
Towards Dependable Business Processes with Fault-Tolerance Approach

Angel Jesus Varela-Vaca, Rafael M. Gasca, Diana Borrego, Sergio Pozo

Departamento de Lenguajes y Sistemas Informáticos,
ETS. Ingeneirı́a Informática, Avd. Reina Mercedes S/N,

Universidad de Sevilla,
Sevilla, Spain

{ajvarela, gasca, dianabn, sergiopozo}@us.es

Abstract—The management and automation of business
processes have become an essential tasks within IT organiza-
tions. Companies could deploy business process management
systems to automatize their business processes. BPMS needs
to ensure that those are as dependable as possible. Fault
tolerance techniques provide mechanisms to decrease the risk
of possible faults in systems. In this paper, a framework for
developing business processes with fault tolerance capabilities
is provided. The framework presents different solutions in
the fault tolerance scope. The solutions have been developed
using a practical example and some results have been obtained,
compared and discussed.

Keywords-business process; fault-tolerance; dependability;
reliability

I. INTRODUCTION

In the last years, a new paradigm has emerged in the scope

of business IT, Business Process Management (BPM). BPM

is defined as a set of concepts, methods and techniques to

support the modeling, design, administration, configuration,

enactment and analysis of business processes [1]. A business

process model is a set of activities that are executed in coor-

dination within an organizational and technical environment

to realize a set of business goals.

BPM has turned into an essential tool for organizations.

BPM as methodology pursues to improve the efficiency

through systematic management of business processes that

should be modeled, automatized, integrated, monitored and

optimized in a continue form. One of the most important

goals of BPM is the better understanding of the operations a

company performs and the relationships among these opera-

tions. BPM also aims at narrowing the gap between business

processes that a company performs and the implementation

of these processes in Business Process Management System

(BPMS). BPMS is a set of software tools to manage business

processes.

Companies could deploy BPMS to automatize their busi-

ness process, but they have to ensure that those are as

dependable as possible. Take into account the dependable

process operation is a significant requirement for many types

of companies: electronic banking and commerce, automated

manufacturing, etc. The cost and consequences of failures of

these systems range from mildly annoying to catastrophic,

with serious injury occurring or lives lost, systems destroyed,

security breaches, and so on.

BPM paradigm follows a life cycle which consists in

several stages [2], shown in Figure 1. During the stages,

different kinds of faults can be introduced:

• In the design stage, business process models can present

some design faults (such as deadlocks, live locks or

starvations). Some systematic approaches have been

provided design guidelines for designers that allow

them to correct and improve their designed processes.

Design problems are not taken into account in this

paper because it is a problem that has already been

discussed [3] [4].

• In the enactment stage, output process faults (verifi-

cation) can be generated for business processes when

a business process obtains an unexpected output, un-

expected message, unexpected events or also an un-

expected performance. Executable business processes

usually use external services that are not under our

jurisdiction. Thus, it is not possible to ensure that

change of functionality appears during the business

process life cycle.

Therefore, the inclusion of measures that allow to reduce

the risk of fault and increase the dependability of business

processes from design stages it will be necessary. The

approach proposes to achieve more dependable business

processes based on fault tolerance. Some proposals have

used the fault tolerance ideas in grid computing, composition

of applications or service-oriented architectures, [5] [6] [7]

[8]. In these works, different fault tolerance approaches have

been applied: check-point view [5], recovery techniques [6],

and other sophisticated techniques such as dynamic binding

[7], and self-reconfiguration of systems [8]. Our proposal is

based on the classical fault tolerence ideas of replication, but

introducing other necessary elements like dynamic binding,

and providing techniques of diversity in the software fault

tolerance scope.

This paper is structured as follows: Section II introduces

some concepts of BPM and fault tolerance; Section III

presents a framework for dependable business processes

using fault-tolerant techniques; Section IV a practical exam-

2010 Third International Conference on Dependability

978-0-7695-4090-0/10 $26.00 © 2010 IEEE

DOI 10.1109/DEPEND.2010.24

104

ple is developed; Section V shows experimental results that

are discussed; and, in the last section, different conclusions

and future work are provided.

