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Abstract: Concern for the security of embedded systems that implement IoT devices has become
a crucial issue, as these devices today support an increasing number of applications and services
that store and exchange information whose integrity, privacy, and authenticity must be adequately
guaranteed. Modern lattice-based cryptographic schemes have proven to be a good alternative, both
to face the security threats that arise as a consequence of the development of quantum computing
and to allow efficient implementations of cryptographic primitives in resource-limited embedded
systems, such as those used in consumer and industrial applications of the IoT. This article describes
the hardware implementation of parameterized multi-unit serial polynomial multipliers to speed
up time-consuming operations in NTRU-based cryptographic schemes. The flexibility in selecting
the design parameters and the interconnection protocol with a general-purpose processor allow
them to be applied both to the standardized variants of NTRU and to the new proposals that are
being considered in the post-quantum contest currently held by the National Institute of Standards
and Technology, as well as to obtain an adequate cost/performance/security-level trade-off for a
target application. The designs are provided as AXI4 bus-compliant intellectual property modules
that can be easily incorporated into embedded systems developed with the Vivado design tools.
The work provides an extensive set of implementation and characterization results in devices of
the Xilinx Zynq-7000 and Zynq UltraScale+ families for the different sets of parameters defined in
the NTRUEncrypt standard. It also includes details of their plug and play inclusion as hardware
accelerators in the C implementation of this public-key encryption scheme codified in the LibNTRU
library, showing that acceleration factors of up to 3.1 are achieved when compared to pure software
implementations running on the processing systems included in the programmable devices.

Keywords: IoT embedded systems; hardware security; postquantum cryptography; public-key
encryption scheme; HW/SW codesign techniques; programmable systems-on-chip

1. Introduction

The rapid growth of the Internet of Things (IoT) has required a concentration of efforts
in the development and deployment of efficient operational architectures to support and
provide a multiplicity of new applications and services. Modern IoT devices incorporate
a wide range of sensors to capture information about their surroundings, as well as a
set of complex algorithms to process that information. From an implementation point
of view, the design of portable IoT devices for user applications in embedded systems
with limited resources imposes severe requirements in terms of computational capacity,
memory, and power consumption, which poses an open research challenge for the electronic
engineering community [1–5].

The application of IoT technologies in industrial environments (Industrial IoT, or IIoT)
is also one of the main pillars of a new industrial revolution, often referred to as Industry
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4.0 [6–8], where intelligent manufacturing systems leverage the evolution of Informa-
tion and Communication Technology (ICT) to become much more efficient. IIoT enables
improvements in many of the processes involved in a manufacturing plant, such as engi-
neering, production, logistics, and management of supply chain activities, which translates
into increased productivity and greater economic benefits [9,10]. IIoT devices have been de-
veloped for a wide variety of application domains including automotive, energy, electronics,
aerospace, defense, and other industrial sectors [11].

For both consumer electronics and industrial systems, security has become a key
issue, as attacks can exploit vulnerabilities in devices to compromise the use of critical
applications, deny essential services, and even partially or permanently damage infras-
tructures and production lines [12–15]. In an IoT device, attackers can use the sensors to
transfer malicious code or trigger a message to activate malware, capture sensitive personal
data shared between devices, or reveal confidential information by capturing encryption
and decryption keys [16,17]. In the context of IIoT, the impact of attacks could also have
incalculable consequences on the mission, functions, image, or reputation of companies
and corporations [18–20]. Security and privacy concerns in IoT and IIoT ecosystems must
consider all layers of the service-oriented architectures commonly used to ensure effi-
cient interoperability between a typically large number of heterogeneous and physically
dispersed devices [2,21].

Algorithms based on Public-Key Infrastructure (PKI) are fundamental security primi-
tives in cryptosystems currently used in applications and protocols that offer a guarantee
of confidentiality, authenticity, and non-repudiability in the capture, storage, processing,
and exchange of data on the Internet [22,23]. In the context of the Systems-on-Chips (SoCs)
used in the IoT, these elements have also proven their usefulness to guarantee security
in other system operation stages, such as secure boot, which prevents possible attacks
carried out by injecting malware code into the flash boot memory with the objective of
modifying the function of the system or supplanting its identity [24]. However, as is widely
known, current PKI-based algorithms will be vulnerable to attacks from large-scale future
quantum computers. Shor’s algorithm for integer factorization [25], which shows that
quantum computers can be used to factor integers in polynomial time, reveals a vulnera-
bility of the popular RSA algorithm, based on the assumed difficulty of factoring a large
biprime number. Furthermore, Shor’s algorithm can also compute in polynomial time the
Discrete Logarithm Problem (DLP) that is the basis for other asymmetric cryptographic
schemes such as Diffie–Hellman (DH), Digital Signature Algorithm (DSA), and Elliptic
Curve Cryptography (ECC) [26].

To deal with this threat, numerous efforts have been made in recent years in the search
for algorithms resistant to quantum attacks (the so-called post-quantum algorithms) [27,28].
As a consequence, the National Institute of Standards and Technology (NIST) initiated
in 2017 a Post-Quantum Cryptography (PQC) standardization process to develop new
public-key cryptography standards to be used as quantum-resistant counterparts to existing
standards, including digital signature and key establishment schemes [29]. The NIST PQC
contest encompasses several rounds in which submissions are evaluated in terms of security
and performance. The selection criteria for security is based on the algorithm resistance
analysis against both classical and quantum attacks, whereas performance is measured
on various classical platforms. Round 1 provided 69 submissions that were presented in
December 2017. This initial selection was reduced to 26 candidates in Round 2 (January
2019). The NIST presented the results of Round 3 with seven potential candidates and eight
alternatives for PQC in July 2020 [30]. Hardware implementations of Round 3 candidates to
improve efficiency have been evaluated at the Third PQC Standardization Conference [31].

Ring Learning With Errors (Ring-LWE) is the substrate of various lattice-based post-
quantum cryptosystems, such as the well-known public-key encryption scheme called NTRU
(Nth Degree Truncated Polynomial Ring Unit). Proposed in 1988 by Hoffstein et al. [32],
NTRU has become quite popular over the years due to the use of small key sizes and
its speed compared to other cryptosystems with the same security level. The security of
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NTRU relies on a very hard problem in lattice reduction, known as the Shortest Vector
Problem (SVP). Until now, there has been no polynomial-time algorithm to solve this
problem. The NTRU public key cryptosystem was standardized in 2008 by the Institute
of Electrical and Electronics Engineers in IEEE Std 1363.1-2008 [33] and in 2010 by the
American National Standards Institute in ANSI Std X9.98 [34]. Throughout successive
revisions, it has been progressively improved, mainly in aspects related to the selection of
parameter sets to resist different types of attacks [35–40]. Four of the Round 1 submissions
to the NIST PQC standardization contest were based on NTRU: NTRUEncrypt [41], NTRU-
HRSS-KEM [42], and NTRU Prime [43] focused on Key Encapsulation Mechanisms (KEMs),
and pqNTRUSign [44], designed to provide digital signature functionalities. The first two
proposals were merged in Round 2 to give rise to a new submission (NTRU [45]), which
reached Round 3 and is currently among the finalists.

As a consequence of its resistance to possible quantum attacks and its relatively low
computational load (especially compared to cryptosystems based on the problems of factor-
ing integers or finding discrete logarithms), NTRU is a good candidate to provide different
functionalities related to the security of systems connected through public networks [46].
For this reason, many implementations of the NTRU encryption and decryption schemes
have been proposed in the literature in the last 25 years. These proposals range from
complete software implementations for embedded systems [47,48] to complex hardware
solutions for high-end servers implemented on Application Specific Integrated Circuits
(ASICs) [49,50] or Field Programmable Gate Arrays (FPGAs) [51]. Many of the first pro-
posals were aimed at speeding up the most time-consuming parts of the algorithms (In
particular, the operation of multiplication of polynomials in the nth degree truncated
polynomial ring on which the different NTRU cryptographic schemes are based). These
proposals pursued the double objective of making their implementation possible in elec-
tronic systems with few resources and to achieve higher processing speed than that offered
by the low-end processors used in many IoT devices [52–64]. Recently, the proliferation
of SoCs, largely supported by the evolution of programmable logic devices, has boosted
the use of Hardware/Software (HW/SW) codesign techniques to combine flexibility and
efficiency when implementing the different parts of any cryptographic algorithm [62,63].
Directly related to the progress of the NIST PQC competition, the use of this design strat-
egy has increased in recent years as a consequence of the need to develop benchmarking
procedures that allow a ‘fair’ comparison of hardware implementations of the different
candidates [65–67]. With regard to design flows, the use of High-Level Synthesis (HLS)
tools and Register Transfer Level (RTL) based approaches is currently being considered.
The former certainly facilitates exploration of the design space [68], while the latter is better
to take advantage of the structure and hardware resources available in a given device [69].

Taking advantage of the resources offered by modern programmable devices, such
as the Xilinx Zynq-7000 SoC and Zynq UltraScale+ MPSoC, which allow combining the
execution of software on a general-purpose processor with the implementation of hardware
accelerators on the FPGA fabric, this paper addresses the implementation of the NTRU-
Encrypt cryptographic scheme on embedded systems by following an HW/SW codesign
strategy. Its main contributions include the following:

• The design of a highly configurable intellectual property (IP) module to implement a
multi-unit serial polynomial multiplier and accelerate NTRU operations;

• The proposal of different interconnection schemes that optimize the bandwidth of
communication infrastructures provided by device manufacturers;

• The possibility of choosing the number of arithmetic units in the multiplier, as well
as selecting the interconnection scheme to be used, which allows establishing an
adequate cost/performance/security level trade-off based on the intended application
for the embedded system.

The paper is organized as follows. Section 2 illustrates the mathematical foundations
of the encryption and decryption operations defined in the NTRU public-key cryptosystem.
Section 3 provides a historical review of the different proposals for implementation in em-
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bedded systems. The architecture and main functional blocks of the proposed configurable
multi-unit serial polynomial multipliers, as well as their encapsulation as IP modules that
can be connected to the processor system through standard buses, is described in Section 4,
while Section 5 includes implementation results in terms of logical resources consumption
and operating frequencies. The integration of hardware accelerators into the open source
library LibNTRU is detailed in Section 6, which also provides statistics on the efficiency
of the proposed approach in terms of the speed-up factor in algorithm execution. Finally,
the main conclusions of the work are summarized in Section 7.

