attacks, see e.g. [3], [4], [58], [59]. SNSR was analyzed
with SEC_LT or SEC_LTE security modes, which provide
encryption, authentication, and integrity protection in LL and
TL. Attacks that involve characteristics that SNSR acquires
from the adopted PHY and LL (e.g. jamming or LL collision
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TABLE VI
SECURITY ANALYSIS SUMMARY

Target Attack SNSR [21] [5] [34]
Network availability A1. Tampering: physical manipulation of nodes [3] ▷◁ × × ▷◁
in PHY A2. Node destruction: total physical damage [59] ▷◁ ▷◁ ▷◁ -
Network availability and A3. Service request power attack: prevention of sleep mode by sending many service requests [3] ✓ × ✓ -
service integrity in LL A4. Benign power attack: to compel victims to make power-intensive operations repeatedly [3] ✓ × ✓ -
Network availability and A5. Spoofed routing information: transmission of false, altered, or repeated routing information [58] ✓ × ✓ -
service integrity in NL A6. Routing table overflow: to announce non-existent routes to fill routing tables and prevent the addition of new ones [58] ✓ × ✓ -
and routing A7. Routing table/cache poisoning: modifying stored routes by sending route updates to other nodes [58] ✓ × ✓ -

A8. Black hole attack: to get the nodes to route their traffic through another node that discards it [58] ✓ × ✓ -
A9. Sink hole attack: to divert traffic to the sink or other nodes to a malicious node [58] ✓ × ✓ -
A10. Wormhole attack: to announce a tunnel between two nodes as the best route to a destination [58] ✓ × ✓ -
A11. Acknowledgment spoofing: sending of forged acknowledgments [58] ✓ × × -
A12. Rushing attack: to send/retransmit/alter packets quickly, getting them received before others [58] ✓ × × ✓
A13. Hello flooding: discovery message transmission to distant nodes to trigger failed attempts [3] ✓ × × ×
A14. Selective forwarding: forwarding some messages and discarding others in violation of the protocol [3] ▷◁ ▷◁ ▷◁ -
A15. Sybil: one node pretends to be many nodes [3] ▷◁ ▷◁ ▷◁ ▷◁
A16. Byzantine attack: coordination of several malicious nodes to perform other attacks in an amplified manner [58] ▷◁ × × -

Network availability and A17. TL flooding: establishing many connections to exhaust the memory of the nodes [3] ✓ ▷◁ ✓ -
service integrity in TL A18. TL desynchronization: forgery of control messages and sequence numbers to block connections [3] ✓ ✓ ✓ -
Privacy and secrecy A19. Eavesdropping: the capture of transmitted information in a passive way [3] ✓ ▷◁ ▷◁ ✓

A20. Man-in-the-middle (MITM): to relay and alter the communication of two peers who are unaware of this [59] ✓ ✓ × ✓
A21. Attacks on cryptography: attacks on encryption algorithms, hash functions, or key exchange protocols [59] ✓ ✓ ▷◁ ×
A22. Information disclosure: the sending of confidential data to unauthorized parties [58] ▷◁ ▷◁ ▷◁ ▷◁
A23. Traffic analysis: to analyze the traffic to infer its topology, critical nodes, and relationships, among others [3] ▷◁ × ▷◁ ▷◁

Data integrity A24. Packet injection: false packets injection into the network [3] ✓ ▷◁ ✓ ×
A25. Packet duplication: forwarding of previously captured packets [3] ✓ ✓ ✓ ✓
A26. Packet alteration: packet interception, modification, and resending [3] ▷◁ ▷◁ ▷◁ ▷◁
A27. Node replication: to capture a node and copy all its data to deploy replicas [3] ▷◁ ▷◁ ▷◁ ×

Legend: ✓attack-resistant, ▷◁ largely reduces the effects, × non-resistant, - not considered

[3]) are not analyzed but, as described in Section V-F, they
will be detected if they cause communication interruption. In
addition, the security of SNSR is compared to that of: 1)
ZigBee [50] using the ZigBee Smart Energy profile (version
1.2a) [21], used in installations that require a high level of
security; 2) the INSENS [5] protocol using one BS, which
covers many aspects of WSN security, allowing the analysis of
all the considered attacks; and 3) work [34], a key management
scheme using a UAV. ZigBee Smart Energy supports many
configurations. We focus on the one most like SNSR: the use
of centralized security with a trust center (TC) in a mesh
network without periodic beacons using certificates signed
by a CA and link keys preconfigured with the TC. For its
analysis, in addition to the official documentation, previous
studies have been used [60]–[62]. Work [34] does not consider
many attacks, and the comparison is not fair. The same would
happen with other related works focused on specific security
aspects.