II. BUSINESS PROCESS MANAGEMENT SYSTEM AND

FAULT TOLERANCE

In order to understand BPM(S), it is necessary to show the

typical business process life cycle [2], shown in Figure 1.

Life cycle consists in different stages:

1) Process design: business process models are defined.

2) System configuration: a BPMS is chosen and confi-

gured.

3) Process enactment: the processes are deployed in a

BPMS.

4) Diagnosis: techniques are applied to identify and

isolate faults in business processes. Most diagnosis

techniques applied are focused on identifying design

faults.

Figure 1. Business process life cycle.

In this paper, only two levels of BPM are considered [1]:

• Operational business processes are described with busi-

ness process models where the activities and their rela-

tionships are specified, but implementation aspects are

not taken into account. Operational processes are the

basis for developing implemented business processes.

• Implemented business processes contain information

about the execution of the activities and the technical

and organizational environment where they will be

deployed and executed.

Implemented business processes use external services that

are not under our jurisdiction. This means that it is not

possible to ensure that, during BPM life cycle, the services

will not change in functionality or that they will have faults

or not suffer attacks, etc.

A failure is an event that occurs when the delivered service

deviates from correct behaviour. An error is the part of the

system state that may cause a subsequent failure. A fault is

identified as the hypothesized cause of an error, sometimes

called ”bugs”. Faults can occur due to malfunction or design

errors of software or hardware [9].

Fault diagnosis permits to determine why a business

process correctly designed does not work as it is expected

[10]. The diagnosis aims to identify and isolate the reason

of an unexpected behavior, or in other words, to identify the

parts which fail in a business process. Although diagnosis

is used in this work to isolate the faulty services, this topic

is not the central scope of this paper.

The proposal is focused on achieving dependable busi-

ness processes but means to achieve dependability [9]. The

meaning to achieve dependability properties falls into major

groups: fault tolerance, fault avoidance or prevention, fault

removal, fault forecasting.

By definition, fault tolerance [9] is a mechanism used to

guarantee service complying with the specification in spite

of faults. Fault-tolerance techniques are a manner to reduce

the risks of faults. Fault-tolerance frameworks are based on

replication of components. The replication concept aims the

recovery of services by replicating each of its functionality in

some replicas. Typical solutions in replication are considered

as:

• Passive replication [11]: the client only interact with

one replica (primary), it handles the client request and

sends backs response. The primary also issues messages

to the backup replicas (other replicas) in order to update

their state.

• Active replication [11]: all replicas play the same role.

All of them receive each request, handle it the request,

and send back the response to the client. There exist

other solutions based on active replication [12].

At first time, active replication provides generally faster

response time than passive replication. However, in active

replication all replicas should to process the requests, so

it needs more system resources than passive replication.

Moreover, the nested redundant replicas could arise an

invocation problem while using active replication, requiring

the replicas to be deterministic. The passive replication does

not require that determinism, and for this reason it is more

flexible.

Increasing the dependability of software presents some

unique challenges when it is compared to traditional hard-

ware systems [13]. Hardware faults are mainly physical

ones, which can be characterized and predicted over time.

Software has only logical faults which are difficult to vi-

sualize, classify, detect, and correct. Changes in operational

usage or incorrect modifications may introduce new faults.

To protect against these faults, simply to add redundancy

is not enough, as it is typically done for hardware faults,

because doing so will simply duplicate the problem.

III. FAULT TOLERANCE FRAMEWORK

In the previous section, the basic ideas of business process

life cycle were introduced and the main stages to manage

business processes were shown. The proposed framework is

based on the ideas of BPM life cycle, and its structured is

depicted in Figure 2.

The main characteristic is the use of fault tolerance

techniques to mitigate the risk of possible process faults.

In the next subsections the different parts and details of the

framework are introduced and discussed.

105

In the proposal it is necessary to do some assumptions

before continuing:

1) A business process model has a single start event,

a single end condition and every tasks contribute to

finish the process in a correct form.