2. The NTRU Cryptographic Scheme

The cryptographic techniques included in NTRU use polynomial operations on a
particular algebraic structure coming from the so-called polynomial quotient rings or
polynomial convolution rings. A truncated polynomial ring of degree N is the quotient
ring given by Equation (1), where Zt[X] is the set of polynomials with integer coefficients
reduced module t, and (XN − 1) is the polynomial defined in the currently standardized
version to obtain the modulus of the polynomial arithmetic operations used by the different
cryptographic primitives:

RN,t =
Zt[X]

(XN − 1)
(1)

A polynomial a in X is defined by a set of integer coefficients ai, where i represents the
coefficient of a of degree i, as shows Equation (2):

a(x) = a0 + a1 · x + a2 · x2 + ... + ai · xi + ... + a(N−1) · x(N−1) (2)

Polynomial multiplication is required by encryption and decryption operations in
NTRU-based schemes. The multiplication of two polynomials, c(x) = a(x) × b(x), is
another polynomial whose coefficients are calculated according to Equation (3):

ck = ∑
i+j=k mod N

(ai · bj) mod t, for i, j, k = 0, . . . , N − 1 (3)

NTRUEncrypt operations use two truncated polynomial rings, RN,q and RN,p, where
N is a prime number used to determine the degree of the truncated polynomials, and q and
p are coprime, q being considerably larger than p (q � p). The different parameter sets
defined in the standard fix the values of q and p to 2048 and 3, respectively, so the elements
of RN,p are ternary polynomials whose coefficients only have values equal to 1, −1, or 0.
In order to provide different trade-offs between security and efficiency, the standard also
fixes three integer values for each parameter set which determine the number of ones in
the polynomial corresponding to the private key f , (d f ); the temporary polynomial g, (dg);
and the blinding polynomial r, (dr). Table 1 shows the values and recommended security
level for the parameter sets defined in IEEE Std 1363.1.

As in other cryptographic schemes, the operations defined in NTRUEncrypt have
basically three purposes: key generation, encryption, and decryption. During the key gener-
ation process, two ternary polynomials are randomly chosen. The polynomial f (x) ∈ RN,p
must be invertible modulo p and modulo q and have d f coefficients equal to one and (d f−1)
coefficients equal to minus one, while the remaining (N − 2d f − 1) coefficients will be
zero. The other polynomial, g(x) ∈ RN,p, is not required to be invertible. In this case, dg
coefficients must be equal to one, dg equal to minus one, and (N − 2dg) will be zero. Both
f (x) and g(x) are secret polynomials that are used to derive the public key, h(x) ∈ RN,q,
using Equation (4):

h(x) = p · fq(x)× g(x) mod q (4)

where the polynomial fq(x) is the inverse of f (x) modulo q.
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Table 1. Parameter sets for NTRUEncrypt.

Parameter Set Recommended Security Level N p q d f dg dr

EES401EP1 112 401 3 2048 113 133 113
EES541EP1 112 541 3 2048 49 180 49
EES659EP1 112 659 3 2048 38 219 38

EES449EP1 128 449 3 2048 134 149 134
EES613EP1 128 613 3 2048 55 204 55
EES761EP1 128 761 3 2048 42 253 42

EES677EP1 192 677 3 2048 157 225 157
EES887EP1 192 887 3 2048 81 295 81
EES1087EP1 192 1087 3 2048 63 362 63

EES1087EP2 256 1087 3 2048 120 367 120
EES1171EP1 256 1171 3 2048 106 390 106
EES1499EP1 256 1499 3 2048 79 499 79

To perform the encryption operation, the message is encoded as a ternary polynomial,
m(x), and a blinding polynomial, g(x) ∈ RN,p, used to obfuscate the message is randomly
chosen with dr coefficients equal to one, dr equal to minus one, and (N − 2dr) equal be
zero. In the initial NTRU proposal [32], the encrypted message, c(x) ∈ RN,q is obtained by
applying polynomial multiplication and addition operations given by Equation (5):

c(x) = h(x)× r(x) + m(x) mod q (5)

The version of NTRUEncrypt submitted to Round 1 of the NIST PQC contest [41]
includes a padding mechanism, based on [36], to deal with potential insufficient entropy in a
message. The performed operations correspond in this case to those shown in Equation (6):

m′(x) = m(x) + mask(x) mod p

c(x) = h(x)× r(x) + m′(x) mod q
(6)

Polynomial multiplication modulo q is also required by the decryption operation
in NTRU-based schemes to calculate an intermediate polynomial as the product of the
ciphertext and the private key, according to Equation (7):

a(x) = c(x)× f (x) mod q (7)

which is in turn used to obtain the message m (or the padded version m′ in NTRUEncrypt)
using Equation (8):

m′(x) = a(x)× fp(x) mod p (8)

The NTRU version submitted to Round 2 and currently under consideration in Round 3
of the said competition recommends the utilization of other parameter sets and requires
multiplication in additional truncated polynomial rings, so the results of this work may
also be applied to the new versions under evaluation.

3. Implementation of NTRU on Embedded Systems

As corroborated by the software execution profiles of their reference implementations,
truncated polynomial ring multiplication is the most time-consuming function of NTRU
and other lattice-based algorithms [67]. For this reason, efforts to accelerate these cryp-
tographic schemes are primarily focused on providing an efficient software or hardware
implementation of this operation. According to Equation (3), a polynomial multiplication in
RN,t is given by the cyclic convolution of the coefficients of two polynomials. For example,
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the multiplication carried out during the encryption operation described by Equation (5)
can be expressed as shown in Equation (9):

ek = ∑
i+j=k mod N

(hj · ri) mod q (9)

Figure 1a graphically illustrates the cyclic convolution of the coefficients of the poly-
nomials h(x) and r(x) for a trivial case with N = 5, while pseudocode in Figure 1b shows
the algorithm for generating indices and obtaining output coefficients that would give as
results a sweep of the coefficient matrix by rows. A simple and naive software implementa-
tion of this algorithm on a sequential processor would perform N · N scalar multiplications
and would take the same number of clock cycles to complete the operation (assuming
that only one cycle is inverted at each multiplication). This assumption is not necessarily
true for low-end processors. Fortunately, the fact that the polynomial r(x) is chosen as a
ternary polynomial according to IEEE Std 1363.1-2008 [33] (or even binary in the case of
the early NTRU proposals [32]), allows these multiplications to be replaced by additions
or subtractions of the corresponding coefficient hj depending on whether ri is 1 or −1,
respectively. This was the technique used by Atici et al. in [52] for ASIC implementation in
0.13 µm technology of a compact, low-power NTRU design, with (N = 167, q = 128, p = 3)
that performs both encryption and decryption and is suitable for generalized security
applications such as RFID and sensor nodes.

Figure 1. Evaluation of each term of the summation (a) and generation of indices i, j, and k (b) while
sweeping the matrix by rows.

An additional reduction in execution time can be achieved by changing the order
of generation of the indices and taking into account that r(x) is a sparse polynomial,
that is, with a high number of null coefficients, which implies that there are complete
columns of the convolution matrix that do not contribute to the product. Figure 2a,b
show, respectively, the order of evaluation of the partial products and the pseudocode of
the operation, in which it is possible to observe that the inner cycle to obtain the output
coefficients is not executed when r(i) is null.

Figure 2. Evaluation of each term of the summation (a) and generation of indices i, j, and k (b) while
sweeping the matrix by columns.

This feature was exploited by Zhan et al. in [53] to implement 2 ASICs in 0.18 µm
technology that incorporate a non-zero coefficients sequence generator (NCSG) to record
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the indices of non-zero terms in polynomial r(x) when its coefficients are loaded into the
multiplier. One of the designs is a lightweight solution that implements the lowest security
level parameter set recommended in the original NTRU proposal (N = 107, p = 3, q = 64,
dr = 5). The other one corresponds to a high-speed implementation with (N = 251, p = 2,
q = 128, dr = 72) of the NTRU variant proposed in [35], where f = 1+ p ∗ F is chosen in the
key generation stage in order to eliminate a multiplication of polynomials in the decryption
operation. This proposal also makes use of a property of the product of sparse polynomials
analyzed in [54], which consists of defining r = r1 ∗ r2 + r3, with dr1 + dr2 + dr3 = dr,
so that the product can be carried out in three successive steps with a total duration of
(dr1 + dr2 + dr3) · N clock cycles. (Note that the number of non-zero coefficients of r(x) is
dr when p = 2 and 2 · dr if p = 3.)

Unlike what happens in software implementations on sequential processors, poly-
nomial multiplication can be accelerated in hardware implementations by increasing the
degree of parallelism to simultaneously calculate more than one term of the convolution
matrix. This was the strategy followed by O’Rourke in [55], where the author analyzed
the design in TSMC 0.35 µm technology of a scalable multiplier with a variable number
of parallel arithmetic units capable of implementing the highest security parameter set
of the initial NTRU proposal (N = 503, p = 3, q = 256). Another scalable solution for
ultra-low power applications, which uses a circular shift register to rotate the coefficients
of the polynomial r(x) during convolution multiplication, was proposed by Kaps in [56]
for the parameter set (N = 167, p = 3, q = 128). The number of clock cycles required to
complete the operation is in both cases proportional to N · dN/ne, n being the number of
parallel arithmetic units.

In systems that have sufficient resources, the time spent in the multiplication operation
can be reduced to N clock cycles by using N arithmetic units in parallel. This is shown
in the decryption operation proposed by Kamal and Youssef for the same parameter set
in [57], which describes an NTRU implementation hardened against fault-insertion attacks
on a Virtex-E FPGA. The previous value can even be reduced if the sparse nature of the
polynomial r(x) is taken into account. This is illustrated by the same authors in [58],
where N arithmetic units are used in combination with an (N, s)-Shifter, capable of shifting
in each clock cycle the N coefficients of h(x) by a relatively small number of locations
(s << N) to obtain a multiplication time that tends to 2 · dr when s increases in an NTRU
implementation with (N = 251, p = 3, q = 128).

The main problem with these alternatives is to provide a mechanism to supply the
arithmetic units with the necessary coefficients in each cycle of operation. The parallel
architecture for polynomial multiplication proposed by Liu and Wu in [59] offers an efficient
and smart solution to this problem using a circuit structure similar to a Linear Feedback
Shift Register (LFSR). Initially described for the implementation in a Cyclone IV FPGA of
four parameter sets prior to the IEEE standard, this architecture has subsequently been
taken as the basis for different improvements [60–64]. A timing-optimized version of this
architecture is introduced by the same authors in [60], which reduces the number of clock
cycles by omitting the multiplication operation when two consecutive zero coefficients
are detected in the polynomial r(x). This proposal, focused only on the NTRU encryption
operation, shows the resources required for the implementation in a Cyclone IV FPGA
of all the parameter sets defined in the IEEE standard. Braun et al. presented in [61] a
complete implementation of the standardized version of NTRU on Zynq-7000 devices,
which uses the LFSR-based architecture and includes the padding scheme defined in IEEE
Std 1362.1 to prevent Chosen Ciphertext Attacks (CCA). This work also reveals a certain
security degradation when using the architecture proposed in [60]. The vulnerability can
be minimized, while achieving a higher operating speed, with the solution proposed in [63]
to design a dedicated hardware module that, at the expense of a small increase in resource
consumption, is capable of detecting the presence of two, three, or four consecutive zeros
in the blinding polynomial. Finally, Qin et al. in [64] presented a complete implementation
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of the NTRU version submitted to the third round of the NIST PQC contest using the LFSR
structure to build the three types of polynomial multipliers required by the algorithm.