SNSR includes proactive and reactive security measures.
First, R communicates directly with nodes to transmit critical
data (e.g. configuration and routes), to obtain direct observa-
tions (e.g. identification, location, and status), and to collect
the detected anomalies without intermediaries. SNSR is robust
to node replication (A27) as nodes are localized and identified
by R. If two replicas are close, the attack will only cause
local communication problems. Attacks A14 and A26 require
a previous attack to take control of a node. R communication
with nodes or BS is direct and hence, immune to them. Node-
BS or inter-node communications could be affected. Although
SNSR does not contain specific mechanisms to prevent them,
their effects are limited to the messages forwarded by the
compromised nodes. Other security modules could be added to
detect these attacks, see e.g. [63]. In case of A26, the packets
will be discarded due to decryption error. It is not possible to

add new nodes without prior authorization. A Sybil A15 attack
would be difficult to carry out: it would require the keys and
certificates of several nodes that are authorized to occupy the
same position. Moreover, its effects would be local.

Nodes do not have decision capability and only commu-
nicate with authorized entities. The implemented SNSR uses
centrally-computed routes, being immune to A5, A6, A7, A8,
A9, and A10 attacks. Also, SNSR is naturally immune to A3
attacks: first, entities discard messages from non-authorized
entities; and second, failed attempts of connection with R
are reported. Only pre-authorized incoming connections in
TL are accepted, which naturally prevents A17 attacks. SNSR
naturally prevents A16 as the operation of a node cannot be
influenced by another node.

SNRS does not use shared keys. In A1 attacks the most
sensitive retrieved data are the entity keys, involving only local
effects. Besides, nodes do not store data of the rest of the
network, and the robot does not store private keys of other
entities. A malicious node performing an A22 attack would
capture only the node keys and its accessible data.

Each entity detects anomalies and reports them to BS.
Although node destruction (A2) attacks cannot be avoided,
they are rapidly detected. Besides, in the implemented SNSR
each node is configured with alternative routes, which largely
reduces the effect of these attacks on routing. Also, A4 attacks
causing repeated connections/disconnections or sending incor-
rect broadcast messages are easily detected. A12 and A13 are
usually classified as NL attacks, but can also be performed in
other layers. The NL of the implemented SNSR does not offer
services that can be attacked in these ways. Also, in LL a fake
robot performing these attacks would cause nodes responding
to fake beacons (A13) or connecting to a fake robot (A12).
These unsuccessful connection establishment attempts will be
reported as anomalies, and will not avoid connection with the
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real robot.
SNSR is flexible and upgradable with respect to the cryp-

tographic techniques in LL and TL. Encryption prevents A19
attacks. Authentication and CRL provides robustness to A20
attacks. Also, message integrity and authentication in LL and
TL prevents A11, A18, A24, A25, and A26 attacks in these
layers. Acknowledgements are not used in NL, preventing A11
attacks in this layer. Packet duplication (A25) are prevented
using sequence numbers. Finally, SNSR is not limited to
specific cryptographic techniques. They can be updated in the
event of a security breach, preventing A21 attacks.

Performing complete A23 attacks externally would require
capturing all the network traffic. With an infiltrated node, only
the source and destination addresses of the packets passing
through it could be analyzed.

SNSR is resistant to many different attacks, and the few
attacks that it is not immune to have limited/local effects and
require a previous attack to obtain the keys of the compromised
nodes and to replace one or more nodes. Moreover, SNSR
was submitted to a Red Team analysis performed by network
security experts. It was insensitive to false beacon attacks, BS
DoS attacks, and robot LL exhaustion. It was very slightly
affected by node replication and node destruction: both were
detected as anomalies and in the first case, the replicated
nodes were immediately revoked with no other degradation.
During jamming attacks, communication was interrupted but
the anomaly was immediately detected, and when jamming
ended, SNSR continued to operate normally.