2) There not exist design faults (deadlocks, live locks,

starvations, etcetera).

3) Operational business processes can not suffer Byzan-

tine faults (arbitrary faults).

4) Operational business processes are stateless.

Figure 2. General view of the framework.

Therefore, the main problems to discuss in this paper

are to diagnose and mitigate incorrect outputs/results and

events in business processes. In the next sub-sections every

framework layer is going to be described.

A. Process Design

Our approach is focused around three kinds of models:

• Business rule model: a business rule is a statement that

defines some aspects of the business processes that are

not possible to express in the model [14]. These rules

can be formalized as ”if-then” statements for selected

Business Rule Management systems (BRMS) or use

natural language or formal methods. BRMS is a soft-

ware system used to define, deploy, execute, monitor

and maintain the variety and complexity of decision

logic that is used by operational systems within an

organization. Business rules will act as an ”oracle”.

That is, business rules indicate the correctness of the

outputs from the business processes.

• Business process model describes a business process

(BP). BPs are usually defined with graphical languages

(simply diagrams) but nowadays it is necessary to

narrow the gap between business stakeholders (design-

ers, annalists, developers, etc). Operational business

processes usually are represented in Business Process

Management Notation (BPMN) [15]. BPMN contains

different elements such as activities, data objects,

gateways, etc. Business Process Execution Language

(BPEL) is a de facto standard language to implement

service-based business processes and lots of commer-

cial tools support it. Although BPMN is a standard

to design process models, they can be automatically

translated into BPEL [16] [17], and some commercial

BPMS makes translations from BPMN diagrams to

BPEL processes. In the proposal, BPEL has been

selected to represent the operational processes.

• Constraint model describes the behavior of the business

process model using constraints. The constraint model

is necessary for the diagnosis stage where Constraint

Satisfaction Problems (CSP) are used. CSPs will be

described in Section III-C. Constraint model can be

constructed off-line or on-the-fly. Process constraint

models can be built online because logs can be cap-

tured where information of inputs, outputs and service

constraint model can be given.

B. System Configuration

In this layer, different technologies which are used to

implement and deploy models are introduced. The main

advantages to design business processes with BPEL are:

BPEL has necessary elements to implement fault tolerant

mechanisms; it is a service-based process language; some

of the distinguished commercial tools of BPMS (Intalio,

Enterprise Architect, Borland Together, Oracle BPMS, etc.)

and other non-commercial (Netbeans, Eclipse BPEL, jBPM,

etc.) support BPEL. Therefore, BPEL processes are going to

be used for the proposal. A BPEL environment is necessary

to implement and deploy operational business process. In

this proposal, NetBeans together with GlassFishESB have

been selected. NetBeans provides an integrated design envi-

ronment to develop graphically business processes defined

in BPEL. GlassFishESB is an application server with several

components to support functions of Enterprise Service Bus

(ESB) [18]; it also has a runtime service to execute BPEL

processes.

For business rules, there is not an accepted standard for

business rules systems. For this reason, in this proposal,

WebSphere Ilog JRules has been selected.

For diagnosis, any CSP Solver could be used. In this

case, ChocoSolver has been selected. The model has been

implemented using the Choco constraint programming API,

although the model could be implemented standalone from

other CSP Solver tools (for instance JACoP) and used as

service.

C. Diagnosis

In the diagnosis stage, model-based diagnosis is applied.

The diagnosis will only be invoked when a fault in the

business processes outputs has been detected. In order to

diagnose, Constraint Satisfaction Problems (CSP) techniques

have been applied. CSP is an extended form to solve

problems [19] [20]. The constraint model designed, in the

design stage, is a transformation of the business process to

106

Constraint Optimization Problem (COP). This model can be

deployed in a CSP Solver tool, for instance ChocoSolver,

and the model together with the obtained outputs are used

to identify and isolate possible behavioral faults in the

components.