Despite providing the best results in terms of performance, LFSR-based solutions
may not be viable for some IoT applications where programmable device resources are
limited or must be used to implement other parts of the embedded system. In these cases,
the availability of the multi-unit serial polynomial multiplier described in the following
sections of this work provides a scalable solution that allows the selection of adequate
cost/performance trade-offs.

4. Multi-Unit Serial Polynomial Multiplier

The resources required to implement a serial polynomial multiplier following the ap-
proaches depicted in Figures 1 and 2 are practically the same, and the number of operations
performed and, therefore, the execution time of the operation can be significantly reduced
in the second case, since it is not necessary to execute the internal loop of the algorithm
for null values of r(i). In this way, the number of clock cycles required to complete the
operation is reduced from N · N to N · 2 · dr + (N − 2 · dr), where the term in parentheses
corresponds to the number of times a zero value is obtained when accessing the memory
that stores the coefficients r(i). For the parameter sets proposed in the IEEE standard, this
translates into a reduction in operating time that varies between 43.5% and 89.4% (for
EES401EP1 and EES1499EP1, respectively).

In addition, for both alternatives, the response time of the multiplier can be improved
up to a factor M by replicating M times the arithmetic unit to calculate in parallel M
partial terms of the convolution matrix. For this, however, it is necessary to ensure that the
appropriate M coefficients h(j) are available in each cycle of the algorithm and to guarantee
that the memory locations containing the partial results e(k) involved in the operation can
be accessed. When the convolution matrix is swept by rows, the memories that contain
the coefficients of the input polynomials do not need to be modified if the terms that are
calculated simultaneously share the value of r(i). As can be observed in Figure 3 for M = 2,
in this case, it is only necessary to consider a new coefficient h(j) in each clock cycle, so a
shift register of length M can be used to provide the M coefficients, h(j) · · · h(j + M− 1),
necessary to calculate the M coefficients e(k) · · · e(k + M− 1).

Figure 3. Simultaneous evaluation of two terms of the summation (a) and generation of indices
i, j, and k (b) when the convolution matrix is swept by rows (colors indicate the terms evaluated
in parallel).

On the contrary, if i is chosen as the index of the outer loop, as illustrated in Figure 4,
M coefficients h(j) must be provided simultaneously. These coefficients follow a correlative
order, but the initial element in each column varies as a function of the values of i and k.
As i increases by one unit in each run of the outer loop and N is always a prime number,
it is not possible to find a value of M that allows for grouping the coefficients in a single
memory capable of providing the possible combinations of N consecutive elements in each
clock cycle taken from M in M. The solution adopted in this proposal consists of replicating
M times the memory that stores the coefficients h(j) and providing a mechanism that
facilitates the loading of the coefficients in the appropriate order during the initial phase of
the algorithm execution.
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Figure 4. Simultaneous evaluation of two terms of the summation (a) and generation of indices i,
j, and k (b) when the convolution matrix is swept by columns (colors indicate the terms evaluated
in parallel).

4.1. Core Design of the Polynomial Multiplier

A generic architecture for the implementation of a scalable polynomial multiplier,
capable of supporting different degrees of multiplicity and adaptable to the parameter sets
proposed in the literature, is described in this section. The module has been developed
using an HDL design flow provided by Xilinx Vivado tools, in which all components are
described in Verilog using parameter and generate blocks to guarantee its configurability.
The simplified block diagram in Figure 5 shows the main functional blocks necessary for
the hardware implementation of the polynomial multiplication operation.

Figure 5. Block diagram for the serial implementation of the polynomial multiplier required in NTRU.

The Control block generates the indices i, j, and k in the different operation phases (Load
coefficients, Operate, and Read result). These indices act as the addresses of the memories
included in Mems, which contain the coefficients of the input polynomials and the partial
and final results of the output polynomial. The arithmetic unit, AU, adds/subtracts the
value of h(j) to/from the current partial value e(k) depending on whether the coefficient
r(i) is 1 or −1. The width of the buses depends on both the security level chosen for the
NTRU algorithm (parameter set) and the degree of multiplicity used (value of M).

The pseudocode shown in Figure 6a can be used to generate the indices in the generic
case of using M arithmetic units to perform the polynomial multiplier operation. The
i-index is used in the outer loop to sweep the multiplication matrix by columns to be able
to eliminate those in which r(i) = 0, and the k-index is used in the inner loop in such a way
that the successive values of i also determine the memory addresses of the M terms to be
calculated in parallel. The j-index corresponding to the first of the coefficients h(j) to be
evaluated in parallel is calculated employing a modulo N operation between the values of
km = k ·M and i. As the execution of the internal cycle of the algorithm depends on the
value of r(i), it is necessary to access the aforesaid value in the same clock cycle in which
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it is decided whether or not to increase the counter i. To fulfill this condition, in the HDL
description, the counters i and k increase with the decrease in the clock signal while the
rest of the system operates with the rising edge of the clock signal.

Figure 6. (a) Pseudocode used to generate the indices for multiple arithmetic units. (b) Memory
block used to store the coefficients of the polynomial r(x).

The Mems block groups the memory structures used to store the coefficients of the
input polynomials, r(i) and h(j), as well as the partial and final values of the coefficients
e(k) of the polynomial resulting from the multiplication operation. The three blocks are
implemented as dual-port memories using block RAM (BRAMs) available in programmable
devices from different manufacturers.

Regardless of the degree of multiplicity, a single memory with N cells of np = dlog2(p)e
bits is always used to store the coefficients of the blinding polynomial. As illustrated in
Figure 6b, during the load phase, both port-A and port-B are used to store the values of the
two coefficients simultaneously supplied by the input data bus in the memory addresses i
and i + 1, respectively. In this way, it is possible to double the bandwidth of the commu-
nication channel used to connect the hardware accelerator to the processor. On the other
hand, port-A is used during the operation phase to supply the successive coefficients r(i)
to the arithmetic units. A multiplexer controlled by the load signal is in charge of selecting
the memory addresses in each phase of operation.

As shown in Figure 7a, the basic memory block used to store coefficients h(j) is
similar to the previous one, but now the word length is nq = dlog2(q)e and the address
input of port-B is obtained by means of a block that increments the input of port-A by
one and calculates the result modulo N, since even and odd terms are interchanged in
successive replicas of the memory. In systems with multiple arithmetic units, the basic
memory block must be replicated M times, as illustrated in Figure 8a. The copies share
all the inputs, except the one corresponding to the write address bus, which is calculated
as [addr(j) = addr((j−m)modN) f or m = 0 · · ·M− 1]. This mechanism allows the same
data h(j) to be stored simultaneously at the appropriate position of the different memory
replicas. As can be observed, the data are stored in pairs during the load phase and read
from M to M during the operation phase.

The basic memory block for the coefficients e(k), shown in Figure 7b, has some
differences compared to the previous two. The main one is that its size is now only dN/Me
nq-bit cells since, as mentioned before, although the total storage space remains unchanged,
the proposal uses M memories of these dimensions to enable the calculation of M terms
of the convolution matrix in parallel. As in the previous cases, this design also includes
two multiplexers and some logic blocks to control access to the memory in each phase of
operation. When the load signal is activated to store the coefficients of the multiplier input
polynomials, the memory cells with addresses addr_w and addr_w + 1 are initialized to
zero through the data input of port-B and port-A. For this, the addr_w bus is connected to
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the dlog2(dN/Me)e most significant bits of the address input supplied from the multiplier
access interface. Later, during the multiplier operation phase, the value stored at the addr_r
address of each memory is read by port-A and sent to an arithmetic unit, whose output (the
accumulated result for the corresponding coefficient) will be stored at the same address in
the next clock cycle using port-B.

Figure 7. Basic memory blocks used to store the coefficients of polynomials h(x) (a) and e(x) (b).

The complete memory structure to store the temporal and final coefficients of the
polynomial e(k) is illustrated in Figure 8b. A multiplexer controlled by the load signal is
used to connect addr_w to the input address provided by the interface (addr_din) during the
load phase. In the operation phase, the data stored in the cell addressed by addr_e are read
to be processed by the corresponding arithmetic unit and stored, in the next clock cycle,
at the same memory address. Finally, during the read phase, addr_w is connected to the
output address provided by the interface (addr_dout) through a multiplexer controlled by
the read signal. The block has three outputs. Output e is a bus of M · nq bits, made up from
concatenation of the outputs of the individual memories, used to provide M coefficients of
e(k) to the arithmetic units in each clock cycle. Outputs e0 and e1 are nq-bit buses used in
the read phase to provide even and odds memory positions to the output interface.

Figure 8. Memory structures used to store the coefficients of polynomials h(x) (a) and e(x) (b).

The third block of Figure 5 contains the arithmetic units in charge of evaluating the
terms that appear in the summation of Equation (3). As shown in Figure 9a, the fact
that one of the polynomials involved in the operation is ternary allows simplifying the
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implementation of this element by reducing its functionality to add or subtract from the
previously accumulated value of e(k) the value of the coefficient h(j) if the value of r(i)
is 1 or −1, respectively. For a polynomial multiplier of degree of multiplicity M, M of
these elementary blocks must be combined according to the scheme illustrated in Figure 9b,
where the input and output buses are composed by concatenating the corresponding buses
of each of the arithmetic units.

Figure 9. Block diagram of the arithmetic unit (a) and grouping of M arithmetic units to calculate M
terms of the multiplier operation in parallel (b).

4.2. Interface Design and IP-Module Encapsulation

In addition to the way in which the coefficients of the input polynomials are stored so
that they can be properly accessed in each clock cycle, another aspect of great importance
that distinguishes the different proposals for hardware-implemented polynomial multipli-
ers is the procedure used to interact with the rest of the cryptosystem. In the case of hybrid
HW/SW implementations for embedded systems, such as the one described in this work,
the different functions of the cryptosystem will be executed in software on the general-
purpose processor available in the system. The connection between the processor and the
hardware accelerator will be made using standard interconnection buses to facilitate design
reusability. In order to use the proposed multiplier as a peripheral of the ARM processors
integrated into the Xilinx Zynq-7000 and Zynq UltraScale+ devices, two options based on
the Advanced Extensible Interface (AXI) bus that provide different cost/performance ratio
are described and compared below.