B. Performance Evaluation and Validation
SNSR has been extensively experimented in different sce-

narios using different types of robots. Nodes were imple-
mented with Raspberry Pi 1 Model B equipped with WIFI
dongles and, BS, with a laptop with a i7-6500U CPU with
2 cores, 4 GB RAM and 30 GB SSD HD. Nodes, R and
BS are equipped with Ultra Wide Band (UWB) devices. R
localizes the nodes and BS integrating UWB measurements
using Particle Filters [64], which provided sufficiently low
localization error indoors and outdoors. SNSR was con-
figured with SEC_LTE. The DTLS cipher suite used was
TLS_ECDHE_ECDSA_WITH_AES_128_GCM_SHA256. It
uses ECC and AES, which is implemented in hardware in
many platforms. Curve prime256v1 was used in ECC (256
bits keys). Secure hash algorithm SHA-256 is used for MAC
generation. Nodes sent monitoring measurements every 10 s.
The maximum robot beacon transmission interval was 1 s. The
packet hop limit was 18. Wi-Fi at 54 Mbps in ad-hoc mode
was used as LL. LL MTU was fixed to 1232 bytes.

A series of 100 experiments was performed. The nodes were
set in a 3x8 rectangular grid, with grid separation of 3 m, and
BS was located at (0,0). In these experiments the robot was a
Pioneer 3AT ground robot equipped with another Raspberry
Pi 1 Model B. It followed pre-programmed trajectories at a
speed of 0.6 m/s and included LIDAR self-localization using
the AMCL algorithm [65]. Below, we present one experiment.
Similar results were obtained in all the experiments performed.

First, Discovery was triggered. R took 75.23 s to automati-
cally follow the trajectory of 43.33 m shown in Figure 6-top.

Fig. 6. Top) Discovered nodes and topology. Center) Time between reception
of configuration request and the first BS measurement ACK for each node.
Bottom) Received and transmitted bytes in LL until each node received the
first measurement ACK from BS.

R discovered the nodes and located them with an average error
of 0.83 m, see Figure 6-top. In that setting the measured node
communication range was 3.5 m. We adopt a conservative
node neighbor criterion distance of r=5 m, such that most
actual neighbor nodes were assigned as neighbors even with
the node localization error. The resulting neighbor connectivity
is shown with lines (solid and dashed) in Figure 6-top. This
criterion wrongly assigned as neighbors some nodes which
distance was actually higher than the communication range.
These errors will be later detected as anomalies in Mainte-
nance, and corrected. Next, R computed the routes and created
the new NTDB in 1.68 ms, and sent it to BS. In average nodes
required 4.09 hops to reach BS.

In Configuration R followed the same trajectory. Each
node measured the time between it received the configuration
request and it received the first measurement ACK from BS
–for short, configuration time. Figure 6-center shows the con-
figuration times in the 100 performed experiments (percentile
25, 75, and median). The average times were between 1.5 and
3.8 s, with an average of 2.96 s. At the robot initial location,
the robot configured several nodes simultaneously, causing col-
lisions and requiring several connection establishment retries,
resulting in larger configuration times. In all the performed
experiments the configuration times were always below 10 s.
The transmitted and received bytes in LL by each node until
they receive the first measurement ACK is shown in Figure
6-bottom. In average each node received 12.50 Kbytes and
transmitted, 10.25 Kbytes. Traffic is higher for nodes near BS
due to packet forwarding. In all the performed experiments LL
traffic was never above 46 Kbytes. Secure handshaking was
responsible for a high part of the traffic, each handshake in
nodes took in average 0.97 s and required ∼1,100 bytes in each
direction (60% of them due to certificates). A node performs
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Fig. 7. Node destruction effects before (left) and after (right) reconfiguration.

handshakes only with R, BS and, its neighbors, involving low
configuration times and traffic even in large networks.

Next, Maintenance was performed. Each node tried to con-
nect to BS, R, and its authorized neighbors, but several inter-
node connections could not be established (shown as dashed
lines in Figure 6-top). They were detected as anomalies, and
it was decided to perform a new Discovery. In the next
Topology Establishing stage, the connectivity anomalies and
node status were used to correct the topology. The updated
topology, shown with solid lines in Figure 6-top, contained
no errors. In the next stages, routes were recomputed and
nodes, reconfigured, and no connection errors were detected.
A non-restrictive criterion was used to assign neighbors to
exploit SNSR self-correction. Many security methods obtain
topological information through node interaction, which is
prone to attacks. SNSR uses a simple criterion based on
node location (avoiding node interaction and hence, improving
security in network set-up stages), and later corrects topology
errors and self-adapts, using the robot.