D. Fault Tolerance Mechanisms

On the one hand, our proposal adopts some replication

solutions to obtain fault tolerance in BPEL processes. On the

other hand, software fault tolerance techniques are provided,

introducing the concept of diversity. Diversity means to

provide identical services but with separating design from

implementation. The techniques used in the framework are

described as follows:

1) Without fault tolerance
BPEL processes are defined as composition of ser-

vices. Therefore, the web services (external or inter-

nal) are linked at design time. That is, if a fault output

or event occurs (supposing not design errors within

processes) this fault is located in the service side, so

it is not possible to replace the faulty service at run-

time. It is only possible at design time.

The faults only will be solved stopping every business

processes instances. After that, the faulty service has

to be located (diagnosis), eliminated and replaced for

another correct service. Therefore, it is necessary to

introduce mechanisms to mitigate this effect by means

of fault tolerance techniques.

2) Primary/Backup approaches
This solution applies the concept of redundancy, in the

sense of replication of services. This approximation

has a primary service as principal and one or more

replicas as backups. In case of fault, it is possible to

use the backup services. The adopted solution in the

proposal is based on dynamic binding ideas [21] [22].

Dynamic binding is a technique that allows to link

services at run-time.

At first approximation, a binder component has been

introduced between the BPEL processes and the ser-

vices acting as proxies, Figure 3. The binder compo-

nent is not developed as external program or external

monitor, but as another process. The binder component

may decide at run-time what services to invoke: if the

original service or the replicas (backups). The solution

is fault tolerant because, in case of detecting a faulty

service, every faulty service invocations have to be

replaced for a backup service invocation.

This is a good solution, but presents some deficiencies

such as an unique point of fault has been included

(binder), and the complexity of the binder can intro-

duce a very high overhead in the performance. In order

to solve the first one, the replication of binder can

be applied. That is, replicating the binder component

(one primary and backups replicas). In case of fault,

Figure 3. Communication process-service with binder.

in the binder component, the backup replica takes

the control of the execution, and continues executing,

Figure 4. The binder backup can be an exact copy

of the original. BPEL provides different mechanism,

like faults and compensate handlers, to achieve the im-

plementation of primary-backup binders. In our case,

passive replication is used in the proposed solution.

Figure 4. Communication process-service with binder replicated.

3) Multi-Version (N-Version Programming) approach
The diversity is a very important factor to aim depen-

dable software systems. The main goal of diversity

is to provide identical services (variants) but with

separated design and implementation to minimize the

causes of identical faults. For instance, when a soft-

ware variant presents a fault, this will be as isolated

as possible. There are different techniques for fault-

tolerance software based on multi-version (diversity of

software) [13] [23]: N-Version Programming (NVP),

Recovery Blocks, N-Self Checking Programming.

In the proposed framework, one adopted solution is

focused on NVP, which is a static technique where a

task is executed for various processes or programs and

the result is only accepted for majority of votes. NVP

uses different adjudicator/decision mechanism (DM)

[13].

The paradigm of N-Version considers to use diversity

for implementations and designs to isolate faults in

the components. The different services that are used

will be a N-Version Component. The selected im-

plementation for N-Version components are following

the basic ideas of N-Version Programming. N-Version

component provides at most 2X + 1 replicas, where

107

X can vary from 1 to N, and where N can vary

1, 2, 3, or more. Components have been developed

with an adjudicator (DM) to obtain the output results,

Figure 5. The logic within adjudicator (DM) can

be very basic or really complicated. However, NVP

components can be improved by adding new features

to the adjudicator or developing new strategies, but

introducing more design complexity in the N-Version

components probably introduces high overhead in the

performance of the processes.

Figure 5. Example of N-Version component.

Using N-Version components fault-tolerance is

achieved, but it supposes another advantage since

the diagnosis stage is not necessary at all. For

example, if one of the variants does not return a

response in time, the adjudicator takes the results

from the other variants. In consequence, the diagnosis

can be eliminated from the framework, although it

could introduces a very high cost in developing and

performance.

IV. EXAMPLE OF APPLICATION

In order to clarify the problematic, an example has been

developed. Although it is a simple example with simple op-

erations, it can illustrate perfectly the problematic discussed.