4.2.1. AXI4-Lite Option

This option considers the use of AXI4-Lite buses to access the registers that store the
coefficients of the input and output polynomials, as well as a control register to sequence
the different execution phases of the accelerator module, and a status register to detect the
end of the multiplier operation:

• Control register: The four least significant bits of this input register, as shown in
Figure 10a, are used from the software to supply the module reset signal (reset) and
the enable signals for initialization and coefficient loading (load), operation start (start),
and reading of results (read).

• Address register: During the load phase, the register shown in Figure 10b is used to
indicate the indices of the coefficients r(i) and h(j), whose values are provided through
the data_in register. The number of bits required to encode the memory addresses
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depends on the implemented parameter set (nrh = dlog2(N)e). On the other hand,
in the read phase, the content of this register points to the memory address of the
coefficient r(k), whose value is output through the data_out register. As a consequence
of the simplified addressing scheme used in the design, the number of bits needed to
encode the memory addresses is, in this case, a function not only of N but also of the
degree of multiplicity of the polynomial multiplier (ne = dlog2(N/M)e+ dlog2(M)e).
(When M is different from 1, it is necessary to generate the enable signals of the
M memories used to calculate the result of the operation. The solution adopted
in this case to simplify the generation of these signals is to generate the memory
addresses externally).

• Data input (data_in) register: Considering that all the parameter sets defined by the
IEEE standard use values of p and q equal to 3 and 2048, respectively, 2 pairs of
coefficients r(i) and h(j) can be transmitted simultaneously in each AXI4 transfer
using the bit distribution shown in Figure 10c, where dlog2(p)e+ dlog2(q)e bits in the
upper and lower half of the 32-bit register are used for each pair of coefficients.

Figure 10. AXI4-Lite IP module input registers: (a) control register; (b) address register; and (c) data
input register.

• Data output (data_out) register: As in the case of input polynomials, two coefficients
of the multiplier result can be retrieved in each read access to this register through the
AXI4 interface. As shown in Figure 11a, nq bits are used in the upper and lower half
of the 32-bit register.

Figure 11. AXI4-Lite IP module output registers: (a) data output register and (b) end opera-
tion register.
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• End operation (end_op) register: The least significant bit (LSB) of the register shown
in Figure 11b gives access to the status signal of the same name, which will be used
by the general-purpose processor to determine when the polynomial multiplier has
finished its operation and start the results reading phase.

4.2.2. AXI4-Stream Option

When using AXI4-Lite, it is necessary to send, through the address register provided
by the interface, the memory addresses where the coefficients of the input polynomials and
those of the multiplication result should be stored or read from. This fact, together with the
need to carry out many individual transfers, can mean that even though the bandwidth of
these transfers is optimized, the time required to send the multiplier operands and receive
the result can limit the operation of the hardware accelerator for certain applications.
Since the coefficients of the different polynomials are normally stored in or retrieved
from consecutive memory locations, the most appropriate solution is to use AXI4-Stream
interfaces, which can be connected to the processor via First-In First-Out (FIFO) structures
or Direct Memory Access (DMA) modules to establish dedicated data paths between
the HW and SW parts of the embedded system. As shown in Figure 12, to provide the
multiplier IP module with AXI4-Stream interfaces, it is necessary to include two new blocks
responsible for generating protocol signals of external buses, as well as internally providing
memory write addresses for coefficients r(i) and h(j) in the load phase, and read addresses
of coefficients e(k) during the read phase.

Figure 12. Inclusion of input and output interfaces for connecting the multiplier IP module through
AXI4-Stream buses.

5. Implementation Results

Experimental validation and characterization of our proposals for the Xilinx Zynq-
7000 and Zynq UltraScale+ device families have been carried out using the development
boards Pynq-Z2 and Ultra-96, respectively. In addition to a number of generic and specific
logic resources, the former includes as processing element a dual-core ARM Cortex-A9
application processor, while the latter provides a quad-core ARM Cortex-A53 application
processor together with a dual-core ARM Cortex-R5 real-time processor. The tools provided
by the Xilinx Vivado Design Suit were used for the implementation of the polynomial
multiplier IPs from the Verilog descriptions of their functional blocks, as well as for the
hardware development of embedded systems that include these IPs.

Figure 13 illustrates the resources consumed by the implementations of the two
polynomial multiplier options for the EES541EP1 parameter set and different values of
M on Zynq-7000 and Zynq UltraScale+ devices. In order to analyze the contribution
to resource consumption of each of the multiplier functional blocks, the tool option for
maintaining the design hierarchy was used during the synthesis process. In the graphs,
it can be seen that the number of used Look-up Tables (LUTs) increases linearly with the
value of M for the two IPs. For a value of M = 10, the consumption is less than 2% of the
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resources of this type available in the Zynq-7000 device and 1.8% of those available in the
Zynq UltraScale+. As shown in Figure 13a, the resource consumption for both IPs is very
similar. The option that uses AXI4-Stream buses requires 15 LUTs to implement the Din
block and between 20 and 30 for Dout. However, this increase is practically offset by a
reduction in the resources of the memory block for coefficients h(j). The data obtained for
the considered parameter set show that Zynq UltraScale+ designs consume an average of
5% fewer LUTs than those implemented on Zynq-7000 devices. As shown in Figure 13b, as a
consequence of the need to replicate the memory that stores the coefficients h(j), memory
consumption also increases linearly with the value of M. As an example, the consumption
of BRAMs for M = 10 represents 7.5% and 4.9% of the resources of this type available in
the Pynq-Z2 and Ultra-96 boards, respectively.

Figure 13. LUTs (a) and Block RAMs (b) required to implement the MS2XL and MS2XS hardware
accelerators on Zynq-7000 and Zynq UltraScale+ devices for the parameter set EES541EP1 and
different values of M.

The results are similar for the rest of the IEEE Std 1363.1 parameter sets. Figure 14a
compares the data corresponding to the implementation of the two types of accelerator
with eight arithmetic units (M = 8) in Zynq-7000 devices. In this case, by allowing the
Vivado tool to flatten the design hierarchy to optimize synthesis, the implementation of
MS2XS-M8 multipliers requires, on average, almost 10% fewer resources than for MS2XL-
M8 modules. On the other hand, Figure 14b allows us to compare the implementation
results for MS2XS-M6 accelerators, with six arithmetic units (M = 6), in the two families of
programmable devices analyzed in this work. As can be seen, the use of Zynq UltraScale+
devices requires an average of 16% fewer resources than the Zynq-7000.

The encapsulation of the two designs as IP modules was carried out with the help of
Xilinx tools. In both cases, Verilog descriptions include parameters to define the values
of the parameters (N, dr, p, and q) defined by NTRUEncrypt, as well as the degree of
multiplicity, M, used for the synthesis and implementation of the multipliers. The IP
modules can then be incorporated into the Vivado IP catalog and used like the rest of Xilinx
elements to build embedded systems using the IP Integrator tool. To facilitate the design
task, the configuration interfaces of both IP modules have been defined in such a way that it
is possible to globally select the values for each parameter set defined in the IEEE standard
or to do it independently to test new configurations.
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Figure 14. Comparison of LUTs required to implement the different IEEE Std 1363.1 parameter sets
for (a) MS2XL and MS2XS IPs with M = 8 on Zynq-7000 devices; and (b) MS2XS IPs with M = 6 on
Zynq-7000 and Zynq UltraScale+ devices.

6. Embedded System Integration

The interconnection of the hardware accelerator IP modules that use the AXI4-Lite
interface with the processor systems of the programmable devices included in the devel-
opment boards only requires the communications infrastructure provided by the Xilinx
AXI Interconnect block. On the other hand, when the IP modules are equipped with AXI4-
Stream interfaces, these must be connected to the processor systems via AXI4-Stream FIFO
or AXI4-Stream DMA blocks. This last option, which also requires the use of an AXI Smart
Connect block, has been used in the design described in this work.

6.1. Resource Consumption

The cost in terms of resources required to implement polynomial multipliers with the
two interface types in the two programmable devices is quite different, as is the performance
in terms of speed of operation, provided by each of the alternatives. This characteristic is
evidenced by the data summarized below, which correspond to the implementation in both
development boards of embedded test systems that incorporate the hardware accelerator IP
modules analyzed in the previous section. Figure 15a shows the dependence of the number
of LUTs with the value of M for embedded systems incorporating MS2XL and MS2XS IPs
that implement the EES541EP1 parameter set on the programmable devices of Pynq-Z2
and Ultra-96 development boards.

Comparing the graphs shown in Figure 15a with those that appeared in Figure 13a,
it can be seen that the linear dependence of the number of LUTs with the value of M is
maintained. Likewise, it is observed that the amount of resources needed to connect the
IP to the processing system is practically independent of the degree of multiplicity of
the multiplier but varies greatly depending on the type of interface and the device used.
Specifically, the average values for the number of LUTs used to interface the multiplier
with the processing system are 282 (MS2XL) and 3586 (MS2XS) for implementations on the
Pynq-Z2 development board, increasing to 2395 (MS2XL) and 5656 (MS2XS) when using
the Ultra-96 board. On the other hand, as shown in Figure 15b, the behavior regarding
the number of Block RAMs is identical for both boards (graphs are overlapped) but varies
depending on the type of interface used by the multiplier. When using the MS2SX option,
it is necessary to add the memory units required to implement the input and output FIFOs
of the AXI-DMA block used to access the IP AXI4-Stream interfaces (2 additional Block
RAMS for this set of parameters).

An analogous behavior can be observed for the rest of the parameter sets defined
in IEEE Std 1363.1. The graphs in Figure 16 compare the implementation in the two
development boards of embedded systems that incorporate multiplier IPs with the same
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type of interface and a given value of M. As can be observed, the consumption of LUTs
depends both on the type of interface and the device, but it is very similar for all parameter
sets. Regarding the consumption of Block RAMs, the behavior shown in Figure 15b is
maintained, although it should be noted that, depending on the size of the memories
provided by the programmable devices, the number of blocks increases when the value of
N is greater than 1024 (as in the last 4 parameter sets in Table 1).

Figure 15. LUTs (a) and BRAMs (b) required to implement embedded systems that incorporate
MS2XL and MS2XS multipliers on Zynq-7000 and Zynq UltraScale+ devices for the parameter set
EES541EP1 and different values of M.