For further validation we performed virtualized experiments
where SNSR was submitted to massive node destruction
attacks: networks with 200 nodes with different topologies
in which different numbers of randomly selected nodes were
simultaneously destroyed. A total of 50 experiments of each
case and topology were performed. Figure 7-left shows the
total number of blocked nodes –disconnected from BS– in
each topology, some of them were physically disconnected and
in others, the routes to BS were damaged. All blocked nodes
were detected as anomalies. Next, SNSR performed Discovery,
Topology Establishing, and Configuration to provide the nodes
with new routing information. Figure 7-right shows the total
number of blocked nodes after reconfiguration. Only the
physically-blocked nodes kept disconnected. SNSR largely
reduced the impact of node destruction in all scenarios even in
the unlikely case of having 50 nodes simultaneously destroyed.

SNSR was tested in realistic applications, such as bridge
and cement kiln monitoring, see Figure 1. The used nodes,
BS and SNSR configuration were the same as in the above
experiments. R in the bridge scenario was based on a DJI
Flamewheel F450 platform endowed with a PixRacer autopilot
and a low-cost Khadas VIM3 for processing and logging. R
used in the cement kiln was a custom-design hexarotor with a
3D-LiDAR for GNSS-free self-localization and an Intel NUC
computer. SNSR was validated in more than 20 experiments in
each scenario. The data from one experiment in each scenario
is provided as additional material [15].

Fig. 8. Average node LL traffic during configuration in scenarios with 50,
100, 200 and 500 nodes.

C. Sensitivity Analysis

Next, the sensitivity to topology and network size is an-
alyzed using the SNSR virtualization. First, 100 different
scenarios were designed in an 210 m2 area with 48 nodes
and one BS, all at random locations but forcing network con-
nectivity. R followed a zig-zag pattern trajectory that ensured
communication with BS and every node along its trajectory.
The resulting mean node configuration times were between
2.3 and 9.1 s depending on the scenario, showing moderate
sensitivity to topology. The cases with longer configuration
times occurred when nodes distant from BS were configured
before existing a path of already configured nodes to reach
it. The LL traffic also showed low topology dependence. The
cases with higher traffic were caused by temporary loops in
the configuration transitory period due to the node config-
uration order. In average each node received 19,730 bytes
and transmitted 16,190 bytes. In the scalability analysis, four
scenarios were designed with 50, 100, 200, and 500 nodes
distributed in hexagonal grid with constant inter-node distance
and the BS located at the center of the setting. The mean
number of neighbors in each scenario were 4.88, 5.18, 5.43,
and 5.64, respectively. The mean number of hops to BS were
2.86, 4.02, 5.63, and 8.83. The resulting LL traffic during
configuration averaging 100 experiments for each scenario is
shown in Figure 8, evidencing good scalability. This slight
traffic increment is caused by the higher number of neighbors
(more handshakes) and hops to BS (more packet forwarding).

VIII. COMPARISON WITH RELATED WORKS

It is not easy to find works to compare SNSR. SNSR
considers the overall security of WSN (from the network set-
up), whereas most of the works focus on specific security
aspects. SNSR uses a robot in WSN security, which has
only been considered theoretically in few papers. Table I
supplies a first comparison to the papers covered in the related
work, including those using robots. Additionally, Table VI
includes a detailed comparison to [5], [21], and [34] against
various attacks, concluding that SNSR resists more attacks.
This section complements the above comparisons.

The application of PKC and ECC in WSN has already been
performed by [16]–[21], and there are different approaches to
authenticate public keys [10], [20], [22], [23]. Our architecture
could work with any of them, but we propose PKI with session
resumption and certificate pre-validation for efficiency. Al-
though SNSR requires an authenticated key exchange protocol,
it is flexible and does not impose a specific one. In SNSR
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implementation, we prefer to use the standard and well-proven
DTLS protocol.

In SNSR, all entities detect anomalies (unlike [25] and [26]),
according to their role, in line with [27], but in a much simpler
way: reporting communication failures or behaviors that do not
follow the specification (without added computational load)
and taking advantage of the direct observation of the robot.
Anomaly detection in nodes mainly involves transmission
costs but provides faster attack detection and avoids the
continuous use of the robot. Anomaly collection and analysis
are centralized in the BS (unlike [28] and [8]) to free resources
on the nodes. The simplification provided by SNSR makes it
possible to implement a specification-based IDS and does not
exclude the use of other IDSs such as [38] and [9] or detectors
for specific attacks using the provided infrastructure. Unlike
many IDSs that only propose detection algorithms [24], [28],
[29], SNSR also has mitigation mechanisms that can change
the network during attacks (e.g., urgent CRL update and direct
configuration). Only [25] and [8] propose other mitigation
mechanisms. The rest simply warn the operator (SNSR does
so in some cases, not always) or do not consider mitigation.