In this process, there is a set of services, S = {S1, S2, S3,
S4, S5, M1, M2, M3}, a set of inputs, I = {a, b, c, d, e, f},

and a set of outputs, O = {g, h, i}. The system is made up

of three services (M1, M2, M3) with the same functionality

M(x) but they are independent; and (S1, S2, S3, S4, S5) are

other five elements with the same functionality S(x) but also

independent, Figure 6.

Figure 6. Example of business process.

To illustrate a real example, the process has been dis-

tributed. The global process has been divided into three

different processes and they have been deployed in three

different systems. The new distributed process is shown in

Figure 7. In this case, there is a global process; ”Com-
plete Process”, which orchestrates the other three BPEL

processes. BPEL Process 1 contains the invocations to the

services S1, S2 and S3. BPEL Process 2 contains the

invocations to the services M1, M2 and M3 and relies on

BPEL Process 1. BPEL Process 3 contains the invocation to

the services S4 and S5 and relies on BPEL Process 2 and

BPEL Process 1.

Figure 7. Distributed process.

In this scenario, it is possible to observe different aspects.

For instance, a fault within service S1 has directly an effect

to the BPEL Process 1 result, as consequence the BPEL

Process 2 is affected and finally BPEL Process 3 will be

affected, so the final result of the complete process will be

not correct. In order to improve the fault tolerance in the

process, it is necessary to insert fault tolerance mechanisms

such as previously introduced.

1) Solution Primary-Backup Services with unique
binder. This solution applies the concept of redun-

dant services with dynamic binding mechanisms. This

approximation has a primary service as principal and

one or more backups. In case of fault diagnosis of a

service, it will be possible to replace the invocations

from this primary to the backup service. A binder

component has been introduced between the process

and the services, Figure 8. The binder component

is common for every BPEL process. The solution is

fault-tolerant but introduces a unique point of fault as

binder component.

Figure 8. Fault-Tolerant solution with binder.

108

2) Solution Primary-Backup Services with replicated
binder. In this case a replication of the binder is

introduced. If the binder component enters in fault

state, the backup replica can take the control of the

execution, Figure 9. In the developed proposal, the

binder backup is an exact copy of the original. The

binder component is common for every BPEL process.

Figure 9. Fault-Tolerant solution with replicated binder.

3) Solution N-Version components. The N-Version

components developed use three variants with an

adjudicator to obtain the output results (Figure 10).

The logic within adjudicator is basic. The adjudicator

is basic to do not introduce high overhead in the

final performance of the process. Therefore, it only

compares the outputs from the different variants by

means of a voting system. In this implementation,

fault-tolerant software component is achieved and the

diagnosis stage is not necessary at all.

Figure 10. Fault-Tolerant solution with N-Version components.

Table I provides a comparative of the fault tolerance

applied:

• Type. What kind of fault tolerance has been used.

For example, the replication of services in the case of

binder.

• Diagnostic. If the diagnosis is necessary or not for this

technique. For example, in NVP solution the diagnosis

stage is not necessary.

• Overhead. It indicates the additional logic introduced

to develop this technique. For example, in the case of

binder a dynamic binding additional logic is necessary.

V. EVALUATION AND RESULTS

A set of test cases has been executed for each case of

fault-tolerant approach which has been described in previous

sections. Developed tests use three hundred requests for each

solution. The tests are based on the idea of having a integrity

fault in single component for each request, for instance S1.

For each input of the proccess, a set of random value tests

have been created where the domain of the inputs runs from

0 to N (N is the maximum value of an integer in Java

language). The hardware used to execute the tests is a server

Intel Xeon E5530 2.4 GHz, with 8GB RAM and Debian

Gnu/Linux 64bits OS.

Different parameters are important to try to achieve de-

pendability in business processes. Dependability involves

many parameters. For our proposal, it is more interesting

to measure how good are the applied fault tolerance mecha-

nisms. All measures together will give an idea of how much

dependability has been achieved:

• The performance is an interesting parameter that allows

to measure the difference between one solution and

another in terms of delivery.