Finally, in order to illustrate in more detail the resources used and facilitate the compar-
ison of the different interfaces and implementation platforms, Table 2 shows the resources
consumed by the test systems using the two proposed multipliers with a multiplicity
degree of eight to implement the EES541EP1 parameter set on two devices from the Xilinx
Zynq-7000 and ZynqUltraScale+ families. In all cases, both the data related to the multiplier
(IP) and the complete test system (SoC) are shown. The total amount of available resources
of each type is also included (in parentheses) in the table headers so that the degree of
occupation of the device can be easily estimated.

Figure 16. LUTs required to implement embedded systems that incorporate MS2XL-M8 (a) and
MS2XS (b) multipliers on Zynq-7000 and Zynq UltraScale+ devices for the different IEEE Std 1363.1 pa-
rameter sets.
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Table 2. Resources consumed by test systems using the two proposed multipliers with a multiplicity
degree of 8 to implement the EES541EP1 parameter set on devices from the Xilinx Zynq-7000 and
ZynqUltraScale+ families.

Zynq-7000 Slice LUTs
(53,200)

Slice Registers
(106,400)

Slice
(13,300)

LUT as Logic
(53,200)

LUT as Mem.
(17,400)

Block RAM
Tile (140)

MS2XL-M8 IP 743 195 267 743 0 8.5
MS2XS-M8 IP 603 90 209 603 0 8.5
MS2XL-M8 SoC 1094 652 409 1034 60 8.5
MS2XS-M8 So) 4346 5388 2811 3728 618 10.5

Zynq UltraScale+ CLB LUTs
(70,560)

CLB Registers
(141,120)

CLB
(8820)

LUT as Logic
(70,560)

LUT as Mem.
(28,800)

Block RAM
Tile (216)

MS2XL-M8 IP 637 194 145 637 0 8.5
MS2XS-M8 IP 517 90 116 517 0 8.5
MS2XL-M8 SoC 3094 2879 644 2891 203 8.5
MS2XS-M8 SoC 6343 8108 1262 5409 934 10.5

6.2. Performance Evaluation

In hybrid HW/SW solutions implemented in embedded systems, software compo-
nents play a key role in verifying the functionality and evaluating the performance of
hardware accelerators. The two development boards used in this work support the Python
Productivity for Zynq (PYNQ) environment [70]. This environment provides a Python
framework (running on an embedded Linux operating system) that simplifies the integra-
tion of hardware modules and their interaction with software components. To avoid the
possible negative impact on operation speed caused by the use of an interpreted program-
ming language, such as Python, in this occasion, we have used as an alternative the C-API
provided in [71], which provides a similar functionality by means of a set of C routines that
can be compiled to generate executable code.

Components of the PYNQ C-API provide facilities for loading bitstreams to define the
functionality of programmable devices, as well as to interact with external devices through
General-Purpose Input/Output (GPIO) interfaces, and with hardware blocks implemented
on the programmable logic of Zynq devices by using memory-mapped and shared memory
mechanisms. It also includes functions to facilitate management of the Processing System
(mainly, access to internal ARM CPU registers and clock generators) and to interact with
commonly used Xilinx IP blocks (such as AXI DMA or AXI Interrupt Controller). The use of
these facilities simplifies not only the coding of the software drivers necessary to control
the operation of the hardware multipliers but also the programming of the series of tests
used to check and characterize their operation.

The driver for AXI4-Lite IPs uses read/write instructions to access the memory-
mapped registers described in Section 4.2 in order to sequence the successive multiplier
operation phases, as well as to load the input coefficients and read the resulting ones
when the operation is completed. This driver also performs the generation of correct I/O
memory addresses according to the value of M. Operation sequencing and coefficient
addresses generation are performed internally in AXI4-Stream IPs. In this case, the driver
is responsible for initializing the shared memory, configuring the DMA block, activating
the operation of the read and write channels, and waiting for the operation to complete.

The IP test programs developed in this work combine the previous drivers with a set
of higher-level functions that facilitate checking the multipliers behavior and obtaining
metrics to compare their performance. The commands used to run them admit a series
of options to choose the IP multiplicity degree (which determines the bitstream that will
be used to program the Zynq device), set the number of times the test will be executed
(to facilitate obtaining statistical values), and select the debug level (which conditions the
output provided by the program). Using these commands through a set of shell scripts
executed in the processing systems of the programmable devices included in the Pynq-Z2
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and Ultra-96 boards, an extensive set of tests of the proposed solutions has been carried
out, whose main results are summarized in the following paragraphs.

The graphs in Figure 17 show the number of clock cycles spent to complete the
polynomial multiplication required in NTRUEncrypt when using embedded systems,
with the two described IPs and the parameters set EES541EP1, to implement polynomial
multipliers with different numbers of arithmetic units in a Zynq-7000 device.

Figure 17. Clock cycles required to complete polynomial multiplication for embedded systems that
incorporate IPs MS2XS (a) and MS2XL (b), implementing the EES541EP1 parameter set with different
values of M in a Zynq-7000 device.

As can be seen, the behavior varies significantly depending on the interface used by
the IP module, as a consequence of the mechanisms used to load the input polynomial
coefficients and read the output polynomial coefficients in both alternatives. When the
MS2XS module is used, the timing response of the test systems implemented on either of
the two development boards follows the theoretical curve shown with a continuous line in
Figure 17a, to which a constant value corresponding to the exchange of coefficients through
the AXI4-Stream interfaces has been added (approximately 10 clock cycles for the chosen
parameter set).

The timing behavior of test systems that incorporate the MS2XL module presents
two distinctive characteristics, as illustrated in Figure 17b for the design implemented in
the Pynq-Z2 board. On the one hand, only the results of the systems that use multipliers
with even values of M fit the theoretical curve. On the other hand, the offset that needs
to be added to adjust these results is much higher in this case. The first peculiarity has
to do with the selection mechanism of the different replicas of memh, as well as the fact
that the values of two coefficients are transmitted at the same time, which means that
the maximum bandwidth cannot be used when M takes odd values. The second is a
consequence of the high number of accesses that must be made to the internal registers
of the IP module through the AXI4-Lite interface to provide the operands and obtain the
result of the operation. When working at the same clock frequency, implementations on
the Ultra-96 board are slower than those on the Pynq-Z2 board, which is a consequence of
UltraScale+ devices having a high read latency through the AXI bus and which makes the
times for reading the results of the multipliers eight times greater than those for loading
the coefficients.

The behavior described is similar for other parameter sets. Operation times depend
on the type of IP interface and the values of N and dr defined by the set of parameters
implemented, as can be clearly seen in Figure 18a, which shows the data corresponding to
the implementation on the Ultra-96 board of test systems that include the MS2XS IP with
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M = 6 for the different sets of parameters in Table 1. However, as can be seen in Figure 18b,
which compares Pynq-Z2 implementations of the IEEE std 1363 parameter sets, loading
coefficients and reading result times play an important role in MS2XL IP-based test systems,
which can severely affect their performance.

Figure 18. Clock cycles required to complete polynomial multiplication using the different IEEE
Std 1363.1 parameter sets for embedded systems that incorporate: (a) MS2XS IPs with M = 6
implemented in a Zynq UltraScale+; (b) MS2XL IPs with M = 8 implemented in a Zynq-7000 device.

The high read latency through the AXI bus that affects Zynq UltraScale+ devices means,
for example, that implementations based on the MS2XL IP on the Ultra-96 board have
lower performance than on the Pynq-Z2 board when using clocks with the same frequency.

The PYNQ environment allows to modify on the fly the frequency of clocks generated
by the ARM processors in Zynq devices. This feature makes it possible to verify the be-
havior of the test systems under operating conditions more demanding than those initially
proposed, without the need to go through the design synthesis and implementation stages
again. Figure 19 illustrates some of the results of this analysis. Figure 19a shows a compari-
son of the relationship between the operation time and the number of arithmetic units of
systems using the MS2XL IP and the EES541EP1 parameter set for different development
boards and operating frequencies. The results show that when operating at 100 MHz,
the implementations in Pynq-Z2 are faster than those in Ultra-96 as a consequence of the
result reading times through the AXI4-Lite bus. However, the maximum clock frequency
for correct operation in the Pynq-Z2 board is 125 MHz, while, with the Ultra-96, this value
goes up to 250 MHz, resulting in lower times.

Figure 19b, on the other hand, also shows the relationship between operating time
and M in systems with the same parameter set, now using the IP MS2XS, implemented on
the Ultra-96 board, and operating with different clock frequencies. The results obtained
show that all the test systems operate correctly when working at frequencies of 100, 150,
and 215 MHz. The multiplication results are also correct for systems with M < 10 using a
clock of 250 MHz.



Sensors 2022, 22, 2057 21 of 27

Figure 19. Comparison of multiplier operating times vs. M for: (a) MS2XL-based test systems
implementing the parameter set EES541EP1 running at two clock frequencies on Pynq-Z2 and Ultra-
96 boards and (b) MS2XS-based test systems implementing the same parameter set on the Ultra-96
board running at different clock frequencies.

7. Integration of HW Accelerators into LibNTRU

The previous analysis allows us to characterize and compare, in terms of cost and
performance, the implementation of the proposed polynomial multiplier on two different
programmable device families as a function of the kind of interface, the degree of multiplic-
ity, and the parameter set chosen. This information is valuable from the point of view of the
implementation of the embedded system. However, from the perspective of its practical
application, it is also very interesting to evaluate the level of improvement that these
hardware accelerators provide when they are used to implement the cryptographic scheme
for which they were conceived. To this end, this section describes the use of the proposed
multipliers integrated within the LibNTRU software library [72], as well as the procedures
used to estimate the improvement they provide against a fully software implementation
when performing the encryption operation defined in NTRUEncrypt.

LibNTRU is a C implementation of the public-key encryption scheme NTRUEncrypt
listed in IEEE Std P1363.1. It contains open source code that has been tested on different
operating systems, including Windows (MinGW), Mac OS X, and Linux, with packages
available for the most common distributions of the latter. In addition to the functions to
implement the operations of the cryptographic scheme, LibNTRU also provides a series
of test routines that simplify the verification of correct behavior and the evaluation of
performance for different options and parameter sets. Version 0.5 of the library, downloaded
from the GitHub repository, was used in this work in combination with the Vivado software
development tools to compile and install this software into the PYNQ environment with
the objective of using it for the implementation of NTRUEncrypt in embedded systems
built on Xilinx’s Zynq-7000 and Zynq UltraScale+ programmable devices.