SNSR significantly reduces the tasks performed by the
nodes, the weakest component in WSN security, with the com-
putational and energy savings that this entails. For example,
nodes do not perform neighbor or BS discovery, a common
task in other works [5], [21], [34]. Additionally, SNSR avoids
requiring dynamic routing protocols, further reducing node
influence. It can support various routing mechanisms. It could
also use static routing during network creation and later change
to a distinct routing such as SDN.

Some works assume that the security requirement during
the initial network set-up may be lower than during operation
because there is more supervision. For example, in [33] at the
beginning, all nodes share the same initial key. However, [5]
and SNSR consider in their design that the nodes could have
preinstalled malware or there could always be hidden sniffers.

Regarding WSN security with robots, work [31] presents
a method for CH election assuming that the malicious nodes
report higher energy consumption and cannot deceive the UAV.
Work [32] requires the robot to have the same sensing capabil-
ities as the sensor nodes to determine node trustworthiness. In
these works security is a secondary objective and focus only on
particular problems. Work [33] distributes symmetric keys to a
group of nodes, but an attacker could listen to the transmitted
keys if he knows a global key preinstalled on all nodes. Also,
the robot is authenticated using hash chain variants, which are
susceptible to rushing or packet duplication attacks. Work [34]
proposes a key agreement protocol using PKC with public keys
obtained from a UAV to avoid storing them in nodes. Neither
[33] nor [34] considers the capture of the UAV. This would
be fatal to security as the UAV has irreplaceable information,
which is also preconfigured in the nodes. In SNSR, the robot
does not distribute keys. It pre-validates public keys, so nodes
need less effort to detect incorrect keys. In addition, the capture
of a robot is not critical since it is possible to revoke the
certificate of the captured robot and use another robot with
different certificate and keys.

IX. CONCLUSIONS

This paper proposes SNSR, a novel, open, and flexible
security architecture that exploits robot-sensor network coop-
eration to achieve high security levels without using complex
mechanisms. Its operation is structured in stages organized
in a feedback approach, enabling repeating them to adapt to
network changes, attacks, or correct errors. SNSR benefits
from the actuation capability of the robot, which locates
and authenticates nodes, interacts with nodes directly with-
out intermediaries to send them configurations and receive
status and anomaly reports, and can also be commanded to
obtain direct observations to confirm/discard detected anoma-
lies. These uses of the robot provide SNSR with enhanced
attack detection and mitigation capabilities (see Appendix),
and improves prevention by replacing tasks that in traditional
architectures are prone to attacks or require preset information.
It has been extensively experimented in indoor and outdoor
scenarios evidencing its security, efficiency, and scalability.

The extension of SNSR with several cooperating robots and
base stations (for larger scenarios) is object of current research.

APPENDIX

Next, the security advantages of SNSR are analyzed. Con-
sider a network of N static nodes with a security architecture
in which the anomalies detected by all entities are collected
at BS, where they are analyzed to detect attacks and decide
the best actions/reconfigurations to mitigate their effects. Let
S be the set of sensor nodes in the network, and S1, the nodes
that are directly connected to BS. The sensor network status
at time k is represented by state vector xk, and the sensor
network performance, by J(xk). Vector yj,k represents one
anomaly detected/observed by node j at time k. The anomaly
observation model is yj,k=gj,k(xk). Observation is performed
under Gaussian noise, i.e. anomalies are modelled as Gaussian
multivariate random variables. The effect of the potential at-
tacks when sending yj,k to BS are modeled by function hyj,k.
BS analyzes {hyj,k(yj,k)}, the set of all received anomalies; if
an attack is detected, it selects ui,k, the actions/configurations
for every node i, that maximize the network performance
improvement after the attack, ui,k = max

ui,k

(J(xk+1)−J(xk)).

hui,k models the effect of attacks when sending ui,k to node i.
When the nodes execute their actions, their behaviour change:
the state at k+1 is xk+1. The effect of attacks on anomaly
collection is as follows. Some attacks, e.g., malicious nodes,
can send fake anomalies. Others, e.g., DoS, can reduce the rate
of successful anomaly transmission. As described in Section
V-B, connections between entities are secure: the effects of
packet injection/alteration/replication attacks are negligible.
Similarly to [66], we model the data received at BS as:

ŷj,k = hyj,k(yj,k) = γj,k(yj,k + ȳj,k), (14)
where γj,k takes value on 1 or 0, and ȳj,k is a fake anomaly
from a malicious node. Actions are sent by BS using a secure
connection: they are authenticated and are robust to malicious
nodes sending fake actions. The data received by node i is:

ûi,k = hui,k(ui,k) = δi,kui,k, (15)
where δi,k takes value on 1 or 0.
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The above is used to compare SNSR to a traditional centra-
lized architecture with no robot (TC-WSN). Both use the same
protocols and mechanisms. In both, BS collects directly the
anomalies from, and delivers the actions to, every node j∈S1.
The only difference is that SNSR uses R to collect the anoma-
lies from (and deliver the actions to) every node j∈S \ S1.