• Diagnostic time to identify the faulty service can pro-

vide an idea of overhead identifying the fault.

• Average of number of used services is another interes-

ting parameter to measure. For example, in the case of

N-Version, it presents a very high overload in terms of

the services used.

• Number of requests that are executed.

Taking into account the performance parameter, the binder

solution obtains the best result (Figure 11). Although, in case

of binder solution the performance could be affected for the

diagnosis stage time. If we want to avoid the diagnosis stage,

we might opt for a NVP solution. In the development sense,

we must balance if we want to spend more on developing

correct components using NVP or a solution with binder

using only primary-backup solution. In case of multiple

faults, the binder solution might be not enough, so that the

replication (primary and backup) of services do not ensure

the correction of services. However, with NVP components

and a correct number of replicas we might achieve a result

with a very high level of correction.

Figure 11. Experimental results.

109

Table I
COMPARATIVE OF THE FAULT TOLERANCE TECHNIQUES.

VI. RELATED WORK

The dependability has been studied in the context of business

process management in [24]. In this work, a framework

is proposed, Dynamo. This framework provides a run-

time business process supervisor that guarantees that the

requirements of dependability are satisfied. The framework

is based on BPEL processes, but the main contribution in this

work the definition of two languages. The first one, WSCoL,

is used to monitor processes, and the second one, WSRS,

is used to define reaction strategies. These languages are

not a supported standard. Also, a set of remedial strategies

are provided mainly focused on the recovery context, but

these do not pay attention in the typical solutions in the

fault tolerance scope such solutions based on replication or

software fault tolerance techniques like the ones applied in

our work.

In the scope of fault tolerance in BPEL processes and Web

Service composition, there are some contributions, [25] [26]

[27] [28]. The feasibility of BPEL processes to implement

fault tolerance techniques with BPEL language is studied in

[25]. The work presents a tool for mapping fault tolerance

techniques using BPEL language concepts and elements

but it does not show any example of application or data

tests with real conclusions for their work. A middleware

to integrate some remedial strategies to handle violation

constraint faults in the BPEL processes was developed

in [27]. They have developed a framework structured in

different components. The most relevant components are:

composition, instrumentation and analysis. The composition

composes services and “business goals”, the analysis com-

poses the business process with a remedial strategy using

remedial databases, and the last one, the instrumentation

component translates the process into a final BPEL process.

Another work is focused on the dynamic selection of Web

Services for the construction of optimal workflows, [26].

The selection of the optimal service is based on searching

services from different repositories and some stored data

from databases. Although, it seems a fault tolerance solution,

it is only because they build the workflows on the fly

selecting the best service each time, but it does not take

into account the unique point of fault in the proxy compo-

nent. However, we have provided a solution with a binder,

but in case of faulty binder we have developed another

solution with redundant binder. An architecture for self-

healing BPEL processes is presented in [28]. Self-healing

properties implies to develop many elements integrated in

the same engine like a monitor, diagnosers, a planner of

change and validation mechanisms. Some recovery strategies

have been adopted in this work and integrated in the engine.

Our work is more focused on introducing mechanisms for

fault-tolerance solutions in BPEL processes, without using

monitors or planners. In this sense, we have adopted an

innovatory solution based on business rules (as oracle) and

CSP-based fault diagnosis. In the other hand, the solution

with NVP components does not need the diagnosis stage.

In the Web services side, there are some initiatives to in-

troduce fault-tolerance techniques, [29] [30]. In these works,

the main contributions are the definition of a framework or

middleware to achieve fault-tolerant services platforms. A

fault-tolerance architecture for SOAP protocol is proposed

and the solution is compared with the flexibility in front of

CORBA solutions, [29]. In [30], the authors have defined

and developed a mechanism to realize a fault resilience

for Web service clusters to enhance the reliability of the

services.