To incorporate the functionality provided by LibNTRU into the test systems described
in the previous section, as well as to analyze the advantages that the use of the hardware
accelerators proposed in this work can bring, it was necessary to carry out the following
tasks. First, the software drivers discussed in the previous section were adapted so that they
presented the same formal parameters as the library functions responsible for polynomial
multiplication. Next, taking as a model those already included in the library, new test
programs were coded to compare pure software implementations with hybrid solutions
that perform polynomial multiplication on hardware. Finally, to facilitate migration to
different development platforms and embedded systems, the makefile used to compile and
install the functions and test programs was conveniently updated to incorporate the new
functionality. As in the case of the test programs described in Section 6, those incorporated
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into the LibNTRU library also admit a set of parameters that allow the choice of the number
of tests to be carried out, the times each test is repeated to obtain average values, and the
amount of information provided for each of the embedded systems considered in our study.
This information allows us not only to verify the correct operation of the system but also to
determine the time invested in each of the tasks it performs.

In order to evaluate the performance of the hardware accelerators as a function of
the number of arithmetic units, as well as to compare the behavior when using different
parameter sets, more than 120 test systems were implemented on the 2 development boards.

Figure 20a shows the evolution versus M of the time invested in NTRU encryption
operation in embedded systems that use the LibNTRU library and the two IPs proposed
in this work. The graphs allow us to compare the results of the software implementations
executed on the ARM Cortex-A9 processors of the Zynq-7000 device on the Pynq-Z2 board
with hybrid HW/SW implementations using AXI4-Lite and AXI4-Stream versions of the
polynomial multiplier controlled by clock signals of 100 and 125 MHz. As can be seen in
Figure 20b, for the set of parameters chosen, the use of both hardware accelerators allows
improving the performance of the encryption operation for values of M ≥ 2. The acceleration
factors range from 1.05 (for the AXI4-Lite-based IP with M = 2 @ 100 MHz) to 2.5 (for the
AXI4-Stream IP with M = 40 @ 125 MHz). For a typical value of M = 10, the acceleration
factors range from 1.48 to 2.25, depending on the interface of the multiplier used and its
operating frequency.

Figure 20. Evolution versus number of AUs of the time invested (a) and the acceleration factor
reached (b) in the encryption operation using the set of parameters EES541EP1 for SW and HW/SW
embedded systems implemented on the Pynq-Z2 board (time displayed in µs).

This behavior is similar for embedded systems implemented on Zynq-7000 devices for
all the parameter sets defined in the IEEE standard. Figure 21a shows the encryption times
for SW and HW/SW implementations using AXI4-Lite and AXI4-Stream interfaces with
M = 8 and M = 6, respectively, and operating frequencies of 100 and 200 MHz. As can
be seen in Figure 21b, for the different sets of parameters, the acceleration factors range
between 1.7 and 2.8 for systems that use the MS2XL IP module and between 2.0 and 3.1 for
systems that use the MS2XS IP, operating in both cases at 125 MHz. Values within the
rectangle in red indicate that HW acceleration is achieved.

The results are quite different when using the Ultra-96 board mainly due to two reasons.
On the one hand, the ARM Cortex-A35 processors available in Zynq UltraScale+ devices
operate 3.3 times faster than the ARM Cortex-A9 processors of Zynq-7000 devices, so
only hybrid solutions using the fastest hardware accelerators could be competitive against
pure software implementations. On the other hand, the aforementioned high read latency
through the AXI4 bus in Zynq UltraScale+ devices greatly penalizes the use of hardware
accelerators that incorporate the AXI4-Lite interface. As a consequence, regardless of the
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value of M and the operating frequency (which can reach 250 MHz in this device), no
embedded system using the polynomial multiplier IP based on the AXI4-Lite interface
is capable of providing an acceleration factor greater than 1 to implement the encryption
operation with many of the standardized parameter sets.

Figure 21. Times invested (a) and acceleration factors reached (a) in the encryption operation using
the parameter sets defined in IEEE Std 1363.1 for SW and HW/SW embedded systems implemented
on the Pynq-Z2 board (time displayed in µs).

The reduction in the times spent for loading coefficients and reading results in systems
that use hardware polynomial multipliers with the AXI4-Stream interface does allow, in this
case, for an improvement in the performance of the system over and above the increase
in speed of the processing systems. Figure 22a shows the evolution versus M of the time
invested in encryption operation for embedded systems that use the multiplier IP with the
AXI4-Stream interface running at different operating frequencies and allows comparing
its performance with that of a software implementation. As can be seen in Figure 22b,
for the EES541EP1 parameter set, the use of hardware accelerators allows speeding up
the encryption operation for values of M ≥ 10 when a 100 MHz clock is used, M ≥ 6
for 150 MHz, M ≥ 2 for 215 MHz, and M ≥ 1 if operating at 250 MHz. The acceleration
factors compared to software implementation reach values greater than 1.3 for this last
operating frequency.

Figure 22. Evolution versus number of arithmetic units of the time invested (a) and the acceleration
factor reached (b) in the encryption operation using the set of parameters EES541EP1 for SW and
HW/SW embedded systems implemented on the Ultra-96 board using AXI4-Stream IPs (time
displayed in µs).
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The situation is similar for the other parameter sets defined in the IEEE standard, as il-
lustrated in Figure 23a. The enhancement factor is between 1 and 1.7 for systems with M = 6
operating at 250 MHz. Finally, as Figure 23b shows, for the set of parameters in Table 1 that
provide the same level of security, the lower the value of N and the higher the value of dr,
the greater the speed improvement introduced by the use of hardware accelerators.

Figure 23. Evolution versus number of arithmetic units of the time invested (a) and the acceleration
factor reached (b) in the encryption operation using the parameter sets defined in IEEE Std 1363.1
for SW and HW/SW embedded systems implemented on the Ultra-96 board using AXI4-Stream IPs
(time displayed in µs).

8. Conclusions

This paper presents a hardware architecture to speed up polynomial multiplication
that is used in the encryption and decryption operations of different variants of NTRU-
based cryptographic schemes. The proposed solution contemplates the use of a variable
number of arithmetic units to calculate several coefficients of the output polynomial in
parallel, which allows designers to establish cost/performance compromises suitable for
each application. This architecture is the basis of two IP modules, with standard interfaces
AXI4-Lite and AXI4-Stream, respectively, that facilitate hybrid HW/SW implementations on
Xilinx’s last generation programmable devices of the encryption and decryption operations
defined in the NTRUEncrypt cryptographic scheme.

The work also provides a wide set of implementation results, which allows us to
compare the different alternatives in terms of resources and execution times. This study
considers the implementation of embedded systems in programmable devices of the
Xilinx Zynq-7000 and Zynq-UltraScale+ families incorporating the two IPs and using
the different parameter sets defined in IEEE Std 1363.1. The test programs were developed
on the implementation platforms themselves using the facilities provided by the PYNQ
environment. This strategy also made it easier to integrate hardware accelerators into the
LibNTRU library to analyze the improvement achieved when the encryption operation is
performed using hybrid solutions compared to pure software implementations running on
the embedded system’s processor.

Finally, although the designs and results described in the paper are basically focused
on the implementation of the currently standardized version of NTRUEncrypt, both the
proposed architecture and methodology may also be very useful to facilitate future hard-
ware implementation of other versions still under consideration in the context of the NIST
PQC competition, in order to make them suitable for increasing the security of IoT devices.

Author Contributions: All authors have contributed to conceptualization, investigation, and data
curation-related tasks. Additionally, P.B. played an important role in supervision and funding
acquisition. M.C.M.-R. worked out a first version of the manuscript. E.C.-R. contributed to the



Sensors 2022, 22, 2057 25 of 27

methodology, as well as to the design and validation of the hardware modules. S.S.-S. proposed the
methodology, implemented the prototypes, coded and executed the test programs, and coordinated
the final manuscript edition, incorporating the suggestions of the rest of the authors. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was supported in part by the SPIRS Project with Grant Agreement No. 952622
under the EU H2020 research and innovation programme and the ARES Project PID2020-116664RB-
100 funded by MCIN/AEI/10.13039/501100011033 and the NextGenerationEU/PRTR. M.C.M.R.
holds a Postdoc fellowship from the Andalusia Government with support from PO FSE of EU. E.C.R.
is supported by the FPU20/03008 predoc grant from the Spanish government.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Atzori, L.; Iera, A.; Morabito, G. The Internet of Things: A survey. Comput. Netw. 2010, 54, 2787–2805. [CrossRef]
2. Li, S.; Xu, L.; Zhao, S. The internet of things: A survey. Inf. Syst. Front. 2014, 17, 243–259. [CrossRef]
3. Narayanan, K. Addressing the challenges facing IoT adoption. Microw. J. 2017, 60, 110–118.
4. Mehta, R.; Sahni, J.; Khanna, K. Internet of Things: Vision, Applications and Challenges. Procedia Comput. Sci. 2018, 132, 1263–

1269.
5. Chegini, H.; Naha, R.K.; Mahanti, A.; Thulasiraman, P. Process Automation in an IoT–Fog–Cloud Ecosystem: A Survey and

Taxonomy. IoT 2021, 2, 92–118. [CrossRef]
6. Gilchrist, A. Introducing Industry 4.0. In Industry 4.0: The Industrial Internet of Things; Apress: Berkeley, CA, USA, 2016;

pp. 195–215. [CrossRef]
7. Öztemel, E.; Gursev, S. Literature review of Industry 4.0 and related technologies. J. Intell. Manuf. 2020, 31, 127–182. [CrossRef]
8. Yang, F.; Gu, S. Industry 4.0, a revolution that requires technology and national strategies. Complex Intell. Syst. 2021, 7, 1311–1325.

[CrossRef]
9. Cheng, G.J.; Liu, L.T.; Qiang, X.; Liu, Y. Industry 4.0 Development and Application of Intelligent Manufacturing. In Proceedings

of the 2016 International Conference on Information System and Artificial Intelligence (ISAI), Hong Kong, China, 24–26 June
2016; pp. 407–410. [CrossRef]

10. Xu, L.D.; Xu, E.L.; Li, L. Industry 4.0: State of the art and future trends. Int. J. Prod. Res. 2018, 56, 2941–2962. [CrossRef]
11. Alcácer, V.; Cruz-Machado, V. Scanning the Industry 4.0: A Literature Review on Technologies for Manufacturing Systems. Eng.