Proposition 1. SNSR collects more attack information than
TC-WSN

Proof. We adopt the widely-used Fisher information of ran-
dom variables to measure the information of anomalies [67].
Using Eq. (14), the information received at BS from yj,k is
(pyj,kIj,k), where Ij,k is the Fisher information of (yj,k+ȳj,k),
and pyj,k is the probability that (yj,k+ȳj,k) is received at BS.
Anomalies from any node j∈S1 are sent directly to BS. As-
suming that all single-hop transmissions have the same success
ratio p∈[0, 1], we have pyj,k=p ∀j∈S1. In TC-WSN, collecting
at BS anomalies from node j∈S \ S1 through the network
requires nyj ≥2 transmissions: the success ratio is pyj,k=pnyj .
yB,k is an anomaly detected by BS. Its Fisher information is
I(yB,k). The Fisher information is additive [67]. In TC-WSN,
the information of all the anomalies collected at BS is:
Ik =

∑
yB,k

I(yB,k)+
∑
j∈S1

∑
yj,k

pIj,k+
∑

j∈S\S1

∑
yj,k

pnyjIj,k (16)

where
∑

yB,k
and

∑
yj,k

refer respectively to all the anomalies
detected by BS and by node j.

In SNSR, yR,k is one anomaly detected by R. Its Fisher
information is I(yR,k). Collecting at BS anomalies from node
j∈S \S1 using R requires two transmissions. Hence, in SNSR
the information of all the anomalies collected at BS is:
I ′k =

∑
yR,k

I(yR,k) +
∑
yB,k

I(yB,k) +
∑
j∈S1

∑
yj,k

pIj,k +
∑

j∈S\S1

∑
yj,k

p2Ij,k (17)

The Fisher information is non negative [67]. Since nyj≥2,
it is guaranteed that I ′k>Ik for any network topology.

Proposition 2. SNSR delivers actions/reconfigurations with
non-lower success probability than TC-WSN

Proof. In TC-WSN, sending ui,k to any node i∈S\S1 requires
nui ≥2 transmissions: the successful transmission ratio is
pui=pnui . In SNSR, actions ui,k ∀i ∈ S \S1 are sent using R,
hence the success ratio is pu′

i=p
2. Also, in SNSR and in TC-

WSN, BS transmits actions to any node i∈S1 directly and
hence with successful transmission ratios pu′

i=pui=p. Since
nui≥2, it is guaranteed that pu′

i ≥ pui ∀i and hence, δ′i,k∀i
takes value on 1 with a frequency non-lower than δi,k.

Proposition 3. SNSR recovers from an attack faster than TC-
WSN

Proof. The network performance at k+1 can be obtained from
J(xk) using the actions ui,k received by nodes at time k as:

J(xk+1) ≃ J(xk) +
∑
i∈S

∂J(xk)

∂ui,k
δi,kui,k, (18)

where ∂J(xk)
∂ui,k

ui,k represents the performance change caused
by action ui,k, and δi,k was defined in (15). The performance
increments in SNSR and TC-WSN are respectively:

∆J ′ =
∑
i∈S

δ′i,k
∂J(xk)

∂u′
i,k

u′
i,k, ∆J =

∑
i∈S

δi,k
∂J(xk)

∂ui,k
ui,k (19)

As stated before, the actions to recover from an attack are
selected to maximize the network performance improvement.
From Prop. (1), SNSR collects more attack information, and
hence, will tend to select actions that will cause larger network
performance improvements, i.e. ∂J(xk)

∂u′
i,k

u′
i,k > ∂J(xk)

∂ui,k
ui,k.

Additionally, from Prop. (2), δ′i,k takes value on 1 with a
frequency non-lower than δi,k. Hence, it is guaranteed that
∆J ′>∆J : after an attack the increment in network perfor-
mance is higher in SNSR than in TC-WSN.
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