The majority of fault tolerance solutions are based on

replication and recovery techniques. Although the replication

is a very important concept in fault-tolerant systems, when

it is necessary to make fault-tolerance in software the

solution of replication is not enough. The philosophy in

fault tolerance software is different, the techniques are based

mainly on the software diversity and data diversity, [13] [23].

VII. CONCLUSION AND FUTURE WORK

In this paper, a framework to develop dependable business

processes based on fault tolerance has been introduced. The

framework is composed of three main elements: business

rules, CSP-based fault diagnosis and fault-tolerant mecha-

nism. The innovation in this framework is using a business

rule engine as oracle of solutions and CSP techniques to

isolate faults in case of fault detection. In the sense of

fault-tolerance, the framework presents different solutions:

the first solution makes fault-tolerant operational business

110

processes (BPEL) using dynamic binding techniques and

replication of services; the second solution presents an

improvement introducing replication of binder; and the third

solution uses the concept of software tolerance and imple-

ments NVP components. In order to clarify the problematic,

an example has been developed and some results have been

discussed.
As future works, it could be interesting to add new fea-

tures of fault tolerance within the framework. The work will

be extended with other software fault tolerance techniques

as Recovery Block or new features to the N-Version com-

ponents, for example, changing the complexity of the adju-

dicator or studying the number of variations in function of

the service. Likewise, the framework could be extended with

other capabilities to achieve self-healing or self-adaptability

approaches.

ACKNOWLEDGEMENTS

This work has been partially funded by Department of Innovation,

Science and Enterprise of Regional Government of Andalusia

project under grant P08-TIC-04095, by Spanish Ministry of Science

and Education project under grant TIN2009-13714, and by FEDER

(under ERDF Program).

REFERENCES

[1] M. Weske, Business Process Management: Concepts, Lan-
guages, Architectures. Springer, 2007.

[2] W. M. P. van der Aalst, A. H. M. ter Hofstede, and M. Weske,
Business Process Management: A Survey. Springer-Verlag,
2003.

[3] S. M. Huang, Y. T. Chu, S. H. Li, and D. C. Yen, “Enhancing
conflict detecting mechanism for web services composition:
A business process flow model transformation approach,”
Information Software Technology, vol. 50, no. 11, pp. 1069–
1087, 2008.

[4] J. Mendling, M. Moser, G. Neumann, H. M. W. Verbeek, and
B. F. Vandongen, “Faulty epcs in the sap reference model,”
in International Conference on Business Process Management
(BPM 2006). Springer-Verlag, 2006, pp. 451–457.

[5] C. Team. (2009) Condor. [Online]. Available:
http://www.cs.wisc.edu/condor/

[6] C. Pautasso and G. Alonso, “Flexible binding for reusable
composition of web services,” in Software Composition, 2005,
pp. 151–166.

[7] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini,
and M. Mecella, “Automatic service composition based on
behavioral descriptions,” International Journal of Cooperative
Information Systems, vol. 14, no. 4, pp. 333–376, 2005.

[8] D. Karastoyanova, A. Houspanossian, M. Cilia, F. Leymann,
and A. P. Buchmann, “Extending bpel for run time adaptabil-
ity,” in 9th IEEE International Enterprise Distributed Object
Computing Conference (EDOC 2005), 2005, pp. 15–26.

[9] A. Avizienis, J. C. Laprie, B. Randell, and C. E. Landwehr,
“Basic concepts and taxonomy of dependable and secure
computing,” IEEE Transactions on Dependable and Secure
Computing, vol. 1, no. 1, pp. 11–33, 2004.

[10] D. Borrego, R. Gasca, M. Gomez, and B. I., “Choreogra-
phy analysis for diagnosing faulty activities in business-to-
business collaboration,” in 20th International Workshop on
Principles of Diagnosis (DX-09), Stockholm, Suecia, 2009.

[11] L. Liu, Z. Wu, Z. Ma, and Y. Cai, “A dynamic fault tolerant
algorithm based on active replication,” in GCC ’08: Proceed-
ings of the 2008 Seventh International Conference on Grid
and Cooperative Computing. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 557–562.