Sci. Technol. Int. J. 2019, 22, 899–919. [CrossRef]
12. Xu, T.; Wendt, J.B.; Potkonjak, M. Security of IoT systems: Design challenges and opportunities. In Proceedings of the 2014

IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, USA, 2–6 November 2014; pp. 417–423.
[CrossRef]

13. Patwary, A.A.N.; Naha, R.K.; Garg, S.; Battula, S.K.; Patwary, M.A.K.; Aghasian, E.; Amin, M.B.; Mahanti, A.; Gong, M. Towards
Secure Fog Computing: A Survey on Trust Management, Privacy, Authentication, Threats and Access Control. Electronics 2021,
10, 1171. [CrossRef]

14. Dhirani, L.L.; Armstrong, E.; Newe, T. Industrial IoT, Cyber Threats, and Standards Landscape: Evaluation and Roadmap.
Sensors 2021, 21, 3901. [CrossRef]

15. Crowder, R. 11—Cyber Physical systems and security. In Electric Drives and Electromechanical Systems, 2nd ed.; Crowder, R., Ed.;
Butterworth-Heinemann: Oxford, UK, 2020; pp. 271–289. [CrossRef]

16. Malina, L.; Hajny, J.; Fujdiak, R.; Hosek, J. On perspective of security and privacy-preserving solutions in the internet of things.
Comput. Netw. 2016, 102, 83–95. [CrossRef]

17. Rajendran, S.; Mary Lourde, R. Security Threats of Embedded Systems in IoT Environment. In Inventive Communication and
Computational Technologies; Ranganathan, G., Chen, J., Rocha, Á., Eds.; Springer: Singapore, 2020; pp. 745–754. [CrossRef]

18. Lezzi, M.; Lazoi, M.; Corallo, A. Cybersecurity for Industry 4.0 in the current literature: A reference framework. Comput. Ind.
2018, 103, 97–110. [CrossRef]

19. Gebremichael, T.; Ledwaba, L.; Eldefrawy, M.; Hancke, G.; Pereira, N.; Gidlund, M.; Akerberg, J. Security and Privacy in the
Industrial Internet of Things: Current Standards and Future Challenges. IEEE Access 2020, 8, 152351–152366. [CrossRef]

20. Tsiknas, K.; Taketzis, D.; Demertzis, K.; Skianis, C. Cyber Threats to Industrial IoT: A Survey on Attacks and Countermeasures.
IoT 2021, 2, 163–186. [CrossRef]

21. Pal, S.; Hitchens, M.; Rabehaja, T.; Mukhopadhyay, S. Security Requirements for the Internet of Things: A Systematic Approach.
Sensors 2020, 20, 5897. [CrossRef]

22. Hodgson, R. Solving the security challenges of IoT with public key cryptography. Netw. Secur. 2019, 2019, 17–19. [CrossRef]

http://doi.org/10.1016/j.comnet.2010.05.010
http://dx.doi.org/10.1007/s10796-014-9492-7
http://dx.doi.org/10.3390/iot2010006
http://dx.doi.org/10.1007/978-1-4842-2047-4_13
http://dx.doi.org/10.1007/s10845-018-1433-8
http://dx.doi.org/10.1007/s40747-020-00267-9
http://dx.doi.org/10.1109/ISAI.2016.0092
http://dx.doi.org/10.1080/00207543.2018.1444806
http://dx.doi.org/10.1016/j.jestch.2019.01.006
http://dx.doi.org/10.1109/ICCAD.2014.7001385
http://dx.doi.org/10.3390/electronics10101171
http://dx.doi.org/10.3390/s21113901
http://dx.doi.org/10.1016/B978-0-08-102884-1.00011-X
http://dx.doi.org/10.1016/j.comnet.2016.03.011
http://dx.doi.org/10.1007/978-981-15-0146-3_70
http://dx.doi.org/10.1016/j.compind.2018.09.004
http://dx.doi.org/10.1109/ACCESS.2020.3016937
http://dx.doi.org/10.3390/iot2010009
http://dx.doi.org/10.3390/s20205897
http://dx.doi.org/10.1016/S1353-4858(19)30011-X


Sensors 2022, 22, 2057 26 of 27

23. Höglund, J.; Lindemer, S.; Furuhed, M.; Raza, S. PKI4IoT: Towards public key infrastructure for the Internet of Things. Comput.
Secur. 2020, 89, 101658. [CrossRef]

24. Profentzas, C.; Günes, M.; Nikolakopoulos, Y.; Landsiedel, O.; Almgren, M. Performance of Secure Boot in Embedded Systems. In
Proceedings of the 2019 15th International Conference on Distributed Computing in Sensor Systems (DCOSS), Santorini, Greece,
29–31 May 2019; pp. 198–204. [CrossRef]

25. Mavroeidis, V.; Vishi, K.; Zych, M.D.; Jøsang, A. The Impact of Quantum Computing on Present Cryptography. Int. J. Adv.
Comput. Sci. Appl. 2018, 9. [CrossRef]

26. Shor, P. Algorithms for quantum computation: Discrete logarithms and factoring. In Proceedings of the 35th Annual Symposium
on Foundations of Computer Science, Santa Fe, NM, USA, 20–22 November 1994; pp. 124–134. [CrossRef]

27. Bernstein, D.J.; Lange, T. Post-quantum cryptography. Nature 2017, 549, 188–194. [CrossRef]
28. Marzougui, S.; Krämer, J. Post-Quantum Cryptography in Embedded Systems. In Proceedings of the 14th International

Conference on Availability, Reliability and Security (ARES’19), Canterbury, UK, 26–29 August 2019; pp. 1–7. [CrossRef]
29. NIST. Post-Quantum Cryptography Standardization. Available online: https://csrc.nist.gov/news/2016/public-key-post-

quantum-cryptographic-algorithms (accessed on 20 February 2022).
30. NIST. Post-Quantum Cryptography—Round 3 Submissions. Available online: https://csrc.nist.gov/projects/post-quantum-

cryptography/round-3-submissions (accessed on 20 February 2022).
31. NIST. Third PQC Standardization Conference. Available online: https://csrc.nist.gov/Events/2021/third-pqc-standardization-

conference (accessed on 20 February 2022).
32. Hoffstein, J.; Pipher, J.; Silverman, J.H. NTRU: A ring-based public key cryptosystem. In Algorithmic Number Theory;

Buhler, J.P., Ed.; Springer: Berlin/ Heidelberg, Germany, 1998; pp. 267–288. [CrossRef]
33. IEEE Std 1363.1-2008; IEEE Standard Specification for Public Key Cryptographic Techniques Based on Hard Problems over

Lattices. IEEE: New York, NY, USA, 2009; pp. 1–81. [CrossRef]
34. Lattice-Based Polynomial Public Key Establishment Algorithm for the Financial Services Industry. ANSI X9.98-2010. 2011.

Available online: https://webstore.ansi.org/standards/ascx9/ansix9982010r2017 (accessed on 20 February 2022).
35. Hoffstein, J.; Silverman, J. Optimizations for NTRU. In Public-Key Cryptography and Computational Number Theory; De Gruyter:

Berlin, Geramny; New York, NY, USA, 2001; pp. 77–88. [CrossRef]
36. Howgrave-Graham, N.; Silverman, J.; Whyte, W. Choosing parameter sets for NTRUEncrypt with NAEP and SVES-3. IACR

Cryptol. EPrint Arch. 2005, 2005, 45. [CrossRef]
37. Hirschhorn, P.S.; Hoffstein, J.; Howgrave-Graham, N.; Whyte, W. Choosing NTRUEncrypt Parameters in Light of Combined

Lattice Reduction and MITM Approaches. In Applied Cryptography and Network Security; Abdalla, M., Pointcheval, D., Fouque,
P.A., Vergnaud, D., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 437–455. [CrossRef]

38. Hoffstein, J.; Howgrave-Graham, N.; Pipher, J.; Whyte, W. Practical lattice-based cryptography: NTRUEncrypt and NTRUSign.
In The LLL Algorithm; Springer: Berlin/Heidelberg, Germany, 2009; pp. 349–390. [CrossRef]

39. Hoffstein, J.; Pipher, J.; Schanck, J.M.; Silverman, J.H.; Whyte, W.; Zhang, Z. Choosing Parameters for NTRUEncrypt. Cryptology
ePrint Archive, Report 2015/708. 2015. Available online: https://ia.cr/2015/708 (accessed on 20 February 2022).

40. Gaithuru, J.; Salleh, M.; Bakhtiari, M. Identification of influential parameters for NTRU decryption failure and recommendation
of extended parameter selection criteria for elimination of decryption failure. IAENG Int. J. Comput. Sci. 2017, 44, 358–367.

41. Chen, C.; Hoffstein, J.; Whyte, W.; Zhenfei, Z. NIST PQ Submission: NTRUEncrypt, a Lattice Based Encryption Algorithm, tech.
rep., NIST PQC Standardization, Round 1. 2017. Available online: https://csrc.nist.gov/projects/post-quantum-cryptography/
round-1-submissions (accessed on 20 February 2022).

42. Hülsing, A.; Rijneveld, J.; Schanck, J.; Schwabe, P. High-Speed Key Encapsulation from NTRU. In Cryptographic Hardware and
Embedded Systems—CHES 2017; Fischer, W., Homma, N., Eds.; Springer International Publishing: Cham, Switzerlamd, 2017;
pp. 232–252. [CrossRef]

43. Bernstein, D.J.; Chuengsatiansup, C.; Lange, T.; van Vredendaal, C. NTRU Prime: Reducing Attack Surface at Low Cost.
Cryptology ePrint Archive, Report 2016/461. 2016. Available online: https://ia.cr/2016/461 (accessed on 20 February 2022).

44. Hoffstein, J.; Howgrave-Graham, N.; Pipher, J.; Silverman, J.H.; Whyte, W. NTRUSign: Digital Signatures Using the NTRU
Lattice. In Topics in Cryptology—CT-RSA 2003; Joye, M., Ed.; Springer: Berlin/Heidelberg, Germany, 2003; pp. 122–140. [CrossRef]

45. Chen, C.; Danba, O.; Hoffstein, J.; Rijneveld, A.H.J.; Schanck, J.M.; Schwabe, P.; Whyte, W.; Zhenfei, Z. NIST PQ Submission:
NTRU, Algorithm Specifications And Supporting Documentation, tech. rep., NIST PQC Standardization, Round 2. 2019.
Available online: https://ntru.org/f/ntru-20190330.pdf (accessed on 20 February 2022).