[12] R. Baldoni, C. Marchetti, and S. T. Piergiovanni, “Asyn-
chronous active replication in three-tier distributed systems,”
in Proceedings 9th IEEE Pacific Rim Symposium on Depen-
dable Computing (PRDC02), 2002.

[13] L. L. Pullum, Software fault tolerance techniques and imple-
mentation. Norwood, MA, USA: Artech House, Inc., 2001.

[14] T. Debevoise, Business Process Management With a Business
Rules Approach: Implementing the Service Oriented Architec-
ture. Business Knowledge Architects, 2005.

[15] OMG. (2009) Business Process Model And Notation.
[Online]. Available: http://www.omg.org/spec/BPMN/1.2

[16] C. Ouyang, M. Dumas, S. Breutel, and A. H. M. T. Hofstede,
“Translating standard process models to bpel,” in Advanced
Information Systems Engineering - CAiSE 2006, Luxembourg,
Grand-Duchy of Luxembourg. Springer, 2006, pp. 417–432.

[17] S. A. White, “Using bpmn to model a bpel process,” BP-
Trends, vol. 3, no. 3, pp. 1–18, 2005.

[18] D. Chappell, Enterprise Service Bus. O’Reilly Media, Inc.,
2004.

[19] R. Ceballos, R. M. Gasca, and D. Borrego, “Diagnosing errors
in dbc programs using constraint programming,” in Current
Topics in Artificial Intelligence. Springer Berlin / Heidelberg,
2006, pp. 200–210.

[20] F. Rossi, P. van Beek, and T. Walsh, Handbook of Constraint
Programming. Elsevier, 2006.

[21] A. Erradi and P. Maheshwari, “Dynamic binding framework
for adaptive web services,” in ICIW ’08: Proceedings of the
2008 Third International Conference on Internet and Web
Applications and Services. Washington, DC, USA: IEEE
Computer Society, 2008, pp. 162–167.

[22] U. Küster and B. König-Ries, “Dynamic binding for bpel
processes - a lightweight approach to integrate semantics into
web services,” in Second International Workshop on Engi-
neering Service-Oriented Applications: Design and Compo-
sition (WESOA06), Chicago, Illinois, USA, December 2006.

[23] W. Torres-Pomales, “Software fault tolerance: A tutorial,”
NASA Langley Research Center, Tech. Rep. NASA/TM-200-
210616, 2000.

[24] L. Baresi, S. Guinea, and M. Plebani, “Business process
monitoring for dependability,” in Workshop on Algorithms
and Data Structures, 2006, pp. 337–361.

[25] G. Dobson, “Using ws-bpel to implement software fault
tolerance for web services,” in EUROMICRO-Conference of
Software Engineering Advanced Application, 2006, pp. 126–
133.

[26] L. Huang, D. W. Walker, O. F. Rana, and Y. Huang, “Dy-
namic workflow management using performance data,” in
IEEE International Symposium on Cluster, Cloud, and Grid
Computing, 2006, pp. 154–157.

[27] M. Wang, K. Y. Bandara, and C. Pahl, “Integrated constraint
violation handling for dynamic service composition,” in SCC
’09: Proceedings of the 2009 IEEE International Conference
on Services Computing. Washington, DC, USA: IEEE
Computer Society, 2009, pp. 168–175.

[28] S. Modafferi, E. Mussi, and B. Pernici, “Sh-bpel: a self-
healing plug-in for ws-bpel engines,” in MW4SOC ’06:
Proceedings of the 1st workshop on Middleware for Service
Oriented Computing (MW4SOC 2006). New York, NY, USA:
ACM, 2006, pp. 48–53.

[29] C. L. Fang, D. Liang, F. Lin, and C. C. Lin, “Fault tolerant
web services,” Journal of Systems Architecture, vol. 53, no. 1,
pp. 21–38, 2007.

[30] M. Y. Luo and C. S. Yang, “Enabling fault resilience for
web services,” Computer Communications, vol. 25, no. 3, pp.
198–209, 2002.

111

View publication statsView publication stats

https://www.researchgate.net/publication/232645057