46. Guillen, O.M.; Pöppelmann, T.; Bermudo Mera, J.M.; Bongenaar, E.F.; Sigl, G.; Sepulveda, J. Towards post-quantum security for
IoT endpoints with NTRU. In Proceedings of the Design, Automation & Test in Europe Conference Exhibition (DATE), Lausanne,
Switzerland, 27–31 March 2017; pp. 698–703. [CrossRef]

47. Bailey, D.V.; Coffin, D.; Elbirt, A.; Silverman, J.H.; Woodbury, A.D. NTRU in Constrained Devices. In Cryptographic Hardware and
Embedded Systems—CHES 2001; Koç, Ç.K., Naccache, D., Paar, C., Eds.; Springer: Berlin/Heidelberg, Germany, 2001; pp. 262–272.
[CrossRef]

48. Malina, L.; Popelova, L.; Dzurenda, P.; Hajny, J.; Martinasek, Z. On Feasibility of Post-Quantum Cryptography on Small Devices.
IFAC-PapersOnLine 2018, 51, 462–467.

http://dx.doi.org/10.1016/j.cose.2019.101658
http://dx.doi.org/10.1109/DCOSS.2019.00054
http://dx.doi.org/10.14569/IJACSA.2018.090354
http://dx.doi.org/10.1109/SFCS.1994.365700
http://dx.doi.org/10.1038/nature23461
http://dx.doi.org/10.1145/3339252.3341475
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/news/2016/public-key-post-quantum-cryptographic-algorithms
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-3-submissions
https://csrc.nist.gov/Events/2021/third-pqc-standardization-conference
https://csrc.nist.gov/Events/2021/third-pqc-standardization-conference
http://dx.doi.org/10.1007/BFb0054868
http://dx.doi.org/10.1109/IEEESTD.2009.4800404
https://webstore.ansi.org/standards/ascx9/ansix9982010r2017
http://dx.doi.org/10.1515/9783110881035.77
http://dx.doi.org/10.1007/978-3-540-30574-3_10
http://dx.doi.org/10.1007/978-3-642-01957-9_27
http://dx.doi.org/10.1007/978-3-642-02295-1_11
https://ia.cr/2015/708
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
http://dx.doi.org/10.1007/978-3-319-66787-4_12
https://ia.cr/2016/461
http://dx.doi.org/10.1007/3-540-36563-X_9
https://ntru.org/f/ntru-20190330.pdf
http://dx.doi.org/10.23919/DATE.2017.7927079
http://dx.doi.org/10.1007/3-540-44709-1_22


Sensors 2022, 22, 2057 27 of 27

49. Basu, K.; Soni, D.; Nabeel, M.; Karri, R. NIST Post-Quantum Cryptography—A Hardware Evaluation Study. Cryptology ePrint
Archive, Report 2019/047. 2019. Available online: https://ia.cr/2019/047 (accessed on 20 February 2022).

50. Imran, M.; Abideen, Z.U.; Pagliarini, S. An Experimental Study of Building Blocks of Lattice-Based NIST Post-Quantum
Cryptographic Algorithms. Electronics 2020, 9, 1953. [CrossRef]

51. Farahmand, F.; Sharif, M.U.; Briggs, K.; Gaj, K. A High-Speed Constant-Time Hardware Implementation of NTRUEncrypt SVES.
In Proceedings of the 2018 International Conference on Field-Programmable Technology (FPT), Naha, Japan, 10–14 December
2018; pp. 190–197. [CrossRef]

52. Atici, A.C.; Batina, L.; Fan, J.; Verbauwhede, I.; Berna Ors Yalcin, S. Low-cost implementations of NTRU for pervasive security.
In Proceedings of the 2008 International Conference on Application-Specific Systems, Architectures and Processors, Leuven,
Belgium, 2–4 July 2008; pp. 79–84. [CrossRef]

53. Hoffstein, J.; Silverman, J.H. Random small Hamming weight products with applications to cryptography. Discret. Appl. Math.
2003, 130, 37–49.

54. Zhan, X.; Zhang, R.; Xiong, Z.; Zheng, Z.; Liu, Z. Efficient Implementations of NTRU in Wireless Network. Commun. Netw. 2013,
5, 485–492. [CrossRef]

55. O’Rourke, C. Efficient NTRU Implementations. Master’s Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2002.
56. Kaps, J.P. Cryptography for Ultra-Low Power Devices. Ph.D. Thesis, Worcester Polytechnic Institute, Worcester, MA, USA, 2006.
57. Kamal, A.A.; Youssef, A.M. Strengthening hardware implementations of NTRUEncrypt against fault analysis attacks. J. Cryptogr.

Eng. 2013, 3, 227–240. [CrossRef]
58. Kamal, A.A.; Youssef, A.M. An FPGA implementation of the NTRUEncrypt cryptosystem. In Proceedings of the 2009 International

Conference on Microelectronics—ICM, Marrakech, Morocco, 9–22 December 2009; pp. 209–212. [CrossRef]
59. Liu, B.; Wu, H. Efficient architecture and implementation for NTRUEncrypt system. In Proceedings of the 58th IEEE International

Midwest Symposium on Circuits and Systems (MWSCAS), Fort Collins, CO, USA, 2–5 August 2015; pp. 1–4. [CrossRef]
60. Liu, B.; Wu, H. Efficient multiplication architecture over truncated polynomial ring for NTRUEncrypt system. In Proceedings of

the 2016 IEEE International Symposium on Circuits and Systems (ISCAS), Montreal, QC, Canada, 22–25 May 2016; pp. 1174–1177.
[CrossRef]

61. Braun, K.; Fritzmann, T.; Maringer, G.; Schamberger, T.; Sepúlveda, J. Secure and Compact Full NTRU Hardware Implementation.
In Proceedings of the 2018 IFIP/IEEE International Conference on Very Large Scale Integration (VLSI-SoC), Verona, Italy, 8–10
October 2018; pp. 89–94. [CrossRef]

62. Camacho-Ruiz, E.; Martínez-Rodríguez, M.C.; Sánchez-Solano, S.; Brox, P. Accelerating the Development of NTRU Algorithm on
Embedded Systems. In Proceedings of the 2020 XXXV Conference on Design of Circuits and Integrated Systems (DCIS), Segovia,
Spain, 18–20 November 2020; pp. 1–6. [CrossRef]

63. Camacho-Ruiz, E.; Sánchez-Solano, S.; Brox, P.; Martínez-Rodríguez, M.C. Timing-Optimized Hardware Implementation to
Accelerate Polynomial Multiplication in the NTRU Algorithm. J. Emerg. Technol. Comput. Syst. 2021, 17. [CrossRef]

64. Qin, Z.; Tong, R.; Wu, X.; Bai, G.; Wu, L.; Su, L. A Compact Full Hardware Implementation of PQC Algorithm NTRU. In
Proceedings of the 2021 International Conference on Communications, Information System and Computer Engineering (CISCE),
Beijing, China, 14–16 May 2021; pp. 792–797. [CrossRef]

65. Farahmand, F.; Dang, V.B.; Nguyen, D.T.; Gaj, K. Evaluating the Potential for Hardware Acceleration of Four NTRU-Based Key
Encapsulation Mechanisms Using Software/Hardware Codesign. In Post-Quantum Cryptography; Ding, J., Steinwandt, R., Eds.;
Springer International Publishing: Cham, Switzerland, 2019; pp. 23–43. [CrossRef]

66. Dang, V.B.; Farahmand, F.; Andrzejczak, M.; Gaj, K. Implementing and Benchmarking Three Lattice-Based Post-Quantum
Cryptography Algorithms Using Software/Hardware Codesign. In Proceedings of the 2019 International Conference on
Field-Programmable Technology (ICFPT), Tianjin, China, 9–13 December 2019; pp. 206–214. [CrossRef]

67. Dang, V.B.; Farahmand, F.; Andrzejczak, M.; Mohajerani, K.; Nguyen, D.T.; Gaj, K. Implementation and Benchmarking of Round
2 Candidates in the NIST Post-Quantum Cryptography Standardization Process Using Hardware and Software/Hardware
Co-design Approaches. Cryptology ePrint Archive, Report 2020/795. 2020. Available online: https://ia.cr/2020/795 (accessed
on 20 February 2022).

68. Xie, J.; Basu, K.; Gaj, K.; Guin, U. Special Session: The Recent Advance in Hardware Implementation of Post-Quantum
Cryptography. In Proceedings of the 2020 IEEE 38th VLSI Test Symposium (VTS), San Diego, CA, USA, 5–8 April 2020; pp. 1–10.
[CrossRef]

69. Farahmand, F.; Nguyen, D.T.; Dang, V.B.; Ferozpuri, A.; Gaj, K. Software/Hardware Codesign of the Post Quantum Cryptography
Algorithm NTRUEncrypt Using High-Level Synthesis and Register-Transfer Level Design Methodologies. In Proceedings of the
29th International Conference on Field Programmable Logic and Applications (FPL), Barcelona, Spain, 8–12 September 2019;
pp. 225–231. [CrossRef]

70. PYNQ—Python Productivity for Zynq. Available online: http://www.pynq.io (accessed on 20 February 2022).
71. Brown, N. PYNQ API: C API for PYNQ FPGA Board. Available online: https://github.com/mesham/pynq_api (accessed on 20

February 2022).
72. LibNTRU: C Implementation of NTRUEncrypt. Available online: https://github.com/tbuktu/libntru (accessed on 20

February 2022).

https://ia.cr/2019/047
http://dx.doi.org/10.3390/electronics9111953
http://dx.doi.org/10.1109/FPT.2018.00036
http://dx.doi.org/10.1109/ASAP.2008.4580158
http://dx.doi.org/10.4236/cn.2013.53B2089
http://dx.doi.org/10.1007/s13389-013-0061-7
http://dx.doi.org/10.1109/ICM.2009.5418649
http://dx.doi.org/10.1109/MWSCAS.2015.7282143
http://dx.doi.org/10.1109/ISCAS.2016.7527455
http://dx.doi.org/10.1109/VLSI-SoC.2018.8645015
http://dx.doi.org/10.1109/DCIS51330.2020.9268647
http://dx.doi.org/10.1145/3445979
http://dx.doi.org/10.1109/CISCE52179.2021.9446042
http://dx.doi.org/10.1007/978-3-030-25510-7_2
http://dx.doi.org/10.1109/ICFPT47387.2019.00032
https://ia.cr/2020/795
http://dx.doi.org/10.1109/VTS48691.2020.9107585
http://dx.doi.org/10.1109/FPL.2019.00042
http://www.pynq.io
https://github.com/mesham/pynq_api
https://github.com/tbuktu/libntru

	Introduction
	The NTRU Cryptographic Scheme
	Implementation of NTRU on Embedded Systems
	Multi-Unit Serial Polynomial Multiplier
	Core Design of the Polynomial Multiplier 
	Interface Design and IP-Module Encapsulation
	AXI4-Lite Option
	AXI4-Stream Option


	Implementation Results
	Embedded System Integration
	Resource Consumption
	Performance Evaluation

	Integration of HW Accelerators into LibNTRU
	Conclusions
	References

